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ABSTRACT ARTICLE HISTORY

The formulation of mixed urban land uses is not only intended to find Received 18 June 2019
the ideal scenario of land use but also regarded as a way toward Accepted 4 February 2020
sustainable urban development. We propose a geo-semantic mining KEYWORDS

approach Traj2Vec to quantify the trajectories of residents as high- Mixed urban land-use
dimensional semantic vectors. Then, a random forest (RF) method is patterns; mobile phone
used to model the relationship between the semantic vectors and positioning data; residents’
mixed urban land uses. The proposed Traj2Vec approach can obtain spatial trajectories; traj2vec;
the highest accuracy (OA = 0.7733, kappa = 0.7245) in urban land-use geo-semantic mining
classification and a high average proportion accuracy (64.0%) in

capturing the proportions of urban land-use types. Diversity analysis

indicates that Shenzhen has a high degree of mixed urban land use at

the scale of a street block. By analyzing the mixing index and the

travel distance, we find a weak but significant negative correlation

between them (r = —0.107, p< 0.001), which not only confirms the

conclusion that an increase in the degree of mixing will reduce the

travel distances of residents but also verifies the mixing index. This

suggests that urban planning should focus on mixed urban land uses,

which can reduce the travel distances of residents, reduce energy

consumption, and make cities more compact.

1. Introduction

The spatial distribution of urban land use is an important indicator for urban planning
and urban studies (Regan et al. 2015, Chen et al. 2017, Tu et al. 2017, Yao et al. 2017).
In particular, it is argued that moderately mixed urban land-uses should be promoted
so that cities can become more compact (Burton et al. 2003). Studies have shown that
mixing residential and commercial land uses with recreational and public service
facilities can provide more work within a shorter commuting distance, potentially
reducing the demands for transportation and energy and strengthening connections
among individuals to help form a strong community culture (Burton et al. 2003,
Holden and Norland 2005). With rapid urbanization in recent years, urban land uses
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and urban spatial structures have become increasingly diverse and sophisticated (Gao
et al. 2017). Thus, obtaining qualitative and quantitative data on mixed urban land
uses quickly and accurately is very important for understanding and managing cities
(Wu et al. 2018). There is a general lack of such studies, because mixed urban land use
is difficult to estimate using conventional methods. Traditionally, spectral unmixing
methods have been applied to remote sensing images for mixed land-use classifica-
tion or mixed scene recognition (Zhang and Du 2015, Li et al. 2017). However, remote
sensing images can only reflect the natural attributes of the ground surface (Yao et al.
2017). Urban land uses often have strong relationships with social characteristics,
which are difficult to obtain directly from remote sensing images alone (Tu et al.
2017, Yao et al. 2017).

Human activity data can provide more detailed and accurate information for analyzing
mixed urban land-uses since urban land use is defined as the use of the urban space by
residents and the activities within that area (Sita-Nowicka et al. 2016, Tu et al. 2017, Wu et al.
2018). The rapid development of location-based services (LBSs) provides us with a large
amount of human activity information that can be used to measure urban spatial structures
and land uses (Gonzalez et al. 2008, Wang et al. 2014, Wu et al. 2018). In particular,
trajectory information is generated by residents in their daily lives and can represent the
resident’s behavioral purposes (Pei et al. 2014, Tranos and Nijkamp 2015). Scholars have
incorporated trajectory data into urban studies since the data contain valuable information
on how people utilize urban spaces (Tu et al. 2017). The trajectory information may include
mobile phone positioning data (Pei et al. 2014, Tu et al. 2017), taxi GPS trajectories (Yuan
etal. 2015, Li et al. 2016), social media check-in data (Cranshaw et al. 2012, Shen and Karimi
2016), etc. However, previous studies (Pei et al. 2014, Lenormand et al. 2015, Long and Shen
2015) have only taken some simple features from human activity data, such as the
frequency and volume. These methods may waste the majority of the spatial information
and the inner spatial correlations in human activity data (Zhai et al. 2019).

