
Computers, Environment and Urban Systems 101 (2023) 101938

Available online 7 February 2023
0198-9715/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Trackintel: An open-source Python library for human mobility analysis

Henry Martin a,b,*,1, Ye Hong a,1, Nina Wiedemann a,1, Dominik Bucher c,2, Martin Raubal a

a Institute of Cartography and Geoinformation, ETH Zurich, Zurich, Switzerland
b Institute of Advanced Research in Artificial Intelligence (IARAI), Vienna, Austria
c c.technology, Tessinerplatz 7, 8002 Zürich, Switzerland

A R T I C L E I N F O

Keywords:
Human mobility analysis
Open-source software
Transport planning
Data mining
Python
Tracking studies

A B S T R A C T

Over the past decade, scientific studies have used the growing availability of large tracking datasets to enhance
our understanding of human mobility behavior. However, so far data processing pipelines for the varying data
collection methods are not standardized and consequently limit the reproducibility, comparability, and trans-
ferability of methods and results in quantitative human mobility analysis. This paper presents Trackintel, an
open-source Python library for human mobility analysis. Trackintel is built on a standard data model for human
mobility used in transport planning that is compatible with different types of tracking data. We introduce the
main functionalities of the library that covers the full life-cycle of human mobility analysis, including processing
steps according to the conceptual data model, read and write interfaces, as well as analysis functions (e.g., data
quality assessment, travel mode prediction, and location labeling). We showcase the effectiveness of the
Trackintel library through a case study with four different tracking datasets. Trackintel can serve as an essential
tool to standardize mobility data analysis and increase the transparency and comparability of novel research on
human mobility. The library is available open-source at https://github.com/mie-lab/trackintel.

1. Introduction

Human mobility studies using large-scale human digital traces have
boomed over the last decade. On the collective level, researchers
revealed that human movement can be universally described using
statistical distributions, i.e., the power-law distribution of consecutive
displacements (Brockmann et al., 2006; Rhee et al., 2011), stationary
time between displacements (Rhee et al., 2011; Song et al., 2010), and
characteristic distance traveled by individuals (i.e., the radius of gyra-
tion) (González et al., 2008; Pappalardo et al., 2015). Moreover, it has
been shown that individuals exhibit markedly regular location visitation
patterns (Schneider, Belik, Couronné, Smoreda, & González, 2013) with
high theoretical predictability (Song et al., 2010). People spend most of
their time in a few locations (González et al., 2008; Song et al., 2010)
and maintain a stable number of important locations over time (Ales-
sandretti et al., 2018).

To a large extent, this progress can be attributed to the widespread
availability of large mobility datasets stemming from information and
communications technology (ICT) and location-based services (LBS)
that are now integrated into many aspects of our daily life (Huang et al.,

2018; Keßler & McKenzie, 2018). Aside from the progress on the analysis
of human movement itself, the increased availability of tracking data
has led to the rapid growth of studies that use human mobility data to
study phenomena related to human mobility, such as understanding of
residential income segregation (Moro et al., 2021), quantifying urbani-
zation levels and city livability (Bassolas et al., 2019), classify functional
areas of a city (Yuan & Raubal, 2012), urban sensing (Ahas et al., 2015),
developing infrastructure for sustainable mobility (Xu, Çolak, Kara,
Moura, & González, 2018) and responding to epidemic spreading
(Chang et al., 2021). However, the raw digital traces are often not the
targeted unit of analysis; for example, a location where people perform
an activity can not directly be derived from GPS track points or mobile
phone tower data. Studies thus employ various steps to preprocess data
into the desired format. These steps and their outcome are often
different across studies (Chen et al., 2016) due to the variety of the
datasets and the different understanding of the definitions, which has
led to a vast collection of dataset-specific preprocessing and analysis
methods. For example, the study by Feng et al. (2018), which proposes
the DeepMove model that is now widely accepted as a deep learning
baseline model for next location prediction (Luca et al., 2021), generally

* Corresponding author at: ETH Zurich, Institute of Cartography and Geoinformation HIL D 54.3, Stefano-Franscini-Platz 5, CH-8093 Zürich, Switzerland.
E-mail addresses: martinhe@ethz.ch (H. Martin), hongy@ethz.ch (Y. Hong), nwiedemann@ethz.ch (N. Wiedemann).

1 Authors contributed equally. Order was determined randomly.
2 The majority of this work was done while the author was at the Chair of Geoinformation Engineering, ETH Zurich.

Contents lists available at ScienceDirect

Computers, Environment and Urban Systems

journal homepage: www.elsevier.com/locate/ceus

https://doi.org/10.1016/j.compenvurbsys.2023.101938
Received 4 August 2022; Received in revised form 5 January 2023; Accepted 12 January 2023

mailto:martinhe@ethz.ch
mailto:hongy@ethz.ch
mailto:nwiedemann@ethz.ch
www.sciencedirect.com/science/journal/01989715
https://www.elsevier.com/locate/ceus
https://doi.org/10.1016/j.compenvurbsys.2023.101938
https://doi.org/10.1016/j.compenvurbsys.2023.101938
https://doi.org/10.1016/j.compenvurbsys.2023.101938
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compenvurbsys.2023.101938&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers, Environment and Urban Systems 101 (2023) 101938

2

regards each raw position record as a location and does not perform
preprocessing. However, focusing on the same problem, Urner et al.
(2018) extract staypoints (i.e., all the points where a user stayed for at
least a certain duration) from GPS track points and further aggregate
them into locations using the k-means algorithm. Solomon et al. (2021)
apply a similar processing concept but introduce the mean shift algo-
rithm to detect staypoints, which are then merged into locations ac-
cording to a distance threshold. These examples show how not using a
standard movement model definition and a common preprocessing
standard limit the reproducibility and comparability of the methods and
analysis results.

To address these problems, we present Trackintel, an open-source
python library for the processing and analysis of movement data.
Trackintel is based on an established model for human mobility taken
from transport planning, which defines hierarchical levels of movement
centred around the concept of activities. Trackintel standardizes the
definition and implementation of the data processing steps derived from
this data model. Our work thereby makes the assumptions, parameters
and filtering steps explicit and provides transparent preprocessing steps,
whose implementations are known to have substantial effects on the
analysis results. Trackintel further provides analysis, visualization and
support functions to enrich the raw tracking data with human-mobility-
specific information. Due to the versatility of the data model, Trackintel
standardizes preprocessing for many types of tracking data. It thereby
greatly simplifies the benchmarking of novel analysis methods, in-
creases their reproducibility, and facilitates quantitative research based
on tracking data.

The remainder of the paper is structured as follows. Section 2 pro-
vides an overview of existing libraries for analyzing and preprocessing
movement data. Section 3 first introduces the hierarchical model for
human mobility analysis and describes its implementation in Trackintel.
This section then proceeds to present the most important functionalities
of Trackintel to process movement data. In Section 4, we showcase the
capabilities of Trackintel to simplify the analysis and comparison of
several different tracking datasets. Finally, we summarize and conclude
this work in Section 5.

2. Related work: Libraries for movement data

Due to the long history of research in transportation, human
migration, and animal behavioral research, a large variety of libraries
for (human) movement data processing exists. Joo et al. (2020) survey
an impressive number of 58 packages for movement analysis in R. Based
on this work and the overview provided by Graser (2020), we selected
the libraries that aim at supporting movement analysis in Python, R and
C++. In Table 1, these selected libraries are compared in terms of their
user-friendliness (documentation and robustness), their focus and their
provided functionality for human movement data analysis. To compare
packages by the quality of their documentation, we evaluate them on a
scale from 0 to 6 based on criteria used for peer-review of packages by
pyOpenSci (Holdgraf et al., 2022) and ROpenSci.3 See appendix A for
the list of criteria.

Many of the surveyed R libraries have a strong focus on animal
behavioral analysis (Joo et al., 2020) (not all included in Table 1). The
packages that can (also) be applied to human mobility analysis have a
focus on basic statistical analysis of trajectories, such as measuring the
spatial extent of animal motion (e.g., adehabitatLT (Calenge, 2006)), or
the duration and distance of movement trajectories (e.g., TrackR (Frick
& Kosmidis, 2017)). Currently, no coherent framework is available in R
that provides the functionalities specific to human movement analysis,
e.g. trip detection and transport mode labeling. Furthermore, there are
several libraries available in C++, such as Tracktable (Andrew, 2014),

MEOS,4 and MoveTK5 that promise efficient and fast tools for trajectory
data processing, although they may be less accessible for the research
audience in human mobility and transportation. Furthermore, these li-
braries provide only highly specific functionalities and do not represent
a comprehensive framework for movement data analysis.

ArcGIS Pro is a proprietary software for general spatial data pro-
cessing with modules for movement data analysis such as speed and
acceleration computation, trackpoint clustering and in particular tra-
jectory visualization.6 However, the different functionalities are scat-
tered over different toolboxes and ArcGIS Pro does not provide a
consistent framework for the analysis of movement data. Due to its
proprietary nature, we could not evaluate documentation and testing as
we did for the other packages, but we assume both are on a high level.
We did not include QGIS,7 a high quality open-source GIS Project, in the
table, as there are no well-maintained plug-ins for movement or tra-
jectory data analysis available. However, QGIS could be used in com-
bination with Python libraries or the mobilityDB (Zimányi et al., 2020)
library.

In Python, many open-source libraries have emerged as tools to both
facilitate and standardize data processing and analysis. The geographic
information science (GIScience) community in particular has benefited
significantly from Python libraries, for example, the data models
implemented in Shapely (Gillies, 2013) and the I/O formats for
geographic data as offered in the Fiona package.8 Most importantly,
spatial data can be handled easily with the Geopandas library (Jordahl
et al., 2022) that directly builds up on Pandas (The pandas development
team, 2023), one of the most established Python libraries for data
analysis and manipulation.

