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A B S T R A C T   

Over the past decade, scientific studies have used the growing availability of large tracking datasets to enhance 
our understanding of human mobility behavior. However, so far data processing pipelines for the varying data 
collection methods are not standardized and consequently limit the reproducibility, comparability, and trans-
ferability of methods and results in quantitative human mobility analysis. This paper presents Trackintel, an 
open-source Python library for human mobility analysis. Trackintel is built on a standard data model for human 
mobility used in transport planning that is compatible with different types of tracking data. We introduce the 
main functionalities of the library that covers the full life-cycle of human mobility analysis, including processing 
steps according to the conceptual data model, read and write interfaces, as well as analysis functions (e.g., data 
quality assessment, travel mode prediction, and location labeling). We showcase the effectiveness of the 
Trackintel library through a case study with four different tracking datasets. Trackintel can serve as an essential 
tool to standardize mobility data analysis and increase the transparency and comparability of novel research on 
human mobility. The library is available open-source at https://github.com/mie-lab/trackintel.   

1. Introduction 

Human mobility studies using large-scale human digital traces have 
boomed over the last decade. On the collective level, researchers 
revealed that human movement can be universally described using 
statistical distributions, i.e., the power-law distribution of consecutive 
displacements (Brockmann et al., 2006; Rhee et al., 2011), stationary 
time between displacements (Rhee et al., 2011; Song et al., 2010), and 
characteristic distance traveled by individuals (i.e., the radius of gyra-
tion) (González et al., 2008; Pappalardo et al., 2015). Moreover, it has 
been shown that individuals exhibit markedly regular location visitation 
patterns (Schneider, Belik, Couronné, Smoreda, & González, 2013) with 
high theoretical predictability (Song et al., 2010). People spend most of 
their time in a few locations (González et al., 2008; Song et al., 2010) 
and maintain a stable number of important locations over time (Ales-
sandretti et al., 2018). 

To a large extent, this progress can be attributed to the widespread 
availability of large mobility datasets stemming from information and 
communications technology (ICT) and location-based services (LBS) 
that are now integrated into many aspects of our daily life (Huang et al., 

2018; Keßler & McKenzie, 2018). Aside from the progress on the analysis 
of human movement itself, the increased availability of tracking data 
has led to the rapid growth of studies that use human mobility data to 
study phenomena related to human mobility, such as understanding of 
residential income segregation (Moro et al., 2021), quantifying urbani-
zation levels and city livability (Bassolas et al., 2019), classify functional 
areas of a city (Yuan & Raubal, 2012), urban sensing (Ahas et al., 2015), 
developing infrastructure for sustainable mobility (Xu, Çolak, Kara, 
Moura, & González, 2018) and responding to epidemic spreading 
(Chang et al., 2021). However, the raw digital traces are often not the 
targeted unit of analysis; for example, a location where people perform 
an activity can not directly be derived from GPS track points or mobile 
phone tower data. Studies thus employ various steps to preprocess data 
into the desired format. These steps and their outcome are often 
different across studies (Chen et al., 2016) due to the variety of the 
datasets and the different understanding of the definitions, which has 
led to a vast collection of dataset-specific preprocessing and analysis 
methods. For example, the study by Feng et al. (2018), which proposes 
the DeepMove model that is now widely accepted as a deep learning 
baseline model for next location prediction (Luca et al., 2021), generally 
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regards each raw position record as a location and does not perform 
preprocessing. However, focusing on the same problem, Urner et al. 
(2018) extract staypoints (i.e., all the points where a user stayed for at 
least a certain duration) from GPS track points and further aggregate 
them into locations using the k-means algorithm. Solomon et al. (2021) 
apply a similar processing concept but introduce the mean shift algo-
rithm to detect staypoints, which are then merged into locations ac-
cording to a distance threshold. These examples show how not using a 
standard movement model definition and a common preprocessing 
standard limit the reproducibility and comparability of the methods and 
analysis results. 

To address these problems, we present Trackintel, an open-source 
python library for the processing and analysis of movement data. 
Trackintel is based on an established model for human mobility taken 
from transport planning, which defines hierarchical levels of movement 
centred around the concept of activities. Trackintel standardizes the 
definition and implementation of the data processing steps derived from 
this data model. Our work thereby makes the assumptions, parameters 
and filtering steps explicit and provides transparent preprocessing steps, 
whose implementations are known to have substantial effects on the 
analysis results. Trackintel further provides analysis, visualization and 
support functions to enrich the raw tracking data with human-mobility- 
specific information. Due to the versatility of the data model, Trackintel 
standardizes preprocessing for many types of tracking data. It thereby 
greatly simplifies the benchmarking of novel analysis methods, in-
creases their reproducibility, and facilitates quantitative research based 
on tracking data. 

The remainder of the paper is structured as follows. Section 2 pro-
vides an overview of existing libraries for analyzing and preprocessing 
movement data. Section 3 first introduces the hierarchical model for 
human mobility analysis and describes its implementation in Trackintel. 
This section then proceeds to present the most important functionalities 
of Trackintel to process movement data. In Section 4, we showcase the 
capabilities of Trackintel to simplify the analysis and comparison of 
several different tracking datasets. Finally, we summarize and conclude 
this work in Section 5. 

2. Related work: Libraries for movement data 

Due to the long history of research in transportation, human 
migration, and animal behavioral research, a large variety of libraries 
for (human) movement data processing exists. Joo et al. (2020) survey 
an impressive number of 58 packages for movement analysis in R. Based 
on this work and the overview provided by Graser (2020), we selected 
the libraries that aim at supporting movement analysis in Python, R and 
C++. In Table 1, these selected libraries are compared in terms of their 
user-friendliness (documentation and robustness), their focus and their 
provided functionality for human movement data analysis. To compare 
packages by the quality of their documentation, we evaluate them on a 
scale from 0 to 6 based on criteria used for peer-review of packages by 
pyOpenSci (Holdgraf et al., 2022) and ROpenSci.3 See appendix A for 
the list of criteria. 

Many of the surveyed R libraries have a strong focus on animal 
behavioral analysis (Joo et al., 2020) (not all included in Table 1). The 
packages that can (also) be applied to human mobility analysis have a 
focus on basic statistical analysis of trajectories, such as measuring the 
spatial extent of animal motion (e.g., adehabitatLT (Calenge, 2006)), or 
the duration and distance of movement trajectories (e.g., TrackR (Frick 
& Kosmidis, 2017)). Currently, no coherent framework is available in R 
that provides the functionalities specific to human movement analysis, 
e.g. trip detection and transport mode labeling. Furthermore, there are 
several libraries available in C++, such as Tracktable (Andrew, 2014), 

MEOS,4 and MoveTK5 that promise efficient and fast tools for trajectory 
data processing, although they may be less accessible for the research 
audience in human mobility and transportation. Furthermore, these li-
braries provide only highly specific functionalities and do not represent 
a comprehensive framework for movement data analysis. 

ArcGIS Pro is a proprietary software for general spatial data pro-
cessing with modules for movement data analysis such as speed and 
acceleration computation, trackpoint clustering and in particular tra-
jectory visualization.6 However, the different functionalities are scat-
tered over different toolboxes and ArcGIS Pro does not provide a 
consistent framework for the analysis of movement data. Due to its 
proprietary nature, we could not evaluate documentation and testing as 
we did for the other packages, but we assume both are on a high level. 
We did not include QGIS,7 a high quality open-source GIS Project, in the 
table, as there are no well-maintained plug-ins for movement or tra-
jectory data analysis available. However, QGIS could be used in com-
bination with Python libraries or the mobilityDB (Zimányi et al., 2020) 
library. 

