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A B S T R A C T

Background: Residential green and blue spaces may be therapeutic for the mental health. However, solid evi-
dence on the linkage between exposure to green and blue spaces and mental health among the elderly in non-
Western countries is scarce and limited to exposure metrics based on remote sensing images (i.e., land cover and
vegetation indices). Such overhead-view measures may fail to capture how people perceive the environment on
the site.
Objective: This study aimed to compare streetscape metrics derived from street view images with satellite-de-
rived ones for the assessment of green and blue space; and to examine associations between exposure to green
and blue spaces as well as geriatric depression in Beijing, China.
Methods: Questionnaire data on 1190 participants aged 60 or above were analyzed cross-sectionally. Depressive
symptoms were assessed through the shortened Geriatric Depression Scale (GDS-15). Streetscape green and blue
spaces were extracted from Tencent Street View data by a fully convolutional neural network. Indicators derived
from street view images were compared with a satellite-based normalized difference vegetation index (NDVI), a
normalized difference water index (NDWI), and those derived from GlobeLand30 land cover data on a neigh-
borhood level. Multilevel regressions with neighborhood-level random effects were fitted to assess correlations
between GDS-15 scores and these green and blue spaces exposure metrics.
Results: The average cumulative GDS-15 score was 3.4 (i.e., no depressive symptoms). Metrics of green and blue
space derived from street view images were not correlated with satellite-based ones. While NDVI was highly
correlated with GlobeLand30 green space, NDWI was moderately correlated with GlobeLand30 blue space.
Multilevel regressions showed that both street view green and blue spaces were inversely associated with GDS-
15 scores and achieved the highest model goodness-of-fit. No significant associations were found with NDVI,
NDWI, and GlobeLand30 green and blue space. Our results passed robustness tests.
Conclusion: Our findings provide support that street view green and blue spaces are protective against depres-
sion for the elderly in China, yet longitudinal confirmation to infer causality is necessary. Street view and
satellite-derived green and blue space measures represent different aspects of natural environments. Both street
view data and deep learning are valuable tools for automated environmental exposure assessments for health-
related studies.

1. Introduction

Awareness is mounting that neighborhood outdoor environments
are vital for people's health (Helbich, 2018; Nieuwenhuijsen et al.,
2017). Exposure to natural environments including green spaces (e.g.,
grass, trees) and blue spaces (e.g., rivers, lakes) seems to have an array

of mental health benefits (Hartig et al., 2014; Silva et al., 2018), as a
meta-review suggests (van den Bosch and Sang, 2017).

Some studies observed a positive relationship between mental
health and green (Beyer et al., 2014; Sarkar et al., 2018; Triguero-Mas
et al., 2015; Zock et al., 2018) or blue space (De Bell et al., 2017;
Nutsford et al., 2016), while others reported no associations (Alcock
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et al., 2015; Boers et al., 2018). Yet, health impacts of blue space are
less clear (Dadvand et al., 2016; Dempsey et al., 2018; Foley and
Kistemann, 2015; Gascon et al., 2017; Triguero-Mas et al., 2015). Most
research is concerned with Europe and North America, while the Asian
context remains under-represented (Markevych et al., 2017). Further,
the existing body of knowledge usually deals with the working age
population (Gascon et al., 2018) or youth (Dzhambov et al., 2018); only
a few address mental health outcomes among elderly people (Dempsey
et al., 2018; Kabisch et al., 2017). This conflicts with contemporary
debates about aging societies (e.g., in China 41% of the population will
be aged>60 in 2050), where it is crucial to ensure mental health later
in life (United Nations, 2017).

The operationalization of green and blue space in epidemiological
studies is not trivial, as multiple ways are conceivable (Cusack et al.,
2017; Larkin and Hystad, 2018; Reid et al., 2018; Rhew et al., 2011;
Villeneuve et al., 2018). Remote sensing, the gold-standard to generate
such indicators (Markevych et al., 2017; Mitchell et al., 2011), either
uses derivates of vegetation or water indices (McFeeters, 1996; Tucker,
1979) or classifies images into land use and land cover categories (e.g.,
forests, waterbodies) as surrogate measures (Helbich et al., 2018; Zock
et al., 2018). Substantial methodological drawbacks arise due to the
spatially moderate resolution of the images (e.g., 30m of Landsat 8),
the minimum mapping size constraining the smallest detectable objects
(Van Dillen et al., 2012), etc. More importantly, downward-facing sa-
tellites conceptually represent a bird's eye perspective, but do not ne-
cessarily reflect the ground-level perspective people have on green and
blue space (Dong et al., 2018; Lu et al., 2018). As a consequence, dis-
tinct deviations are possible and smaller and/or vertical areas of per-
ceived green and blue spaces (e.g., street trees, lawns, green walls),
which are particularly essential in cities, remain unrecognized.