To address the above research gap, geo-semantic mining techniques have been
applied to spatial data to explore the spatial semantic features of geospatial data (Yuan
et al. 2015, Chen et al. 2016, Liu et al. 2017). In natural language processing, semantic
mining refers to the transformation of words, phrases, signs, and symbols into forms that
computers can recognize and understand the relationships between them (Miller 1995).
Semantic information is a digital high-dimensional feature vector that can fully character-
ize these relationships. Therefore, geo-semantic mining refers to mining potential rela-
tionships in geographical data (Yan et al. 2017). By exploiting the potential relationships,
we can fully extract the information inside geographical data and apply it in various
geographic applications (Yao et al. 2017). Existing research on geo-semantic mining show
that the semantic model can well discover the potential semantic information of the
geospatial data, and the obtained information can be used to quantify the relationship
between the urban land uses and geospatial data (Zhao et al. 2013, Zhong et al. 2015). In
particular, there are some differences between the semantics here and the traditional
geographical semantics. The semantics here is an abstract concept that uses feature
vectors to represent the potential relationship within geographic data. Traditional geo-
graphic semantics refers to describing the meaning of spatial data and the relationship
between them, and making the semantics of geographic information explicit (Battle and
Kolas 2012).
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To further consider the spatial context in spatial data, Yao et al. (2017), Yan et al. (2017)
and Zhai et al. (2019) introduced the Word2Vec (Mikolov et al. 2013) model to measure the
potential contextual relationships between points of interest (POls) and obtained satis-
factory results in the classification of detailed urban land uses. Word2Vec is a deep
learning language model that can represent words as high-dimensional semantic vectors
that can be recognized by computers (Yao et al. 2017). However, POls are spatially
discrete, so some methods were also developed to construct a continuous dataset from
POls (Yao et al. 2017, Zhai et al. 2019). The method used to construct a continuous POI
dataset largely affects the spatial contextual relationships, thus affecting the result of
urban land-use identification. A trajectory is continuous in space, and a person’s travel
information can reflect the use of urban space. Therefore, it is expected that the use of the
Word2Vec model to explore the potential semantic information in a trajectory can help us
to better understand structures and land uses.

Moreover, most previous studies have assumed that the land uses in each urban land
patch are homogeneous and can be labelled with a single category, ignoring the phe-
nomenon of mixed urban land uses in the urban structure (Niu et al. 2017, Wu et al. 2018).
Based on the Word2Vec model and residents’ trajectories, this study proposes a Traj2Vec
model to retrieve the potential semantic information of locations and trajectories to
capture the features of mixed urban land uses. The Traj2Vec model extends the
Word2Vec model into a spatial trajectory context to extract semantic information on
how residents utilize urban space. Then, these semantic features are processed using
a random forest (RF) algorithm to obtain the proportions of each urban land-use type. Our
proposed method is a generic method for estimating the proportions of urban land-use
types, and we verify it in Shenzhen. This study can help understand the characteristics of
cities by measuring quantitative mixed urban land use.

2. Methodology

Figure 1 shows the workflow of the proposed Traj2Vec model that integrates mobile
phone data and the Word2Vec approach to obtain the proportions of each urban land-use
type within a street block. In general, the procedure contains five steps: 1) Traj2Vec:
extracting residents’ activity locations to build a dataset and input it into the Word2Vec
model to obtain the potential semantic information for each cell tower; 2) generating the
semantic vectors of street blocks: obtain the potential semantic vectors of street blocks by
using a weighted summation; 3) extracting pure street block samples of urban land uses:
statistics by POI types; 4) estimating the proportions of each urban land-use type: train an
RF model based on the pure land-use samples, and obtain the proportions of each urban
land-use type for all street blocks in the study area; and 5) results validation: verification of
model results by accuracy and proportion accuracy.

2.1. Extraction of location semantics based on trajectory data from mobile
phones

Urban residents often travel with certain purposes, such as a person first stays at home,
then goes to the place he works and returns home at night. In addition, some studies have
shown that people’s travel trajectories have a certain regularity (Gonzalez et al. 2008).
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Figure 1. The workflow of the proposed Traj2Vec framework for quantifying the proportions of each
urban land-use type.

Therefore, we regard a resident’s activity location as a word, and the activity trajectory as
a sentence; then, through a natural language model for exploring the activity context, we
can obtain feature vectors that can represent the potential relationships between various
places. The potential relationship mentioned here is similar to the latent relationship
between words in sentences in natural language. In natural language processing, the
latent relationship refers to the relationship between word usage, while the potential
relationship here refers to the relationship between place uses.

We present the Traj2Vec model, which is based on the Word2Vec model and trajectory
data from mobile phones. Since the Traj2Vec model is based on the Word2Vec model for
retrieving trajectory information, it is necessary to build a training dataset. In this study,
cell towers are regarded as words, and each mobile phone user that has multiple activity
points (anchor points) is treated as a sentence; then, all the mobile phone users form
a training dataset for the Word2Vec model. The mobile phone user’s activity sequence
represents the context of the sentence.