In the past years, Python has become the de-facto standard for data
science and machine learning applications, which are increasingly
important for the analysis of movement data (Luca et al., 2021; Toch
et al., 2018). However, only a few libraries have attempted to provide
preprocessing and analysis tools specifically for human mobility in a
comprehensive Python package (see Table 1). Although many algo-
rithms for trajectory data mining were developed in the last decade
(Zheng, 2015), their open-source availability in Python is limited, and
they often suffer from insufficient documentation and testing standards,
such as HuMobi (Smolak et al., 2021) or MovinPy. Others are well-
maintained but limited in scopes, such as Traja (Shenk et al., 2021)
that targets animal movement, PTRAIL (Haidri et al., 2021) for parallel
processing, and TransBigData (Qing & Yuan, 2022) which focuses on
data analysis on a collective level, similar to the R library stplanr
(Lovelace & Ellison, 2018).

Notable exceptions are MovingPandas (Graser, 2019) and scikit-
mobility (Pappalardo et al., 2022). MovingPandas is based on Pandas
and Geopandas and focuses on low-level trajectory manipulation, such
as splitting, merging and visualizing trajectories. On the contrary, the
scikit-mobility library targets high-level analysis functions, including
computing human mobility metrics, generating synthetic trajectories
and assessing privacy risks. Both libraries are actively maintained and
contain various measures to ensure high code quality, but the definition
of their data model implies a focus on movement trajectories (Moving-
Pandas) or mobility flows (scikit-mobility), which omits important
concepts describing individual human mobility such as activities, trips
or tours (Axhausen, 2007).

We aim to close this gap with the Trackintel framework that utilizes
an established data model from the transportation literature, which

3 https://ropensci.org/

4 https://github.com/adonmo/meos
5 https://github.com/movetk/movetk
6 https://pro.arcgis.

com/en/pro-app/2.8/tool-reference/intelligence/

an-overview-of-the-movement-analysis-toolset.htm
7 https://www.qgis.org/en/site/
8 https://github.com/Toblerity/Fiona

H. Martin et al.

https://ropensci.org/
https://github.com/adonmo/meos
https://github.com/movetk/movetk
https://pro.arcgis.com/en/pro-app/2.8/tool-reference/intelligence/an-overview-of-the-movement-analysis-toolset.htm
https://pro.arcgis.com/en/pro-app/2.8/tool-reference/intelligence/an-overview-of-the-movement-analysis-toolset.htm
https://pro.arcgis.com/en/pro-app/2.8/tool-reference/intelligence/an-overview-of-the-movement-analysis-toolset.htm
https://www.qgis.org/en/site/
https://github.com/Toblerity/Fiona

Computers,EnvironmentandUrbanSystems101(2023)101938

3

Table 1
Comparison of movement data libraries. Packages are predominantly available open source in R and Python and they are compared with regard to their focus, documentation and functionality. While other movement
analysis libraries already provide well-maintained and documented code with rich functionality for trajectory analysis, only Trackintel provides robust and flexible methods to aggregate trajectories into locations, trips
and tours.
(✓/ / x: available / partially available / not available).

Package name Focus Programming
language
Python (P)

Doc.
score

Test
coverage (* /
**: not
reported but
low / high)

individual
(I) /
collective
(C)

human
(H),
animal (A)
and/or
object(O)

Staypoint
detection

Aggregation
to location

Aggregation
to trips

Aggregation
to tours

Tracking
quality
assessment

Transport
mode
labelling

Home and
work
labelling

Visualization Trajectory
statistics
(− /+/++:
none / basic /
rich)

Trackintel Human mobility
analysis

P 6 98% I H ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ +

Scikit-mobility (
Pappalardo
et al., 2022)

Human mobility
analysis

P 5 ** I H ✓ ✓ x x x ✓ ++

Movingpandas (
Graser, 2019)

Movement data
analysis

P 6 96% I H/A/O ✓ x x x x x x ✓ ++

PyMove
Querying and
visualizing
trajectories

P 5 85% I H/A/O ✓ x x x x x x ✓ +

MovinPy
Mobility data
analysis P 3 0 I H x x x x x x x −

HuMobi (Smolak
et al., 2021)

Human mobility
prediction

P 3 0 I H ✓ ✓ x x x x x +

PTRAIL (Haidri
et al., 2021)

Parallelization
and feature
extraction

P 4 ** I H/A/O x x x x x x x ✓ ++

TransBigData (
Qing & Yuan,
2022)

Transportation P 5 90% C H ✓ x x x x ✓ ✓ −

mobilityDB (
Zimányi et al.,
2020)

Storing and
querying

SQL 6 97% I H/A x x x x x x x +

Traja (Shenk
et al., 2021)

Animal
trajectories P 6 76% I A x x x x x x ✓ ++

Tracktable (
Andrew, 2014)

Moving object
tracking P/C++ 2 ** I O x x x x x x ✓ ++

MEOS Spatio-temporal
data analysis

C++ 4 * I H/A/O x x x x x x x x +

MoveTK Movement
analysis

C++ − ** I/C H/A/O x x x x x x x x ++

adehabitatLT (
Calenge, 2011) Animal habitat R 4 ** I A x x x x x x x x ++

moveVis Visualization R 6 93% I A x x x x x x x ✓ −

stplanr (Lovelace
& Ellison,
2018)

Sustainable
transport
planning

R 6 * C H x x x x x x x x −

trajectories Object tracking
and interaction

R 5 * I H/A/O x x x x x x x ✓ +

TrackR
Running and
cycling data R 6 52% I H ✓ x x x x x x ✓ +

ArcGIS Pro Spatial data (P) − ** I/C H/A/O x x x x ✓ ++

H
. M

artin et al.

Computers, Environment and Urban Systems 101 (2023) 101938

4

incorporates different semantic aggregation levels of tracking data
specific to human mobility.

3. Trackintel framework

Trackintel is a library for the analysis of spatio-temporal tracking
data with a focus on human mobility. The core of Trackintel is the hi-
erarchical data model for movement data (Axhausen, 2007) that is
widely adopted in GIScience (Bucher et al., 2019), transport planning
(Chen et al., 2016) and related fields (Rout et al., 2021). We provide
easy-to-use and efficient functionalities for the full life-cycle of human
mobility data analysis, including import and export of tracking data of
various types (e.g., GPS track points, location-based social network
(LBSN) check-ins, call detail records), data model generation and pre-
processing, analysis, and visualization. A conceptual overview of the
different components of Trackintel can be found in Fig. 1.

Trackintel focuses on the mobility of individual persons or objects (e.
g., as opposed to crowd flows), and all functionalities are implemented
as user-specific, based on unique user identifiers that link data to the
respective tracked users. Trackintel is implemented in Python and is
built mainly on top of Pandas (The pandas development team, 2023) and
GeoPandas (Jordahl et al., 2022) using accessor classes, a method to
extend Pandas classes.9 This design makes Trackintel easy to use for
Python users and ensures its broad compatibility with other Python
spatial analysis libraries.

3.1. The Trackintel data model

The modeling framework employed by Trackintel is based on the
activity-based analysis framework in transport planning, which regards
travel demand as derived from our need to perform activities at different
locations. We follow the definition from Schönfelder & Axhausen, 2016
that people’s daily mobility consists of staying at locations to perform
activities and traveling between locations for the next activity. In this
definition and following the description in Axhausen (2007), movement
is separated from activities at different semantic levels. Trackintel im-
plements six classes to represent movement data in this hierarchical
model: positionfix, staypoint, tripleg, trip, tour, and location. Fig. 2 gives an
overview of the hierarchical modeling structure and shows the classes in
a UML diagram with their mandatory attributes and optional attributes
in square brackets. All Trackintel classes are implemented as Pandas
Dataframes or Geopandas Geodataframes. In order to be considered a
valid Trackintel object, all mandatory attributes have to be present as
columns with the correct names, as shown in Fig. 2. A more detailed
explanation of the required and optional attributes of the Trackintel
classes is given in Table 2. Geometries need to be of the defined type,
with the exception of the Location class that can have multiple geome-
tries. Furthermore, all timestamps for the time fields required by
Trackintel have to be timezone-aware.10 Besides these formal re-
quirements, classes can contain any additional information required for
specific analysis. In the following, the different classes and their se-
mantics are introduced.

3.1.1. Positionfix
Positionfix is the smallest tracking unit in the Trackintel data model,

consisting of timestamped position records, for example, generated by
GNSS trackers or call detailed records (CDR) data. Positionfixes are often
directly transferred from raw tracking data and are thus a natural entry
point to the Trackintel data model, where it can further be processed and
segmented into triplegs and staypoints. No inherent semantics are

included since movements and activities cannot be distinguished from a
Positionfix.

3.1.2. Staypoint
Staypoint represents a point in space, which is defined as an indi-

vidual remaining within a defined geographical radius for a defined
time. Compared to the raw positionfix points, staypoints can represent
stationary points that carry particular semantics, such as the purpose of
the stay, or they can represent an intermediate stay, such as waiting for a
bus. To distinguish between these two types of staypoints, we introduce
the concept of activity: an activity staypoint is usually the reason for a
person to travel and has an important purpose with an attached activity
label (e.g., home), while a non-activity staypoint only represents a trivial
stationary point (e.g., waiting). The exact definition of an activity de-
pends on the goal of the study. In Trackintel, activities are staypoints
with the attribute activity_flag set to True, which can be obtained through
user labels or directly inferred from data (see Section 3.5.2). While ac-
tivity staypoints are the basic unit for constructing trips, which mark the
start and end of a trip, non-activity staypoints can only be part of a trip.
Additionally, staypoints can be spatially aggregated to form locations.

