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A B S T R A C T   

Currently, raster-based landscape indices (LIs) that measures the landscape pattern of raster-format land-use 
data, can be easily computed by relevant software (e.g., Fragstats). Unfortunately, open-access software for 
vector-based LIs often implement a small variety of metrics, which cannot meet the growing demand of the GIS 
and landscape design research. The common approach often results in a loss of accuracy. Hence, this paper 
presents the state-of-the-art VecLI framework for computing 217 vector-based LIs. A parcel merging algorithm is 
proposed to address the impact of landscape fragmentation on vector-based LIs by considering the neighborhood 
effect. A case study was conduct in Shunde, China. The result shows that 80% of the LIs from VecLI are strongly 
correlated to Fragstats’s LIs. The patch perimeter-related metrics from VecLI portray a more realistic 
geographical pattern compared to those from Fragstats. Moreover, the VecLI-based software is developed for use 
by the GIS and landscape design researchers.   

1. Introduction 

Landscape indices (LIs), also call landscape metrics, are the impor
tant basis in the field of landscape ecology (Frazier and Kedron 2017). In 
landscape-related studies, landscape modeling often applies LIs to 
measure landscape spatial patterns and analyze their temporal evolu
tions (Liu and Yang 2015; Sklenicka and Zouhar 2018). With the 
application of LIs in geographic information system (GIS) and remote 
sensing, more and more LIs have been proposed to quantify the 
configuration of landscape patterns (Del Castillo et al., 2015; Zhang and 
Atkinson 2016; Yu 2021). It has also driven the continuous development 
of related software for computing LIs, with rich types of LIs implemented 
(Turner and Gardner 2015). 

Currently, the most popular software for LI computation available is 
Fragstats (McGarigal 2015; Frazier and Kedron 2017). Fragstats is a 
stand-alone software for raster-based LIs, with detailed instructions and 
metric descriptions. As the pioneer of LI software, Fragstats was the first 
to classify LIs into three geographic scales, i.e., Landscape, Class and 
Patch scales. Also, to evaluate the similarities among LIs, Fragstats 
classifies them into six classes, including Area_edge, Shape, Core area, 

Contrast, as well as Aggregation. To date, Fragstats still provides the 
largest number of raster-based LIs, with 251 metrics in version 4.2 
(McGarigal 2015; Yu et al., 2019). In second place is a package called 
“landscapemetrics”, which only implements a total of 134 metrics 
(Hesselbarth et al., 2019). 

However, to date open-access Vector-based software for computing 
LIs still only offers a paucity of vector-based metrics. These vector-based 
solutions are mainly presented in the form of plug-ins for GIS software, 
e.g., ArcGIS-based V-late, Patch Analyst 5 and Arc_Lind. Among them, V- 
late and Patch Analyst 5 only provide a small number of LIs, mainly for 
quantifying ecological landscape conservation, such as biodiversity 
(Lang and Tiede 2003; Rempel et al., 2012). And Arc_Lind provides 195 
metrics and some solutions for the problems of computing vector-based 
LIs but is not currently open for use (MacLean and Congalton 2013; Yu 
et al., 2019). 

Currently, raster-based LIs are widely used for studying landscape 
pattern. Land use and land cover (LULC) data are a prerequisite for the 
computation of LIs (Gustafson 2019). LULC data are represented in two 
forms in geographic information system (GIS), i.e., raster and vector 
formats (Mõisja et al., 2016). And in the past the vast majority of LULC 
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data was produced in the form of raster data, with lower computing 
performance requirements and higher efficiency (Bober et al., 2016). 
This is the reason why most of the existing LIs computing frameworks 
are based on raster-format LULC. However, most existing studies based 
on vector-format LULC must follow the raster-based routine by raster
izing the vector-format data (Bosch 2019; Fu et al., 2021). Data raster
ization is prone to loss of graphical data, resulting in loss of accuracy 
(Boongaling et al., 2018; Zhou et al., 2018). The scale-related parameter 
of the data rasterization can also make a significant difference to the 
results (Pan et al., 2019). With the development of fine-grained land use 
simulations, vector data is valued for its ability to describe topographic 
data in great detail and accuracy (O Festus et al., 2020). Hence, it is an 
urgent need for software to compute LIs based on vector-format LULC 
data. 

