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ARTICLE

Simulating urban land-use changes at a large scale by
integrating dynamic land parcel subdivision and vector-based
cellular automata
Yao Yao a, Xiaoping Liu a, Xia Li a, Penghua Liu a, Ye Hong b,
Yatao Zhang c and Ke Mai c

aSchool of Geography and Planning, Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun
Yat-sen University, Guangzhou, China; bSchool of Geography and Planning, Sun Yat-sen University,
Guangzhou, China; cState Key Laboratory of Information Engineering in Surveying, Mapping and Remote
Sensing, Wuhan University, Wuhan, China

ABSTRACT
Cellular automata (CA) have been widely used to simulate com-
plex urban development processes. Previous studies indicated that
vector-based cellular automata (VCA) could be applied to simulate
urban land-use changes at a realistic land parcel level. Because of
the complexity of VCA, these studies were conducted at small
scales or did not adequately consider the highly fragmented
processes of urban development. This study aims to build an
effective framework called dynamic land parcel subdivision
(DLPS)-VCA to accurately simulate urban land-use change pro-
cesses at the land parcel level. We introduce this model in urban
land-use change simulations to reasonably divide land parcels and
introduce a random forest algorithm (RFA) model to explore the
transition rules of urban land-use changes. Finally, we simulate the
land-use changes in Shenzhen between 2009 and 2014 via the
proposed DLPS-VCA model. Compared to the advanced Patch-CA
and RFA-VCA models, the DLPS-VCA model achieves the highest
simulation accuracy (Figure-of-Merit = 0.232), which is 32.57% and
18.97% higher respectively, and is most similar to the actual land-
use scenario (similarity = 94.73%) at the pattern level. These results
indicate that the DLPS-VCA model can both accurately split the
land during urban land-use changes and significantly simulate
urban expansion and urban land-use changes at a fine scale.
Furthermore, the land-use change rules that are based on DPLS-
VCA mining and the simulation results of several future urban
development scenarios can act as guides for future urban plan-
ning policy formulation.
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1. Introduction

Land use is an important issue to maintain the long-term stability of immediate human
needs and ecosystems (Foley et al. 2005) and plays an essential role in environmental
changes and sustainable development (Turner et al. 2007). Urban land-use changes are
influenced by multiple factors, including government decision-making, residents’
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activities and urban development (Lambin and Geist 2008, Rahimi 2016). The demand
for land resources by urban development and population growth also accelerates the
alteration of land-use spatial patterns within cities (Sang et al. 2011). Hence, identifying
the mechanisms of urban land-use changes and urban expansion is becoming increas-
ingly important. Land-use simulation is an important means to study the inherent
mechanisms of urban land use and predict urban land-use changes (Parker et al. 2003,
Santé et al. 2010).

A cellular automaton (CA) is a discrete model applied in simulating complex science,
such as geographical process modeling and urban expansion simulation (Batty et al.
1999, Li and Yeh 2002, Liu et al. 2014). Raster-based geographical CA models have been
widely used in urban land-use simulations (Li and Yeh 2000, 2002, Santé et al. 2010,
Arsanjani et al. 2013, Liu et al. in press). Various factors that affect urban development,
such as land suitability (Barredo et al. 2003, Mitsova et al. 2011), accessibility (White and
Engelen 2000, Lau and Kam 2005) and socio-economic factors (Caruso et al. 2005, Wu
et al. 2010) are incorporated into urban simulation models so urban CA models more
closely match reality. Artificial intelligence and fuzzy logic models (Al-Ahmadi et al. 2009)
such as neural networks (Li and Yeh 2002, Basse et al. 2014), support vector machines
(Yang et al. 2008, Rienow and Goetzke 2015, Feng et al. 2016), random forests
(Kamusoko and Gamba 2015), simulated annealing (Feng and Liu 2013) and other
methods are also used to mine urban development rules. Meanwhile, some studies
have also discussed the definition of neighborhoods (Kocabas and Dragicevic 2006, Wu
et al. 2012) and growth constraints (Li and Yeh 2000, Guan et al. 2011) for CA models. In
these studies, urban expansion simulations that were based on the CA model have
yielded good results, proving that this approach is feasible in complex urban system
simulations (Santé et al. 2010, Li et al. 2017).

Ground objects, such as the fine-scale land parcels, buildings, trees, etc., that are
represented by rasters cannot accurately reflect reality (Stevens and Dragićević 2007),
especially the expression of urban morphology (Lez et al. 2015). Raster-based CA models
are very effective at simulating large-scale urban expansion, but defects in the expres-
sive ability of geometric entities by using raster cell has become increasingly obvious
with the refinement of the simulation scale and the complexity of the simulation system
(Barreira-González et al. 2015, Lez et al. 2015, Pinto and Antunes 2010). Meanwhile,
effectively determining the size (resolution) of a single cell and its actual geographical
meaning in an urban expansion simulation remains an unsolved problem (Chen and
Mynett 2003, Moreno et al. 2008, Dahal and Chow 2015, Abolhasani et al. 2016).

Along with the development of raster-based CA, patch-based CA integrates the
idea of plaques into raster-based CA, which has exhibited favorable simulation
performance for urban land-use patterns. The land patch refers to a collection of
adjacent cells that, when combined together, represent an entity differing from its
surroundings in nature or appearance (Wang and Marceau 2013, Chen et al. 2016,
Tepe and Guldmann 2017). Along with the refinement of the resolution, raster cells
can not express the features completely, thus transformation of urban land use is
usually manifested as a collection of neighboring cells that are simultaneously trans-
formed (Wang and Marceau 2013). By using patches to represent urban land uses, the
newly developed urban cells can be deployed around the pre-stage developed urban
cells, which are combined into patches. On the one hand, this operation contribute to
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eliminate the phenomenon of ‘salt and pepper’, while on the other hand, in compar-
ison to the raster-based CA models, more realistic and reliable development pattern
and classification structure can be simulated (Chen et al. 2014, 2016, Tepe and
Guldmann 2017). Nevertheless, patch-based CA is simply a raster-based CA that
incorporates morphological processing. Additionally, patch-based CA models contain
too many stochastic factors from a morphological point of view, which lower the
simulation accuracy (Chen et al. 2014, 2016) and thus are not conducive for fine land-
use change simulations with land parcels as basic units.