3.1.3. Tripleg
The most basic level of movement is defined as tripleg (referred to as

stage in Axhausen (2007)), which formally represents a continuous
movement without changing transport mode or vehicle. Therefore,
triplegs contain semantics about the movement of an individual, such as
the mode of transport that is stored in the attribute field mode if avail-
able. This information can be obtained from user labels (Hong et al.,
2021; Zheng et al., 2010) or inferred using heuristics directly from the
data, which is implemented as labeling functions in Trackintel (see
Section 3.5.1). Triplegs can be created from positionfixes and can be
aggregated to form trips.

3.1.4. Trip
Trip represents all travels between two activities and summarizes all

triplegs and non-activity staypoints between two consecutive activity
staypoints. Trips inherit the activity purpose from the activity label
attribute of the destination staypoint. As they are often the primary
quantity of interest in transport planning studies, trips, together with
activities, are the core of the movement data model proposed in
Axhausen (2007).

3.1.5. Location
Activity staypoints represent individual visits to places that are sig-

nificant to the visitor. Trackintel models these significant places using
the location class to enable the characterization of the place that is
visited. While the information attached to staypoints is bound to the
individual visit (e.g., the specific activity or the time of day), the se-
mantics of locations are related to the place independent of the visit (e.
g., land use or the opening hours of a shop). Locations are modeled with
two different geometries, a point geometry for the center of the location
and a polygon geometry to describe the extent of a location.

3.1.6. Tour
The mobility of individuals is centered around a few significant lo-

cations that act as the basis of their travel behavior. Individuals conduct
several activities and trips if convenient but return home (or to a similar
significant location) to plan their next activity. This behavior can be
analyzed using the tours class, which is defined as “a sequence of trips
starting and ending at the same location” (Axhausen, 2007, p. 4),
referring to the location class defined above. A special case of a tour is
the concept of journey that starts and ends at the home location of an
individual. In Trackintel, a tour can be flagged as a journey using the
journey attribute. A tour contains multiple trips, but one trip can also be
part of several tours in case they are nested, e.g. the trip from the work
location to the supermarket and back is part of a larger journey that

9 https://pandas.pydata.org/docs/development/extending.

html
10 For an explanation, see https://docs.python.

org/3/library/datetime.html#aware-and-naive-objects

H. Martin et al.

https://pandas.pydata.org/docs/development/extending.html
https://pandas.pydata.org/docs/development/extending.html
https://docs.python.org/3/library/datetime.html#aware-and-naive-objects
https://docs.python.org/3/library/datetime.html#aware-and-naive-objects

Computers, Environment and Urban Systems 101 (2023) 101938

5

started at home.

3.2. Data model generation

The core functionality of Trackintel is to generate all classes defined
in the movement data model from the raw tracking data. In practice, this
refers to the generation of the entire hierarchical movement data model
from positionfix data. However, it should be noted that it is not required
and often not practical to enter the framework from positionfixes - the
framework can be accessed at any semantic level depending on the

available data (e.g., location-based social network (LSBN) check-ins
represent staypoints without the availability of positionfixes; see Fig. 1
for examples of input levels for different tracking data types). The
following section presents the implemented preprocessing steps neces-
sary to aggregate data through the hierarchy levels. The output of all
generate functions is a (Geo)DataFrame with the fields listed in
Table 2.

3.2.1. Generate staypoints
In Trackintel, staypoints are generated from positionfixes based on the

Input data:
CSV, Geopandas or

from PostGIS
Trackintel data model

positionfixes

staypoints

trips

tours

locations

Detect activities

Analysis

triplegs

Label locations

Compute modal split

Assess temporal
tracking quality

GNSS

CDR

Surveys

Check-ins

Assign transport mode

Fig. 1. Overview of the Trackintel framework.

Fig. 2. Semantic visualization of the Trackintel data models and their UML diagram, with mandatory and optional attributes (shown in square brackets). The re-
lations between the different classes are shown in the connecting lines. Figure adapted from Jonietz and Bucher (2018).

H. Martin et al.

Computers, Environment and Urban Systems 101 (2023) 101938

6

sliding window detection algorithm first reported in Li et al. (2008),
which has become a standard algorithm for staypoint detection (Zheng,
2015). For each individual, the algorithm iterates over all positionfixes
and determines groups of points that satisfy the predefined distance and
time thresholds. Each output staypoint inherits the starting and ending
time from the first and last positionfix that belongs to it, respectively, as
well as the mean geometry coordinates of the group of positionfixes. The
implemented staypoint detection algorithm extends the algorithm from
Li et al. (2008) by an option to exclude temporal gaps in the tracking
data, commonly observed in many datasets due to low temporal tracking
coverage. This behavior can be controlled using a parameter repre-
senting the maximum time between two consecutive positionfixes such
that they are still considered to belong to the same staypoint.

3.2.2. Generate locations
Locations can be generated by aggregating staypoints. Existing

studies proposed community detection algorithm (Aslak & Alessan-
dretti, 2020) and spatial clustering algorithms, such as OPTICS (Yuan
et al., 2013), mean shift (Solomon et al., 2021), and DBSCAN (Luo et al.,
2017) to perform this processing step. Here, we implement the most
commonly employed DBSCAN algorithm to aggregate staypoints that
are spatially close to locations (Hariharan & Toyama, 2004; Jonietz &
Bucher, 2018). DBSCAN adopts a set of neighborhood characterization
parameters ε and the minimum number of samples (min_samples) to
define how dense the input data has to be considered a cluster. In the
context of location generation, ε controls the distance of which nearby
staypoints will be merged into a single location, and min_samples de-
termines the minimum number of staypoints to form a location (i.e., how
many visits are required at the same place to consider it as significant).
Generated locations are equipped with two different geometries. The
center is a point geometry, calculated as the mean coordinates from all
staypoints assigned to the cluster; the extent is a polygon geometry,
defined as the bounding box of all belonging staypoints. Furthermore,
we provide the flexibility to generate locations that are significant to a
single user (Fig. 3 right) or to all users present in a dataset (Fig. 3 left).
While user locations regard staypoints of each tracked user separately in
the clustering process and prevent generating locations that are exces-
sively large (Aslak & Alessandretti, 2020), dataset locations consider all
staypoints at the same time and output locations with shared semantics
across users (e.g., train stations or shopping malls). In both options, the
center and the extent of the clustered staypoints are attached to the
generated locations, providing geometry information that facilitates

further processing and analysis tasks.

3.2.3. Generate triplegs
Trackintel implements an algorithm that extracts triplegs from

positionfixes based on the assumption that an individual is moving if he
or she is not stationary, meaning that all positionfixes that do not belong
to any staypoint are assigned to a tripleg. This assignment process re-
quires the input of positionfixes with the identifier of the already
generated staypoints. Internally, the function aggregates all position-
fixes between two consecutive staypoints to form a tripleg, whose line
geometry is constructed by connecting the point geometries in chrono-
logical order. Similar to the generation process of staypoints, the start
and end timestamp of each tripleg are inherited from the first and last
positionfixes that belong to it, respectively.

3.2.4. Generate trips
Trackintel implements a method to generate trips based on existing

staypoints and triplegs. Trips summarize all movement and all non-
activity staypoints (e.g. depending on the data, this could correspond
to waiting at a bus stop) between two staypoints flagged as activity. This
seems trivial at first sight however, there are no easy-to-use imple-
mentations available in other libraries, and there are several special
cases related to gaps in the tracking data that should be considered
during the trip generation. Another important feature of the imple-
mented trip generation is the identifier management that connects trips
with their associated staypoints and triplegs.

The trip detection implemented in Trackintel can handle incomplete
tracking data and supports the detection of temporal gaps (pseudocode
shown in Algorithm 1). A temporal gap is defined as missing tracking
signals longer than a certain time period (Zhao et al., 2021), which can
be specified using the θtrip_gap input parameter to the function. If a
temporal gap greater than θtrip_gap is detected, we assume the individual
performed an unobserved activity and, therefore, the destination of the
current and the origin of the next trip is unknown (NaN in the resulting
table). Finally, the function provides the flexibility to specify whether
the trips table should include the geometry. The geometry of a trip
consists of the points for the origin and destination staypoints. If the
origin is unknown, we use the first point of the first tripleg instead, or
analogously the last point for the destination.

Algorithm 1. Trip generation.

Table 2
Description of the mandatory and optional columns for Trackintel data models.

Data models Fields Description

All id The unique identifier for the record
user_id The unique user identifier
tracked_at The timestamp for the point (only for positionfix)
started_at The starting time of the record (except for positionfix and location)
finished_at The ending time of the record (except for positionfix and location)

Positionfix geometries Point geometry
Staypoint geometries Point geometry

purpose (optional) Purpose label for the staypoint. This could be either an activity purpose (e.g., home), or an non-activity purpose (e.g., wait).
is_activity (optional) Boolean flag indicating whether the staypoint is an activity

Location center Point geometry representing the center
extent (optional) Polygon geometry representing the extent

Tripleg geometries Line geometry
mode (optional) Transport mode label

Trip origin_staypoint_id The identifier of the starting staypoint
destination_staypoint_id The identifier of the destination staypoint
primary_mode (optional) The main transport mode label

Tour location_id The start and end location identifier
journey Boolean flag indicating whether the tour is a journey (A tour is called a journey if the start and end location is home).

H. Martin et al.

Computers, Environment and Urban Systems 101 (2023) 101938

7

Fig. 3. Semantic visualization of the relations between positionfix, staypoint and locations. Staypoints are groups of positionfixes where the users are stationary, and
locations are aggregations of staypoints that the user visits multiple times. Locations can be generated across users (left) or for each user individually (right). Map
data ©2022 Google.

H. Martin et al.

Computers, Environment and Urban Systems 101 (2023) 101938

8

3.2.5. Generate tours
To the best of our knowledge, there is no standardized approach yet

on how to combine trips into tours. Here, we take a rather broad defi-
nition of tours that includes nested tours as described in Axhausen
(2007), leaving the user the choice to filter the outputs later. An example
of a nested tour is shown in Fig. 4: the tour Work-Cafe-Work is part of the
longer tour Home-Work-Cafe-Work-Home. This definition implies an n-
to-n relationship between trips and tours: One tour contains multiple
trips, and one trip can be part of multiple tours.