In the past, the development of vector-based LIs has encountered 
many limitations. First, vector-based LIs are much less efficient than 
raster-based methods limited by the development level of computer 
technology (Lausch et al., 2015). Second, vector data are prone to to
pological errors and cumbersome data processing when representing 
landscape patterns (Bubenik and Dłotko 2017). At the same time, 
parcel-based vector landscape patterns are susceptible to landscape 
fragmentation due to human activities such as urban expansion and road 
construction, which is not conducive to quantifying vector landscape 
patterns (Dadashpoor et al., 2019; Kumar et al., 2018). Nowadays, the 
efficiency of vector data processing has been guaranteed thanks to the 
development of computer hardware and specialist vector data process
ing packages (Hesselbarth et al., 2019), and common topological errors 
of vector data can be easily corrected via GIS software (Kukulska et al., 
2018; Martinez-Llario et al., 2017). Landscape fragmentation causes 
excessive fragmentation of parcels and affects the quantification of 
vector landscape patterns (Yao et al., 2021). Due to the lack of research 
on this issue, this becomes an urgent problem for the current compu
tation of vector-based LIs. 

This paper proposes a new unifying computational framework for 
vector-based LIs (VecLI), which provides three scales and six types in 
total 217 LIs with reference to Fragstats. We adopt a parcel merging 
approach to address the problem of excessive land parcel fragmentation 
in the vector format. A case study is conducted taking Shunde, Guang
dong Province, China as the study area, computing 40 LIs at the land
scape scale, to compare them with the current mainstream raster LI 
software, Fragstats V4.2. The efficiency of VecLI framework is verified 
by conducting a consistency analysis with Pearson coefficients and t- 
tests. 

2. Methodology 

The proposed VecLI framework in this paper can be divided into two 
steps. (1) First, the optimal neighborhood radius of the study area will be 
obtained. And then a parcel merging algorithm based on this radius will 
be implemented to eliminate the effects of landscape fragmentation. 
Next, the new landscape pattern will be quantified as vector-based LIs 
based on the merged vector LULC data. (2) The vector-format LULC will 
be rasterized and a set of its raster-based LIs will be computed via 
Fragstats V4.2 as a baseline. (3) A consistency analysis will be conducted 
between the vector- and raster-based LIs by using two-tailed paired t- 
tests and Pearson R correlation coefficients. Specifically, the impacts of 
three aspects on the consistency, i.e., the spatial resolutions of the ras
terization, the types of LIs and individual metrics, will be analyzed 
respectively. 

2.1.1. Parcel merging algorithm considering landscape fragmentation 

Landscape fragmentation often causes over-division of parcels (Li 
et al., 2017; Yao et al., 2021). Particularly, parcels are the basic spatial 
unit of the vector-based landscape patterns. And the effect of landscape 
fragmentation makes it difficult to accurately quantify vector-based 

landscape patterns. Hence, it is important to merge the adjacent par
cels of the same land-use type before quantifying the vector landscape 
patterns. 

Here, we propose a parcel merging algorithm to address the effect of 
landscape fragmentation as follows (Fig. 1). First, a breadth-first search 
is conducted to collect the adjacent parcels of a parcel by setting up a 
searching radius. The indices of the adjacent parcels are recorded if they 
are of the same land-use type. At the end of these parcels are merged in 
order. 

It is readily apparent that the searching radius significantly affects 
the result of the parcel merging algorithm. To investigate the optimal 
searching radius, we first compute the number of patches (NP) within 
the completed landscape pattern for different neighborhood radius 
before performing merging, based on the pre-defined neighborhood 
extent and interval. 