In Python, many open-source libraries have emerged as tools to both 
facilitate and standardize data processing and analysis. The geographic 
information science (GIScience) community in particular has benefited 
significantly from Python libraries, for example, the data models 
implemented in Shapely (Gillies, 2013) and the I/O formats for 
geographic data as offered in the Fiona package.8 Most importantly, 
spatial data can be handled easily with the Geopandas library (Jordahl 
et al., 2022) that directly builds up on Pandas (The pandas development 
team, 2023), one of the most established Python libraries for data 
analysis and manipulation. 

In the past years, Python has become the de-facto standard for data 
science and machine learning applications, which are increasingly 
important for the analysis of movement data (Luca et al., 2021; Toch 
et al., 2018). However, only a few libraries have attempted to provide 
preprocessing and analysis tools specifically for human mobility in a 
comprehensive Python package (see Table 1). Although many algo-
rithms for trajectory data mining were developed in the last decade 
(Zheng, 2015), their open-source availability in Python is limited, and 
they often suffer from insufficient documentation and testing standards, 
such as HuMobi (Smolak et al., 2021) or MovinPy. Others are well- 
maintained but limited in scopes, such as Traja (Shenk et al., 2021) 
that targets animal movement, PTRAIL (Haidri et al., 2021) for parallel 
processing, and TransBigData (Qing & Yuan, 2022) which focuses on 
data analysis on a collective level, similar to the R library stplanr 
(Lovelace & Ellison, 2018). 

Notable exceptions are MovingPandas (Graser, 2019) and scikit- 
mobility (Pappalardo et al., 2022). MovingPandas is based on Pandas 
and Geopandas and focuses on low-level trajectory manipulation, such 
as splitting, merging and visualizing trajectories. On the contrary, the 
scikit-mobility library targets high-level analysis functions, including 
computing human mobility metrics, generating synthetic trajectories 
and assessing privacy risks. Both libraries are actively maintained and 
contain various measures to ensure high code quality, but the definition 
of their data model implies a focus on movement trajectories (Moving-
Pandas) or mobility flows (scikit-mobility), which omits important 
concepts describing individual human mobility such as activities, trips 
or tours (Axhausen, 2007). 

We aim to close this gap with the Trackintel framework that utilizes 
an established data model from the transportation literature, which 

3 https://ropensci.org/ 

4 https://github.com/adonmo/meos  
5 https://github.com/movetk/movetk  
6 https://pro.arcgis. 

com/en/pro-app/2.8/tool-reference/intelligence/ 

an-overview-of-the-movement-analysis-toolset.htm  
7 https://www.qgis.org/en/site/  
8 https://github.com/Toblerity/Fiona 
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Table 1 
Comparison of movement data libraries. Packages are predominantly available open source in R and Python and they are compared with regard to their focus, documentation and functionality. While other movement 
analysis libraries already provide well-maintained and documented code with rich functionality for trajectory analysis, only Trackintel provides robust and flexible methods to aggregate trajectories into locations, trips 
and tours. 
(✓/ / x: available / partially available / not available).  

Package name Focus Programming 
language 
Python (P) 

Doc. 
score 

Test 
coverage (* / 
**: not 
reported but 
low / high) 

individual 
(I) / 
collective 
(C) 

human 
(H), 
animal (A) 
and/or 
object(O) 

Staypoint 
detection 

Aggregation 
to location 

Aggregation 
to trips 

Aggregation 
to tours 

Tracking 
quality 
assessment 

Transport 
mode 
labelling 

Home and 
work 
labelling 

Visualization Trajectory 
statistics 
(− /+/++: 
none / basic / 
rich) 

Trackintel Human mobility 
analysis 

P 6 98% I H ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ +

Scikit-mobility ( 
Pappalardo 
et al., 2022) 

Human mobility 
analysis 

P 5 ** I H ✓ ✓ x x x ✓ ++

Movingpandas ( 
Graser, 2019) 

Movement data 
analysis 

P 6 96% I H/A/O ✓ x x x x x x ✓ ++

PyMove 
Querying and 
visualizing 
trajectories 

P 5 85% I H/A/O ✓ x x x x x x ✓ +

MovinPy 
Mobility data 
analysis P 3 0 I H x x x x x x x −

HuMobi (Smolak 
et al., 2021) 

Human mobility 
prediction 

P 3 0 I H ✓ ✓ x x x x x +

PTRAIL (Haidri 
et al., 2021) 

Parallelization 
and feature 
extraction 

P 4 ** I H/A/O x x x x x x x ✓ ++

TransBigData ( 
Qing & Yuan, 
2022) 

Transportation P 5 90% C H ✓ x x x x ✓ ✓ −

mobilityDB ( 
Zimányi et al., 
2020) 

Storing and 
querying 

SQL 6 97% I H/A x x x x x x x +

Traja (Shenk 
et al., 2021) 

Animal 
trajectories P 6 76% I A x x x x x x ✓ ++

Tracktable ( 
Andrew, 2014) 

Moving object 
tracking P/C++ 2 ** I O x x x x x x ✓ ++

MEOS Spatio-temporal 
data analysis 

C++ 4 * I H/A/O x x x x x x x x +

MoveTK Movement 
analysis 

C++ − ** I/C H/A/O x x x x x x x x ++

adehabitatLT ( 
Calenge, 2011) Animal habitat R 4 ** I A x x x x x x x x ++

moveVis Visualization R 6 93% I A x x x x x x x ✓ −

stplanr (Lovelace 
& Ellison, 
2018) 

Sustainable 
transport 
planning 

R 6 * C H x x x x x x x x −

trajectories Object tracking 
and interaction 

R 5 * I H/A/O x x x x x x x ✓ +

TrackR 
Running and 
cycling data R 6 52% I H ✓ x x x x x x ✓ +

ArcGIS Pro Spatial data (P) − ** I/C H/A/O x x x x ✓ ++

H
. M
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incorporates different semantic aggregation levels of tracking data 
specific to human mobility. 

3. Trackintel framework 

Trackintel is a library for the analysis of spatio-temporal tracking 
data with a focus on human mobility. The core of Trackintel is the hi-
erarchical data model for movement data (Axhausen, 2007) that is 
widely adopted in GIScience (Bucher et al., 2019), transport planning 
(Chen et al., 2016) and related fields (Rout et al., 2021). We provide 
easy-to-use and efficient functionalities for the full life-cycle of human 
mobility data analysis, including import and export of tracking data of 
various types (e.g., GPS track points, location-based social network 
(LBSN) check-ins, call detail records), data model generation and pre-
processing, analysis, and visualization. A conceptual overview of the 
different components of Trackintel can be found in Fig. 1. 

Trackintel focuses on the mobility of individual persons or objects (e. 
g., as opposed to crowd flows), and all functionalities are implemented 
as user-specific, based on unique user identifiers that link data to the 
respective tracked users. Trackintel is implemented in Python and is 
built mainly on top of Pandas (The pandas development team, 2023) and 
GeoPandas (Jordahl et al., 2022) using accessor classes, a method to 
extend Pandas classes.9 This design makes Trackintel easy to use for 
Python users and ensures its broad compatibility with other Python 
spatial analysis libraries. 