Algorithm 2. Tour generation.

Our algorithm to generate tours from trips is explained visually in
Fig. 4, and shown as pseudocode in Algorithm 2. We iterate over the
trips sorted chronologically and maintain a list C of tour-starting

candidates. Each trip ϕi is a potential candidate to start a tour. At each
iteration, that is, for each trip, we first check whether there is a spatial
gap between the current and the previous trip ϕi− 1. Two options are
implemented: If the table staypoints with the attribute location_id is
provided, we compare the location identifier of the end of ϕi− 1 to the one
of the start of ϕi, formally loc(end(ϕi− 1)) = loc(start(ϕi)). Alternatively, if
the staypoints are not available, the predefined spatial distance
threshold θmax_dist controls the maximum distance between the end and
start points, i.e. distance(start(ϕi),end(ϕi− 1)) ≤ θmax_dist.

Additionally, our implementation offers the possibility to generate
partially observed tours to accommodate tracking datasets with a low

temporal tracking coverage, e.g., mobile phone data-based studies. A
parameter θmax_gaps determines how many spatial gaps are allowed
within a single tour. Note that no gaps are allowed at the start or end of a

H. Martin et al.

Computers, Environment and Urban Systems 101 (2023) 101938

9

tour, because a tour must start and end at the same location, or the start-
and end-staypoints must lie within the permitted range. If the test
described above yields a spatial gap between ϕi− 1 and ϕi, and θmax_gaps =

0, the candidate list is reset to [ϕi]. Otherwise, a gap is registered.
Next, we test whether ϕi concludes a tour (Algorithm 2, line 15). For

this purpose, we iterate over all candidates in the reversed order, such
that the shortest possible tour is found first. We compare the start point
of a candidate ϕC to the end point of ϕi. Again, the points are compared
either by the location identifier or via the θmax_dist parameter. If they are
the same, the trips {ϕk | j ≤ k ≤ i} form a tour, subject to two further
conditions: A. While iterating over candidates, the encountered gaps are
counted, and the time duration is checked. The parameter θmax_time is
used to certify whether the tour takes place within an appropriate time
period, by default 24 h. B. When encountering more than θmax_gaps in the
reversed iteration, or when reaching a candidate that started more than
θmax_time hours ago, the loop ends, and no tour is found. Fig. 4 shows an
example where two tours are found after considering ϕ3 and ϕ4
respectively.

3.3. Import and export

Reading and writing data are important steps in a standard move-
ment data analysis pipeline. To simplify this process, Trackintel provides
an I/O module for accessing movement data and storing intermediate or
final results in a file or database. Three methods for converting move-
ment data with attached attribute information to Trackintel-compatible
formats are provided: 1) Reading from Pandas Dataframes and Geo-
pandas Geodataframes, 2) reading and writing from CSV file formats,
and 3) reading and storing from PostgreSQL databases with PostGIS
extension. For every Trackintel data type, we provide I/O functions that
internally check the validity of the input data formats. Also, Trackintel
implements reading functions to convert tracking data from publicly
available open-source datasets into the Trackintel data model. For
example, raw tracking records from the Geolife dataset (Zheng et al.,
2010) can be loaded with Trackintel into the positionfix format. In
addition, we provide helper functions to attach transport mode labels,
which are provided separately for some individuals in the Geolife
dataset. The dataset reading functions facilitate and standardize the
processing of public movement datasets using Trackintel, which also
help to benchmark new methods on the same dataset.

3.4. Pre- and Postprocessing

Trackintel offers several pre- and postprocessing methods. First, to
smoothen the trajectory of triplegs, we employ the Douglas-Peucker
algorithm (Douglas & Peucker, 1973). Furthermore, staypoints that
appear consecutively at the same location can be aggregated in time.
Such repetitions are a common artefact in tracking data due to noise or
outliers recordings in GNSS tracking data. We propose to merge two
staypoints s1, s2 of one individual if the following conditions hold: a) s1
and s2 are consecutive in time, b) s1 and s2 are assigned to the same
location, c) there is no tripleg registered between s1 and s2, and d) the
time gap between the end time point of s1 and the start of s2 is shorter
than a predefined threshold θmax_time_gap. The start time of s1 and the end

time of s2 define the start and end time of the new staypoint. The ag-
gregation of other staypoint attributes, e.g. the geometry, must be
specified explicitly.

3.5. Analysis

While the main functionality of Trackintel is the implementation of
the hierarchical data model, the framework also includes advanced
analysis functions to label transport modes and activity purposes, as well
as methods to assess the tracking quality of each individual.

3.5.1. Mode labeling
Applications in transport planning often require access to the travel

modes of an individual (Kim, Kim, & Lee, 2022). Since Trackintel does
not assume the availability of user-provided labels, context or advanced
data from the tracking device (e.g., accelerometer), we implement a
simple heuristic to determine the travel mode from the tracking data.
This classification is done per tripleg based on speed. The speed is
approximated by the tripleg length (the distance of individual points in
its linestring geometry) divided by its total time duration. The triplegs
are labeled based on a simple division into slow mobility (<15 km/h
average speed), motorized mobility (<100 km/h) and fast mobility
(>100 km/h). In future versions, a more in-depth analysis of travel
patterns or map matching (Bachir et al., 2019; Huang et al., 2019;
Prelipcean et al., 2017; Widhalm et al., 2012) could be incorporated into
Trackintel.

3.5.2. Location labeling
An individual’s home- and work-locations play a major role in

mobility data analysis. As described in Section 3, staypoints may be
associated with an activity label, but oftentimes this information is not
available. We assign “home” and “work” activity labels to the staypoints
with an adapted version of the OSNA algorithm proposed by Efsta-
thiades, Antoniades, Pallis, & Dikaiakos, 2015. In detail, the OSNA al-
gorithm divides weekdays into rest, work and leisure time frames. The
location with the longest accumulated duration in the “rest” and “lei-
sure” periods is labeled as home, while work is set to the most pre-
dominant location in the “work” periods. While the original algorithm
derives the hours spent at a location from geo-tagged tweets, we take
advantage of the started_at and finished_at attributes of a staypoint.
Additionally, similar to in the R package proposed by Chen and Poor-
thuis (2021), we provide a fast method that simply assigns home and
work labels to the two locations that are visited more often in the data
(in this order). In both cases, the locations can optionally be pre-filtered
in order to exclude locations with an insufficient number of staypoints or
an insufficient length of stay.

3.5.3. Modal split
If mode labels for triplegs are available, Trackintel supports the

calculation of the modal split in three different ways: Computing the
modal split by count (i.e., how many triplegs with this mode exist), by

Home

Work

Cafe1 4

3
2

1Candidate list: 1, 2 1, 2, 3 1, 2, 3, 4

x

Iterate over previous trips in reversed order & stop when tour is found

x
x

xx
x

Tour found
(work-cafe-work)

x

Fig. 4. The algorithm of tour generation implemented in Trackintel. A list of start candidates is maintained and iteratively checked for tour-closing trips.

H. Martin et al.

Computers, Environment and Urban Systems 101 (2023) 101938

10

duration (i.e., sum of individual’s tripleg duration) or by traveled dis-
tance. Furthermore, the frequency can be set according to the Pandas
time series frequency syntax,11 and the modes can either be aggregated
by user or by dataset. An example for one user is visualized in Fig. 6
where the differences between a modal split by count (Fig. 6a) and by
distance (Fig. 6b) stand out.

3.5.4. Tracking quality assessment
An important step in data analysis of tracking studies is the assess-

ment of the tracking quality, i.e. the temporal coverage. Temporal
tracking quality, here defined as the proportion of time where the user’s
whereabouts are recorded, is regarded as a basic measure of the tem-
poral resolution of the dataset (Alessandretti et al., 2018). Trackintel
supports the calculation of the daily, weekly or overall tracking quality
of each user according to the required granularity levels, which enables
individual-level temporal resolution assessment, providing support for
filtering low-quality users for further analysis. Additionally, tracking
quality of hours of the day and weekdays can be obtained for measuring
the tracking data quality differences across time periods.

3.6. Visualization

Trackintel provides a module that supports the visualization of
positionfixes, staypoints and triplegs. Our implementation standardizes
these functions such that each data type can be displayed together with
lower aggregation levels (see Fig. 1). For example, the locations can be
optionally shown together with positionfixes and staypoints. In that case,
staypoints and locations are displayed as circles with a predefined radius.
Furthermore, Trackintel integrates osmnx (Boeing, 2017) to optionally
show the street network from Open Street Maps as background. Fig. 5
shows example outputs of the plotting functions for positionfixes, stay-
points and triplegs for one exemplary participant in the Geolife study.

Finally, Trackintel provides a flexible method to visualize changes in
the modal split over time. The modal split by count, distance or duration,
as explained in Section 3.5.3, is shown in a bar plot with one bar for each
temporal bin. Different temporal resolutions (i.e., weeks and months)
are handled internally. An example for one user is shown in Fig. 6 where
the modal split has been aggregated by month.

4. A case study on multiple tracking datasets

Trackintel is a framework to standardize mobility data processing
and analysis. We carried out a case study on four datasets to demonstrate
its capability to handle data from various tracking studies. We read all
data from a PostGIS database with the I/O module, preprocess them
according to the Trackintel movement data model and compare the
datasets in terms of tracking quality, trip characteristics, and modal
split. The code of the case study is available in the supplemental material
and the public repository.12

4.1. Tracking studies

We include the data from four tracking studies with two different
tracking data types. An overview of the dataset properties is given in
Table 3. The first study is the open-source Geolife dataset (Zheng et al.,
2009) that covers the movement of employees of Microsoft Research
Asia, who recorded their movement using GPS trackers. Second, we
include two studies that were conducted in collaboration with the Swiss
Federal Railway Systems (SBB) under the project name SBB Green Class
(Martin et al., 2019). In both studies, participants were given full access

to all public transport in Switzerland. In addition, the participants from
the first Green Class study (Green Class 1) received an electric vehicle
and those from the second study (Green Class 2) an e-bike. Study par-
ticipants were tracked with a GNSS-based application (app) called
Myway.13 The app already provides the data partially preprocessed as
staypoints and triplegs. The same app was further used in our fourth
dataset, the yumuv study which investigated the impact of a Mobility-as-
a-Service app that integrates shared e-scooters, e-bikes and public
transport (Martin et al., 2021). In the yumuv study, participants were
divided into control and treatment groups and were tracked for three
months.