In this case, vector-based CA (VCA) becomes an important method to solve the pro-
blems about the relevance of each cell and its corresponding ground objects (Abolhasani
et al. 2016, Chen et al. 2016, Lez et al. 2015). Although early CA models that were based on
Voronoi polygons (Shi and Pang 2000, Pang and Shi 2002), Delaunay triangulation
(Semboloni 2000) and graph-based CA (O’Sullivan 2001a, 2001b) were beyond the limita-
tions of regular cells, these models could hardly reveal the actual state of the ground
objects (Moreno et al. 2009, Lez et al. 2015). To overcome these drawbacks, VCA models
that are based on ground objects (Benenson et al. 2002, Hu and Li 2004), census blocks
(Pinto and Antunes 2010) or land or cadastral parcels (Abolhasani et al. 2016, Lez et al. 2015,
Moreno et al. 2008, Stevens et al. 2007, Stevens and Dragićević 2007) are applied to model
land-use changes. Among all VCA models, those that are based on land or cadastral parcels
play a strong supporting role in urban planning (Lez et al. 2015) and can more realistically
reveal ground objects (Abolhasani et al. 2016, Barreira-González et al. 2015, Dahal and
Chow 2015, Moreno et al. 2008, Stevens et al. 2007); these models are thus widely used and
developed. For instance, Stevens et al.’s (2007) iCity model and Moreno et al.’s (2008)
VecCity model introduced the geometric transformation of parcels to improve the simula-
tion performance of VCA and thereafter introduced graph theory to reduce the calculation
cost (Barreira-González et al. 2015). In short, VCA models have a strong advantage in land-
use change modeling at a very fine scale.

As VCA models are emerging simulation models in the studies of urban develop-
ments, many issues remained to be discussed (Barreira-González et al. 2015, Dahal and
Chow 2015, Chen et al. 2016). First, the cells of VCA are irregular polygons, so the
method to define neighborhoods for raster-based CA is no longer applicable and must
be redefined in accordance with the actual ground objects (Moreno et al. 2008).
Moreover, VCA models do not eliminate the sensitivity of the neighborhood’s type
and size, so the accuracy of the simulation results significantly depends on the config-
uration (Stevens et al. 2007, Dahal and Chow 2015). Previous studies proposed various
methods to define neighborhoods. Stevens and Dragićević (2007) defined neighbor-
hoods based on the topology of adjacent cells. Crooks (2010) defined neighborhoods in
terms of buffer distances from the center of the cell by considering the geographic
element-blocking effect. Moreno et al. (2009) eliminated the parametric sensitivity of
neighborhood configurations by defining dynamic neighborhoods. Ballestores and Qiu
(2012) used a certain buffer distance from the cell boundary to delimit the neighbor-
hood space. The above neighborhood definition methods have their own strong points
and weaknesses and apply to different environments. Dahal and Chow (2015) defined 30
neighborhood configurations to compare the parameter sensitivity of the simulation
results based on previous studies. These results demonstrated that center-buffer neigh-
borhoods with feature blocks in VCA models reached the highest simulation accuracy.
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Additionally, urban expansion is a highly fragmented process (Su et al. 2012), so the
appearance of other types of land use can destroy the homogeneity of a VCA cell, where
each cell is an irregular unit with homogeneity (Wang and Marceau 2013). Additionally,
land parcels are too coarse to be used as the basic simulation units, which directly
affects the simulation accuracy, so a reasonable land division method must be devel-
oped. To our knowledge, the existing methods of land division are mostly used for
visualization, assisting urban planners in assessing land-use regulations and environ-
mental protection policies, and so on (Vanegas et al. 2009). For example, Wickramasuriya
et al. (2011) developed a tool that was based on ArcGIS to automatically split land
parcels, where larger street plots were split into neater small plots and street layouts.
The Parcel-Divider tool, which was developed by Dahal and Chow (2014), can split land
parcels into a variety of finer layouts depending on the shape, size and orientation of the
original plots. Vanegas et al. (2009) used binary recursive partitioning to split large urban
structures into small parcels and new streets to achieve a satisfactory visualization effect
based on high-resolution remote sensing images and vector data sets.

Nevertheless, only a few studies have introduced land division mechanisms into VCA
models. For example, Moreno et al.’s (2008,2009) VCA model split land parcels by the
geometric transformation of cells, which was achieved by determining their buffer dis-
tance. Abolhasani et al. (2016) introduced a VCA model where land division was conducted
during data preprocessing. However, the division process of the former model could barely
be conducted on the edges of the land parcels compared to within these spaces. Although
the latter model avoided this issue, the lack of an iterative dynamic land division process
was not conducive to simulating dynamic changes in urban land use. Therefore, we must
introduce an accurate dynamic land division method in VCA models.

Previous studies on VCA and urban land-use conversion were conducted on a limited scale
because of the complexity of the data structures and thus could not meet the needs of urban
planning under real scenarios. For example, Stevens and Dragićević (2007) only simulated the
land-use changes in a slice of a downtown area in a western Canadian city. Barreira-González
et al.’s (2015) VCA model only simulated the land-use changes in a small community in the
Iberian Peninsula. Abolhasani et al. (2016) used their ParCA model to study two districts in
Tehran, Iran, and simulate land-use changes in approximately a thousand plots.

Therefore, this study builds a VCA-based framework to simulate urban land-use
changes at a large scale by integrating dynamic land parcel subdivision based on
previous studies of urban land-use change simulations via CA. Moreover, we adopt a
novel random forest algorithm (RFA) regression model to explore the rules of urban
land-use changes at the level of land parcels. Finally, our proposed VCA model is applied
to simulate urban land-use changes from 2009 to 2014 in Shenzhen, the fourth largest
metropolitan city in China. The validity and rationality of this model are demonstrated
through a comparison with several state-of-the-art CA models.