To extract the optimal searching radius, we also introduce the 
concept of the number of patches within the neighborhood (NPN) to 
assess the effect of the neighborhood on the parcel merging. As it is 
necessary to determine whether the patches within the neighborhood 
are contiguous during this process, an increase in NPN means that more 
parcels are considered and more time is required to complete the 
process. 

2.2.2. Comparison with VecLI’s metrics and raster-based LIs via Fragstats 

This paper compares two types of LIs, i.e., vector- and raster-based 
LIs, for the study area. We used the field of the land-use type as the 
raster value field to rasterize the vector-format LULC data. And then the 
Fragstats is used to compute the raster-based LIs. To investigate the ef
fect of the spatial resolutions of the rasterization on the result, we also 
obtained raster-format LULC data with diverse spatial resolutions to 
compute the corresponding raster-based LIs. And VecLI framework is 
also used to directly quantify the vector-based landscape pattern of the 
study area. 

In this paper, 217 vector-based LIs are implemented in the VecLI 
framework with reference to Fragstats (Table 1). Three scales of LIs are 
included, of which 14 LIs are at Patch scale to describe patches’ patterns, 
98 LIs are at Class scale to quantify land use types, and 105 LIs are 
Landscape level describing the whole landscape patterns. The LIs can 
also be classified into six types. Area_edge metrics and Shape metrics are 
computed based on the area and perimeter of the patch. The former 
describes the basis of the landscape structure, while the latter measure 
the complexity of the patch shape. Core area metrics and Contrast 
metrics are calculated based on the patch boundaries, describing the 
area without the edge effects, and the quantification edge effects, 
respectively. Aggregation metrics are computed based on the distance 
between patches. They reveal the distribution and aggregation of 
patches on the landscape. Diversity metrics are calculated based on the 
number and area of patches. They are used to measure landscape 
structure (McGarigal et al., 2012; Park and Guldmann 2020; Slattery and 
Fenner 2021). 

Among them, some of the Shape and Aggregation metrics contain 
parameters related to the raster-format structure (Table 2), which in
dicates that they cannot be directly computed from vector-format LULC 
data. Here, the metrics in Table 3 are not included in the VecLI frame
work, leaving a total of 217 metrics. 

In addition, some of the indices need corrections when computing 
based on vector-format LULC data. The radius of gyration (GYRATE) of 
Area_edge metrics is strongly raster-format related. Here, we proposed a 
vector formula based on the definition of the GYRATE and modified the 
meaning of the parameter (Table 4). Also, SHAPE, FRAC, LSI of Shape 
and Aggregation metrics contain the raster-based adjustment parameter 
of 0.25 was changed to 0.282 (Table 5) in reference to Yu’s approach (Yu 
et al., 2019). PROX and SIMI of Aggregation metrics need to compute 
the edge-to-edge distance between patches, while the raster-based 
method is based on the centers of raster pixels, and this distance is 
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taken as 1 by default when using Fragstats. In the VecLI framework, the 
parameter is calculated directly based on the edge-to-edge distance. And 
when plaque adjacency is present, the, and the parameter in VecLI is also 
set as 1. 

2.3.3. Consistency analysis between the vector and the raster-based 
landscape indices 

A consistency analysis is conducted for the evolution of the land
scape pattern in the study area. T-tests and Pearson R correlation co
efficients are applied to measure the consistency between the vector- 
based LIs and the raster-based LIs at diverse scales. 

The two-tailed paired t-test is a method used to measure the average 
difference between two sets of samples (Doehl et al., 2017). This paper 
applies this test to detect whether there is variability between the means 

of the vector-based LIs and the raster-based LIs. Here, a two-tailed 
p-value of less than 0.05 is regarded that significant variability existed. 

The Pearson R correlation coefficient is a commonly used to measure 
the correlation between two sets of samples (Weaver and Wuensch 
2013). Here, we use it to analyze the correlation between the 
vector-based LIs and the raster-based LIs. When the absolute value of 
Pearson R is greater than 0.8, between 0.6 and 0.8 or less than 0.6 we 
consider the correlation to be strong, moderately strong, or weak, 
respectively. 