In particular, an activity anchor is a point that represents the cell tower where a mobile
phone user stays for a certain time; such anchors may indicate the user’s potential activity
locations (Xu et al. 2016). The specific method for extracting the anchor points can be
found in Tu et al. (2017) and Xu et al. (2016). In this study, the anchor points are the same
as defining trip stops in trajectories, and we set each location where a user stays for more
than an hour as an anchor point. Therefore, the user’s activity trajectory is the sequence of
anchor points. The potential semantic information corresponding to each cell tower can
be obtained by importing the user behavior dataset into the Word2Vec model for
training.
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By using a user’s activity trajectory as an input, Word2Vec maximizes the probability of
occurrence of the trajectory by adjusting the semantic vector of each activity point.
During the training of the Word2Vec model, the likelihood function of a sentence is
shown in Equation (1):

1 .
1(6) = logL(6) = =" logp(wi|w}’) (1)

where T is the number of activity anchor points of a mobile phone user, W}fﬁ is the context
of the i — th anchor point, and the context size is c. Finally, by adopting a stochastic
gradient descent (SGD) algorithm to maximize the likelihood function 1(6), the Word2Vec
model optimizes the cell tower vectors during the iterative training process.

After we input the sentence (user’s trajectory) into the Word2Vec model, each word (cell
tower) will have a vector representing it. Then, the Word2Vec model uses these vectors to
predict the probabilities of words appearing in the sentence, maximizing the probabilities
of the words (maximum likelihood) and adjusting the vector of each word by backpropa-
gation. By iterating and adjusting the vectors of each word, we can finally learn the
relationships between the words in the input data set. In general, we give each tower
a unique tag, and a user’s trajectory (anchor point sequence) is a tag sentence (such as 345
213 568 234 987 238, which is a user’s trajectory). Then, we input the trajectories of all users
into Word2Vec, and we can obtain the semantic vector of each tower (such as, the vector of
cell tower 1 is [0.3, 0.5, 0.2, ...], and the vector of cell tower 2 is [0.4, 0.2, 0.1, ...]). These
vectors contain deep semantic information about the relationships between cell towers.

2.2. Calculating the characteristic vector of each street block

Each cell tower has a certain range of services (Pei et al. 2014). An example is to use
a Voronoi diagram (VD) to represent a cell tower’s service area (Pei et al. 2014). However,
street blocks are used as a spatial unit that is more suitable for urban research due to the
similar socioeconomic properties within such a unit (Gao et al. 2018). In this study, street
block vectors are calculated by a weighted summation of the cell tower vectors and the
corresponding Voronoi diagrams that intersect with each street block according to the
first law of geography (Tobler 1970), i.e. closer regions have more similar land uses. The
i — th street block vector can be calculated by Equation (2):

PopjPro!P«Pro?
Vecd => P 5 *Vec/® 2
iy, Popj«Pro/”«Pro;

In Equation (2), j represents the j — th Voronoi diagram that intersects the i — th street
block, Vec]VD is the characteristic vector of the j — th cell tower, and Pop; is the number of
mobile phone signals accumulated over a day at the j —th cell tower. Pro/"a can be
calculated by Equation (3) as the ratio of the area of the intersection of the i — th street
block and j — th Voronoi diagram to the area of the i — th street block. Similarly, Prof3 can

be calculated by Equation (4) as the ratio of the area of the intersection of i — th street
block and j — th Voronoi diagram to the area of the j — th Voronoi diagram.
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In Equations (3) and (4), Aredg, v p, is the area of the intersection of the i — th street block
and the j — th Voronoi diagram, while Areag, and Areayp, represent the areas of the i — th
street block and the j — th Voronoi diagram, respectively.

2.3. Extracting pure samples of urban land uses in street blocks

Pure samples of urban land use are those street blocks that are relatively pure (including
only one type of land use). Extracting these pure street blocks as training samples is a very
important step in obtaining mixed urban land use. Generally, the selection methods of
pure samples include manual selection, clustering, and endmember extraction (Wu et al.
2018). These methods have different shortcomings, such as large workloads and large
uncertainties, and are not suitable for our research.