4.2. Standardized processing according to the Trackintel data model

The Trackintel framework offers a straightforward way to transform
all data into the same format and aggregate the data into trips and tours
with minimal code. First, the raw GPS data in the Geolife dataset are
converted to staypoints and triplegs with the Trackintel
generate_staypoints() and generate_triplegs() functions.
Staypoints are created with a distance threshold of 100 m and a tem-
poral threshold of 30 min, i.e. a user must have stayed within a 100 m
radius for at least 30 min to generate a new staypoint, as suggested in the
original paper (Li et al., 2008). Furthermore, consecutive positionfixes
with a temporal gap of >24 h in between cannot belong to the same
staypoint.

All further preprocessing steps based on staypoints and triplegs are
applied with the same parameters for all four datasets. This ensures the
comparability of the results across datasets. More specifically, we derive
the user’s locations from the staypoints with the gen-

erate_locations() function. The method uses the DBSCAN algo-
rithm with ε = 30 meters and min_samples = 1, such that one staypoint is
sufficient to form a location. Furthermore, triplegs and staypoints are
aggregated to trips with the generate_trips() function, with input
parameter θtrip_gap = 25 minutes. At last, tours are generated by merging
trips based on a maximum distance (θmax_dist) of 100 m between their
start and end points, and with the default parameters θmax_gaps = 0 and
θmax_time = 24 hours.

Table 3 provides the absolute numbers of locations, staypoints,
triplegs, trips and tours per dataset. These quantities decrease from
triplegs to trips and tours due to the aggregation steps. Note that for
Geolife our parameter choices prevent triplegs from being merged (see
Table 3 where the number of triplegs and trips are the same); however,
parameters that are more suitable for the trip generation would have
decreased the quality of other parts significantly due to the low tracking
quality of Geolife. In total, the considered datasets include 769,957
staypoints and 1,123,931 triplegs. These quantities depend on the
number of participants in the study and the total tracking duration.
While the yumuv study has the largest sample size of 806 users, the
Green Class 1 study participants have the longest tracking period, with
each individual tracked for more than a year on average.

4.3. Analysis and comparison of tracking datasets

We now compare the mobility behavior of the study participants of
all studies on the trip level as an exemplary usage of the Trackintel
analysis module. The insights from this analysis are summarized in
Table 4. First, we can derive the number of daily trips per individual
from the absolute numbers given above. The study participants in Green
Class 1 and Green Class 2 are most active in conducting trips. The low
number of trips for Geolife users may be due to the low temporal
tracking coverage of the dataset. Furthermore, we compare the average
trip distances and duration across datasets. Interestingly, yumuv and
Geolife users take longer trips on average in terms of duration. There is 11 https://pandas.pydata.

org/pandas-docs/stable/user_guide/timeseries.html
12 https://github.com/mie-lab/trackintel/blob/master/

examples/Trackintel_case_study.pdf 13 https://www.sbb.ch/en/timetable/mobile-apps/myway.html

H. Martin et al.

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://anonymous.4open.science/r/trackintel-E8E5/examples/Trackintel_case_study.pdf
https://anonymous.4open.science/r/trackintel-E8E5/examples/Trackintel_case_study.pdf
https://www.sbb.ch/en/timetable/mobile-apps/myway.html

Computers, Environment and Urban Systems 101 (2023) 101938

11

also a clear effect of the bias of yumuv participants towards urban areas,
where the trips cover much shorter distances. The number of trips per
tour and the number of triplegs that are part of the same trip do not
differ much between studies.

Another key part of tracking data analysis regards the temporal
tracking quality of a dataset. Here, temporal tracking quality is defined

as the temporal coverage of the tracking data (i.e., the completeness)
and is computed with the Trackintel function temporal_track-
ing_quality() as explained in Section 3.5.4. The results are given in
the last column of Table 4. The three GNSS-based studies show a high
coverage of >75% on average per user, whereas Geolife data only covers
about 40 % of the time on average per user. Fig. 7 shows the distribution

Fig. 5. The Trackintel framework offers functions to plot positionfixes (a), staypoints (b), and triplegs (c) together with the road network acquired from Open-
StreetMaps. This example maps the movements of one Geolife participant.

Fig. 6. The visualization result of the Trackintel plot_modal_split() function of the triplegs recorded from one Geolife participant. Major differences can be
observed between the aggregation by count (number of triplegs) (a) and distance traveled (b).

Table 3
Overview of basic features of the considered tracking studies. Locations, staypoints, triplegs, trips and tours are given in multiples of a thousand.

Users Tracking period in days (std) Input Study type Locations Staypoints Triplegs Trips Tours

Green Class 1 139 401 (59) Staypoints, Triplegs GNSS (app) 104.5 326.9 465.2 241.8 95.0
Green Class 2 50 314 (76) Staypoints, Triplegs GNSS (app) 35.7 87.9 128.6 61.4 22.7
Yumuv 806 87 (38) Staypoints, Triplegs GNSS (app) 127.3 326.3 502.3 199.7 83.0
Geolife 177 193 (443) Positionfixes GPS tracker 13.6 28.9 30.2 30.2 7.2

Table 4
Overview of the mobility statistics for the considered tracking datasets.

Trips per day Trips per tour Legs per trip Trip distance in km (std) Trip duration (std) Tracking quality (std)

Green Class 1 4.32 2.73 1.92 27.4 (478.7) 0.52 (0.73) 0.85 (0.17)
Green Class 2 3.80 2.66 2.09 33.7 (568.2) 0.51 (0.75) 0.75 (0.24)
Yumuv 3.13 2.11 2.51 16.9 (100.4) 0.68 (0.91) 0.77 (0.23)
Geolife 1.70 2.37 1.00 36.1 (3163.5) 0.64 (0.94) 0.4 (0.32)

H. Martin et al.

Computers, Environment and Urban Systems 101 (2023) 101938

12

of the tracking quality over users. In the Geolife dataset, the temporal
tracking quality largely differs across individuals. In comparison, the
large majority of Green Class 1 participants reached a coverage of >0.7.
The large difference between Geolife and the other datasets can be
explained by the different hardware that was used in the studies. While
the Geolife individuals were equipped with dedicated GPS-only trackers
that are prone to localization problems when indoors or in urban can-
yons, the participants in the Green Class and yumuv studies were tracked
with an app on their smartphone that uses the location API of the
operating system. The latter has access to all GNSS systems in addition to
GPS and can fall back to other technologies such as WIFI or cell tower
triangulation if no satellites are available.

We further compare the modal split of the tracking studies. The split
is computed first as the number of triplegs per mode and second as the
covered distance per mode. We use the Trackintel function pre-
dict_transport_mode() to approximate the modes for the Geolife
dataset, since the original mode labels are not available for all partici-
pants and not all the time. In all other studies, high-quality mode labels
are provided, and we aggregate them into the simplified categories of
slow mobility (walk, bicycle, scooter), motorized mobility (tram, bus,
car and motorbike) and fast mobility (airplane and train). The results are
shown in Fig. 8. The datasets differ significantly with respect to their
modal split, which can be explained by the study target group, for
example, Green Class participants were given full access to all public
transport in Switzerland and are thus more likely to use trains (fast
transport). Yumuv individuals on the other hand mostly live in urban
areas and they were using the yumuv bundle of shared e-bicycles and
scooters, which explains the higher proportion of slow mobility for
yumuv.

Finally, we analyze the daily activity patterns of individuals. Spe-
cifically, the time periods when the individuals are at home and at work
are computed. For the Green Class 1 & 2 studies, the activity label for
each staypoint is provided by the participants. For the Geolife and
yumuv datasets, on the other hand, we adopt the Trackintel loca-
tion_identifier() function that implements the OSNA algorithm
(Efstathiades, Antoniades, Pallis, & Dikaiakos, 2015) to infer the home
and work locations. In Fig. 9, the distribution of home and work stay-
points over the course of a day is shown. Specifically, the average
fraction of users with a staypoint labeled home (or work respectively) is
shown for every minute of the day. The fraction of users at home (work)
is thereby computed as the number of staypoints per day divided by the

Fig. 7. Distribution of the individual temporal tracking quality for the
considered datasets.

Fig. 8. Comparison of modal split between datasets. The users of different studies differ considerably in terms of their usage of slow, motorized or fast transport.

Fig. 9. Distribution of activities over time.

H. Martin et al.

Computers, Environment and Urban Systems 101 (2023) 101938

13

number of actively tracked users, where a user is actively tracked if there
is at least one staypoint on that day. The working time between 8 am and
5 pm as well as the lunch breaks are clearly visible in Fig. 9b for Green
Class 1 & 2 and yumuv, although there are fewer work-staypoints for
yumuv. While the home location is reliably identified for both yumuv
and Geolife, the identification of the work location seems impaired for
the Geolife dataset. As the OSNA algorithm simply selects the second-
most visited location as work if the “home” and “work” labels overlap,
the low tracking quality of the Geolife dataset (see Fig. 7) could have
affected the accuracy of the identification.

In summary, our study demonstrates the ease of comparing data from
different sources on all levels of the movement data model and con-
cerning various labels for the movement data. The standardized pre-
processing functions implemented in Trackintel also help compare
methods and explain possible discrepancies in the analysis results from
the different datasets.