2. Study area and data

Shenzhen (Figure 1) is located in Guangdong Province in South China and has a total
area of 1996.850 km2 and a residential population of approximately 10.779 million. This
city, which had an overall GDP of 1750.299 billion RMB yuan in 2015 (http://www.sztj.
gov.cn/xxgk/tjsj/tjnj/), has been considered one of the largest international metropolitan
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cities and economic centers in China. As illustrated in Figure 1, Shenzhen has 10
administrative county-level districts (Futian, Luohu, Nanshan, Yantian, Baoan,
Guangming, Longhua, Longgang, Pingshan and Dapeng). Futian, Luohu, Nanshan and
Yantian are the oldest special economic zones in Shenzhen and still the most populated
and developed districts. Together, these districts comprised 52.48% of the city’s total
GDP. The land-use pattern of Shenzhen, which is the most developed immigrant city in
South China, is extremely complex, and the land-use types are still rapidly changing (Yao
et al. 2016).

According to the governmental land-use data from the Bureau of Land and Resources
of Shenzhen, the urban structures in the study area have high complexity and contain a
large amount of land-use types, such as public management-service land (P), residential
land (R), commercial land (C), industrial land (I) and non-construction land (N). Among
all, public management-service land, residential land, commercial land and industrial
land are urban lands, and the non-construction land represents non-urban land that
mainly contains agricultural land (farmland and woodland) and land that has not yet
been developed (bare land and mountains). The spatial distribution and quantitative
proportion of each land-use type in the study area in the years 2009 and 2014 are
illustrated in Figures 2 and 3, respectively. Based on official statistical data, the total
number of land-use blocks in 2009 and 2014 were 104,608 and 123,325, respectively. In
particular, Figure 3 and Table 1 show that the proportions of public management-service
land, residential land, commercial land and industrial land, which all belonged to the
urban area, gradually increased with time from 2009 to 2014. Few alterations in land-use
types occurred within this urban area, with more than 85.51% converted from non-
construction land from 2009 to 2014 (Table 1). In particular, approximately 8.803 km2 of
non-construction land was occupied by different urban land types annually at the basic

Figure 1. Case study area: Shenzhen, Guangdong Province. The background data are the high
spatial-resolution (HSR) remote sensing image that was provided by Tianditu.cn and has a spatial
resolution of 5 m.
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unit of land parcels. Therefore, this study’s simulation and prediction were mainly based
on the translation of non-construction land into urban land-use types.

To our knowledge, urban land-use change is a complicated phenomenon that is
caused by interactions between urban planning and human activities (Long et al. 2012,
Yao et al. 2016, Chen et al. 2017). Several basic geographic information and social media
data sets, including points-of-interest (POIs) and OpenStreetMap road nets, were applied
in our study to reasonably simulate urban land-use changes at a fine scale. We fetched
the POIs of approximately 211,076 records with eight categories in the study area via
Gaode Maps APIs, including business establishments, commercial sites, medical facilities,
entertainment facilities, shopping malls, parks, factories, etc. Gaode Maps possesses fine
geocoding accuracy and has been used in several previous urban studies at the level of
traffic analysis zones (Yao et al. 2016). Additionally, spatial auxiliary variables (Figure 4)
were classified into four major categories, including natural factors (elevation and slope),
traffic factors (roads, highways and railways), location factors (distance to district centers)
and urban environmental factors. Previous studies indicated that these spatial variables

Figure 2. Urban land-use data in the study area in (a) 2009 and (b) 2014. The black lines at the front
are the borders of administrative regions.
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could reasonably reflect urban planning and human activity characteristics (Yuan et al.
2012, Jiang et al. 2015, Long and Liu 2016). In this study, the bandwidth of the Gaussian
function-based kernel density analysis of POIs was automatically determined according
to the MISE criterion (Wand and Jones 1994, Yuan et al. 2012).

3. Methodology

A flowchart of the proposed RFA-based VCA model with dynamic land parcel subdivision
(DLPS-VCA) is illustrated in Figure 5. By using DLPS-VCA, the purpose of our research is
to integrate RFA and vector unit automation to consider dynamic land subdivision
during urban land-use change processes and to simultaneously simulate urban expan-
sion and land-use changes at the scale of land parcels. This study used four steps to
simulate urban land use. (1) Each vector land parcel was divided based on the minimum
area boundary rectangle (MABR) to obtain a reasonable block distribution along city
roads. (2) We created auxiliary spatial variables based on multi-source geospatial data

Figure 3. Spatial distribution of land-use change and total area proportions of different land-use
types in the study area from 2009 to 2014.

Table 1. Total transition area (unit: km2) between different land-use types in the study
area from 2009 to 2014.

2009 2014 N P C R I

N 1333.423 13.322 5.154 11.134 14.407
P 4.772 87.189 0.015 0.000 0.269
C 0.000 0.000 26.379 0.000 0.010
R 0.670 0.016 0.001 187.292 0.003
I 1.959 0.015 0.000 0.000 268.308

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 7
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sets and introduced an RFA model to explore the rules of urban expansion and land-use
changes. (3) The proposed DLPS-VCA, which was validated by multi-period urban land-
use data, was constructed to conduct urban land-use simulation and evaluate the
performance of the simulation results by accuracy assessment and uncertainty analysis.

Figure 4. Auxiliary geospatial data sets: (a) DEM, (b) slope, (c) distance to district centers, (d) distance to
railways, (e) distance to highways, (f) distance to roads, (g) density of bus stations, (h) density of medical
facilities, (i) density of entertainment facilities, (j) density of shopping malls, (k) density of restaurants,
(l) density of parks, (m) density of factories and (n) density of wholesale markets.

Figure 5. Flowchart to simulate urban land use with the proposed DLPS-VCA model.
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(4) We assumed a variety of urban development scenarios and used the proposed DLPS-
VCA to forecast the urban land use of the study area.

3.1. MABR-based DLPS

Land-use change, which is mainly caused by urban expansion, is a random and highly
fragmented process (Antrop 2004, Su et al. 2012). Based on a previous study by Vanegas
et al. (2009), an iterative dichotomy strategy was used to split larger urban land parcels in
this study to ensure that the entire direction of the block after division was extended along
the road. Before each urban land-use change rule-mining process, we calculated the mean
area μi and standard deviation σi of the i th land-use type block and split the i th land
parcel Pi;j, which possessed an area greater than ðμi þ 2σiÞ. As illustrated in Figure 6(a), the
division process of land parcel Pi;j included the following three steps:

(a) Convex hulls were acquired based on Cheng et al.’s (2008) model of arbitrary
polygon-partitioning MABR (Cheng et al. 2008) by iterating the vertices of poly-
gons to obtain an accurate MABR of land parcel Pi;j. Figure 6(a) shows that the
directionality of the MABR was consistent with that of the original land parcel.