Since urban residents’ activities usually take place in POls, POls are a way of expressing
how residents use a city (Gao et al. 2017, Zhai et al. 2019). In this context, many studies
have used POls to obtain urban land use (Zhong et al. 2014, Liu et al. 2015, Gao et al. 2017).
Therefore, in this study, we use the same method as Wu et al. (2018) and Zhang and Du
(2015) to select pure samples of urban land use. POIs are divided into urban land-use
types according to the POI types, and then the proportion of POIs of each urban land-use
type in each street block is calculated. Finally, we select the street blocks with the highest
proportions of corresponding urban land-use types as pure samples. This method can
help us obtain relatively pure samples of urban land use.

2.4. Estimating the proportions of each urban land-use type by a random forest
model

In the above selection process, we obtain pure samples of urban land uses for training.
This study further uses an RF algorithm to obtain the quantitative proportions of each
urban land-use type. Previous studies have proven that RF algorithms are some of the
most powerful machine learning models and can perform well in many situations (Biau
2012, Fern A Ndez-Delgado et al. 2014, Yao et al. 2018).

RF training involves building multiple decision trees by applying the bootstrap method
to the samples that were randomly extracted from the original training samples. Each
node in a decision tree is split, selecting only a portion of the variables, and an information
gain strategy is adopted to select one variable as the split attribute of each node (Breiman
2001). The out-of-bag (OOB) error represents the generalization error of the decision trees;
we can obtain the RF model’s error by averaging the OOB errors (Wolpert and Macready
1999). After training, the RF model can be used to obtain the proportion of each urban
land-use type in a street block through the voting of internal decision trees.

To measure the overall proportions of different land-use types, the area-weighted type
proportions (AWTPs, Equation (5)) are used in this study (Zhang and Du 2015).
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N
i1 Area; x Pj

Weightedp; = # 5)
> j—1Areq;

where WeightedP; represents the area-weighted proportion of the i — th land-use type, N
is the number of street blocks, and P;; refers to the proportion of the i — th land-use type in
the j — th street block.

2.5. Results validation

The proposed Traj2Vec model was validated in two aspects: comparing it with other
urban land-use classification methods in pure land-use sample classification and evaluat-
ing its accuracy in obtaining the proportions of urban land-use types.

To evaluate the classification accuracy in pure land-use sample classification, the
proportions obtained by the RF model were analyzed. If the urban land-use type with
the highest proportion in a pure street block is the same as its corresponding label, the
street block is a correct sample. Overall accuracy (OA) and the kappa coefficient are used
for classification performance assessment.

To evaluate the accuracy of our proposed model in obtaining the proportions of urban
land-use types, a reasonable method is to investigate the actual proportions. Because the
ground truth was difficult to obtain, we manually interpreted the proportions of some
street blocks as references. Like Zhang and Du (2015), the proportion accuracy (PA,
Equation (6)) was used to evaluate the accuracy of the proportion results.

PA=1— (Dl —pil) ©)

where p! represents the proportion of the i — th urban land-use type in the references and
p,‘?' represents that in the model results.

3. Results
3.1. Study area and data

To validate the proposed Traj2Vec model and assess its capability for quantifying the
proportions of urban land-use types, a case study was conducted in Shenzhen, which is
one of the four largest cities in China. Shenzhen has a total area of 1,991.64 square
kilometers with ten administrative districts, as shown in Figure 2. As a fast-growing
international city, Shenzhen had a total GDP exceeding 2.42 trillion yuan (equivalent to
$352.75 billion) in 2018.

The street blocks used in this study are also used for land-use planning by the Bureau
of Land and Resources of Guangdong Province (Yao et al. 2017). A street block is divided
by urban roads and is the basic unit of urban structure, urban land use, and urban
management (Liu and Long 2016). It is of great significance to carry out the study at
the block scale. There are a total of 6,835 street blocks in the study area, with a total area
of 797.003 square kilometers (Figure 2). The distribution of the street blocks is highly
coincident with the built-up area.
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Figure 2. Study Area: Shenzhen city in Guangdong Province. Shenzhen has 6,835 street blocks at the
unit of a street block, as determined from the Bureau of Land and Resources of Guangdong Province.

Mobile phone positioning data were collected for Shenzhen on 23 March 2012, record-
ing the activity locations at half-hour intervals. The record of a user’'s mobile phone
positioning is not the real location but the location of the cell tower that received the
signal from the user’s mobile phone. As shown in Figure 3, Shenzhen contains 5,818 cell
towers. A total of 16.3 million mobile phone users were identified. Each user has 48
records, including the user ID, time, and longitude and latitude of the cell tower.