5. Discussion and conclusion

Quantitative analysis of human mobility currently suffers from a lack
of a common model for preprocessing movement data, limiting the
reproducibility and comparability of scientific studies. Existing libraries
focus on data analysis, leaving seemingly easy preprocessing steps up to
the user, although design choices of these steps can significantly affect
the results (Sambasivan et al., 2021). This article presented Trackintel, a
new open-source tool to address these problems. Trackintel implements
a widely accepted conceptual data model for movement data and pro-
vides functionalities for the full life-cycle of human mobility data
analysis: import and export of tracking data collected through various
methods, preprocessing, data quality assessment, semantic enrichment,
quantitative analysis and mining tasks, and visualization of data and
results.

A particular strength of Trackintel is that it greatly simplifies the
joint analysis of several movement datasets with different properties.
This was shown in a case study where four different datasets were jointly
preprocessed and analyzed. We used the analysis methods implemented
in Trackintel to compare the datasets with respect to their trip proper-
ties, their tracking quality, their modal split and their daily activity
patterns. It was demonstrated in the supplementary material that rich
insights about the characteristics of different tracking datasets could be
easily obtained in Trackintel with few lines of code. Our library is thus
also a response to recent calls in GIS for systematic benchmarking of new
methods on several datasets (Konkol et al., 2019).

Importantly, the purpose of Trackintel is not to provide a compre-
hensive set of analysis functions, but rather a high-quality imple-
mentation of standard aggregation and semantics-enrichment steps that
are relevant for most tracking studies. This goal is fulfilled in the current
version of the library since functions for all aggregation steps in the data
movement model are provided and were tested extensively on diverse
datasets. Further work on the preprocessing module will focus on im-
provements, such as outlier filtering functions or methods to fill small
gaps in the tracking data.

We plan to extend the analysis functionality of Trackintel and
improve the integration with other open-source libraries. Currently, the
goal of compatibility with arbitrary tracking datasets limits the capa-
bilities of the analysis model. A good example is the transport mode
prediction function provided by Trackintel, which is based on a simple
heuristic. A more sophisticated and powerful method can in principle be
implemented for a specific dataset, however, the applicability of this
method to other datasets will be limited by the availability of specific
input data or additional context data. Nevertheless, Trackintel will be
continuously extended to incorporate the latest processing and analysis
algorithms and to offer a wider variety of options for the preprocessing,
analysis and visualization of movement data. In particular, we will work
towards the integration of Trackintel with other popular Python li-
braries, such as the Open Street Maps package osmnx. The data analysis

module can be substantially improved when considering mobility-
related context information, such as enriching trips with point-of-
interest data for transport mode identification. Moreover, we plan to
provide a basic behavioral analysis module that allows insights into
users’ mobility behavior, for example, user mobility profiling and
detecting changes in users’ mobility behavior over time.

Finally, Trackintel does not aim to cover all preprocessing and
analysis needs for every movement data study. However, due to the
compatibility with Pandas and Geopandas, Trackintel can easily be in-
tegrated into a larger workflow that comprises a variety of Python data
and spatial analysis libraries. In particular, it is targeted at providing the
same reliability as these standard libraries. This is achieved through
strong compliance with Python library standards, including a high
coverage of unit tests with both real and synthetic data, a code review
process and continuous integration. In this setup, new algorithms can be
contributed without risking breaking existing functionality. We there-
fore believe that Trackintel can serve as a standard and well-trusted
mobility processing tool.

CRediT authorship contribution statement

Henry Martin: Conceptualization, Methodology, Software, Valida-
tion, Writing – original draft, Writing – review & editing. Ye Hong:
Conceptualization, Methodology, Software, Validation, Writing – orig-
inal draft, Writing – review & editing. Nina Wiedemann: Conceptual-
ization, Methodology, Software, Validation, Writing – original draft,
Writing – review & editing. Dominik Bucher: Conceptualization,
Methodology, Software, Validation. Martin Raubal: Supervision,
Funding acquisition, Writing – review & editing.

Acknowledgement

Funding: This work was supported by the Swiss Data Science Center
[C17-14] and the ETH Zurich Foundation [MI-01-19]. Additionally, we
would like to thank Christof Leutenegger, Sven Ruf, and Nishant Kumar
for their code contributions to Trackintel, David Jonietz for helping to
create the idea of Trackintel, and René Buffat and Jǐrí Kunčar for their
technical input in the early stage of this project.

Appendix A. Documentation score

A.1. Python

The documentation score reported in Table 1 for python libraries is
based on the pyOpenSci package peer-review evaluation critera (Hold-
graf et al., 2022).

• Has an Open Software Initiative (OSI) approved license.
• Contains a README with instructions for installing the development

version.
• Contains a vignette (notebook) with examples of its essential func-

tions and uses.
• Has a test suite.
• Has continuous integration, such as Travis CI, AppVeyor, CircleCI,

and/or others.
• Includes documentation with examples for all functions.

A.2. R

The documentation score reported in Table 1 for R libraries is based
on the ROpenScie package peer-review evaluation critera.4

• Does the package have a CRAN accepted license?
• The package contains a reasonably complete readme with devtools

install instructions.

H. Martin et al.

Computers, Environment and Urban Systems 101 (2023) 101938

14

• The package contains a vignette with examples of its essential
functions.

• The package contains unit tests.
• The repository has continuous integration with Travis and/or

another service.
• Package available on CRAN?

Appendix B. Case study

The notebook including code to reproduce the case study can be
found online at https://doi.org/10.1016/j.compenvurbsys.2023.101
938.

References

Ahas, R., Aasa, A., Yuan, Y., Raubal, M., Smoreda, Z., Liu, Y., … Zook, M. (2015).
Everyday space–time geographies: Using mobile phone-based sensor data to monitor
urban activity in Harbin, Paris, and Tallinn. International Journal of Geographical
Information Science, 29(11), 2017–2039. https://doi.org/10.1080/
13658816.2015.1063151

Alessandretti, L., Sapiezynski, P., Sekara, V., Lehmann, S., & Baronchelli, A. (2018).
Evidence for a conserved quantity in human mobility. Nature Human Behaviour, 2(7),
485–491. https://doi.org/10.1038/s41562-018-0364-x

Andrew, T. (2014). Wilson. Tracktable trajectory analysis. Albuquerque, NM: Sandia
National Lab (SNL-NM). https://doi.org/10.11578/dc.20210416.61

Aslak, U., & Alessandretti, L. Infostop: Scalable stop-location detection in multi-user mobility
data. (2020). arXiv:2003.14370.

Axhausen, K. W. (2007). Definition of movement and activity for transport modelling. In
Handbook of transport modelling (pp. 329–343). https://doi.org/10.3929/ethz-a-
005278091

Bachir, D., Khodabandelou, G., Gauthier, V., El Yacoubi, M., & Vachon, E. (2019).
Combining Bayesian Inference and Clustering for Transport Mode Detection from
Sparse and Noisy Geolocation Data. In Machine Learning and Knowledge Discovery in
Databases (pp. 569–584). Springer. https://doi.org/10.1007/978-3-030-10997-4_35.

Bassolas, A., Barbosa-Filho, H., Dickinson, B., Dotiwalla, X., Eastham, P., Gallotti, R., …
Ramasco, J. J. (2019). Hierarchical organization of urban mobility and its
connection with city livability. Nature Communications, 10(1), 4817. https://doi.org/
10.1038/s41467-019-12809-y

Boeing, G. (2017). Osmnx: New methods for acquiring, constructing, analyzing, and
visualizing complex street networks. Computers, Environment and Urban. Systems,
65, 126–139. https://doi.org/10.1016/j.compenvurbsys.2017.05.004

Brockmann, D., Hufnagel, L., & Geisel, T. (2006). The scaling laws of human travel.
Nature, 439(7075), 462–465. https://doi.org/10.1038/nature04292

Bucher, D., Mangili, F., Cellina, F., Bonesana, C., Jonietz, D., & Raubal, M. (2019). From
location tracking to personalized eco-feedback: A framework for geographic
information collection, processing and visualization to promote sustainable mobility
behaviors. Travel Behaviour and Society, 14, 43–56. https://doi.org/10.1016/j.
tbs.2018.09.005

Calenge, C. (2006). The package “adehabitat” for the r software: A tool for the analysis of
space and habitat use by animals. Ecological Modelling, 197(3–4), 516–519. https://
doi.org/10.1016/j.ecolmodel.2006.03.017

Calenge, C. (2011). Analysis of animal movements in r: The adehabitatlt package. Vienna.: R
Foundation for Statistical Computing.

Chang, S., Pierson, E., Koh, P. W., Gerardin, J., Redbird, B., Grusky, D., & Leskovec, J.
(2021). Mobility network models of COVID-19 explain inequities and inform
reopening. Nature, 589(7840), 82–87. https://doi.org/10.1038/s41586-020-2923-3

Chen, C., Ma, J., Susilo, Y., Liu, Y., & Wang, M. (2016). The promises of big data and
small data for travel behavior (aka human mobility) analysis. Transportation Research
Part C: Emerging Technologies, 68, 285–299. https://doi.org/10.1016/j.
trc.2016.04.005

Chen, Q., & Poorthuis, A. (2021). Identifying home locations in human mobility data: An
open-source R package for comparison and reproducibility. International Journal of
Geographical Information Science, 35(7), 1425–1448. https://doi.org/10.1080/
13658816.2021.1887489

Douglas, D. H., & Peucker, T. K. (1973). Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature. Cartographica: The
International Journal for Geographic Information and Geovisualization, 10(2), 112–122.
https://doi.org/10.3138/FM57-6770-U75U-7727

Efstathiades, H., Antoniades, D., Pallis, G., & Dikaiakos, M. D. (2015). Identification of
key locations based on online social network activity. In 2015 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM) (pp. 218–225). IEEE. https://doi.org/10.1145/2808797.2808877.