3.1. The Trackintel data model 

The modeling framework employed by Trackintel is based on the 
activity-based analysis framework in transport planning, which regards 
travel demand as derived from our need to perform activities at different 
locations. We follow the definition from Schönfelder & Axhausen, 2016 
that people’s daily mobility consists of staying at locations to perform 
activities and traveling between locations for the next activity. In this 
definition and following the description in Axhausen (2007), movement 
is separated from activities at different semantic levels. Trackintel im-
plements six classes to represent movement data in this hierarchical 
model: positionfix, staypoint, tripleg, trip, tour, and location. Fig. 2 gives an 
overview of the hierarchical modeling structure and shows the classes in 
a UML diagram with their mandatory attributes and optional attributes 
in square brackets. All Trackintel classes are implemented as Pandas 
Dataframes or Geopandas Geodataframes. In order to be considered a 
valid Trackintel object, all mandatory attributes have to be present as 
columns with the correct names, as shown in Fig. 2. A more detailed 
explanation of the required and optional attributes of the Trackintel 
classes is given in Table 2. Geometries need to be of the defined type, 
with the exception of the Location class that can have multiple geome-
tries. Furthermore, all timestamps for the time fields required by 
Trackintel have to be timezone-aware.10 Besides these formal re-
quirements, classes can contain any additional information required for 
specific analysis. In the following, the different classes and their se-
mantics are introduced. 

3.1.1. Positionfix 
Positionfix is the smallest tracking unit in the Trackintel data model, 

consisting of timestamped position records, for example, generated by 
GNSS trackers or call detailed records (CDR) data. Positionfixes are often 
directly transferred from raw tracking data and are thus a natural entry 
point to the Trackintel data model, where it can further be processed and 
segmented into triplegs and staypoints. No inherent semantics are 

included since movements and activities cannot be distinguished from a 
Positionfix. 

3.1.2. Staypoint 
Staypoint represents a point in space, which is defined as an indi-

vidual remaining within a defined geographical radius for a defined 
time. Compared to the raw positionfix points, staypoints can represent 
stationary points that carry particular semantics, such as the purpose of 
the stay, or they can represent an intermediate stay, such as waiting for a 
bus. To distinguish between these two types of staypoints, we introduce 
the concept of activity: an activity staypoint is usually the reason for a 
person to travel and has an important purpose with an attached activity 
label (e.g., home), while a non-activity staypoint only represents a trivial 
stationary point (e.g., waiting). The exact definition of an activity de-
pends on the goal of the study. In Trackintel, activities are staypoints 
with the attribute activity_flag set to True, which can be obtained through 
user labels or directly inferred from data (see Section 3.5.2). While ac-
tivity staypoints are the basic unit for constructing trips, which mark the 
start and end of a trip, non-activity staypoints can only be part of a trip. 
Additionally, staypoints can be spatially aggregated to form locations. 

3.1.3. Tripleg 
The most basic level of movement is defined as tripleg (referred to as 

stage in Axhausen (2007)), which formally represents a continuous 
movement without changing transport mode or vehicle. Therefore, 
triplegs contain semantics about the movement of an individual, such as 
the mode of transport that is stored in the attribute field mode if avail-
able. This information can be obtained from user labels (Hong et al., 
2021; Zheng et al., 2010) or inferred using heuristics directly from the 
data, which is implemented as labeling functions in Trackintel (see 
Section 3.5.1). Triplegs can be created from positionfixes and can be 
aggregated to form trips. 

3.1.4. Trip 
Trip represents all travels between two activities and summarizes all 

triplegs and non-activity staypoints between two consecutive activity 
staypoints. Trips inherit the activity purpose from the activity label 
attribute of the destination staypoint. As they are often the primary 
quantity of interest in transport planning studies, trips, together with 
activities, are the core of the movement data model proposed in 
Axhausen (2007). 

3.1.5. Location 
Activity staypoints represent individual visits to places that are sig-

nificant to the visitor. Trackintel models these significant places using 
the location class to enable the characterization of the place that is 
visited. While the information attached to staypoints is bound to the 
individual visit (e.g., the specific activity or the time of day), the se-
mantics of locations are related to the place independent of the visit (e. 
g., land use or the opening hours of a shop). Locations are modeled with 
two different geometries, a point geometry for the center of the location 
and a polygon geometry to describe the extent of a location. 

3.1.6. Tour 
The mobility of individuals is centered around a few significant lo-

cations that act as the basis of their travel behavior. Individuals conduct 
several activities and trips if convenient but return home (or to a similar 
significant location) to plan their next activity. This behavior can be 
analyzed using the tours class, which is defined as “a sequence of trips 
starting and ending at the same location” (Axhausen, 2007, p. 4), 
referring to the location class defined above. A special case of a tour is 
the concept of journey that starts and ends at the home location of an 
individual. In Trackintel, a tour can be flagged as a journey using the 
journey attribute. A tour contains multiple trips, but one trip can also be 
part of several tours in case they are nested, e.g. the trip from the work 
location to the supermarket and back is part of a larger journey that 

9 https://pandas.pydata.org/docs/development/extending. 

html  
10 For an explanation, see https://docs.python. 

org/3/library/datetime.html#aware-and-naive-objects 
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started at home. 

3.2. Data model generation 

The core functionality of Trackintel is to generate all classes defined 
in the movement data model from the raw tracking data. In practice, this 
refers to the generation of the entire hierarchical movement data model 
from positionfix data. However, it should be noted that it is not required 
and often not practical to enter the framework from positionfixes - the 
framework can be accessed at any semantic level depending on the 

available data (e.g., location-based social network (LSBN) check-ins 
represent staypoints without the availability of positionfixes; see Fig. 1 
for examples of input levels for different tracking data types). The 
following section presents the implemented preprocessing steps neces-
sary to aggregate data through the hierarchy levels. The output of all 
generate functions is a (Geo)DataFrame with the fields listed in 
Table 2. 

3.2.1. Generate staypoints 
In Trackintel, staypoints are generated from positionfixes based on the 

Input data:
CSV, Geopandas or

from PostGIS
Trackintel data model

positionfixes

staypoints

trips

tours

locations

Detect activities

Analysis

triplegs

Label locations

Compute modal split

Assess temporal 
tracking quality

GNSS

CDR

Surveys

Check-ins

Assign transport mode

Fig. 1. Overview of the Trackintel framework.  

Fig. 2. Semantic visualization of the Trackintel data models and their UML diagram, with mandatory and optional attributes (shown in square brackets). The re-
lations between the different classes are shown in the connecting lines. Figure adapted from Jonietz and Bucher (2018). 
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sliding window detection algorithm first reported in Li et al. (2008), 
which has become a standard algorithm for staypoint detection (Zheng, 
2015). For each individual, the algorithm iterates over all positionfixes 
and determines groups of points that satisfy the predefined distance and 
time thresholds. Each output staypoint inherits the starting and ending 
time from the first and last positionfix that belongs to it, respectively, as 
well as the mean geometry coordinates of the group of positionfixes. The 
implemented staypoint detection algorithm extends the algorithm from 
Li et al. (2008) by an option to exclude temporal gaps in the tracking 
data, commonly observed in many datasets due to low temporal tracking 
coverage. This behavior can be controlled using a parameter repre-
senting the maximum time between two consecutive positionfixes such 
that they are still considered to belong to the same staypoint. 