In addition to the mobile phone data, a POl dataset was used in this study. The POI
dataset, containing 269,818 records in 16 categories (Table 1) in the study area, was
collected via Baidu Map Services (http://map.baidu.com) in 2013. These POls are used as
auxiliary data to select pure street block samples of urban land-use types.

3.2. Semantic feature extraction based on traj2vec

As mentioned before, we regard a cell tower as a word and each user’s travel trajectory as
a sentence; then, we input the user’s behavior sentence into the Word2Vec model to
obtain the semantic feature vector of each cell tower. Each cell tower has a unique
identifier, and each user’s trajectory is a sentence that is connected by multiple identifiers.
Therefore, the input to the model is sequences of these cell tower identifiers, and the
output of the model is the feature vectors of each identifier, i.e. the semantic feature
vector of each cell tower. After training, we obtain 100-dimensional feature vectors of
each cell tower, which can represent the potential relationships with other locations.

To verify the validity of the semantic vectors we obtained, we first calculated the cosine
similarity between semantic vectors of all cell towers, and then the average spatial
distances between all cell towers and their several most similar cell towers were calcu-
lated. The results show that the average distances between all cell towers and their top-1,
top-5, and top-10 similar cell towers are 575.521 meters, 776.008 meters, and 967.557
meters, respectively. That is, in the semantic feature vectors of the cell towers we
obtained, those cell towers with similar vectors are spatially closer. For the four selected
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Figure 3. Selected cell towers at four locations: (a) Industrial park in the Baoan district. (b) Baoan
Sports Center. (c) Coastal City Shopping Center. (d) Shenzhen Convention and Exhibition Center.

Table 1. Mapping relationships between POI types and urban
land-use types.

POI Types Count Urban Land Use Types
Life Service 29,344 Commercial
Shopping 39,670

Automobile Service 9,196

Restaurant 34,673

Hotel 5,760

Financial Industry 7,785

Business Building 848

Residential Community 15,222 Housing
Clinic 11,416 Public
Traffic Facility 20,040

Educational Institution 6,371

Road 4,397

Government Agency 11,353

Recreation 7,461 Recreation
Scenic Spots 40

Enterprise 66,242 Working

cell towers shown in Figure 3, the five most similar cell towers to them are located near
them. This suggests that the semantic vectors of cell towers obtained by fully exploiting
residents’ trajectories through the Traj2Vec model can represent the potential relation-
ships between cell towers. Additionally, we find that the semantic feature vector of a cell
tower agrees with the first law of geography (Tobler 1970).
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Since adjacent cell towers have similar semantic feature vectors, it is reasonable to
calculate the feature vectors of each street block using the weighted summation pre-
sented in Section 2.2. Similarly, by calculating the similarity between the semantic feature
vectors of street blocks, we found that adjacent patches have high similarity. The above
results indicate that the features of each street block obtained by our method can
represent the potential relationships between street blocks and facilitate the subsequent
extraction of mixed urban land use.

3.3. Extracting the pure samples

Urban land-use pure sample extraction is the most important step and has a great impact
on the mixed urban land-use results. Due to the lack of ready-made samples, POIs are
used as auxiliary data for pure sample extraction, similar to Wu et al. (2018) and Zhang and
Du (2015). The activities of urban residents in cities have certain purposes. According to
these purposes, we divide urban land use into five types: commercial, recreation, housing,
working, and public. As shown in Table 1, POlIs are classified into these five types of urban
land use according to their own types.

We calculate the proportions of POlIs of these five urban land-use types in each street
block, sort them, and extract the top-60 street blocks of each type as pure samples. The
300 samples obtained are verified by remote sensing images and electronic maps to
confirm that these samples are relatively pure street blocks with a single land-use type.

3.4. Validation of the proposed traj2vec model

We first compare the classification accuracies of different methods in pure urban land-use
sample classification. The land-use classification methods of Yao et al. (2017) and Zhai
et al. (2019) are compared with the proposed Traj2Vec model.

(A) Proposed Traj2Vec model; Cell towers are taken as words and user trajectories as
sentences. The vector of each cell tower is obtained by training Word2Vec, and
then the semantic feature vectors of street blocks are obtained by weighted
summation.

(B) Word2Vec + POls (Yao et al. 2017); The POl types are treated as words, and the POls

in a street block are connected into a sentence by the shortest path method. Then,

the semantic vector of each POI type is obtained by training Word2Vec, and the
feature vector of each street block is obtained by averaging POI vectors with
weightings.

Place2Vec + POls (Zhai et al. 2019); The overall idea of this method is similar to (B).