Feng, J., Li, Y., Zhang, C., Sun, F., Meng, F., Guo, A., & Jin, D. (2018). DeepMove:
Predicting human mobility with attentional recurrent networks. In Proceedings of the
2018 world wide web conference on world wide web - WWW ‘18 (pp. 1459–1468). ACM
Press. https://doi.org/10.1145/3178876.3186058.

Frick, H., & Kosmidis, I. (2017). trackeR: Infrastructure for Running and Cycling Data
from GPS-Enabled Tracking Devices in R. Journal of Statistical Software, 82, 1–29.
https://doi.org/10.18637/jss.v082.i07

Gillies, S. (2013). The shapely user manual. https://shapely.readthedocs.io/en/stable
/manual.html.

González, M. C., Hidalgo, C. A., & Barabási, A.-L. (2008). Understanding individual
human mobility patterns. Nature, 453(7196), 779–782. https://doi.org/10.1038/
nature06958

Graser, A. (2019). MovingPandas: Efficient structures for movement data in Python. GI_
Forum, 1, 54–68. https://doi.org/10.1553/giscience2019_01_s54

Graser, A. (2020). Tools for the analysis of movement data. https://github.com/anitag
raser/movement-analysis-tools.

Haidri, S., Haranwala, Y. J., Bogorny, V., Renso, C., da Fonseca, V. P., & Soares, A.
Ptrail–a python package for parallel trajectory data preprocessing. (2021).
arXiv:2108.13202.

Hariharan, R., & Toyama, K. (2004). Project Lachesis: Parsing and Modeling Location
Histories. In M. J. Egenhofer, C. Freksa, & H. J. Miller (Eds.), Geographic Information
Science (pp. 106–124). Springer. https://doi.org/10.1007/978-3-540-30231-5_8.

Huang, H., Cheng, Y., & Weibel, R. (2019). Transport mode detection based on mobile
phone network data: A systematic review. Transportation Research Part C: Emerging
Technologies, 101, 297–312. https://doi.org/10.1016/j.trc.2019.02.008

Huang, H., Gartner, G., Krisp, J. M., Raubal, M., & Van de Weghe, N. (2018). Location
based services: Ongoing evolution and research agenda. Journal of Location Based
Services, 12(2), 63–93. https://doi.org/10.1080/17489725.2018.1508763

Joo, R., Boone, M. E., Clay, T. A., Patrick, S. C., Clusella-Trullas, S., & Basille, M. (2020).
Navigating through the R packages for movement. Journal of Animal Ecology, 89(1),
248–267. https://doi.org/10.1111/1365-2656.13116

Keßler, C., & McKenzie, G. (2018). A geoprivacy manifesto. Transactions in GIS, 22(1),
3–19. https://doi.org/10.1111/tgis.12305

Holdgraf, C., Solvik, K., Ogasawara, I., Brett, M., Sundell, E., gaow, Chen, Z., …
Kashyap, S. (2022). pyOpenSci/contributing-guide: Pre release 0.3 (v0.3). Zenodo.
https://doi.org/10.5281/zenodo.7101778

Hong, Y., Xin, Y., Martin, H., Bucher, D., & Raubal, M. (2021). A Clustering-Based
Framework for Individual Travel Behaviour Change Detection. In , 208. 11th
International Conference on Geographic Information Science (GIScience 2021) - Part II.
https://doi.org/10.4230/LIPIcs.GIScience.2021.II.4, 4.

Jordahl, K., Bossche, J.V. den, Fleischmann, M., McBride, J., Wasserman, J., Richards,
M., Badaracco, A.G., Snow, A.D., Gerard, J., Tratner, J., Perry, M., Ward, B., Farmer,
C., Hjelle, G.A., Taves, M., Hoeven, E. ter, Cochran, M., rraymondgh, Gillies, S., …
Ren, C. (2022). geopandas/geopandas: V0.12.2 (v0.12.2). Zenodo. https://doi.org/10.
5281/zenodo.7422493.

Jonietz, D., & Bucher, D. (2018). Continuous trajectory pattern mining for mobility behaviour
change detection. LBS 2018: 14th international conference on location based services. In
(pp. 211–230). Springer. https://doi.org/10.1007/978-3-319-71470-7_11.

Kim, J., Kim, J. H., & Lee, G. (2022). GPS data-based mobility mode inference model
using long-term recurrent convolutional networks. Transportation Research Part C:
Emerging Technologies, 135, 103523. https://doi.org/10.1016/j.trc.2021.103523

Konkol, M., Kray, C., & Pfeiffer, M. (2019). Computational reproducibility in
geoscientific papers: Insights from a series of studies with geoscientists and a
reproduction study. International Journal of Geographical Information Science, 33(2),
408–429. https://doi.org/10.1080/13658816.2018.1508687

Li, Q., Yu, Z., Xie, X., Chen, Y., Liu, W., & Ma, W.-Y.. Mining user similarity based on
location history. https://doi.org/10.1145/1463434.1463477.

Lovelace, R., & Ellison, R. (2018). stplanr: A Package for Transport Planning. The R
Journal, 10(2), 7–23. https://doi.org/10.32614/RJ-2018-053

Luca, M., Barlacchi, G., Lepri, B., & Pappalardo, L. (2021). A survey on deep learning for
human mobility. ACM Computing Surveys, 55(1). https://doi.org/10.1145/3485125

Luo, T., Zheng, X., Guangluan, X., Kun, F., & Ren, W. (2017). An improved DBSCAN
algorithm to detect stops in individual trajectories. ISPRS International Journal of
Geo-Information, 6(3), 63. https://doi.org/10.3390/ijgi6030063

Martin, H., Becker, H., Bucher, D., Jonietz, D., Raubal, M., & Axhausen, K. W. (2019).
Begleitstudie SBB Green Class - Abschlussbericht. Working Paper No. 1439, Institute for
Transport Planning and Systems, ETH Zürich. https://doi.org/10.3929/ethz-b-
000353337.

Martin, H., Reck, D. J., Axhausen, K. W., & Raubal, M. (2021). ETH mobility initiative
project MI-01-19 empirical use and impact analysis of MaaS. ETH Zurich: Technical
report.

Moro, E., Calacci, D., Dong, X., & Pentland, A. (2021). Mobility patterns are associated
with experienced income segregation in large US cities. Nature Communications, 12
(1), 4633. https://doi.org/10.1038/s41467-021-24899-8

Pappalardo, L., Simini, F., Barlacchi, G., & Pellungrini, R. (2022). scikit-mobility: A
Python Library for the Analysis, Generation, and Risk Assessment of Mobility Data.
Journal of Statistical Software, 103(1), 1–38. https://doi.org/10.18637/jss.v103.i04

Pappalardo, L., Simini, F., Rinzivillo, S., Pedreschi, D., Giannotti, F., & Barabási, A.-L.
(2015). Returners and explorers dichotomy in human mobility. Nature
Communications, 6(1), 8166. https://doi.org/10.1038/ncomms9166

Prelipcean, A. C., Gidófalvi, G., & Susilo, Y. O. (2017). Transportation mode detection–an
in-depth review of applicability and reliability. Transport Reviews, 37(4), 442–464.
https://doi.org/10.1080/01441647.2016.1246489

Qing, Y., & Yuan, J. (2022). Transbigdata: A python package for transportation spatio-
temporal big data processing, analysis and visualization. Journal of Open Source
Software, 7(71), 4021. https://doi.org/10.21105/joss.04021

Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S. J., & Chong, S. (2011). On the levy-walk
nature of human mobility. IEEE/ACM Transactions on Networking, 19(3), 630–643.
https://doi.org/10.1109/TNET.2011.2120618

Rout, A., Nitoslawski, S., Ladle, A., & Galpern, P. (2021). Using smartphone-GPS data to
understand pedestrian-scale behavior in urban settings: A review of themes and
approaches. Computers, Environment and Urban. Systems, 90, 101705. https://doi.
org/10.1016/j.compenvurbsys.2021.101705

Sambasivan, N., Kapania, S., Highfill, H., Akrong, D., Paritosh, P., & Aroyo, L. M. (2021).
Everyone wants to do the model work, not the data work”: Data Cascades in High-