Fig. 1. VecLI framework for computing vector-based landscape indices considering landscape fragmentation.  

Table 1 
Numbers of metrics applied for comparison from VecLI and Fragstats V4.2  

Metric type Scale Fragstats VecLI 

Area_edge Patch 3 3 
Class 17 17 
Landscape 16 16 

Shape Patch 5 4 
Class 37 25 
Landscape 37 25 

Core area Patch 3 3 
Class 22 22 
Landscape 21 21 

Contrast Patch 1 1 
Class 8 8 
Landscape 8 8 

Aggregation Patch 3 3 
Class 31 26 
Landscape 30 26 

Diversity Landscape 9 9 
Sum 251 217  

Table 2 
Parameter related to raster format.  

Parameter Description 

cijr  contiguity value for Pixel r in Patch ij. 
v  sum of the values in a 3-by-3 pixel template (13 in this case). 
aij  area of Patch ij in terms of number of pixels. 
b  average pixel value of the medial axis transformation of a patch. 
gii  number of like adjacencies (joins) between pixels of Patch Type (Class) i 

based on the double-count method. 
gik  number of adjacencies (joins) between pixels of Patch Type (Class) i and 

k based on the double-count method. 
gij  number of like adjacencies (joins) between pixels of Patch Type (Class) i 

based on the single-count method. 
max→gii  maximum number of like adjacencies (joins) between pixels of Patch 

Type (Class) i based on the single-count method. 
ei  total length of edge (or perimeter) of Class i in terms of number of pixel 

surfaces; includes all landscape boundary and background edge 
segments involving Class i. 

min ei  minimum total length of edge (or perimeter) of Class i in terms of 
number of pixel surfaces. 

max ei  maximum total length of edge (or perimeter) of Class i in terms of 
number of pixel surfaces. 

p*
ij  perimeter of Patch ij in terms of number of pixel surfaces. 

a*
ij  area of Patch ij in terms of number of cells. 

Z  total number of pixels in the landscape.  
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3. Results 

3.1.1. Study area 

Shunde, Guangdong Province, China is selected as the study area. 
Shunde covers an area of approximately 806 km2, with four streets and 
six towns under its jurisdiction. Shunde shows an increasing trend of 
land-use parcels’ number, with a total of 16,611, 20,865 and 23,336 
parcels in 2012, 2015 and 2018, an increasing ratio of 25.61% and 
11.84% respectively. Because the rapid land use changes have resulted 
in a heavily fragmented landscape in Shunde. 

According to Shunde’s statistical yearbook, Shunde has been ranked 
as the first of the top 100 districts in terms of comprehensive strength 
since 2012 to 2018. The diverse industries there has led to a variety of 
land use types in Shunde. Here, we summarize the land use types of 
LULC data into four classes, i.e., unused land, farmland, road and con
struction land. We also rasterize the vector-format LULC data into raster- 
format data at three spatial resolutions of 10m, 20m and 30m in Shunde. 

3.2.2. The optimal searching radius based on the NP and NPN metrics 

This section explores the optimal searching radius of Shunde in 2012, 
2015 and 2018. We first calculated the NP and NPN of the landscape 
pattern from a range of 0–3000 m searching radius at a 50 m interval 
(Fig. 2). trends of NP and NPN in the study area. 

As shown in Fig. 3, the trends of NP and NPN in Shunde both remains 
basically the same in different years. As the radius increases, the NP 
gradually decreases and tends to converge. The NPN gradually increases 
and at an ever-increasing rate. Because the number of adjacent parcels 
increases as the area of the predefined neighborhood grows. However, 
the actual neighborhood is fixed, which indicates that the NP eventually 
remains constant. 