A common way to assess small green and blue spaces in streetscapes
is to carry out in situ audits (Gidlow et al., 2018). De Vries et al. (2013),
for example, audited a sample of four streets per neighborhood. This
manual approach is questionable due to its limited sample size, which is
inefficient in large-scale field observations, and may be biased due to
observers' subjective ratings. Although such bias can be reduced
through rater training (Van Dillen et al., 2012) and well thought out
rating scales (Gidlow et al., 2018), comprehensive on-site visits are
labor-intensive and time-consuming.

An infrequently used alternative is street view services on the web
(e.g., Google, Tencent) which allow researchers to virtually navigate
through urban spaces composed of geo-tagged street-level images
(Rundle et al., 2011). While these services coupled with desktop-based
audit tools are a valuable source of place-based information about
neighborhoods (Rzotkiewicz et al., 2018), the manual analyses of many
pictures and larger areas is tedious.

To overcome these constraints, objective and automated assess-
ments of street view data are favored (Doersch et al., 2012; Gebru et al.,
2017; Gong et al., 2018; Middel et al., 2019). State-of-the-art machine
learning supports an automatic, comprehensive evaluation of high-re-
solution street view images, while simultaneously being effective and
accurate (Dong et al., 2018; Li et al., 2018; Weichenthal et al., 2019).
Seiferling et al. (2017), for instance, utilized street view data for Boston
and New York (US) to determine tree crowns in public space. However,
the utilization of street view data for exposure assessments to study the
mental health impacts of green and blue space is novel, and compar-
isons with traditional remote sensing-based assessments are lacking.

Therefore, the aim of this study was to examine the fitness for use of
street view green and blue space measures, and to analyze associations
between depressive symptoms and streetscape natural environments
(i.e., green and blue space) among elderly people in Beijing, China. The
following were our research questions:

1. Do differently operationalized green and blue space metrics (i.e.,
street view vs. remotely sensed) lead to diverging results?

2. Are both green and blue spaces protective against depressive

symptoms among the elderly in Beijing?

Two hypotheses were generated, namely that street view green and
blue spaces are weakly correlated with remote sensing-based measures,
and that exposure to street view green and blue spaces is negatively
associated with depressive symptoms among the elderly.

This study contributes to the literature in proposing objective and
automated street view exposure assessments based on a large number of
street view images and deep learning algorithms (LeCun et al., 2015;
Long et al., 2015). It explores the elderly in Beijing – an understudied
but vulnerable population group in a fast growing Asian metropolis
(Markevych et al., 2017). The prevalence of mental diseases is, at 32%,
considerable high there (China Health and Retirement Longitudinal
Study, 2015).

2. Materials and methods

2.1. Research design and study population

This cross-sectional population-based study used the mental health
survey conducted by Renmin University in China between March and
August 2011. The study population comprised elderly people residing
in the Haidian district in Beijing, China. This inner-city district in the
northwestern part of Beijing has a total population of 3.59 million
(2016) and covers an area of 431 km2. The prevalence of mental dis-
orders in Haidian is higher than in other districts and many elderly
people live there (China Health and Retirement Longitudinal Study,
2015): In 2011, approximately 386,000 people aged over 60 years lived
there; by 2015, this figure had increased to 470,000 (+22%). These
features made the district of Haidian a fertile research area.

The participant recruitment procedure was based on a two-stage
stratified sampling design. In the first phase, 48 residential neighbor-
hoods (juweihui) in the 13 districts (jiedao) were randomly selected by
means of stratified sampling from Haidian District (qu). Then, in phase
two, 30 persons in each sampled neighborhood were approached at
their residential address using a stratified sampling method. This pro-
cedure led to a random sample of 1250 participants, each of whom met
the inclusion criteria of aged>60 and living in the district for> 10
years. The survey addressed a wide range of questions dealing with
participants' mental health, demographics, socioeconomic situation,
etc. All participants gave their consent to the survey. The linkage to
environmental data was based on the most detailed available neigh-
borhood level (i.e., administrative units) within which people live. The
average neighborhood size was small (2 km2; SD ± 1.5), ranging from
0.4 to 4.2 km2. After cleaning the data (e.g., removing incomplete
surveys), a total of 1190 people remained in the dataset.

2.2. Mental health data

Information on the mental health of the elderly was collected
through questionnaires. The assessment was carried out with the self-
rated Geriatric Depression Scale (GDS-15) (Sheikh and Yesavage,
1986). As the long version (originally covering 30 items) is rather time-
consuming to fill in and may lead to fatigue, we used the shortened 15-
item GDS-15 to screen depressive symptoms over the previous week
(Sheikh and Yesavage, 1986; Smarr and Keefer, 2011). The GDS-15 was
found to be an accurate screening instrument (de Craen et al., 2003),
recommended to recognize late-life depression (Mitchell et al., 2010).
The included items comprise, for example, characteristics of depression
such as sadness and crying, as well as cognitive aspects like thoughts of
helplessness, hopelessness, worthlessness, etc. The GDS-15 score ranges
from 0 to 15, where 0 refers to no depressive symptoms and 15 refers to
severe depressive symptoms. The internal consistency across the items
was, at 0.862, excellent as assessed by Cronbach's alpha.
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2.3. Residential green and blue space data

2.3.1. Street view data
We assessed green and blue space per neighborhood based on a

series of street view images collected 2012. The images were extracted
from Tencent Map,2 the Chinese equivalent of Google Maps. It is the
most comprehensive service with the largest image coverage providing
street view photos taken from various positions (Long and Liu, 2017).