3.2.2. Generate locations 
Locations can be generated by aggregating staypoints. Existing 

studies proposed community detection algorithm (Aslak & Alessan-
dretti, 2020) and spatial clustering algorithms, such as OPTICS (Yuan 
et al., 2013), mean shift (Solomon et al., 2021), and DBSCAN (Luo et al., 
2017) to perform this processing step. Here, we implement the most 
commonly employed DBSCAN algorithm to aggregate staypoints that 
are spatially close to locations (Hariharan & Toyama, 2004; Jonietz & 
Bucher, 2018). DBSCAN adopts a set of neighborhood characterization 
parameters ε and the minimum number of samples (min_samples) to 
define how dense the input data has to be considered a cluster. In the 
context of location generation, ε controls the distance of which nearby 
staypoints will be merged into a single location, and min_samples de-
termines the minimum number of staypoints to form a location (i.e., how 
many visits are required at the same place to consider it as significant). 
Generated locations are equipped with two different geometries. The 
center is a point geometry, calculated as the mean coordinates from all 
staypoints assigned to the cluster; the extent is a polygon geometry, 
defined as the bounding box of all belonging staypoints. Furthermore, 
we provide the flexibility to generate locations that are significant to a 
single user (Fig. 3 right) or to all users present in a dataset (Fig. 3 left). 
While user locations regard staypoints of each tracked user separately in 
the clustering process and prevent generating locations that are exces-
sively large (Aslak & Alessandretti, 2020), dataset locations consider all 
staypoints at the same time and output locations with shared semantics 
across users (e.g., train stations or shopping malls). In both options, the 
center and the extent of the clustered staypoints are attached to the 
generated locations, providing geometry information that facilitates 

further processing and analysis tasks. 

3.2.3. Generate triplegs 
Trackintel implements an algorithm that extracts triplegs from 

positionfixes based on the assumption that an individual is moving if he 
or she is not stationary, meaning that all positionfixes that do not belong 
to any staypoint are assigned to a tripleg. This assignment process re-
quires the input of positionfixes with the identifier of the already 
generated staypoints. Internally, the function aggregates all position-
fixes between two consecutive staypoints to form a tripleg, whose line 
geometry is constructed by connecting the point geometries in chrono-
logical order. Similar to the generation process of staypoints, the start 
and end timestamp of each tripleg are inherited from the first and last 
positionfixes that belong to it, respectively. 

3.2.4. Generate trips 
Trackintel implements a method to generate trips based on existing 

staypoints and triplegs. Trips summarize all movement and all non- 
activity staypoints (e.g. depending on the data, this could correspond 
to waiting at a bus stop) between two staypoints flagged as activity. This 
seems trivial at first sight however, there are no easy-to-use imple-
mentations available in other libraries, and there are several special 
cases related to gaps in the tracking data that should be considered 
during the trip generation. Another important feature of the imple-
mented trip generation is the identifier management that connects trips 
with their associated staypoints and triplegs. 

The trip detection implemented in Trackintel can handle incomplete 
tracking data and supports the detection of temporal gaps (pseudocode 
shown in Algorithm 1). A temporal gap is defined as missing tracking 
signals longer than a certain time period (Zhao et al., 2021), which can 
be specified using the θtrip_gap input parameter to the function. If a 
temporal gap greater than θtrip_gap is detected, we assume the individual 
performed an unobserved activity and, therefore, the destination of the 
current and the origin of the next trip is unknown (NaN in the resulting 
table). Finally, the function provides the flexibility to specify whether 
the trips table should include the geometry. The geometry of a trip 
consists of the points for the origin and destination staypoints. If the 
origin is unknown, we use the first point of the first tripleg instead, or 
analogously the last point for the destination. 

Algorithm 1. Trip generation. 

Table 2 
Description of the mandatory and optional columns for Trackintel data models.  

Data models Fields Description 

All id The unique identifier for the record  
user_id The unique user identifier  
tracked_at The timestamp for the point (only for positionfix)  
started_at The starting time of the record (except for positionfix and location)  
finished_at The ending time of the record (except for positionfix and location) 

Positionfix geometries Point geometry 
Staypoint geometries Point geometry  

purpose (optional) Purpose label for the staypoint. This could be either an activity purpose (e.g., home), or an non-activity purpose (e.g., wait).  
is_activity (optional) Boolean flag indicating whether the staypoint is an activity 

Location center Point geometry representing the center  
extent (optional) Polygon geometry representing the extent 

Tripleg geometries Line geometry  
mode (optional) Transport mode label 

Trip origin_staypoint_id The identifier of the starting staypoint  
destination_staypoint_id The identifier of the destination staypoint  
primary_mode (optional) The main transport mode label 

Tour location_id The start and end location identifier  
journey Boolean flag indicating whether the tour is a journey (A tour is called a journey if the start and end location is home).  
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Fig. 3. Semantic visualization of the relations between positionfix, staypoint and locations. Staypoints are groups of positionfixes where the users are stationary, and 
locations are aggregations of staypoints that the user visits multiple times. Locations can be generated across users (left) or for each user individually (right). Map 
data ©2022 Google. 
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3.2.5. Generate tours 
To the best of our knowledge, there is no standardized approach yet 

on how to combine trips into tours. Here, we take a rather broad defi-
nition of tours that includes nested tours as described in Axhausen 
(2007), leaving the user the choice to filter the outputs later. An example 
of a nested tour is shown in Fig. 4: the tour Work-Cafe-Work is part of the 
longer tour Home-Work-Cafe-Work-Home. This definition implies an n- 
to-n relationship between trips and tours: One tour contains multiple 
trips, and one trip can be part of multiple tours. 

Algorithm 2. Tour generation. 

Our algorithm to generate tours from trips is explained visually in 
Fig. 4, and shown as pseudocode in Algorithm 2. We iterate over the 
trips sorted chronologically and maintain a list C of tour-starting 

candidates. Each trip ϕi is a potential candidate to start a tour. At each 
iteration, that is, for each trip, we first check whether there is a spatial 
gap between the current and the previous trip ϕi− 1. Two options are 
implemented: If the table staypoints with the attribute location_id is 
provided, we compare the location identifier of the end of ϕi− 1 to the one 
of the start of ϕi, formally loc(end(ϕi− 1)) = loc(start(ϕi)). Alternatively, if 
the staypoints are not available, the predefined spatial distance 
threshold θmax_dist controls the maximum distance between the end and 
start points, i.e. distance(start(ϕi),end(ϕi− 1)) ≤ θmax_dist. 

Additionally, our implementation offers the possibility to generate 
partially observed tours to accommodate tracking datasets with a low 

temporal tracking coverage, e.g., mobile phone data-based studies. A 
parameter θmax_gaps determines how many spatial gaps are allowed 
within a single tour. Note that no gaps are allowed at the start or end of a 
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tour, because a tour must start and end at the same location, or the start- 
and end-staypoints must lie within the permitted range. If the test 
described above yields a spatial gap between ϕi− 1 and ϕi, and θmax_gaps =

0, the candidate list is reset to [ϕi]. Otherwise, a gap is registered. 
Next, we test whether ϕi concludes a tour (Algorithm 2, line 15). For 

this purpose, we iterate over all candidates in the reversed order, such 
that the shortest possible tour is found first. We compare the start point 
of a candidate ϕC to the end point of ϕi. Again, the points are compared 
either by the location identifier or via the θmax_dist parameter. If they are 
the same, the trips {ϕk | j ≤ k ≤ i} form a tour, subject to two further 
conditions: A. While iterating over candidates, the encountered gaps are 
counted, and the time duration is checked. The parameter θmax_time is 
used to certify whether the tour takes place within an appropriate time 
period, by default 24 h. B. When encountering more than θmax_gaps in the 
reversed iteration, or when reaching a candidate that started more than 
θmax_time hours ago, the loop ends, and no tour is found. Fig. 4 shows an 
example where two tours are found after considering ϕ3 and ϕ4 
respectively. 