In this paper, the searching radius when the NP is just constant is 
regarded as the optimal searching radius. By setting the optimal 
searching radius, the result of parcel merging algorithm as well as the 
computational efficiency are both the best. The optimal radiuses in 
2012, 2015 and 2018 are 1750 m, 1700 m and 1500 m, respectively, 

which indicates that the parcels are gradually concentrated, and the 
urban functional areas show the trend of clustering. It verifies that the 
parcel merging algorithm adopted in this paper can eliminate internally 
fragmented parcels by accurately quantifying the neighborhood effect. 
And it can also effectively mine the landscape pattern of urban func
tional areas. 

3.3.3. Consistency between vector- and raster-based LIs 

The vector-based LIs of Shunde are compared with the raster-based 
LIs at different scales via the consistency analysis. For the same met
rics, Pearson correlation coefficients and p-values for t-tests are 
computed based on the results of 2012, 2015, and 2018. (see Table 9) 

For the null values in Table 6, we compare them with the ground- 
truth for the analysis (Table 7). It can be noticed that the metrics of 
the PR, PRD and RPR for all three years maintain constants. Moreover, 
the vector-based metrics are the same as the raster-based LIs. Thus, these 
metrics are not considered in the following analysis. 

74.7% of the results obtained from Fragstats and VecLI are signifi
cantly different, but 79.3% are strongly correlated. It indicates that there 
is an objective quantitative difference between the vector- and raster- 
based LIs due to different data structures. However, they show a high 
degree of consistency in the linear relationship, reflecting the validity of 
the proposed VecLI framework. 

In terms of the spatial resolutions of the rasterization, p values and r 
values always vary with the resolutions (Table 8), which indicates that 
almost all metrics except PR, PRD and RPR are sensitive to the spatial 
resolution-related parameter of the data rasterizations. At the same 
time, variability is minimally affected by changes in resolution, but 
correlation is strongly affected and proportional to resolution. Thus, 
although the raster-based LIs differ numerically from the vector-based 
metrics, the higher the spatial resolution is set, the more the landscape 
pattern described is correlated with the vector-based landscape due to 
its ability to portray geographic entities. It suggests that the VecLI 
framework for vector-based LIs is significantly more realistic than the 
conventional raster-based way. 

In terms of index type, both Area_edge and Diversity metrics show a 
higher variability in average values compared to the other types, with 
38.9% and 55.6% significant as weak differences, respectively. It sug
gests that the mean values of the raster- and vector-based LIs are closer 
to each other in measuring the pattern of the landscape. In terms of the 
linear correlation, both Core area and Contrast have a strong correlation 
of 100.0%, indicating that the metrics based on patch edges are almost 
independent of the structure of the data. 

In terms of individual metrics, the range of SPLIT and MESH is 
limited by the number of raster pixels. Although their vector-based 
metrics are achievable, the correlation between vector- and raster- 
based metrics fluctuates significantly as the parameter of spatial reso
lution changes. The metrics related to the perimeter of the parcels, e.g. 
PAFRAC, PARA _MN, FRAC, show low correlations and their signifi
cance fluctuates greatly. Because the raster data structure represents the 
parcel in such a way that the edges are described as larger than the re
ality due to the jaggedness. And the lower the resolution of the raster 
data is set, the greater the edge length of the pixel, leading to a greater 
lack of accuracy. While the vector-format data can more accurately 
portray the edge of the parcels, and their edge lengths are more closely 

Table 3 
The landscape indices of Fragstats that are not included in VecLI.  

Indices 
name 

Indices type Parameter related to raster 
format 

Index of the index 

CONTIG Shape cijr , v ,a*
ij  P5,C32–C37,L32- 

L37 
Linear Shape a*

ij ,b  C20–C25,L20-L25 

PLADJ Aggregation gii ,gik  C2,L3 
AI Aggregation gij,max→gij  C3,L4 
CLUMPY Aggregation gii ,gik  C4 
nLSI Aggregation ei,minei,max ei  C6 
COHESION Aggregation p*

ij ,a*
ij ,Z  C7,L6 

CONTAG Aggregation gik  L1  

Table 4 
Vector-based equation of GYRATE based on vector-format LULC data.   