(b) The perpendicular bisector l was formed on the longer side of the MABR, which
separated the land parcel Pi;j into two new land parcels P1i;j and P2i;j. Then, the

algorithm calculated the areas of the newly obtained land parcels P1i;j and P2i;j , and

Figure 6. (a) Diagram of MABR-based land parcel subdivision. (b) Actual land use and parcels in
Nanshan district. (c) Land parcel subdivision results in Nanshan district after the first iteration of land
parcel subdivision. (d) Final result of land parcel subdivision in Nanshan district.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 9

D
ow

nl
oa

de
d 

by
 [

Su
n 

Y
at

-S
en

 U
ni

ve
rs

ity
] 

at
 0

0:
24

 0
2 

A
ug

us
t 2

01
7 



the MABR-based division continues to proceed for areas that were larger than
(μ + 2σ).

(c) We repeated steps (a) and (b) until the areas of all the parcels were smaller than
the current ðμi þ 2σiÞ. After each urban land-use change simulation, the mean
area μi and the standard deviation σi of each land parcel types were updated,
thus realizing dynamic land-use parcel subdivision in the urban land-use simula-
tion process.

Figure 6(b–d) shows the proposed MABR-based DLPS process and a case study in
Shenzhen’s Nanshan district, where the larger land parcels were gradually separated into
basic block units that were closer to the mean areas and had a more fragmented
distribution.

3.2. RFA-based vector cellular automata (RFA-VCA)

After the land parcel subdivision, we treated the land parcels as the elementary cells to
conduct simulations that were based on the cellular automata model. Previous studies
indicated that the development probability P of each cell consists of four factors,
including the overall development suitability Pg, neighborhood effect Ω, constraint
factor Pc and stochastic factor RA (Li and Yeh 2002, Chen et al. 2016).

This study adopted an RFA regression model to obtain the overall development
suitability of each land parcel. Previous studies proved that RFAs are outstanding state-
of-the-art machine-learning models that can obtain satisfactory results in many classifica-
tion and regression tasks (Biau 2012, Fern and Ndez-Delgado et al. 2014). RFAs are
constructed from a multitude of decision trees, which are built from each sub-data set
that extracted random samples from the original training data set (Breiman 2001, Biau
2012). Simply, in the training process of RFA, sample data set Xi (i =1,2,. . .,ntrees), which
contains ntrees items, is acquired by using Bootstrap sampling method to replacement
sampling the original data set X in the first place, where data that does not appear in the
Xi data set are called out-of-bag (OOB). Next, for each sample data set Xi, the following
procedure is adopted to generate a non-pruning decision tree: let the dimension of the
original data be N, given a positive integer n (n ≪ N), for each node, n-dimensional
features are randomly selected from the original N-dimensional features, and by calculat-
ing the amount of information contained in each feature, the feature most capable to
classify is selected for node splitting. The above process continues to generate decision
tree, and finally build M classification trees. Finally, according to these decision trees,
classification results are decided according to the voting result of each record.

In particular, we can obtain an OOB-based estimation error report for each decision
tree and further calculate the model’s generalization error by averaging their errors.
Tibshirani (1996), Wolpert and Macready (1999) and Breiman(1996) recommended to use
the OOB error estimation as an integral part of the generalization error estimation. OOB
error is an unbiased estimate with a result similar to the k-cross-validation that demands
massive calculation, thus there is no need for further cross-validating or using an
independent test set to get an unbiased estimate of the error. This RFA-based fitting
model could overcome the multiple correlative problems among spatial variables, which
is particularly useful in higher-dimensional fitting situations (Palczewska et al. 2014). We
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randomly screened samples based on the proportions of the land-use change areas to
avoid the class imbalance problem (Wasikowski and Chen 2010) that is caused by
disproportions in the number of land-use conversion samples. Thus, a balance between
the input sample number of different land-use change types into the RFA and the
conversion proportion of non-construction land into various types of urban land-use
types was ensured. Hence, the overall development suitability of the i th non-construc-
tion land parcel when converted to the k th urban land-use type at time t is presented as
follows:

Pgk;ti ¼
PM

n¼1 I hn xð Þ ¼¼ Ykð Þ
M

(1)

In Equation (1), I �ð Þ is the indicative function of the decision tree set; M is the total count
of decision trees; x is a high-dimensional vector that consists of auxiliary spatial variables
in the land parcel; and hn xð Þ is the prediction type of the nth decision tree for x, which is
the land-use change type result of each decision tree for the i th non-construction land
parcel transformation.

Neighborhood effects are one of the key considerations in the cellular automata
modeling of complex geographic phenomena (Li and Yeh 2002, Dahal and Chow
2015). The basic units of VCA are irregular land parcels, and raster cells in the Moore
neighborhood or Von Neumann neighborhood of traditional patch-based or raster-
based CA cannot be obtained, so defining the rules of the VCA’s neighborhood is very
sensitive and difficult. A previous study indicated that the distance effect between cells
in CA satisfied the law of exponential decay (Cohen and Kaplan 2007). Moreover, cells
with larger areas, such as land parcels, had greater external effects and played pivotal
roles in the transformation of the surrounding cellular states (Moreno et al. 2009). This
study adopted a centroid-intercepted buffer rule that was based on land parcel area
weighting to obtain the land parcel’s neighborhood effects and thus improve the
accuracy of multi-class land-use simulations (Abolhasani et al. 2016). If we assume that
the j th land parcel is located in the buffer zone that was centered on the i th land
parcel with a buffer range d and that no river barrier exists between the i th land parcel
and the j th land parcel, then the neighborhood effect of the j th land parcel on the i th
land parcel at time t is

Ωt
i;j ¼ e�dij=d � Sj=Si

Smax=Smin
(2)

In Equation (2), e is an exponential constant; dij is the center distance between the i th
land parcel and the j th land parcel; Si and Sj stand for the area of the i th land parcel
and the j th land parcel, respectively; and Smax and Smin represent the maximum and
minimum areas of the land parcels in the study area, respectively. Consequently, the
neighborhood effect of the k th land-use type toward the i th land parcel at time t is
presented as follows:

Ωk;t
i ¼

X
j

Ωk;t
i;j ðif disi;j � buffer d and No River between i and jÞ (3)
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The constraint factors are the particular land-use types that do not change to others
during the simulation (Lin and Li 2016). In this study, we set water bodies (including
rivers, lakes, sea areas, etc.) and roads as restricted development areas. The constraint
factors of the i th land parcel could be calculated from Equation (4), where Si is the
development suitability state of the land parcels:

Pcti ¼
0Si ¼ restricted development area
1Si ¼ suitable development area

�
(4)

To our knowledge, the factors that influence the transformation of land use are exceedingly
complicated and highly stochastic (Li and Yeh 2002, Wu and Martin 2002). In this study, we
introduced the stochastic factors RA ¼ 1þ �ln γð Þα, where γ is a random number between
0 and 1 and α is the parameter that controls the randomness with a constant value
between 1 and 10 (Li and Yeh 2002, Wu and Martin 2002). In conclusion, the probability
that the i th land parcel changes into the k th land-use type at time t is given as follows:

Pk;ti ¼ Pgk;ti Ωk;t
i Pcti RA (5)

During the simulation, we recomputed the land parcels’ areas for each simulation result
and performed dynamic land parcel subdivisions. By calculating the probabilities for
each land parcel to be converted to the various land-use types respectively, we chose
conversions that had the highest probabilities and exceeded the development thresh-
olds to execute. In this study, the development thresholds of a certain land use class is
set as the mean probability of all non-construction land parcel developing into this land
use class. This ensures that if the i th type urban land use area does not meet the
forecast requirements during the iteration process, the DLPS-VCA can reduce the thresh-
old until all urban land area reach the predicted quantity.

To optimize the simulation results, the total amount of land-use change was con-
trolled through the validation of multi-period land-use data during the simulation
process by using Markov chains to predict changes in various land-use areas (Guan
et al. 2011, Yang et al. 2012, 2014, Arsanjani et al. 2013). Markov chains is a predictive
and optimized control method that assumes the state transitions depend on historical
states. When performing a geographic simulation, Markov chains can not only be used
to reveal the probability of conversion between different land types, but also to predict
the ratio of various types of land use in the future stage, thus widely adopted in the
prediction process of geographical research (Sang et al. 2011). In the Markov chains
prediction process, S t þ 1ð Þ ¼ Pij S tð Þ, where S tð Þ and S t þ 1ð Þ represents the system
status at time t and t + 1 respectively, which are used to represent the proportion of
various land use types at time t and t + 1 respectively in this study; Pij is a matrix
representing the conversion probability of land uses. In this paper, the conversion matrix
is calculated based on the ratio of land use in 2009–2014. In the DLPS-VCA model,
through carrying out constraint control, the land use type is no longer developed for
that where the area reaches the predicted value. Additionally, we predicted the future
land-use patterns in the study area based on the different total simulation sizes of each
land-use type in different future scenarios.

12 Y. YAO ET AL.
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3.3. Accuracy assessment and uncertainty analysis

This study adopted the conventional cell-to-cell method, which calculates the overall
accuracy (OA) and kappa coefficient, to evaluate the simulation accuracy by combining
the actual and simulated urban land use into raster data to evaluate the final accuracy of
our proposed DLPS-VCA model in simulating urban expansion and land-use change
processes (Chen et al. 2014, 2016). Nevertheless, previous studies indicated that using
the confusion matrix to evaluate the accuracy of the simulation results on a larger scale
is unreasonable because the ratio of conversion to non-conversion is extremely low
(Pontius et al. 2008, Du et al. 2012). Actually, we were interested in the relevance of
actual urban land-use transformation and simulated urban land use. Consequently, this
study adopted Figure-of-Merit (FoM) (Pontius et al. 2008) to evaluate the accuracy of the
simulation results. FoM is an indicator to evaluate the consistency between the true
(observed) transition pattern and the simulated (predicted) transition pattern, which
equals the ratio between the intersection and union of the observed change and
predicted change (Perica and Foufoula-Georgiou 1996). The formula is listed as follows
(Pontius et al. 2008, Chen et al. 2016):

FoM ¼ B= Aþ Bþ C þ Dð Þ (6)

Product0s accuracy PAð Þ ¼ B= Aþ Bþ Cð Þ (7)

User0s accuracy UAð Þ ¼ B= Bþ C þ Dð Þ (8)

In Equations (6)– (8), A indicates the error of the land-use change in reality and non-
change in the simulation results; B represents the land where real transformations
occurred and the simulation results correctly changed; C stands for the error that a
transition had occurred and the simulation had actually changed but the type of the
simulated transition did not match the truth; and D represents the error that the land-
use change did not occur in reality but did occur in the simulated situation.

Moreover, landscape indices (LI) are used to assess the similarity of landscape
patterns between the simulation results and the real scenario (McGarigal et al. 2012,
Chen et al. 2014). This study adopted several LIs, including number of patches (NP),
largest-patch index (LPI), mean Euclidean nearest-neighbor distance (ENN) and the mean
perimeter–area ratio (PARA) to evaluate the similarity between the real and simulated
block patterns. In this study, the LI were calculated by using Fragstats 4 (McGarigal et al.
2012). In addition, the similarity between the spatial patterns was measured by using the
average difference in the LI between the simulation results and the real scenario. The
calculation formula was as follows:

al ¼ 1� 1
8

X
i

Δli (9)

Δli ¼ li;s � li;o
�� ��=li;o; l ¼ NP; ENN; PARA

li;s � li;o
�� ��; l ¼ LPI

�
(10)

In Equations (9) and (10), li;s and li;o represent the i th LI of the simulated and real
scenarios, respectively, and Δli is the normalized difference of the i th LI.
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4. Results

Our research team built a software application and created the DLPS-VCA model that was
proposed in Section 3 by using C++ on Windows Server 2008. Several open-source C/C++
libraries, such as CGAL, GDAL, OpenCV and Shark, were applied to this project to build the
proposed DLPS-VCA model. The source codes of the proposed model were implemented
in C++ with OpenMP and run on a multi-processor computation server, and the related
applications will be released on the GeoSOS website (http://geosimulation.cn/).