3.3. Import and export 

Reading and writing data are important steps in a standard move-
ment data analysis pipeline. To simplify this process, Trackintel provides 
an I/O module for accessing movement data and storing intermediate or 
final results in a file or database. Three methods for converting move-
ment data with attached attribute information to Trackintel-compatible 
formats are provided: 1) Reading from Pandas Dataframes and Geo-
pandas Geodataframes, 2) reading and writing from CSV file formats, 
and 3) reading and storing from PostgreSQL databases with PostGIS 
extension. For every Trackintel data type, we provide I/O functions that 
internally check the validity of the input data formats. Also, Trackintel 
implements reading functions to convert tracking data from publicly 
available open-source datasets into the Trackintel data model. For 
example, raw tracking records from the Geolife dataset (Zheng et al., 
2010) can be loaded with Trackintel into the positionfix format. In 
addition, we provide helper functions to attach transport mode labels, 
which are provided separately for some individuals in the Geolife 
dataset. The dataset reading functions facilitate and standardize the 
processing of public movement datasets using Trackintel, which also 
help to benchmark new methods on the same dataset. 

3.4. Pre- and Postprocessing 

Trackintel offers several pre- and postprocessing methods. First, to 
smoothen the trajectory of triplegs, we employ the Douglas-Peucker 
algorithm (Douglas & Peucker, 1973). Furthermore, staypoints that 
appear consecutively at the same location can be aggregated in time. 
Such repetitions are a common artefact in tracking data due to noise or 
outliers recordings in GNSS tracking data. We propose to merge two 
staypoints s1, s2 of one individual if the following conditions hold: a) s1 
and s2 are consecutive in time, b) s1 and s2 are assigned to the same 
location, c) there is no tripleg registered between s1 and s2, and d) the 
time gap between the end time point of s1 and the start of s2 is shorter 
than a predefined threshold θmax_time_gap. The start time of s1 and the end 

time of s2 define the start and end time of the new staypoint. The ag-
gregation of other staypoint attributes, e.g. the geometry, must be 
specified explicitly. 

3.5. Analysis 

While the main functionality of Trackintel is the implementation of 
the hierarchical data model, the framework also includes advanced 
analysis functions to label transport modes and activity purposes, as well 
as methods to assess the tracking quality of each individual. 

3.5.1. Mode labeling 
Applications in transport planning often require access to the travel 

modes of an individual (Kim, Kim, & Lee, 2022). Since Trackintel does 
not assume the availability of user-provided labels, context or advanced 
data from the tracking device (e.g., accelerometer), we implement a 
simple heuristic to determine the travel mode from the tracking data. 
This classification is done per tripleg based on speed. The speed is 
approximated by the tripleg length (the distance of individual points in 
its linestring geometry) divided by its total time duration. The triplegs 
are labeled based on a simple division into slow mobility (<15 km/h 
average speed), motorized mobility (<100 km/h) and fast mobility 
(>100 km/h). In future versions, a more in-depth analysis of travel 
patterns or map matching (Bachir et al., 2019; Huang et al., 2019; 
Prelipcean et al., 2017; Widhalm et al., 2012) could be incorporated into 
Trackintel. 

3.5.2. Location labeling 
An individual’s home- and work-locations play a major role in 

mobility data analysis. As described in Section 3, staypoints may be 
associated with an activity label, but oftentimes this information is not 
available. We assign “home” and “work” activity labels to the staypoints 
with an adapted version of the OSNA algorithm proposed by Efsta-
thiades, Antoniades, Pallis, & Dikaiakos, 2015. In detail, the OSNA al-
gorithm divides weekdays into rest, work and leisure time frames. The 
location with the longest accumulated duration in the “rest” and “lei-
sure” periods is labeled as home, while work is set to the most pre-
dominant location in the “work” periods. While the original algorithm 
derives the hours spent at a location from geo-tagged tweets, we take 
advantage of the started_at and finished_at attributes of a staypoint. 
Additionally, similar to in the R package proposed by Chen and Poor-
thuis (2021), we provide a fast method that simply assigns home and 
work labels to the two locations that are visited more often in the data 
(in this order). In both cases, the locations can optionally be pre-filtered 
in order to exclude locations with an insufficient number of staypoints or 
an insufficient length of stay. 

3.5.3. Modal split 
If mode labels for triplegs are available, Trackintel supports the 

calculation of the modal split in three different ways: Computing the 
modal split by count (i.e., how many triplegs with this mode exist), by 

Home

Work

Cafe1 4

3
2

1Candidate list: 1, 2 1, 2, 3 1, 2, 3, 4

x

Iterate over previous trips in reversed order & stop when tour is found

x
x

xx
x

Tour found 
(work-cafe-work)

x

Fig. 4. The algorithm of tour generation implemented in Trackintel. A list of start candidates is maintained and iteratively checked for tour-closing trips.  
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duration (i.e., sum of individual’s tripleg duration) or by traveled dis-
tance. Furthermore, the frequency can be set according to the Pandas 
time series frequency syntax,11 and the modes can either be aggregated 
by user or by dataset. An example for one user is visualized in Fig. 6 
where the differences between a modal split by count (Fig. 6a) and by 
distance (Fig. 6b) stand out. 

3.5.4. Tracking quality assessment 
An important step in data analysis of tracking studies is the assess-

ment of the tracking quality, i.e. the temporal coverage. Temporal 
tracking quality, here defined as the proportion of time where the user’s 
whereabouts are recorded, is regarded as a basic measure of the tem-
poral resolution of the dataset (Alessandretti et al., 2018). Trackintel 
supports the calculation of the daily, weekly or overall tracking quality 
of each user according to the required granularity levels, which enables 
individual-level temporal resolution assessment, providing support for 
filtering low-quality users for further analysis. Additionally, tracking 
quality of hours of the day and weekdays can be obtained for measuring 
the tracking data quality differences across time periods. 

3.6. Visualization 

Trackintel provides a module that supports the visualization of 
positionfixes, staypoints and triplegs. Our implementation standardizes 
these functions such that each data type can be displayed together with 
lower aggregation levels (see Fig. 1). For example, the locations can be 
optionally shown together with positionfixes and staypoints. In that case, 
staypoints and locations are displayed as circles with a predefined radius. 
Furthermore, Trackintel integrates osmnx (Boeing, 2017) to optionally 
show the street network from Open Street Maps as background. Fig. 5 
shows example outputs of the plotting functions for positionfixes, stay-
points and triplegs for one exemplary participant in the Geolife study. 

Finally, Trackintel provides a flexible method to visualize changes in 
the modal split over time. The modal split by count, distance or duration, 
as explained in Section 3.5.3, is shown in a bar plot with one bar for each 
temporal bin. Different temporal resolutions (i.e., weeks and months) 
are handled internally. An example for one user is shown in Fig. 6 where 
the modal split has been aggregated by month. 