Equation Description of the parameters 

For raster 
format GYRATE =

∑z

r=1

hijr

z  

z : number of pixels in Patch ij. 
hijr : distance (m) between Pixel ijr [located within 
Patch ij] and the centroid of Patch ij (the average 
location), based on cell center-to-cell center 
distance.  

For vector 
format GYRATE =

∑z

r=1

hijr

2z  

z : number of vertices of Patch ij. 
hijr : distance (m) between Vertice ijr and the 
centroid of Patch ij (the average location), based 
on Euclidean distance.   

Table 5 
Modified equation of vector-based SHAPE, FRAC, LSI.  

Metric Metric type Original Modified 

SHAPE Shape SHAPE =
.25*pij

̅̅̅̅̅aij
√ SHAPE =

.282*pij
̅̅̅̅̅aij

√

FRAC Aggregation 
FRAC =

2 ln(.25pij)

lnaij  
FRAC =

2 ln(.282pij)

lnaij  
LSI Aggregation 

LSI =
.25E*

̅̅̅̅
A

√ LSI =
.282E*

̅̅̅̅
A

√
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matched to the ground-truth. It highlights VecLI’s excellent ability to 
quantify the edge of the parcels finely. 

4. Discussion 

We summarize the existing limitations of LIs, and propose an effec
tive solution for the issue of landscape fragmentation. Previous studies 
often overlooked this problem. This paper is the first to presents the NP 
and NPN-based parcel merging algorithm. It considers the neighborhood 
effect by merging adjacent parcels of the same land-use type. We find 

that the searching radius of neighborhood tends to decrease year by year 
as the clustering trend of urban functional area becomes more apparent. 
It is consistent with the results of previous studies (Yao et al., 2017; Zhai 
et al., 2020), indicating the feasibility of our idea. 

This paper provides reasonable corrections for vector-based LIs 
computation. Referring to the framework of raster-based LIs provided by 
Fragstats, this paper proposes new equations for metrics without vector- 
based equations and adjusts some of the metrics’ parameters by 
combining the study of Yu et al. and the equations of Fragstats (Yu et al., 
2019). Currently, the proposed VecLI framework provides the most 

Fig. 3. Land use and land cover data of Shunde.  

Fig. 2. Process of merging the adjacent parcels with the same land-use type. Diverse colors indicate diverse land-use type.  
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index types and the richest number of vector-based LIs in a reasonable 
computation framework. 

This paper examines the effect of data rasterization on the accuracy 

of LIs and considers the relationship between the parameter of raster 
resolution and the vector-based landscape pattern. We found that all 
metrics vary with raster resolution, except for a few indices of Diversity 
where the results are constant. This result is consistent with previous 
studies. We also found that the higher the raster resolution is set, the 
stronger the correlation between the calculated LIs and the vector-based 
LIs. It indicates that the refined raster landscape pattern is closer to the 
vector landscape pattern, proving the authenticity of VecLI in the rep
resentation of landscape patterns. 

Overall the VecLI and Fragstats results are significantly different in 
mean values of LIs but maintain a high correlation. 74.7% of the land
scape indices are significantly different in mean values. However, the 
metrics measuring the overall structure of the landscape from VecLI and 
Fragstats both are close in mean values, which is different from the 
overall trend. There is an extremely high correlation between the vector- 

Table 6 
Result of the consistency analysis.  