The difference between (C) and (B) is that a simple augmented method is used to

construct a corpus for Word2Vec training. In addition, the Place2Vec model

improves the objective function of the Word2Vec model, making the model
more suitable for POI data.

@

The above three methods can obtain the semantic feature vector of each street block. We
set the output vector dimension to 100 and the sample window size to 3 for all methods.
The feature vectors of these three methods were used to train three RF models separately,
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and then the quality of these three methods was determined by comparing the accuracy of
each RF model. We used 75% of the 300 pure street block samples for training and 25% for
testing. The decision trees of all RF models were set to 100. Specifically, each decision tree
was trained with 50% of the training data, and the remaining 50% of the training data were
used as the OOB data. To ensure a reliable estimation of the classification accuracy, each RF
model was run 100 times. Table 2 shows that our proposed method obtains the highest
accuracy in urban land-use classification. By exploring the potential semantics of the activity
trajectory information from mobile phone users using the proposed Traj2Vec model, our
method quantifies the correlation between urban land uses and the activities of urban
residents. In addition, our method consumes only slightly more time and resources in the
whole process than the other methods. The differences in time and resource consumption
are negligible for the entire process. When we use other parameters for the experiments, we
find that the effect on the results is not significant.

In addition, the PA (Equation (6)) was used to evaluate the accuracy of the proportion
results. Since the ground truth of mixed urban land use was unavailable, we randomly
selected 100 street blocks and obtained the proportions of urban land-use types as
subjective references through visual interpretation. The average PA of these 100 street
blocks obtained by our method is 64.0%.

Six street blocks are employed to further evaluate the performance in obtaining the
proportions of urban land-use types (Figure 4). Figure 4(a—e) show street blocks with high
proportions of working, recreation, housing, commercial and public land-use types, respec-
tively, while Figure 4(f) shows a street block with a high degree of mixing. Figure 4(g) shows
that the proportions of urban land-use types determined by our model are similar to those
from the visual interpretation. The PA values of these six street blocks are 80.0%, 86.0%,
86.0%, 76.0%, 74.0%, and 78.0%, respectively.

For street blocks with a single urban land-use type, our model not only deter-
mines the main land-use type but also determines other land-use types with small
proportions, which may be affected by the surrounding other land-use types when
the semantic feature vector is obtained by weighted summation. For example, street
block (e) represents the Baoan District Government, with residential areas, parks, and
shopping centers nearby, resulting in a variety of urban land-use types in our model
in addition to the public type. However, the proportions of other urban land-use
types are very low and have little effect on the overall results, especially in street
blocks with a high mixing index.

These results suggest that our proposed method can perform well in obtaining the
proportions of urban land-use types, whether in a single land-use street block or a street
block with a higher degree of mixing.

Table 2. Accuracy assessment of the urban land-use classification results by various models.

Training process Prediction process
Expr. ID Method OOB error 00B RMSE OA Kappa
(A) Proposed method 0.1034 + 0.0012 0.2515 + 0.0016 0.7733 £ 0.0033 0.7245 + 0.0010
(B) Word2Vec + POIs 0.1475 £ 0.0017 0.2833 + 0.0013 0.7155 + 0.0025 0.6876 + 0.0012
(@] Place2Vec + POIs 0.1249 + 0.0022 0.2721 + 0.0015 0.7363 + 0.0036 0.7002 £ 0.0011

Note: OOB error: Relative classification error of the OOB data. 0OB RMSE: Root mean square error of estimating the
posterior probabilities for the OOB data. OA: Overall accuracy.
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Figure 4. Examples of proportions of urban land-use types. (a) Industrial park in the Baoan district. (b)
Zhongshan Park. (c) Residential area in Longhua District. (d) Huagiang North Business District. (e)
Baoan District Government. (f) Areas near Huanggang Village. (g) The proportions of urban land-use
types in these six regions. ‘xr’ represents the reference proportions from visual interpretation of region
(x), and ‘xm’ represents the proportions from the proposed model results for region (x).

3.5. Estimating the proportions of each urban land-use type

In this section, the 300 pure samples are used as training samples to train an RF model. The RF
model is used to estimate the proportions of each urban land-use type in all street blocks in
Shenzhen. The proportions of each urban land-use type (commercial, housing, public, recreation,
and working) are illustrated in Figure 5(a- e), respectively. To describe the land-use diversity in
street blocks, we calculated the Shannon index of the five urban land uses in each street block
(Figure 5(f)).