4. A case study on multiple tracking datasets 

Trackintel is a framework to standardize mobility data processing 
and analysis. We carried out a case study on four datasets to demonstrate 
its capability to handle data from various tracking studies. We read all 
data from a PostGIS database with the I/O module, preprocess them 
according to the Trackintel movement data model and compare the 
datasets in terms of tracking quality, trip characteristics, and modal 
split. The code of the case study is available in the supplemental material 
and the public repository.12 

4.1. Tracking studies 

We include the data from four tracking studies with two different 
tracking data types. An overview of the dataset properties is given in 
Table 3. The first study is the open-source Geolife dataset (Zheng et al., 
2009) that covers the movement of employees of Microsoft Research 
Asia, who recorded their movement using GPS trackers. Second, we 
include two studies that were conducted in collaboration with the Swiss 
Federal Railway Systems (SBB) under the project name SBB Green Class 
(Martin et al., 2019). In both studies, participants were given full access 

to all public transport in Switzerland. In addition, the participants from 
the first Green Class study (Green Class 1) received an electric vehicle 
and those from the second study (Green Class 2) an e-bike. Study par-
ticipants were tracked with a GNSS-based application (app) called 
Myway.13 The app already provides the data partially preprocessed as 
staypoints and triplegs. The same app was further used in our fourth 
dataset, the yumuv study which investigated the impact of a Mobility-as- 
a-Service app that integrates shared e-scooters, e-bikes and public 
transport (Martin et al., 2021). In the yumuv study, participants were 
divided into control and treatment groups and were tracked for three 
months. 

4.2. Standardized processing according to the Trackintel data model 

The Trackintel framework offers a straightforward way to transform 
all data into the same format and aggregate the data into trips and tours 
with minimal code. First, the raw GPS data in the Geolife dataset are 
converted to staypoints and triplegs with the Trackintel 
generate_staypoints() and generate_triplegs() functions. 
Staypoints are created with a distance threshold of 100 m and a tem-
poral threshold of 30 min, i.e. a user must have stayed within a 100 m 
radius for at least 30 min to generate a new staypoint, as suggested in the 
original paper (Li et al., 2008). Furthermore, consecutive positionfixes 
with a temporal gap of >24 h in between cannot belong to the same 
staypoint. 

All further preprocessing steps based on staypoints and triplegs are 
applied with the same parameters for all four datasets. This ensures the 
comparability of the results across datasets. More specifically, we derive 
the user’s locations from the staypoints with the gen-

erate_locations() function. The method uses the DBSCAN algo-
rithm with ε = 30 meters and min_samples = 1, such that one staypoint is 
sufficient to form a location. Furthermore, triplegs and staypoints are 
aggregated to trips with the generate_trips() function, with input 
parameter θtrip_gap = 25 minutes. At last, tours are generated by merging 
trips based on a maximum distance (θmax_dist) of 100 m between their 
start and end points, and with the default parameters θmax_gaps = 0 and 
θmax_time = 24 hours. 

Table 3 provides the absolute numbers of locations, staypoints, 
triplegs, trips and tours per dataset. These quantities decrease from 
triplegs to trips and tours due to the aggregation steps. Note that for 
Geolife our parameter choices prevent triplegs from being merged (see 
Table 3 where the number of triplegs and trips are the same); however, 
parameters that are more suitable for the trip generation would have 
decreased the quality of other parts significantly due to the low tracking 
quality of Geolife. In total, the considered datasets include 769,957 
staypoints and 1,123,931 triplegs. These quantities depend on the 
number of participants in the study and the total tracking duration. 
While the yumuv study has the largest sample size of 806 users, the 
Green Class 1 study participants have the longest tracking period, with 
each individual tracked for more than a year on average. 

4.3. Analysis and comparison of tracking datasets 

We now compare the mobility behavior of the study participants of 
all studies on the trip level as an exemplary usage of the Trackintel 
analysis module. The insights from this analysis are summarized in 
Table 4. First, we can derive the number of daily trips per individual 
from the absolute numbers given above. The study participants in Green 
Class 1 and Green Class 2 are most active in conducting trips. The low 
number of trips for Geolife users may be due to the low temporal 
tracking coverage of the dataset. Furthermore, we compare the average 
trip distances and duration across datasets. Interestingly, yumuv and 
Geolife users take longer trips on average in terms of duration. There is 11 https://pandas.pydata. 

org/pandas-docs/stable/user_guide/timeseries.html  
12 https://github.com/mie-lab/trackintel/blob/master/ 

examples/Trackintel_case_study.pdf 13 https://www.sbb.ch/en/timetable/mobile-apps/myway.html 
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also a clear effect of the bias of yumuv participants towards urban areas, 
where the trips cover much shorter distances. The number of trips per 
tour and the number of triplegs that are part of the same trip do not 
differ much between studies. 

Another key part of tracking data analysis regards the temporal 
tracking quality of a dataset. Here, temporal tracking quality is defined 

as the temporal coverage of the tracking data (i.e., the completeness) 
and is computed with the Trackintel function temporal_track-
ing_quality() as explained in Section 3.5.4. The results are given in 
the last column of Table 4. The three GNSS-based studies show a high 
coverage of >75% on average per user, whereas Geolife data only covers 
about 40 % of the time on average per user. Fig. 7 shows the distribution 

Fig. 5. The Trackintel framework offers functions to plot positionfixes (a), staypoints (b), and triplegs (c) together with the road network acquired from Open-
StreetMaps. This example maps the movements of one Geolife participant. 

Fig. 6. The visualization result of the Trackintel plot_modal_split() function of the triplegs recorded from one Geolife participant. Major differences can be 
observed between the aggregation by count (number of triplegs) (a) and distance traveled (b). 

Table 3 
Overview of basic features of the considered tracking studies. Locations, staypoints, triplegs, trips and tours are given in multiples of a thousand.   

Users Tracking period in days (std) Input Study type Locations Staypoints Triplegs Trips Tours 

Green Class 1 139 401 (59) Staypoints, Triplegs GNSS (app) 104.5 326.9 465.2 241.8 95.0 
Green Class 2 50 314 (76) Staypoints, Triplegs GNSS (app) 35.7 87.9 128.6 61.4 22.7 
Yumuv 806 87 (38) Staypoints, Triplegs GNSS (app) 127.3 326.3 502.3 199.7 83.0 
Geolife 177 193 (443) Positionfixes GPS tracker 13.6 28.9 30.2 30.2 7.2  

Table 4 
Overview of the mobility statistics for the considered tracking datasets.   

Trips per day Trips per tour Legs per trip Trip distance in km (std) Trip duration (std) Tracking quality (std) 

Green Class 1 4.32 2.73 1.92 27.4 (478.7) 0.52 (0.73) 0.85 (0.17) 
Green Class 2 3.80 2.66 2.09 33.7 (568.2) 0.51 (0.75) 0.75 (0.24) 
Yumuv 3.13 2.11 2.51 16.9 (100.4) 0.68 (0.91) 0.77 (0.23) 
Geolife 1.70 2.37 1.00 36.1 (3163.5) 0.64 (0.94) 0.4 (0.32)  
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of the tracking quality over users. In the Geolife dataset, the temporal 
tracking quality largely differs across individuals. In comparison, the 
large majority of Green Class 1 participants reached a coverage of >0.7. 
The large difference between Geolife and the other datasets can be 
explained by the different hardware that was used in the studies. While 
the Geolife individuals were equipped with dedicated GPS-only trackers 
that are prone to localization problems when indoors or in urban can-
yons, the participants in the Green Class and yumuv studies were tracked 
with an app on their smartphone that uses the location API of the 
operating system. The latter has access to all GNSS systems in addition to 
GPS and can fall back to other technologies such as WIFI or cell tower 
triangulation if no satellites are available. 