Based on OpenStreetMap (Arsanjani, 2015), we constructed point
transects along the road network. The sampling points were 100m
apart; a compromise between detail and computation time. Given these
locations, the closest pictures in the horizontal direction were queried
through an HTTP URL and crawled through the application program-
ming interface. To include the entire streetscape at each sampling point,
we took images taken in the four main cardinal directions (i.e., 0, 90,
180, and 270 degrees) (Lu et al., 2018). The size of each image was
480×320 pixels with a vertical angle of 0 degrees. In total, 134,778
street view images were obtained. We considered, on average, 2807
images (standard deviation (SD) ± 1053) per neighborhood.

2.3.2. Remote sensing data
To compare street view with remotely sensed green and blue space,

the GlobeLand30 repository,3 maintained by the National Geomatics
Center of China, was assessed. The repository is a global land cover
archive obtained from Landsat scenes (Chen et al., 2015). The data have
a spatial resolution of 30m. Since quality assessments of multiple sites
and against multiple products yield a high thematic accuracy (> 80%),
the data were suitable for our purpose (Brovelli et al., 2015). To match
with the other data, we used the most recent data, namely for 2010. To
abstract environmental exposures, the 10 land cover classes were re-
classified. For green space, cultivated land (i.e., land used for agri-
culture, gardens, etc.), forest (i.e., land covered with trees, with> 30%
vegetation cover), and grassland (i.e., land covered by natural grass
with> 10% cover) were aggregated. For blue space, we used the land
cover category water bodies (rivers, lakes, etc.). The proportion of
green and blue space per neighborhood was determined (in %).

Alternatively, the levels of green and blue space were also mapped
through two indices quantifying the surface reflectance, namely the
normalized difference vegetation index (NDVI) (Tucker, 1979) and the
normalized difference water index (NDWI) (McFeeters, 1996). Both
measures are computed based on the different wavelengths of the light
absorbed by green plant canopies and water features. Before de-
termining the average NDVI per neighborhood, we omitted pixels with
a negative NDVI, as recommended elsewhere (Markevych et al., 2017;
Rugel et al., 2017). With a range of between−1 and+ 1, more positive
NDVI values indicate denser vegetation. To assess the quantity of water
surfaces per neighborhood, we averaged the NDWI. Higher NDWI va-
lues indicate a pronounced availability of water features. We employed
Landsat 8 satellite images for June 2010 with a spatial resolution of
30m, obtained from the United States Geological Survey data re-
pository,4 as data source for both indices.

2.4. Control variables

Guided by literature reviews (Kraaij et al., 2002), multiple covariate
data on an individual level were obtained through the survey. We in-
cluded a person's gender to adjust for varying depression prevalence
between men and women. Age (in years) was adjusted for increasing
depression risk over the life time (Kraaij et al., 2002). A respondent's
educational background was considered as a categorical variable
comprising three classes, that is, primary school or below, high school,

and college and above. In the Chinese context, ethnic minority groups
and a local hukou are important (Yang et al., 2018); lacking the latter
was found a risk factor for mental disorders (Wang et al., 2018). Both
variables were included as dummy variables. We also considered a
person's household composition, as single, divorced, or widowed people
are high-risk groups (Wang et al., 2018). Functional ability was as-
sessed by the Activities of Daily Living scale (Pluijm et al., 2005). The
total score was reclassified into a binary variable. When subjects had
problems with at least one of the activities, “restricted” was assigned.
Given that physical illness affects mental health (Moussavi et al., 2007),
we controlled for whether respondents had one or more chronic dis-
eases (high blood disease, diabetes, etc.). Finally, we considered air
pollution suggested to be related to depression (Buoli et al., 2018).
Nitrogen dioxide (NO2) concentrations (in μg/m3) for the year 2011
were extracted from a globally available land use model with a spatial
resolution of 100m (Larkin et al., 2017).

2.5. Deep learning for image segmentation

A machine learning approach was implemented to extract street
view green and blue space from the downloaded images. To circumvent
the limitations of pixel-wise classifications using an image's additive
colors (e.g., natural and manmade green objects are not discriminable)
(Larkin and Hystad, 2018), we applied a semantic segmentation tech-
nique that is capable of accurately identifying green and blue space
from street view image data (Li et al., 2015).

As deep learning performed well for pattern recognition tasks
(LeCun et al., 2015; Rawat and Wang, 2017), we used a fully con-
volutional neural network for semantic segmentation (i.e., the FCN-8s)
(Long et al., 2015) to segment the street view images into common
ground objects (e.g., river, tree). Fig. 1 illustrates the network structure.