Figure 5 shows that the street blocks with high proportions of commercial land use are areas
with frequent economic activities, such as shopping malls and commercial streets ((a) is the
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Figure 5. The proportions of each urban land-use type in Shenzhen. (a—e) show the proportions of
commercial, housing, public, recreation, and working, respectively. (f) shows the spatial distribution of
the mixing index (Shannon index).

Coastal City Shopping Center, and (b) is the Huagiang North Business District). Similarly, the same
is true for other urban land-use types. The areas with high proportions of the housing land-use
type are residential areas ((c) is located in the residential area near Daxin, while (d) is a residential
area in Luohu District). The internal structures of urban villages are complex; thus, the proportion
of the housing land-use type is not as high as that in a residential area. For the public land-use
type, the areas with high proportions are government agencies, transportation service facilities,
etc. ((€) and (f) are the Guangmingcheng high-speed railway station and Shenzhen Municipal
Government, respectively). The places where parks and amusement parks are located have higher
proportions of recreation land use ((g) and (h) are Zhongshang Park and Lianhuashan Park,
respectively). Most of the areas with high proportions of working land use are industrial areas,
which are mainly distributed in the northeast and northwest of Shenzhen ((i) and (j) are two
industrial parks).

From Figure 5 and the above analysis, it can be found that there are few street blocks with high
proportions of single land-use types, and most of them have certain specific uses. Additionally, we
found that the number of street blocks with a proportion of commercial land-use type greater
than 0.5 is 156, 121 street blocks for housing land use, 170 street blocks for public land use, 124
street blocks for recreation land use, and 270 street blocks for working land use. The AWTPs
(Equation (5)) of commercial, housing, public, recreation, and working land use are 19.45%,
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21.55%, 18.20%, 20.20%, and 20.60%, respectively. These results indicate that Shenzhen has
a small number of street blocks with high proportions of single land-use types, and the differences
in the overall proportions of different land-use types are small.

A street block with a high index value means there is a high degree of mixed land use
in the region. This reflects the complexity and diversity of urban land uses. As shown in
Figure 5(f), the Shannon index is relatively high (the average Shannon index is 1.41) in
most parts of Shenzhen, indicating that the land uses of Shenzhen are highly diverse and
have a high degree (80.5% of street blocks have a Shannon index higher than 1.41) of
mixing after years of rapid development. Moreover, the aggregation area with a high
degree of mixing is complicated, and there are various land uses ((k) is near the
Qianhaiwan Garden, and (l) is near the Shenzhen Software Park). In contrast, the aggrega-
tion area with a low degree of mixing often has a single land use ((m) is Xiangmi Park, and
(n) is near the Guangdong Shenzhen Export Processing Zone).

3.6. Correlation between degree of mixing and trip distances

Some scholars have suggested that mixed urban land uses tend to shorten trip distances
(Cervero 1996, Burton et al. 2003). On this basis, we take the average taxi and shared bike
trip distances of a working day in 2017 as a proxy to validate the mixing index. Although
they represent very different modes of transportation and most likely also different user
groups in terms of socioeconomic status, they are both ways that people travel in cities.
We regard the distance between the origin and destination (OD) of all shared bikes as the
bike trip distances of residents and the OD of taxi trajectories as the taxi trip distances.
A trip is included only if the origin point is within the street blocks.

The number of shared bikes used in this study is 275,248, with a total of 1,305,573 travel
trajectories and an average OD distance of 509.207 meters. The spatial distribution of the
average OD travel distance of shared bikes in each street block is shown in Figure 6(a). This
figure shows that there is spatial heterogeneity in the travel distances of shared bikes in
different street blocks. The Pearson correlation between the mixing index and average travel
distances of shared bikes shows a weak negative correlation (r = —0.093, p = 0.008). This
indicates that an increase in the degree of mixing can reduce the travel distance of shared
bikes to a certain extent.

The total number of taxis is 14,268, with a total of 377,722 travel trajectories and an
average OD distance of 5,706.898 meters. The spatial distribution of the average OD travel
distance of taxis is shown in Figure 6(b). We find that most street blocks with higher average
OD travel distances are distributed in the north, but the spatial distribution of the degree of
mixing is quite different (Figure 6(d)). Therefore, the Pearson correlation between them
shows a weaker and nonsignificant negative correlation (r = —0.069, p = 0.159), which is
the same as the finding of Wu et al. (2018).