We further compare the modal split of the tracking studies. The split 
is computed first as the number of triplegs per mode and second as the 
covered distance per mode. We use the Trackintel function pre-
dict_transport_mode() to approximate the modes for the Geolife 
dataset, since the original mode labels are not available for all partici-
pants and not all the time. In all other studies, high-quality mode labels 
are provided, and we aggregate them into the simplified categories of 
slow mobility (walk, bicycle, scooter), motorized mobility (tram, bus, 
car and motorbike) and fast mobility (airplane and train). The results are 
shown in Fig. 8. The datasets differ significantly with respect to their 
modal split, which can be explained by the study target group, for 
example, Green Class participants were given full access to all public 
transport in Switzerland and are thus more likely to use trains (fast 
transport). Yumuv individuals on the other hand mostly live in urban 
areas and they were using the yumuv bundle of shared e-bicycles and 
scooters, which explains the higher proportion of slow mobility for 
yumuv. 

Finally, we analyze the daily activity patterns of individuals. Spe-
cifically, the time periods when the individuals are at home and at work 
are computed. For the Green Class 1 & 2 studies, the activity label for 
each staypoint is provided by the participants. For the Geolife and 
yumuv datasets, on the other hand, we adopt the Trackintel loca-
tion_identifier() function that implements the OSNA algorithm 
(Efstathiades, Antoniades, Pallis, & Dikaiakos, 2015) to infer the home 
and work locations. In Fig. 9, the distribution of home and work stay-
points over the course of a day is shown. Specifically, the average 
fraction of users with a staypoint labeled home (or work respectively) is 
shown for every minute of the day. The fraction of users at home (work) 
is thereby computed as the number of staypoints per day divided by the 

Fig. 7. Distribution of the individual temporal tracking quality for the 
considered datasets. 

Fig. 8. Comparison of modal split between datasets. The users of different studies differ considerably in terms of their usage of slow, motorized or fast transport.  

Fig. 9. Distribution of activities over time.  
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number of actively tracked users, where a user is actively tracked if there 
is at least one staypoint on that day. The working time between 8 am and 
5 pm as well as the lunch breaks are clearly visible in Fig. 9b for Green 
Class 1 & 2 and yumuv, although there are fewer work-staypoints for 
yumuv. While the home location is reliably identified for both yumuv 
and Geolife, the identification of the work location seems impaired for 
the Geolife dataset. As the OSNA algorithm simply selects the second- 
most visited location as work if the “home” and “work” labels overlap, 
the low tracking quality of the Geolife dataset (see Fig. 7) could have 
affected the accuracy of the identification. 

In summary, our study demonstrates the ease of comparing data from 
different sources on all levels of the movement data model and con-
cerning various labels for the movement data. The standardized pre-
processing functions implemented in Trackintel also help compare 
methods and explain possible discrepancies in the analysis results from 
the different datasets. 

5. Discussion and conclusion 

Quantitative analysis of human mobility currently suffers from a lack 
of a common model for preprocessing movement data, limiting the 
reproducibility and comparability of scientific studies. Existing libraries 
focus on data analysis, leaving seemingly easy preprocessing steps up to 
the user, although design choices of these steps can significantly affect 
the results (Sambasivan et al., 2021). This article presented Trackintel, a 
new open-source tool to address these problems. Trackintel implements 
a widely accepted conceptual data model for movement data and pro-
vides functionalities for the full life-cycle of human mobility data 
analysis: import and export of tracking data collected through various 
methods, preprocessing, data quality assessment, semantic enrichment, 
quantitative analysis and mining tasks, and visualization of data and 
results. 

A particular strength of Trackintel is that it greatly simplifies the 
joint analysis of several movement datasets with different properties. 
This was shown in a case study where four different datasets were jointly 
preprocessed and analyzed. We used the analysis methods implemented 
in Trackintel to compare the datasets with respect to their trip proper-
ties, their tracking quality, their modal split and their daily activity 
patterns. It was demonstrated in the supplementary material that rich 
insights about the characteristics of different tracking datasets could be 
easily obtained in Trackintel with few lines of code. Our library is thus 
also a response to recent calls in GIS for systematic benchmarking of new 
methods on several datasets (Konkol et al., 2019). 

Importantly, the purpose of Trackintel is not to provide a compre-
hensive set of analysis functions, but rather a high-quality imple-
mentation of standard aggregation and semantics-enrichment steps that 
are relevant for most tracking studies. This goal is fulfilled in the current 
version of the library since functions for all aggregation steps in the data 
movement model are provided and were tested extensively on diverse 
datasets. Further work on the preprocessing module will focus on im-
provements, such as outlier filtering functions or methods to fill small 
gaps in the tracking data. 

We plan to extend the analysis functionality of Trackintel and 
improve the integration with other open-source libraries. Currently, the 
goal of compatibility with arbitrary tracking datasets limits the capa-
bilities of the analysis model. A good example is the transport mode 
prediction function provided by Trackintel, which is based on a simple 
heuristic. A more sophisticated and powerful method can in principle be 
implemented for a specific dataset, however, the applicability of this 
method to other datasets will be limited by the availability of specific 
input data or additional context data. Nevertheless, Trackintel will be 
continuously extended to incorporate the latest processing and analysis 
algorithms and to offer a wider variety of options for the preprocessing, 
analysis and visualization of movement data. In particular, we will work 
towards the integration of Trackintel with other popular Python li-
braries, such as the Open Street Maps package osmnx. The data analysis 

module can be substantially improved when considering mobility- 
related context information, such as enriching trips with point-of- 
interest data for transport mode identification. Moreover, we plan to 
provide a basic behavioral analysis module that allows insights into 
users’ mobility behavior, for example, user mobility profiling and 
detecting changes in users’ mobility behavior over time. 

Finally, Trackintel does not aim to cover all preprocessing and 
analysis needs for every movement data study. However, due to the 
compatibility with Pandas and Geopandas, Trackintel can easily be in-
tegrated into a larger workflow that comprises a variety of Python data 
and spatial analysis libraries. In particular, it is targeted at providing the 
same reliability as these standard libraries. This is achieved through 
strong compliance with Python library standards, including a high 
coverage of unit tests with both real and synthetic data, a code review 
process and continuous integration. In this setup, new algorithms can be 
contributed without risking breaking existing functionality. We there-
fore believe that Trackintel can serve as a standard and well-trusted 
mobility processing tool. 

CRediT authorship contribution statement 

Henry Martin: Conceptualization, Methodology, Software, Valida-
tion, Writing – original draft, Writing – review & editing. Ye Hong: 
Conceptualization, Methodology, Software, Validation, Writing – orig-
inal draft, Writing – review & editing. Nina Wiedemann: Conceptual-
ization, Methodology, Software, Validation, Writing – original draft, 
Writing – review & editing. Dominik Bucher: Conceptualization, 
Methodology, Software, Validation. Martin Raubal: Supervision, 
Funding acquisition, Writing – review & editing. 

Acknowledgement 

Funding: This work was supported by the Swiss Data Science Center 
[C17-14] and the ETH Zurich Foundation [MI-01-19]. Additionally, we 
would like to thank Christof Leutenegger, Sven Ruf, and Nishant Kumar 
for their code contributions to Trackintel, David Jonietz for helping to 
create the idea of Trackintel, and René Buffat and Jǐrí Kunčar for their 
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Appendix A. Documentation score 

A.1. Python 

The documentation score reported in Table 1 for python libraries is 
based on the pyOpenSci package peer-review evaluation critera (Hold-
graf et al., 2022).  