In essence, to learn different levels of abstraction of the data, the
FCN-8s is composed of numerous processing layers linking the input
layer (street view images) and the output layer (semantically seg-
mented images). Given an input street view image, convolutional layers
extract features and pooling layers compress the data to learn high-level
feature maps, while reducing the spatial dimension of the feature maps
(Krizhevsky et al., 2012). By comparing the model output and manually
marking the segmentation images, FCN-8s uses cross entropy to adjust
the parameters of each layer, and obtains a high-accuracy semantic
segmentation network through multiple rounds of training. For a
technical description of the deep learning, see LeCun et al. (2015), Long
et al. (2015), and Rawat and Wang (2017).

Fig. 2 summarizes the workflow. To train the network, we used a
collection of annotated images from the ADE20K scene parsing and
segmentation database5 (Zhou et al., 2016, 2017). ADE20K consists of a
large number of annotated object categories (e.g., tree, car). After ob-
taining the image segmentations by feeding the street view images into
the trained network, the proportion of green space (e.g., trees, grass,
plants, palm trees) and blue space (e.g., rivers, lakes, fountains, wa-
terfalls, swimming pools) was determined.

Streetscape green space per sampling point represents the ratio of
the number of green space pixels per image summed over the four
cardinal directions to the total number of pixels per image summed over
the four cardinal directions (Dong et al., 2018). Streetscape blue space
was computed similarly. Finally, the averages per neighborhood were
determined (Li and Ghosh, 2018) and attached to the survey data.

2.6. Statistical analyses

After data cleaning, chi2 and F-tests were used to assess differences
between the retained survey respondents and the removed ones. Data
were summarized through descriptive statistics. Bivariate relations

2 https://map.qq.com
3 http://www.globallandcover.com
4 www.usgs.gov/landsat 5 http://groups.csail.mit.edu/vision/datasets/ADE20K.
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across the exposure metrics were assessed with non-parametric
Spearman correlations. Variance inflation factors were used to in-
vestigate multicollinearity among the variables. Values> 3 are deemed
as problematic.

Due to the hierarchical nature of the data, we fitted multilevel linear
models (Raudenbush and Bryk, 2002) with the GDS-15 score per person
as outcome. Random intercepts were employed to adjust for the fact
that people cluster in neighborhoods. As relations between green and
blue spaces and depression showed non-linearity (Helbich et al., 2018),
and to ease interpretation (Rugel et al., 2017), we considered their
quartiles (Cusack et al., 2017).

Different models with different adjustment levels were fitted.
Besides a null model (i.e., a model without any variables to investigate
intra-class correlations), we fitted a baseline model containing only the
socioeconomic, demographic, and physical health covariates (Model 1).
To examine whether street view green and blue space would improve
the goodness-of-fit, Models 2 and 3 extended Model 1 by iteratively
adding street view exposures. Model 4 was fully adjusted, including
green and blue space together. Models 5 and 6 replaced the street view

measures with the NDVI and NDWI separately while Model 7 con-
sidered both NDVI and NDWI. Finally, Models 8 to 10 incorporated
either GlobeLand30 green and blue space independently or in combi-
nation.

Model performance was assessed by the Akaike information cri-
terion (AIC). A smaller AIC score represents a better goodness-of-fit. An
AIC difference of 2 indicates a substantial difference between the
models (Burnham and Anderson, 2003). We considered p-values<
0.050 to be statistically significant. Statistics were computed in STATA
15.1.

2.7. Sensitivity and robustness tests

As a self-selection bias between neighborhood environments and
residents' health outcomes may exist, propensity score matching
(Dehejia and Wahba, 2002) was used in combination with the fully
adjusted models (Models 4, 7, and 10). Three matching methods were
implemented: k-nearest neighbor matching, radius matching, and
kernel matching. The average treatment effect on the treated (ATT) was

Fig. 1. Architecture of the fully convolutional network (adopted from Long et al., 2015). The attached numbers refer to a layer's convolution kernel size.

Fig. 2. Street view image segmentation through the fully convolutional neural network.
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estimated to represent the effect of exposure to green/blue space, which
was calculated as the difference between the treated group (i.e., people
who were significantly influenced by green/blue space) and the un-
treated group (i.e., people who were not significantly influenced by
green/blue space). To ensure ATT robustness, we defined residents in
different green/blue space quartiles as the treated group.

For the best fitting model, the following additional sensitivity tests
were performed. Since people aged> 80 may have a different per-
ception of natural environments (Gascon et al., 2018), we excluded
them from the sample and re-ran the fully adjusted model (Model 4a).
We also checked whether excluding respondents who suffered from
other diseases (e.g., cataracts, glaucoma, Alzheimer, neuropathy) af-
fected the correlations (Model 4b). We repeated our analyses with a
binary classified GDS-15 score using a multilevel logit regression
(Model 4c). Respondents with a GDS-15 score above 8 were considered
as being depressed (Lam et al., 2004).

3. Results

3.1. Characteristics of the study population

The removal of survey respondents with missing information
(N=60) resulted in no differences compared to the retained sample
(N=1190). Chi2 and F-tests for all variables were insignificant (Table
A1, supplementary materials).