H. Martin et al.

https://doi.org/10.1016/j.compenvurbsys.2023.101938
https://doi.org/10.1016/j.compenvurbsys.2023.101938
https://doi.org/10.1080/13658816.2015.1063151
https://doi.org/10.1080/13658816.2015.1063151
https://doi.org/10.1038/s41562-018-0364-x
https://doi.org/10.11578/dc.20210416.61
https://arxiv.org/abs/2003.14370
https://doi.org/10.3929/ethz-a-005278091
https://doi.org/10.3929/ethz-a-005278091
https://doi.org/10.1007/978-3-030-10997-4_35
https://doi.org/10.1038/s41467-019-12809-y
https://doi.org/10.1038/s41467-019-12809-y
https://doi.org/10.1016/j.compenvurbsys.2017.05.004
https://doi.org/10.1038/nature04292
https://doi.org/10.1016/j.tbs.2018.09.005
https://doi.org/10.1016/j.tbs.2018.09.005
https://doi.org/10.1016/j.ecolmodel.2006.03.017
https://doi.org/10.1016/j.ecolmodel.2006.03.017
http://refhub.elsevier.com/S0198-9715(23)00001-7/rf0060
http://refhub.elsevier.com/S0198-9715(23)00001-7/rf0060
https://doi.org/10.1038/s41586-020-2923-3
https://doi.org/10.1016/j.trc.2016.04.005
https://doi.org/10.1016/j.trc.2016.04.005
https://doi.org/10.1080/13658816.2021.1887489
https://doi.org/10.1080/13658816.2021.1887489
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.1145/2808797.2808877
https://doi.org/10.1145/3178876.3186058
https://doi.org/10.18637/jss.v082.i07
https://shapely.readthedocs.io/en/stable/manual.html
https://shapely.readthedocs.io/en/stable/manual.html
https://doi.org/10.1038/nature06958
https://doi.org/10.1038/nature06958
https://doi.org/10.1553/giscience2019_01_s54
https://github.com/anitagraser/movement-analysis-tools
https://github.com/anitagraser/movement-analysis-tools
https://arxiv.org/abs/2108.13202
https://doi.org/10.1007/978-3-540-30231-5_8
https://doi.org/10.1016/j.trc.2019.02.008
https://doi.org/10.1080/17489725.2018.1508763
https://doi.org/10.1111/1365-2656.13116
https://doi.org/10.1111/tgis.12305
https://doi.org/10.5281/zenodo.7101778
https://doi.org/10.4230/LIPIcs.GIScience.2021.II.4
https://doi.org/10.5281/zenodo.7422493
https://doi.org/10.5281/zenodo.7422493
https://doi.org/10.1007/978-3-319-71470-7_11
https://doi.org/10.1016/j.trc.2021.103523
https://doi.org/10.1080/13658816.2018.1508687
https://doi.org/10.1145/1463434.1463477
https://doi.org/10.32614/RJ-2018-053
https://doi.org/10.1145/3485125
https://doi.org/10.3390/ijgi6030063
https://doi.org/10.3929/ethz-b-000353337
https://doi.org/10.3929/ethz-b-000353337
http://refhub.elsevier.com/S0198-9715(23)00001-7/rf0205
http://refhub.elsevier.com/S0198-9715(23)00001-7/rf0205
http://refhub.elsevier.com/S0198-9715(23)00001-7/rf0205
https://doi.org/10.1038/s41467-021-24899-8
https://doi.org/10.18637/jss.v103.i04
https://doi.org/10.1038/ncomms9166
https://doi.org/10.1080/01441647.2016.1246489
https://doi.org/10.21105/joss.04021
https://doi.org/10.1109/TNET.2011.2120618
https://doi.org/10.1016/j.compenvurbsys.2021.101705
https://doi.org/10.1016/j.compenvurbsys.2021.101705

Computers, Environment and Urban Systems 101 (2023) 101938

15

Stakes AI. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems (pp. 1–15). https://doi.org/10.1145/3411764.3445518

Schneider, C. M., Belik, V., Couronné, T., Smoreda, Z., & González, M. C. (2013).
Unravelling daily human mobility motifs. Journal of The Royal Society Interface, 10
(84), 20130246. https://doi.org/10.1098/rsif.2013.0246

Schönfelder, S., & Axhausen, K. W. (2016). Urban rhythms and travel behaviour: Spatial
and temporal phenomena of daily travel. Routledge. https://doi.org/10.4324/
9781315548715

Shenk, J., Byttner, W., Nambusubramaniyan, S., & Zoeller, A. (2021). Traja: A python
toolbox for animal trajectory analysis. Journal of Open Source Software, 6(63), 3202.
https://doi.org/10.21105/joss.03202

Smolak, K., Siła-Nowicka, K., Delvenne, J.-C., Wierzbiński, M., & Rohm, W. (2021). The
impact of human mobility data scales and processing on movement predictability.
Scientific Reports, 11(1), 15177. https://doi.org/10.1038/s41598-021-94102-x

Solomon, A., Livne, A., Katz, G., Shapira, B., & Rokach, L. (2021). Analyzing movement
predictability using human attributes and behavioral patterns. Computers,
Environment and Urban Systems, 87, Article 101596. https://doi.org/10.1016/j.
compenvurbsys.2021.101596

Zheng, Y., Zhang, L., Xie, X., & Ma, W.-Y.. Mining interesting locations and travel
sequences from GPS trajectories. https://dl.acm.org/doi/10.1145/1526709.1526816.

Zimányi, E., Sakr, M., & Lesuisse, A. (2020). Mobilitydb: A mobility database based on
postgresql and postgis. ACM Transactions on Database Systems, 45(4), 1–42. https://
doi.org/10.1145/3406534

Song, C., Koren, T., Wang, P., & Barabási, A.-L. (2010). Modelling the scaling properties
of human mobility. Nature Physics, 6(10), 818–823. https://doi.org/10.1038/
nphys1760

Song, C., Qu, Z., Blumm, N., & Barabasi, A.-L. (2010). Limits of Predictability in Human
Mobility. Science, 327(5968), 1018–1021. https://doi.org/10.1126/
science.1177170

The pandas development team. (2023). pandas-dev/pandas: Pandas (v1.5.3). Zenodo.
https://doi.org/10.5281/zenodo.7549438

Toch, E., Lerner, B., Ben-Zion, E., & Ben-Gal, I. (2018). Analyzing large-scale human
mobility data: A survey of machine learning methods and applications. Knowledge
and Information Systems. https://doi.org/10.1007/s10115-018-1186-x

Urner, J., Bucher, D., Yang, J., & Jonietz, D. (2018). Assessing the influence of spatio-
temporal context for next place prediction using different machine learning
approaches. ISPRS International Journal of Geo-Information, 24. https://doi.org/
10.3390/ijgi7050166

Widhalm, P., Nitsche, P., & Brändie, N. (2012). Transport mode detection with realistic
smartphone sensor data. In Proceedings of the 21st international conference on pattern
recognition (ICPR2012) (pp. 573–576). IEEE.

Xu, Y., Çolak, S., Kara, E. C., Moura, S. J., & González, M. C. (2018). Planning for electric
vehicle needs by coupling charging profiles with urban mobility. Nature Energy, 3(6),
484–493. https://doi.org/10.1038/s41560-018-0136-x

Yuan, N. J., Zheng, Y., Zhang, L., & Xie, X. (2013). T-finder: A recommender system for
finding passengers and vacant taxis. IEEE Transactions on Knowledge and Data
Engineering, 25(10), 2390–2403. https://doi.org/10.1109/TKDE.2012.153

Yuan, Y., & Raubal, M. (2012). Extracting Dynamic Urban Mobility Patterns from Mobile
Phone Data. In N. Xiao, M.-P. Kwan, M. F. Goodchild, & S. Shekhar (Eds.), Geographic
Information Science (pp. 354–367). Springer. https://doi.org/10.1007/978-3-642-
33024-7_26.

Zhao, P., Jonietz, D., & Raubal, M. (2021). Applying frequent-pattern mining and time
geography to impute gaps in smartphone-based human-movement data. International
Journal of Geographical Information Science, 1–29. https://doi.org/10.1080/
13658816.2020.1862126

Zheng, Y. (2015). Trajectory data mining: An overview. ACM Transactions on Intelligent
Systems and Technology (TIST), 6(3), 1–41. https://doi.org/10.1145/2743025

Zheng, Y., Xie, X., Ma, W.-Y., et al. (2010). Geolife: A collaborative social networking
service among user, location and trajectory. IEEE Data Engineering Bulletin, 33(2),
32–39.

H. Martin et al.

https://doi.org/10.1145/3411764.3445518
https://doi.org/10.1098/rsif.2013.0246
https://doi.org/10.4324/9781315548715
https://doi.org/10.4324/9781315548715
https://doi.org/10.21105/joss.03202
https://doi.org/10.1038/s41598-021-94102-x
https://doi.org/10.1016/j.compenvurbsys.2021.101596
https://doi.org/10.1016/j.compenvurbsys.2021.101596
https://dl.acm.org/doi/10.1145/1526709.1526816
https://doi.org/10.1145/3406534
https://doi.org/10.1145/3406534
https://doi.org/10.1038/nphys1760
https://doi.org/10.1038/nphys1760
https://doi.org/10.1126/science.1177170
https://doi.org/10.1126/science.1177170
https://doi.org/10.5281/zenodo.7549438
https://doi.org/10.1007/s10115-018-1186-x
https://doi.org/10.3390/ijgi7050166
https://doi.org/10.3390/ijgi7050166
http://refhub.elsevier.com/S0198-9715(23)00001-7/rf0300
http://refhub.elsevier.com/S0198-9715(23)00001-7/rf0300
http://refhub.elsevier.com/S0198-9715(23)00001-7/rf0300
https://doi.org/10.1038/s41560-018-0136-x
https://doi.org/10.1109/TKDE.2012.153
https://doi.org/10.1007/978-3-642-33024-7_26
https://doi.org/10.1007/978-3-642-33024-7_26
https://doi.org/10.1080/13658816.2020.1862126
https://doi.org/10.1080/13658816.2020.1862126
https://doi.org/10.1145/2743025
http://refhub.elsevier.com/S0198-9715(23)00001-7/rf0335
http://refhub.elsevier.com/S0198-9715(23)00001-7/rf0335
http://refhub.elsevier.com/S0198-9715(23)00001-7/rf0335

	Trackintel: An open-source Python library for human mobility analysis
	1 Introduction
	2 Related work: Libraries for movement data
	3 Trackintel framework
	3.1 The Trackintel data model
	3.1.1 Positionfix
	3.1.2 Staypoint
	3.1.3 Tripleg
	3.1.4 Trip
	3.1.5 Location
	3.1.6 Tour

	3.2 Data model generation
	3.2.1 Generate staypoints
	3.2.2 Generate locations
	3.2.3 Generate triplegs
	3.2.4 Generate trips
	3.2.5 Generate tours

	3.3 Import and export
	3.4 Pre- and Postprocessing
	3.5 Analysis
	3.5.1 Mode labeling
	3.5.2 Location labeling
	3.5.3 Modal split
	3.5.4 Tracking quality assessment

	3.6 Visualization

	4 A case study on multiple tracking datasets
	4.1 Tracking studies
	4.2 Standardized processing according to the Trackintel data model
	4.3 Analysis and comparison of tracking datasets

	5 Discussion and conclusion
	CRediT authorship contribution statement
	Acknowledgement
	Appendix A Documentation score
	A.1 Python
	A.2 R

	Appendix B Case study
	References