Metric type Metric t-test (p-value) Pearson r 

10m 20m 30m 10m 20m 30m 

Area_edge TA 0.170 0.168 0.170 − 0.906 − 0.993 − 0.956 
LPI 0.026 0.024 0.023 − 0.197 0.203 0.376 
TE 0.002 0.001 0.016 0.998 0.998 0.999 
ED 0.001 0.000 0.053 1.000 1.000 1.000 
AREA_MN 0.006 0.038 0.092 0.999 0.999 0.999 
GYRATE_MN 0.007 0.396 0.920 0.999 0.998 0.996 

Shape PAFRAC 0.065 0.031 0.020 − 0.572 − 0.787 − 0.779 
SHAPE _MN 0.506 0.017 0.009 − 0.902 − 0.820 − 0.817 
PARA _MN 0.000 0.000 0.000 − 0.734 − 0.661 0.733 
FRAC_MN 0.001 0.001 0.001 0.949 0.813 0.675 
SQUARE_MN 0.035 0.036 0.036 − 0.388 − 0.624 0.000 

Core Area TCA 0.008 0.001 0.001 0.947 0.947 0.945 
NDCA 0.003 0.015 0.003 0.999 0.997 0.996 
DCAD 0.002 0.007 0.004 0.999 0.999 0.998 
CORE_MN 0.004 0.051 0.165 0.998 1.000 1.000 
DCORE_MN 0.002 0.002 0.001 0.992 0.995 0.996 
CAI_MN 0.009 0.026 0.026 0.999 0.999 0.999 

Contrast CWED 0.001 0.000 0.053 1.000 1.000 1.000 
TECI 0.024 0.026 0.028 − 1.000 − 1.000 − 1.000 
ECON_MN 0.076 0.063 0.059 0.992 0.995 0.996 

Aggregation IJI 0.043 0.005 0.001 1.000 1.000 1.000 
LSI 0.000 0.027 0.120 0.999 0.999 1.000 
NP 0.018 0.001 0.029 0.999 1.000 1.000 
PD 0.016 0.001 0.034 0.999 1.000 1.000 
DIVISION 0.002 0.004 0.001 0.906 0.906 0.906 
SPLIT 0.013 0.012 0.009 0.921 − 0.808 0.255 
MESH 0.001 0.003 0.001 0.946 − 0.768 0.316 
ENN_MN 0.019 0.037 0.003 0.999 0.752 0.977 
PROX_MN 0.004 0.004 0.004 − 0.918 − 0.986 − 0.984 
SIMI_MN 0.024 0.022 0.022 0.679 0.601 0.607 
CONNECT 0.009 0.166 0.064 0.998 0.999 0.998 

Diversity PR / / / / / / 
PRD / / / / / / 
RPR / / / / / / 
SHDI 0.004 0.004 0.004 0.262 0.285 0.338 
SIDI 0.726 0.726 0.007 1.000 1.000 1.000 
MSIDI 0.318 0.781 0.001 1.000 1.000 1.000 
SHEI 0.426 0.425 0.429 0.926 0.937 0.919 
SIEI 0.045 0.517 0.015 1.000 1.000 1.000 
MSIEI 0.452 0.635 0.004 1.000 1.000 1.000  

Table 7 
Result of the null value of the three metrics.  

Metric Year VecLI Fragstats 

10m 20m 30m 

PR 2012 4.000 4.000 4.000 4.000 
2015 4.000 4.000 4.000 4.000 
2018 4.000 4.000 4.000 4.000 

PRD 2012 0.005 0.005 0.005 0.005 
2015 0.005 0.005 0.005 0.005 
2018 0.005 0.005 0.005 0.005 

RPR 2012 1.000 1.000 1.000 1.000 
2015 1.000 1.000 1.000 1.000 
2018 1.000 1.000 1.000 1.000  

Table 8 
Impact of the spatial resolution on p-value and r-value.   

p ≥ 0.05  p < 0.05  |r| ∈ [0,0.6] |r| ∈ [0.6,0.8] |r| ∈ [0.8,1]

10m 8 29 4 2 31 
20m 10 27 2 6 29 
30m 10 27 5 4 28 
Sum 28 83 11 12 88  

Table 9 
Impact of index types on p-value and r-value.   

p ≥ 0.05  p < 0.05  |r| ∈ [0,0.6] |r| ∈ [0.6,
0.8]

|r| ∈ [0.8,
1]

Area_edge 7 11 6 0 12 
Shape 2 13 11 2 2 
Core area 2 16 0 0 18 
Contrast 4 5 3 0 6 
Aggregation 3 30 7 4 22 
Diversity 10 8 0 3 15  
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and raster-based LIs in terms of linearity, with strong correlations 
reaching even 100% in the metrics related to the parcel edge effect. 