Table 1 summarizes the characteristics of the study population. The
average GDS-15 score of the 1190 respondents was 3.4, with an SD
of± 2.7. Table A2 provides descriptives stratified between people with
depressive symptoms (GDS-15≥ 8) and those without depressive
symptoms (GDS-15 < 8). Overall, the mean age was 70.7 years and
59.7% were female. About 31.2% of the respondents attended at least
primary school, 43.9% had a high school degree, and 24.9% had a
college degree or a higher qualification. Only 3.6% belonged to a
minority group, while a large proportion had a local hukou (94.0%).
About a half (46.0%) were not functionally restricted, and 20.1% had
no chronic disease. Descriptive statistics per quartiles of green and blue
space are given in Tables A2–A8.

3.2. Street view green and blue space

The FCN-8s model achieved an accuracy of 0.814 on the training
data and 0.768 on the test data. An example of an image segmentation
result via the trained FCN-8s is shown in Fig. 3. For example, the model
accurately separates built-up areas (e.g., streets, buildings), grassland,
trees, etc.

Fig. 4 maps parts of the green and blue space exposure metrics.
Fig. 5 shows scatterplots between the green and blue space measures.
The Spearman coefficients of street view green space versus Globe-
Land30 green space and the NDVI showed associations of 0.056
(p=0.704) and 0.225 (p=0.124); for GlobeLand30 blue space it was
−0.177 (p=0.228) and− 0.674 (p < 0.001) for NDWI. With 0.817
NDVI was highly correlated with GlobeLand30 green space; so was
NDWI and GlobeLand30 blue space (0.408). Both correlations were
statistically significant (p < 0.001; p=0.004).

3.3. Multilevel regression models

The neighborhood-level intra-class correlation of the null model was
0.12. This indicates that GDS-15 scores are moderately clustered within
the neighborhood, which justifies the validity of the multilevel ap-
proach. Adding variables of either street view green space (Model 2) or
blue space (Model 3) to Model 1 leads to a decrease in AIC scores and
thus an improvement in model goodness-of-fit. The fully adjusted
model (Model 4), with both street view green and blue space, has the
lowest AIC score. The refitted models with the NDVI and the NDWI
(Models 5–7, Table A9) and variables derived from GlobeLand30

remote sensing data (Models 8–10, Table A11) performed worse than
those with variables derived from street view data as indicated by no-
table AIC differences.

We observed a statistically significant and negative association be-
tween street view green and blue space and GDS-15 (p < 0.010)
(Table 2, Model 4). People exposed to more green and blue space (i.e.,
2nd, 3rd, or 4th quartile) had significantly lower GDS-15 scores than
people residing in neighborhoods with a low coverage of green and blue
space (i.e., 1st quartile). The green and blue space coefficients were
most pronounced in the third quartile. In contrast, neither green nor
blue space was significantly correlated with GDS-15 when rerunning
the models with NDVI, NDWI, and GlobeLand30 metrics (Table A9 and
A11).

Adding variables of exposure to green and blue space did not alter
the significance levels of the covariates (Table 2, Model 4), although the
magnitude of the coefficients changed slightly. Some of the covariates
were statistically significant. Age was negatively correlated with GDS-
15 (p < 0.010). Both having a physical disease and being restricted in
functional ability increased the risk of depressive symptoms

Table 1
Descriptive statistics.

Proportion Min. Mean (SD) Max.

GDS-15 score 0.0 3.4 (2.7) 15.0
Street view green space (%): 1st quartile 6.8 11.0 (2.5) 13.6
2nd quartile 13.8 15.6 (1.0) 17.1
3rd quartile 17.3 178 (0.4) 18.6
4th quartile 19.1 21.5 (1.8) 24.4

Street view blue space (%): 1st quartile 0.0 0.1 (0.0) 0.2
2nd quartile 0.3 0.3 (0.2) 0.4
3rd quartile 0.4 0.5 (0.8) 0.7
4th quartile 0.7 1.0 (0.2) 1.5

GlobeLand30 green space (%): 1st
quartile

0.0 1.2 (1.1) 2.9

2nd quartile 3.1 4.5 (1.2) 6.2
3rd quartile 6.4 18.4 (8.1) 33.9
4th quartile 34.2 62.1

(18.4)
87.6

GlobeLand30 blue space (%): 1st quartile 0.0 0.0 (0.0) 0.1
2nd quartile 0.3 0.6 (0.2) 1.0
3rd quartile 1.2 1.6 (0.3) 2.1
4th quartile 2.2 3.5 (0.9) 4.5

NDVIa 1st quartile 2.3 3.8 (0.1) 4.8
2nd quartile 4.9 5.2 (0.0) 5.7
3rd quartile 5.7 7.0 (0.1) 8.0
4th quartile 9.3 13.3 (0.1) 19.4

NDWIa: 1st quartile 3.8 4.7 (0.1) 5.6
2nd quartile 5.7 6.0 (0.0) 6.3
3rd quartile 6.3 6.8 (0.0) 7.2
4th quartile 7.3 8.9 (0.1) 12.4

NO2 (in μg/m3) 19.0 30.4 (4.8) 36.2
Age (years) 60.0 70.7 (7.0) 95.0
Gender (%): male 40.3
Female 59.7