4.1. Implementation and results

Our training data comprised selected samples that transformed from non-construction
land into other land from 2009 to 2014 to increase the total number of samples to
validate the proposed DLPS-VCA model. Additionally, the neighborhood distance was
adjusted to 800 m. The relationship between the neighborhood size and simulation
accuracy is analyzed in later sections. During RFA-based regression, we divided the
training data set, including the original land-use change data and auxiliary geospatial
data, into two components, namely, 60% training data and 40% validation data, to
evaluate the fitting accuracy of this model. We set up 100 decision trees and 20% OOB
data, cross-validated the result with boosted random sampling and iterated 100 epochs
to obtain the average accuracy for the most reliable result.

In addition to using the proposed DLPS-VCA model, this study adopted two recently
developed CA models, including RFA-Patch-CA and RFA-VCA, to simulate land use and
evaluate the simulation accuracy of these results as a comparative experiment. RFA-
Patch-CA adopts the same patch-based simulation strategy as Chen’s Logistic-Patch-CA
(Chen et al. 2014, 2016) but uses RFA-based regression to mine the land-use type
change rules. As a comparative experiment of DLPS-VCA, RFA-VCA is a simulation of
urban land-use changes with RFA-based regression based on existing urban parcels.
RFA-VCA does not conduct dynamic land parcel subdivision on the land parcels of the
initial simulation, which is the most common method that is used by most VCA studies
for large-scale simulations (Barreira-González et al. 2015).

As described in the previous section, all three models were first validated at the cell
level (Chen et al. 2016). Figure 7 demonstrates the actual and simulated urban land-use
results in 2014 with the above three models. In addition to the local highlighted features
in Figure 8, we provided the original image, which has a high resolution of 300 dpi and
can be downloaded from http://pan.baidu.com/s/1jHMuuou, to offer more details.

Previous studies indicated that FoM is generally low when using CA models to
simulate large-scale areas or cities with few land-use conversions (Pontius et al. 2008).
In this study, only 0.60% of the land conversion occurred in the study area, and multiple
land-use change simulations were proposed, which was more complex than the pre-
vious CA model rule for urban expansion (Du et al. 2012, Chen et al. 2016). Based on the
RFA-based rule mining, the accuracy of the three land-use simulation models was
relatively high and the overall FoM was significantly larger than 0.15. As illustrated in
Table 2, the proposed DLPS-VCA model had the highest accuracy (FoM = 0.232), which
was 18.97% and 32.57% higher than those of the RFA-VCA and Patch-CA models,
respectively, where no land splitting was conducted. These results indicated two key
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points. (1) Compared to patch-based CA, VCA models that are based on authentic land
parcels can achieve much higher land-use simulation accuracy. (2) During urban devel-
opment, larger urban land patches gradually split into smaller patches of land, so the
proposed DLPS-VCA model could achieve higher simulation accuracy, which is a more
realistic response to actual urban land-use development patterns.

Table 3 shows the results of the pattern-level similarities. Previous studies proved that
Patch-CA could produce simulation results that are more similar to actual urban devel-
opment patterns (Chen et al. 2014, 2016). Comparing the results of Patch-CA, RFA-VCA
and DLPS-VCA with actual urban land-use patterns showed that the results for DLPS-VCA
had the highest similarity (94.73%) with the actual land-use patterns in 2014. We
controlled the size of the land parcels that altered their land-use types during dynamic
land parcel subdivision, so the indices that were most relevant for the land parcels, such
as LPI, ENN and PARA, also achieved the closest results compared to the other models.
Figure 8 shows a comparison of the four typical areas in the study area. Obviously, the
results of Patch-CA clearly connected adjacent land parcels, which induced a smaller NP
and a salt-and-pepper noise.

The results of the RFA-VCA and proposed DLPS-VCA models were exceedingly similar
in the downtown area. However, Figure 8(C1–C4) shows that the simulation results for
DLPS-VCA were more precise than those of the other models in the newly developed
regions. In conclusion, the proposed DLPS-VCA model more accurately matched the
urban expansion simulation and reasonably mined the land-use development rules of
various types of land. Moreover, the splitting results of the irregular plots were extremely
similar to those of the actual urban land use based on the proposed DLPS method.

Figure 7. Actual and simulated urban land-use patterns in Shenzhen in 2014. Simulated urban
land-use patterns in the study area via (a) Patch-CA, (b) RFA-VCA and (c) DLPS-VCA.
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Additionally, we compared the simulated results for DLPS-VCA with the actual urban
land use, as shown in Table 4 for FoM and Table 5 for the similarities in the different
administrative districts. Compared to Baoan, Longhua, Pingshan and Dapeng, which are

Figure 8. Details of the actual and simulated urban land-use patterns in (#1) the City center area,
(#2) Nanshan district, (#3) Pingshan district and (#4) Dapeng district via different simulation models:
(A1)–(A4) Patch-CA, (B1)–(B4) RFA-VCA and (C1)–(C4) DLPS-VCA.

Table 2. Overall FoM of the simulated results via different models.
Results PA (%) UA (%) FoM

Patch-CA 29.83 29.05 0.175
RFA-VCA 32.74 31.91 0.195
DLPS-VCA 37.45 37.20 0.232

Table 3. Overall landscape indices of the simulated results via different models.
Results NP LPI ENN PARA Similarity (%)

Actual land use 28,550 67.673 124.799 906.634 –
Patch-CA 26,826 66.793 121.022 923.85 87.63
RFA-VCA 27,961 67.001 121.589 911.377 90.95
DLPS-VCA 27,910 67.286 123.596 909.309 94.73
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not as economically developed, Futian, Luohu and Nanshan, which are the most pros-
perous downtown areas in Shenzhen, had less precise urban land-use change simulation
results. These results illustrate the complexity of urban development: the urban devel-
opment of economically developed regions is dominated by the internal transformation
of land use, which is called urban renewal, while less developed regions are mainly led
by urban expansion (Dai et al. 2010, Wang et al. 2013, Zheng et al. 2014). The results also
essentially suggests that the proposed DLPS-CA model, which is considered as a ‘bot-
tom-up’ local model, can be well used to simulate the non-stationary urban develop-
ment. Moreover, Guangming and Longgang are newly developed areas from the
planning of the Shenzhen government, and government policies occupied a dominant
position in their development. The proposed DLPS-VCA model did not consider the
factors of government decision-making, so the FoM index and the differences in the NP
LI in the simulation results for Guangming and Longgang were both large, resulting in a
relatively low accuracy. Therefore, adding government decision-making and residential