• Has an Open Software Initiative (OSI) approved license.  
• Contains a README with instructions for installing the development 

version. 
• Contains a vignette (notebook) with examples of its essential func-

tions and uses.  
• Has a test suite.  
• Has continuous integration, such as Travis CI, AppVeyor, CircleCI, 

and/or others.  
• Includes documentation with examples for all functions. 

A.2. R 

The documentation score reported in Table 1 for R libraries is based 
on the ROpenScie package peer-review evaluation critera.4  

• Does the package have a CRAN accepted license?  
• The package contains a reasonably complete readme with devtools 

install instructions. 
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• The package contains a vignette with examples of its essential 
functions.  

• The package contains unit tests.  
• The repository has continuous integration with Travis and/or 

another service.  
• Package available on CRAN? 

Appendix B. Case study 

The notebook including code to reproduce the case study can be 
found online at https://doi.org/10.1016/j.compenvurbsys.2023.101 
938. 
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González, M. C., Hidalgo, C. A., & Barabási, A.-L. (2008). Understanding individual 
human mobility patterns. Nature, 453(7196), 779–782. https://doi.org/10.1038/ 
nature06958 

Graser, A. (2019). MovingPandas: Efficient structures for movement data in Python. GI_ 
Forum, 1, 54–68. https://doi.org/10.1553/giscience2019_01_s54 

Graser, A. (2020). Tools for the analysis of movement data. https://github.com/anitag 
raser/movement-analysis-tools. 

Haidri, S., Haranwala, Y. J., Bogorny, V., Renso, C., da Fonseca, V. P., & Soares, A. 
Ptrail–a python package for parallel trajectory data preprocessing. (2021). 
arXiv:2108.13202. 

Hariharan, R., & Toyama, K. (2004). Project Lachesis: Parsing and Modeling Location 
Histories. In M. J. Egenhofer, C. Freksa, & H. J. Miller (Eds.), Geographic Information 
Science (pp. 106–124). Springer. https://doi.org/10.1007/978-3-540-30231-5_8.  

Huang, H., Cheng, Y., & Weibel, R. (2019). Transport mode detection based on mobile 
phone network data: A systematic review. Transportation Research Part C: Emerging 
Technologies, 101, 297–312. https://doi.org/10.1016/j.trc.2019.02.008 

Huang, H., Gartner, G., Krisp, J. M., Raubal, M., & Van de Weghe, N. (2018). Location 
based services: Ongoing evolution and research agenda. Journal of Location Based 
Services, 12(2), 63–93. https://doi.org/10.1080/17489725.2018.1508763 

Joo, R., Boone, M. E., Clay, T. A., Patrick, S. C., Clusella-Trullas, S., & Basille, M. (2020). 
Navigating through the R packages for movement. Journal of Animal Ecology, 89(1), 
248–267. https://doi.org/10.1111/1365-2656.13116 

Keßler, C., & McKenzie, G. (2018). A geoprivacy manifesto. Transactions in GIS, 22(1), 
3–19. https://doi.org/10.1111/tgis.12305 

Holdgraf, C., Solvik, K., Ogasawara, I., Brett, M., Sundell, E., gaow, Chen, Z., … 
Kashyap, S. (2022). pyOpenSci/contributing-guide: Pre release 0.3 (v0.3). Zenodo. 
https://doi.org/10.5281/zenodo.7101778 

Hong, Y., Xin, Y., Martin, H., Bucher, D., & Raubal, M. (2021). A Clustering-Based 
Framework for Individual Travel Behaviour Change Detection. In , 208. 11th 
International Conference on Geographic Information Science (GIScience 2021) - Part II. 
https://doi.org/10.4230/LIPIcs.GIScience.2021.II.4, 4. 

Jordahl, K., Bossche, J.V. den, Fleischmann, M., McBride, J., Wasserman, J., Richards, 
M., Badaracco, A.G., Snow, A.D., Gerard, J., Tratner, J., Perry, M., Ward, B., Farmer, 
C., Hjelle, G.A., Taves, M., Hoeven, E. ter, Cochran, M., rraymondgh, Gillies, S., … 
Ren, C. (2022). geopandas/geopandas: V0.12.2 (v0.12.2). Zenodo. https://doi.org/10. 
5281/zenodo.7422493. 

Jonietz, D., & Bucher, D. (2018). Continuous trajectory pattern mining for mobility behaviour 
change detection. LBS 2018: 14th international conference on location based services. In 
(pp. 211–230). Springer. https://doi.org/10.1007/978-3-319-71470-7_11.  

Kim, J., Kim, J. H., & Lee, G. (2022). GPS data-based mobility mode inference model 
using long-term recurrent convolutional networks. Transportation Research Part C: 
Emerging Technologies, 135, 103523. https://doi.org/10.1016/j.trc.2021.103523 

Konkol, M., Kray, C., & Pfeiffer, M. (2019). Computational reproducibility in 
geoscientific papers: Insights from a series of studies with geoscientists and a 
reproduction study. International Journal of Geographical Information Science, 33(2), 
408–429. https://doi.org/10.1080/13658816.2018.1508687 

Li, Q., Yu, Z., Xie, X., Chen, Y., Liu, W., & Ma, W.-Y.. Mining user similarity based on 
location history. https://doi.org/10.1145/1463434.1463477. 

Lovelace, R., & Ellison, R. (2018). stplanr: A Package for Transport Planning. The R 
Journal, 10(2), 7–23. https://doi.org/10.32614/RJ-2018-053 

Luca, M., Barlacchi, G., Lepri, B., & Pappalardo, L. (2021). A survey on deep learning for 
human mobility. ACM Computing Surveys, 55(1). https://doi.org/10.1145/3485125 

Luo, T., Zheng, X., Guangluan, X., Kun, F., & Ren, W. (2017). An improved DBSCAN 
algorithm to detect stops in individual trajectories. ISPRS International Journal of 
Geo-Information, 6(3), 63. https://doi.org/10.3390/ijgi6030063 

Martin, H., Becker, H., Bucher, D., Jonietz, D., Raubal, M., & Axhausen, K. W. (2019). 
Begleitstudie SBB Green Class - Abschlussbericht. Working Paper No. 1439, Institute for 
Transport Planning and Systems, ETH Zürich. https://doi.org/10.3929/ethz-b- 
000353337. 

Martin, H., Reck, D. J., Axhausen, K. W., & Raubal, M. (2021). ETH mobility initiative 
project MI-01-19 empirical use and impact analysis of MaaS. ETH Zurich: Technical 
report.  

Moro, E., Calacci, D., Dong, X., & Pentland, A. (2021). Mobility patterns are associated 
with experienced income segregation in large US cities. Nature Communications, 12 
(1), 4633. https://doi.org/10.1038/s41467-021-24899-8 

Pappalardo, L., Simini, F., Barlacchi, G., & Pellungrini, R. (2022). scikit-mobility: A 
Python Library for the Analysis, Generation, and Risk Assessment of Mobility Data. 
Journal of Statistical Software, 103(1), 1–38. https://doi.org/10.18637/jss.v103.i04 

Pappalardo, L., Simini, F., Rinzivillo, S., Pedreschi, D., Giannotti, F., & Barabási, A.-L. 
(2015). Returners and explorers dichotomy in human mobility. Nature 
Communications, 6(1), 8166. https://doi.org/10.1038/ncomms9166 
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