Education (%): primary school or below 31.2
High school 43.9
College and above 24.9

Ethnicity (%): Han Chinese 96.3
Minority 3.7

Marital status (%): Single, divorced, or
widowed

22.3

Married, living with spouse 76.7
Married, not living with spouse 1.0

Party membership (%): Yes 44.0
No 56.0

Hukou status (%): local hukou 94.0
Non-local hukou 6.0

Functional ability (%): restricted 54.0
Not restricted 46.0

Physical health status (%): with chronic
disease

79.9

No chronic disease 20.1

a NDVI and NDWI values multiplied by 100.
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(p < 0.010). We found no evidence that gender, education, ethnicity,
hukou status, and NO2 were significantly related to GDS-15.

Results (Model 4) from propensity score-matching confirm negative
associations between exposure to green and blue space and GDS-15
scores (Table 3). The absolute values of ATT became larger when
treatment groups were smaller. Different matching methods resulted in
only slight differences in the ATT values, which confirmed a robust
inverse relationship between green and blue space exposure and ger-
iatric depression. Propensity score-matching results for Model 7 and 10
did not alter our conclusions of insignificant associations (Tables A10
and A12).

Table 4 summarizes the results of other robustness tests on the
correlation between GDS-15 and green and blue space exposure. De-
spite some differences in magnitude, the significance of the green and
blue space associations remained constant.

4. Discussion

This study was among the first to examine the linkage between
mental disorders (i.e., depression symptoms) and exposure to natural
environments at the street-level among elderly people in China. While
remote sensing-based metrics of green and blue space are widespread in
epidemiological studies (Boers et al., 2018; Dzhambov et al., 2018;
Groenewegen et al., 2018; Nutsford et al., 2016; Tomita et al., 2017),
we took an alternative avenue to assess green and blue space, relying on
machine learning and street view data.

4.1. Interpretation of the findings in the context of available evidence

Our results showed weak and insignificant correlations between
street view and remote sensing-based green and blue space exposures.
Although they did not rely on machine learning, Larkin and Hystad
(2018) reported similar low correlations (i.e., −0.02 to 0.5) between
green space extracted from street view images and satellite-based
measures including the NDVI. We found no evidence of positive cor-
relations for street view blue space with alternative measures; reference
studies are, however, lacking. As with prior studies (Cusack et al., 2017;
Mitchell et al., 2011), which reported moderate to strong correlations
derived from different remote sensing data sources (e.g., Landsat,
Corine), ours were also considerably high, namely 0.817 for green
space (NDVI vs. GlobeLand30) and 0.408 for blue space (NDWI vs.

GlobeLand30).
These findings strengthen our initial hypothesis that both oper-

ationalizations quantify different aspects of natural environments,
namely that street view images represent more closely how environ-
ments are perceived and experienced by people on the ground com-
pared to overhead-view assessments based on remotely sensed imagery.
This provides empirical support to Lu et al. (2018), who indicated
marked differences across both approaches to measure environmental
exposures. Further, Dempsey et al. (2018) found that the visual per-
ception of coastal blue space reduces the prevalence of depression in
Irish older adults. Supported by these findings and others (De Bell et al.,
2017; Garrett et al., 2018), we argue that street-level exposure assess-
ments could better reflect actual exposures to green and blue space, as
small-sized and/or vertical natural elements (e.g. trees along a street,
green walls), which may also be beneficial to resident’ health (de Vries
et al., 2013; Mitchell and Popham, 2008; Van Dillen et al., 2012), are
normally not identified based on remote sensing data. Therefore, un-
derpinning Weichenthal et al. (2019), our results suggest that street
view imagery along with machine learning are powerful tools for en-
vironmental exposure assessments in urban landscapes. As web services
such as Tencent Map and Google Street View provide georeferenced
and publicly available street view image databases with broad spatial
coverage, the potential to develop novel place-based environmental
exposure measures to explore environment–health relations is sig-
nificant.

Our hypothesis that both green and blue spaces are protective
against geriatric depression, as already proven for adults (Beyer et al.,
2014; Gascon et al., 2018; Helbich et al., 2018; Triguero-Mas et al.,
2015; Zock et al., 2018), was partly confirmed depending on how the
exposure assessment was conducted. Less complete is the knowledge
base for older people (Dempsey et al., 2018; Kabisch et al., 2017; Maas
et al., 2006) but utilizing street view data, we found negative associa-
tions between the street view green and blue spaces and depressive
symptoms. Multiple stratified models revealed similar and consistent
results. However, we found little evidence for such inverse associations
when metrics of green and blue space were derived from NDVI, NDWI,
and GlobeLand30 remote sensing data. Such discrepancies corroborate
with Villeneuve et al. (2018), who compared a neighborhood NDVI
with street view green space, and found that the latter but not the
former was correlated with people's mental health. It is plausible that
the inconsistency between the overhead and the street view green and

Fig. 3. Street view scene segmentation results of the trained FCN-8s: street view image before (A) and after the segmentation (B).