Table 4. FoM of the simulated results via the DLPS-VCA model for different
districts in the study area.
Districts PA (%) UA (%) FoM

Futian 22.40 59.51 0.194
Luohu 17.13 26.31 0.116
Nanshan 21.24 42.77 0.167
Yantian 30.43 59.95 0.250
Baoan 41.57 34.67 0.233
Guangming 42.17 31.00 0.221
Longgang 24.70 35.30 0.181
Longhua 50.36 38.90 0.286
Pingshan 37.00 41.49 0.248
Dapeng 50.88 35.19 0.267
Shenzhen 37.45 37.20 0.232

Table 5. Landscape indices of the simulated results via the DLPS-VCA model in the study area.
Districts Type NP LPI ENN PARA Similarity (%)

Futian Actual 1368 59.22 113.124 746.733 79.21
Simulated 1366 57.566 112.871 750.805

Luohu Actual 1326 70.875 123.492 833.318 94.11
Simulated 1317 71.296 118.485 831.682

Nanshan Actual 2199 63.139 161.124 794.401 89.64
Simulated 2057 63.896 162.05 795.827

Yantian Actual 520 87.307 179.479 893.546 93.39
Simulated 498 87.701 163.327 895.857

Baoan Actual 8250 60.291 111.796 970.609 87.44
Simulated 8473 59.355 108.565 982.972

Guangming Actual 2168 69.718 140.569 936.472 71.70
Simulated 2071 67.562 132.773 944.271

Longgang Actual 6230 59.392 119.576 893.631 95.27
Simulated 5907 59.711 119.415 887.44

Longhua Actual 3531 50.376 117.156 936.245 79.91
Simulated 3451 48.844 111.98 944.451

Pingshan Actual 1995 73.881 131.569 883.653 96.25
Simulated 1924 73.641 128.66 885.43

Dapeng Actual 1242 92.088 205.705 913.509 97.36
Simulated 1237 91.919 199.651 921.619

Shenzhen Actual 28,550 67.673 124.799 906.634 94.73
Simulated 27,910 67.286 123.596 909.309
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activities as consideration factors is a key issue to improve the precision of DLPS-VCA
simulations in future study.

4.2. Contribution weights of different land-use types

This study obtained the contribution weights of various auxiliary spatial variables when
non-constructed land was converted to other land-use types based on the sensitivity
analysis of input features by a RFA-based regression model (Breiman 2001, Biau 2012,
Palczewska et al. 2014), as shown in Table 6. The development of public management-
service land was mainly relevant to district centers (10.66%), parks (7.29%) and traffic
facilities, including railways (10.26%), roads (9.59%), highways (8.71%) and bus stations
(7.58%). On the one hand, this factor determined by the service attributes of public
management-service land. On the other hand, the development of public management-
service land and improvement of transportation facilities were mutually reinforcing.

Residential land development was closely related to district centers (9.41%), public
transportation facilities (bus stations, roads and highways) and livelihood infrastructures
(medical facilities and parks). Developed urban transport infrastructures can reduce the cost
of living in urban areas, so the construction of district centers and livelihood infrastructures
was strongly correlated to the living convenience of residents. At the same time, commercial
land had a strong correlation with all manner of spatial variables but shared a stronger
correlation with spatial variables that were related to location, transportation and logistics
factors, such as district centers (9.05%), restaurants (8.77%), and whole markets (8.42%).

Industrial land development often requires the support of a certain infrastructure and
the formation of a production chain, which is prone to spatial agglomeration and spatial
clustering (Schweitzer and Steinbink 1997, Gordon and McCann 2000, Rauch 2013).
Newly developed industrial areas had a strong correlation with existing factories
(9.63%) because of government planning. Additionally, the distance to railways

Table 6. Contribution weights of different spatial variables when non-construction land (N) was
changed to public management-service land (P), residential land (R), commercial land (C) and
industrial land (I). Background color ranging from green to red indicated that the increasing
influence of the spatial variable on the current land use.

Spatial variables P R C I

DEM 6.08% 3.00% 5.59% 5.95%

Slope 2.98% 6.95% 3.75% 3.82%

Distance to district centers 10.66% 9.41% 9.05% 10.48%

Distance to railways 10.26% 6.12% 6.76% 13.84%

Distance to highways 8.71% 8.51% 7.14% 7.11%

Distance to roads 9.59% 8.35% 8.31% 8.01%

Density of bus stations 7.58% 9.28% 7.29% 7.12%

Distance to medical facilities 5.64% 8.62% 7.02% 5.30%

Distance to entertainment facilities 5.93% 6.27% 7.15% 5.61%

Density of shopping malls 6.73% 6.53% 7.36% 5.59%

Density of restaurants 6.26% 6.88% 8.77% 6.40%

Density of parks 7.29% 7.41% 6.63% 5.20%

Density of factories 6.49% 5.68% 6.76% 9.63%

Density of whole markets 5.81% 6.99% 8.42% 5.95%
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(13.84%), roads (8.01%) and highways (7.11%) was highly correlated with industrial land
because plant locations must consider the transportation costs of the goods. On the
contrary, the effect of industrial infrastructures on industrial land was minimal.

In conclusion, theurban land-usedevelopment rule thatwasbasedon theproposedGLCM-
VCA mining had an interpretable rationality and could act as a guide for urban land-use
planning.

4.3. Parameter sensitivity analysis

The definition of neighborhoods in CA rule mining is very important, while that in VCA is
more complex (Dahal and Chow 2015, Abolhasani et al. 2016). This study adopted area-
weighted centroid-intercepted buffer neighborhoods to define the neighborhood effects of
land parcels (Wu et al. 2012, Dahal and Chow 2015). As illustrated in Figure 9, the proposed
GLPS-VCA model was extremely sensitive to the distance configuration of the neighbor-
hood. The highest simulation accuracy was achieved when the buffer distance was 800 m.
When the buffer distance was less than 800 m, the simulation’s precision increased with
increasing buffer distance, while the simulation’s precision gradually decreased when the
buffer distance was greater than 800 m. This result mainly occurred because the number of
land parcels within the buffer zone was exceedingly small when the buffer distance was
small because of the area of the center cell itself, which produced small neighborhood
effects and no significant differences between different cells.