According to the overall trends of LIs’ variability and correlation, we 
found that the patch perimeter-dependent metrics are mainly influenced 
by edge jaggedness, with raster data describing patch edge lengths that 
are larger than the actual edge lengths and proportional to the size of the 
raster pixel. The vector-based LIs are more realistic because the vector 
data structure accurately describes the geographic entity, and the 
calculated perimeter matches the ground-truth accurately. Thus the 
vector-based LIs implemented by VecLI framework compensates for the 
lack of Fragstats. 

The lack of open-access software for computing vector-based LIs has 
been considered in the design of the VecLI framework and the devel
opment of its software. Firstly, a wide range of LIs is a prerequisite for 
the software to be widely used. The VecLI-based software can implement 
217 indices, which is perfectly suitable for the main scenarios of Frag
stats. Secondly, the software should be architecturally independent and 
free to use. The VecLI-based software has its own underlying layer and 
the user does not need to obtain any commercial license. We also pro
vide comprehensive documentation and index descriptions to further 
help users understand and access the LIs they need. 

The proposed VecLI framework still has shortcomings. First, the ef
ficiency of the algorithm is still lacking compared to Fragstats when 
dealing with vector-format LULC data with more than 100,000 parcels at 
once. Thus, the algorithm still needs to be optimized in the future. 
Second, in terms of the richness of the LIs, considering that the variety of 
LIs will be diversified in the future and not only limited to Fragstats, but 
we will also consider opening up the software code and provide the 
interface of the corresponding functions in the future, so that users can 
develop the indices they need. Finally, with the increasing demand for 
LIs from disciplines such as urban planning, resources and environment, 
and biological sciences, it is a direction of our later research to adapt the 
quantification of metrics to diverse application scenarios. 

5. Conclusion 

This paper proposes a framework for computing the vector-based LIs 
(VecLI) considering the effect of the landscape fragmentation. In this 
paper we not only summarize the vector-based LIs and make vector- 
based corrections in conjunction with previous research, but also inno
vatively propose a parcel merging algorithm that considers the neigh
borhood effects, effectively solving the problem of landscape 
fragmentation on quantifying vector-based landscape patterns. 

The overall experimental results from the consistency analysis show 
both consistency and variability between results of VecLI and Fragstats. 
The consistency is evidenced by a strong linear relationship between the 
results for 2012, 2015 and 2018, while the variability is evidenced by a 
significant difference in the mean values of the metrics. Specifically, 
vector-based LIs are more accurate in measuring the perimeter of 
patches compared to raster-based LIs. Therefore, the perimeter-based LIs 
should be implemented through a vector-based way. The VecLI software 
for computing vector-based LI released in this paper makes up for the 
shortcomings of the existing vector-based software. The independent 
architecture and rich landscape indices of VecLI can meet the needs of 
the geographic information and landscape design fields, making it a 
professional software for computing vector-based LIs. 
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Software availability 

Software name VecLI v2.0.0 
Developer Yao Yao, Tao Cheng, Zhenhui Sun, Linlong Li, Dongsheng 

Chen 
Year first official release 2021 
Hardware requirements PC 
System requirements Windows 
Program language C++

Program size 159.4 MB 
Availability this paper the version (2.0) mentioned in this paper: https 

://urbancomp.net/archives/vecli200, the lastest version (3.0 
beta): https://www.urbancomp.net/archives/vecliv3beta 

License GPL-3.0 
Documentation Documentation can be downloaded from the website: 

https://urbancomp.oss-cn-hangzhou.aliyuncs.com/blog/Ve 
cLI_v2_manuals_en_1629191061075.pdf 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.envsoft.2022.105325. 
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