M. Helbich, et al. Environment International 126 (2019) 107–117

112



(caption on next page)

M. Helbich, et al. Environment International 126 (2019) 107–117

113



blue metrics translate further into model estimation, which may explain
the inconsistent findings (Gascon et al., 2017; van den Bosch and Sang,
2017).

Several biopsychosocial pathways linking exposure to green and
blue spaces to mental health are the subject of debate (Gascon et al.,
2018; Hartig et al., 2014; Lachowycz and Jones, 2013; Silva et al.,
2018; Völker and Kistemann, 2011). Among these mechanisms are,
noise reduction, attention restoration, and stress recovery (Markevych
et al., 2017). While eye-level green space may be more relevant for
doing physical activity, remotely sensed green space may be more im-
portant to mitigate air pollution. For example, both seen and unseen
trees may effectively filter air pollutants or be related to reduced traffic
intensity. Since street view exposure assessments have only recently
emerged, additional studies are needed to refine the underlying
pathway.

Our findings about the salutogenic effects of green space align, in
general, with cross-sectional and longitudinal evidence obtained for the
Netherlands (Helbich et al., 2018), South Africa (Tomita et al., 2017),
the UK (Sarkar et al., 2018), the United States (Beyer et al., 2014), etc.
We are only aware of a few street view studies in the mental health
context (de Vries et al., 2013; Van Dillen et al., 2012). In line with our
results, Van Dillen et al. (2012), for example, found for the Netherlands
that streetscape green space identified through site visits significantly
correlates with better mental health. Street view greenery in Hong Kong
was also found to promote walking (Lu et al., 2018), which is, in turn,
protective against depression (Roe and Aspinall, 2011). Less compre-
hensive is the scientific evidence on blue space (Dempsey et al., 2018;
Gascon et al., 2017). Among adults, Nutsford et al. (2016) found that
pronounced exposure to blue space diminishes psychological distress.

4.2. Strengths and limitations

Numerous strengths need to be emphasized. First, whereas the
majority of studies on the associations between street view exposure to
green and blue space and depression have focused on Western countries
(van den Bosch and Sang, 2017), we focused on a densely populated
Chinese city. Whether our promising results obtained for Beijing may be
generalized to other cities, requires verification. Second, we made a
new attempt to validate street view data coupled with deep learning to
extract metrics of green and blue space for exposure assessments, as
opposed to using remote sensing data. Both approaches yield objective
measures, preventing a rating bias that may be at play in other studies
(Dadvand et al., 2018). Third, the application of street view data to
assess green and blue space, rather than to audit neighborhood en-
vironments (Rzotkiewicz et al., 2018), is innovative, capturing how
people perceive the environment on the site. Our deep learning ap-
proach enables us to identify green and blue space more efficiently and
more accurately compared to pixel-wise classifications (Larkin and
Hystad, 2018). Fourth, numerous robustness tests corroborate the
protective effects of street view green and blue space on mental health.

Our study was limited in several ways, however. First, street view
and remote sensing data covered different points in time. Specifically,
street view data are limited in their spectral information and cannot
capture season changes. Nevertheless, the indicators of both sources
remain comparable, because green and blue spaces in Beijing change
only slowly over time. While street view data represent public green
space well, inaccessible locations (e.g., domestic gardens) are dis-
regarded. It remains unclear how these issues affected our results.
Second, deficits of the NDVI (e.g., oversaturation where the vegetation
density is high) remain and other vegetation indices may be better
suited, but impeded comparisons with others (Rugel et al., 2017).

Fig. 4. Comparisons of green and blue space exposure metrics: (A) street view green space, (B) street view blue space, (C) NDVI, (D) NDWI, (E) GlobeLand30, (F)
study area. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Scatterplots and Spearman correlations across green and blue space metrics. Grey shaded areas represent the 95% confidence interval along robust regression
lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Third, the FCN-8s is an efficient and frequently used deep learning
approach (Middel et al., 2019), but future studies are advised to test
alternative deep learning architectures as they may perform even better
(Zhao et al., 2017). Fourth, data protection issues prevented the ap-
plication of buffers centered on respondents' homes to represent re-
sidential neighborhoods (Boers et al., 2018). On average, however, the
neighborhood areas were small, corresponding to an 800-meter buffer
radius. We disregarded exposures along people's daily mobility
(Helbich, 2018). That is defendable, since the elderly's day-to-day ac-
tivity space are well approximated by neighborhoods (Arnberger et al.,
2017). Fifth, although the GDS-15 is well-tested (Mitchell et al., 2010;
Smarr and Keefer, 2011), depression severity was self-reported, which
may have biased the regression estimates. Like others, we cannot rule
out that confounders were omitted (e.g., noise, air pollution). Finally,
given the cross-sectional research design, shortcomings, including the
limited capability to establish causality, are inevitable.

5. Conclusion

This study provides a better understanding of the extent to which
exposures to street view green and blue space are related to geriatric
depression in Beijing, China. Instead of in situ field observations or

vegetation indices based on remote sensing, we utilized street view data
and deep learning to extract metrics of green and blue space.