When we considered both shared bikes and taxis (Figure 6(c)), we found a weak but
significant negative correlation between the degree of mixing and the average OD travel
distance (r = —0.107, p<0.001). This shows that an increase in mixing will lead to
a decrease in the trip distance, which confirms that moderately mixed urban land uses
will promote cities to become more compact (Burton et al. 2003, Holden and Norland
2005). As the degree of mixing increases, the daily needs of residents may be satisfied in
a shorter distance. The weak relationship may be affected by the bias in the trip data.
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Figure 6. The average OD travel distances of shared bikes and taxis for a working day in 2017. (a) The
average OD travel distances of 275,248 shared bikes. (b) The average OD travel distances of 14,268
taxis. (c) The average OD travel distances of shared bikes and taxis. (d) The spatial distribution of the
mixing index (Shannon index).

Limited by the availability of data, we have adopted two relatively flexible modes of travel.
Other trip modes, such as walking and public transport, are not included, and adding that
data may lead to a stronger relationship. Nevertheless, the results not only confirm the
conclusion that an increase in the degree of mixing will reduce the travel distances of
residents but also verify the mixing index.

4. Conclusions

In this study, we propose the Traj2Vec model to retrieve potential semantic information of
urban residents’ trajectories based on the Word2Vec model. By obtaining and exploring
the semantic information of spatial trajectories, we find that the Traj2Vec model can well
establish a relationship between residents’ trajectories and mixed urban land uses. We
also find that the Traj2Vec model is able to utilize rich semantic information to discover
the consistencies and inconsistencies between human activities and urban land uses.
First, the analysis shows that the proposed Traj2Vec approach can obtain the highest
accuracy (OA = 0.7733, kappa = 0.7245) in detailed urban land-use classification and obtain
a high average PA (64.0%) in capturing mixed land use. With the rapid development of a city,
the street blocks in the city often have a mix of land uses, which may provide convenience for
residents’ daily lives. Due to the limitations of data and methods, there have been few studies
on the identification of mixed urban land use (Wu et al. 2018). Since trajectory information
reflects urban residents’ use of urban space, we obtained the proportions of urban land-use
types by quantifying residents’ activity trajectories as semantic information using our pro-
posed Traj2Vec model. The results show that with rapid development, Shenzhen has a high
degree of mixed urban land use. After some improvement of the proposed Traj2Vec model,
we can not only use the method for land use but also for the study of residents’ travel
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patterns. For example, we can determine the trajectory semantic vectors of residents so that
residents with the same travel patterns can be determined. In addition, our method can also
be easily applied to other places. As long as there are mobile phone data and POI data in one
place, we can obtain mixed urban land use results in the area through our method.

Second, by exploring the vectors obtained by the Traj2Vec model, we find that the
Traj2Vec model can effectively obtain the spatial semantic information contained in
residents’ trajectories. After treating cell towers as words and travel trajectories as sen-
tences, we obtain the semantic vector of each cell tower through the Word2Vec model. For
the semantic feature vectors of cell towers that we obtained, those cell towers with similar
vectors are closer in spatial patterns, which agrees with the first law of geography, i.e. closer
things have more similarity (Tobler 1970). Additionally, the semantic features of street
blocks obtained by weighted summation follow the same law. These results indicate that
the semantic vectors obtained by fully exploring residents’ trajectories through the pro-
posed model can represent the potential relationships between street blocks.

Third, by analyzing the mixing index and the travel distance, we found that there
is a weak but significant negative correlation between them (r = —0.107, p< 0.001).
Related urban theory suggests that mixed urban land uses tend to shorten trip
distances (Cervero 1996, Burton et al. 2003). In this study, we take the average taxi
and shared bike trip distances as proxies to validate this theory. The results are
consistent with the urban theory, which means that when a city develops to
a certain stage, moderate mixed urban land uses will promote the city to become
more compact. The results not only confirm the conclusion that an increase in the
degree of mixing will reduce the travel distances of residents but also verify the
mixing index obtained in this study. This suggests that urban planning should focus
on mixed urban land uses, which can reduce the travel distances of residents, reduce
energy consumption, and make cities more compact.

Several issues should be addressed in further studies. The cell phone data used in this
study contain data from only one day and may reflect some occasional user movements.
In the future, a time series of mobile phone data or other trajectories can be used for more
accurate data mining. The selection of pure samples is based on POIs that may be affected
by the quality of data. Moreover, a more accurate and objective method should be used to
select samples that are crucial to building the model. Despite the above limitations, the
information about mixed urban land uses and spatial distributions obtained by this study
should be very important for understanding cities and can be used to assist in decision
making and policy formulation.
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