Correlation analysis showed that neither street view green nor blue
space were related with those derived from remote sensing data (i.e.,
NDVI, NDWI, GlobeLand30 land cover). Our findings imply that green/
blue space from downward-facing satellites may not fully capture what
people perceive on the ground. Our multilevel regressions showed that
exposure to street view green and blue space is inversely associated
with depressive symptoms among the elderly. No evidence was found
that sensing-based measures of green and blue space are correlated with
depressive symptoms.

Our findings highlight how important it is that environmental ex-
posure assessments accurately reflect people's perceptions. Although
some challenges still need to be overcome, street view data in combi-
nation with deep learning provide a valuable tool for automated en-
vironmental assessments of physical streetscapes, applicable to large
epidemiological studies. If replicated by future studies, our finding that
streetscape natural environments counter depression will make an im-
portant contribution to the promotion of healthy urban environments
that support healthy aging in the long run. Urban policies should ensure
the preservation of small-scale natural environments to mitigate the
impact of rapid urbanization.

Table 2
Multilevel regression model results with street view green and blue space.

Model 1 Model 2 Model 3 Model 4

Coef. (SE) Coef. (SE) Coef. (SE) Coef. (SE)
Gender (ref.: female) 0.095 (0.167) 0.091 (0.167) 0.074 (0.167) 0.063 (0.166)
Age −0.043*** (0.013) −0.041*** (0.013) −0.044*** (0.013) −0.042*** (0.013)
Education (ref.: primary school)
High school 0.091 (0.199) 0.114 (0.200) 0.087 (0.200) 0.106(0.199)
College and above −0.066(0.244) −0.036 (0.243) −0.045 (0.243) −0.017 (0.241)

Minority (ref.: Han Chinese) 0.101 (0.400) 0.107 (0.398) 0.077 (0.399) 0.066 (0.397)
Marital status (ref.: single)
Married, living with spouse −0.324 (0.200) −0.315 (0.200) −0.329 (0.200) −0.318 (0.200)
Married, not living with spouse 0.467 (0.760) 0.453 (0.759) 0.415 (0.759) 0.390 (0.757)

Party member (ref.: no) −0.538*** (0.168) −0.509*** (0.168) −0.539*** (0.167) −0.507*** (0.167)
Local hukou (ref.: non) 0.302 (0.322) 0.364 (0.320) 0.262 (0.320) 0.321 (0.318)
Physical health status (ref.: no chro. disease) 0.938*** (0.199) 0.936*** (0.199) 0.920*** (0.199) 0.910*** (0.198)
Functional ability (ref.: not restricted) 0.742*** (0.166) 0.735*** (0.166) 0.747*** (0.166) 0.740*** (0.166)
NO2 0.017 (0.034) 0.024 (0.030) 0.024 (0.037) 0.020 (0.038)
Street view green space (ref.: 1st quartile)
2nd quartile −1.320*** (0.383) −1.097*** (0.340)
3rd quartile −1.478*** (0.390) −1.215*** (0.342)
4th quartile −1.286*** (0.382) −0.951** (0.382)

Street view blue space (ref.: 1st quartile)
2nd quartile −1.276*** (0.393) −1.202*** (0.350)
3rd quartile −1.471*** (0.422) −1.263*** (0.390)
4th quartile −1.211*** (0.452) −1.059*** (0.455)

Constant 5.650*** (1.442) 6.147*** (1.370) 8.070*** (1.625) 7.738*** (1.513)
Variance (neighborhood-level constant) 0.926*** 0.618*** 0.637*** 0.410***
Variance (residuals) 6.159*** 6.162*** 6.156*** 6.160***
AIC 5644.642 5636.656 5636.719 5629.217

Significance levels: “*” p < 0.100, “**” p < 0.050, “***” p < 0.010. SE= standard error.

Table 3
Results of the propensity score-matching with Model 4.

k-Nearest neighbor matching Radius matching Kernel matching

Treatment group (street view green space)
a) ≥2nd quartile −1.441*** (0.231) −1.343*** (0.232) −1.351*** (0.223)
b) ≥3rd quartile −0.445** (0.211) −0.612*** (0.162) −0.632*** (0.162)
c) ≥4th quartile −0.367* (0.215) −0.501*** (0.263) −0.485*** (0.162)

Treatment group (street view blue space)
a) ≥2nd quartile −1.272*** (0.281) −1.261*** (0.312) −1.279*** (0.242)
b) ≥3rd quartile −0.623*** (0.211) −0.435** (0.215) −0.517*** (0.174)
c) ≥4th quartile −0.551** (0.211) −0.392* (0.232) −0.356** (0.173))

Models adjusted for all individual-level covariates. a) ≥2nd quartile: 1st quartile= referenced group, 2nd-4th quartile= treated group; b) ≥3rd quartile: 1st-2nd
quartile= referenced group, 3rd-4th quartile= treated group; c) ≥4th quartile: 1st-3rd quartile= referenced group, 4th quartile= treated group; Significance
levels: “*” p < 0.100, “**” p < 0.050, “***” p < 0.010.
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