Certainly, the number of neighbor cells in the buffer increased and the neighborhood
effects of various land-use types could be distinguished with the expansion of the buffer
range, thus improving the simulation’s accuracy. When the buffer distance was too large,
however, the neighborhood area of the center cell was relatively large, and distant cells
excessively affected the central cell, resulting in simulation errors. Previous studies
indicated that the internal structure of the urban functional area generally presents an
aggregated distribution in space (Schweitzer and Steinbink 1997, Rauch 2013); in other
words, urban functional areas from the same categories generally clustered together,
and the urban functional structure was affected much more by the concentration center
than by the outer urban functional area. In this study, we conducted the above experi-
ment by selecting 800 m as the simulation parameter.

Figure 9. Changes in the accuracy indices (y axis) in the urban land-use simulation via DLPS-VCA by
different neighborhood radii (x axis, unit: meters).
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4.4. Future scenario simulation

The proposed DLPS-VCA model could also be used to simulate future developments
under different scenarios. This study adopted three different future scenarios: (1) urban
disordered development without any restrictions (UDDS), (2) urban sustainable develop-
ment with ecology control (USDE) and (3) urban sustainable development with ecology
control and ‘job-housing balance’ (USDB) (Frank 1994, Peng 1997, Zhao et al. 2011).

In the first two urban development scenarios (UDDS and USDE), the total conversion
area for all the land-use types in 2020 and 2030 was based on an unrestricted Markov
chain prediction. In USDE, however, we considered an official ecology control plan, in
which the government participated in ecological protection interventions to protect the
type of land within the ecological control line and did not allow this land to develop (Liu
and Diamond 2005, Lu et al. 2013).

Furthermore, ‘job-housing balance’ refers to the spatial relationship between the
number of jobs and housing units within a given geographical area (Peng 1997).
Previous studies indicated that an area is considered balanced when the resident work-
ers can obtain a job within a reasonable travel distance and when the available housing
types can complement a variety of employees’ housing demands (Zhao et al. 2011).
Frank (1994) defined the job-housing balance within census tracts as a job-household
ratio between 0.8 and 1.2 (Frank 1994). Hence, this study’s urban development model
for USDB was based on USDE, where the area ratio of residential land and land for
working (including commercial land and industrial land) was controlled to approxi-
mately 1:1 during urban development. The conversion area of various land uses for
USDB in 2020 and 2030 was predicted by restricted Markov chains.

Figure 10 and Table 7 show the simulation results and total quantities of different
land-use types under the three proposed future scenarios. Figure 11 shows the detailed

Figure 10. Simulated urban land-use patterns of Shenzhen under different urban development scenar-
ios: (A1) UDDS, (A2) USDE and (A3) USDB in 2020; and (B1) UDDS, (B2) USDE and (B3) USDB in 2030.
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simulation results of Shenzhen’s city center. Figures 10 and 11 show that a large number
of ecological protection areas, such as Tiegang Lake (Figure 11(A1,B1)), were eroded by
industrial land when the government did not implement ecology control. Moreover,
approximately 7.9 km2 of the non-construction land in the UDDS scenes was developed
annually into urban land, especially in the Luohu District, Futian District and other
economically developed downtown areas. In terms of ecology control, the development
areas of the city were mainly dominated by internal urban renewal (Zheng et al. 2014) or
development from public non-construction land, such as beaches (Figure 11(A2,B2). In
terms of the ‘job-housing balance’, the growth of industrial land was weakened and
more non-construction land was converted into residential land; however, by 2030, the
residential land area was similar to those in the other two scenarios. Thus, the growth

Table 7. Total simulation area (unit: km2) of each land-use type under different future scenarios.

Scenarios UDDS USDE USDB

Year 2020 2030 2020 2030 2020 2030

N 1307.076 1228.304 1312.581 1249.088 1322.504 1258.378
P 124.05 153.053 118.566 144.213 117.998 143.508
R 211.237 221.033 211.223 220.12 214.721 220.12
C 38.812 50.106 38.803 50.105 35.547 43.891
I 306.736 335.415 306.736 324.383 297.14 322.014

Land-use types: non-construction land (N), public management-service land (P), residential land (R), commercial land
(C) and industrial land (I).

Figure 11. Details of the simulated urban land-use patterns in southwestern Shenzhen (Futian,
Nanshan and Baoan districts) under different urban development scenarios: (A1) UDDS, (A2) USDE
and (A3) USDB in 2020; and (B1) UDDS, (B2) USDE and (B3) USDB in 2030.
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rates eventually stabilized under the current urban land-use pattern, even though the
growth rate of the total area of residential land in Shenzhen changed.

5. Discussion and conclusions

This study improved the performance of CA simulations of fine-scale urban land-use
changes at a large scale by integrating a vector-based simulation strategy and dynamic
land parcel subdivision. First, we designed a dynamic MABR-based dynamic land-parcel
subdivision method to split large urban land parcels. Second, a DLPS-VCA model was
constructed by integrating a RFA-based regression model, which was used to mine the
mutual conversion rules of different land use, and the land parcel subdivision method,
and the correlations between the land-use conversion rules and several spatial variables
were analyzed. Third, we constructed three different scenarios of urban land-use change,
including UDDS, USDE and USDB, to simulate and analyze the land-use changes in the
study area in 2020 and 2030.

Compared to the advanced Patch-CA (Chen et al. 2016) and RFA-VCA models, the
proposed DLPS-VCA model achieved the highest simulation accuracy (FoM = 0.232) and
was most similar to the real land-use scenario (similarity = 94.73%) at the pattern level.
This result indicates that the reasonable division of land parcels during urban land-use
change modeling can accurately simulate land-use change and urban land expansion
processes simultaneously at a fine scale, which has rarely been addressed in previous
studies. Additionally, we could feasibly analyze the driving factors of various land-use
transformations and provide guidance for future urban development, based on the
urban land-use conversion rules from the RFA-based regression model. Finally, this
study obtained the land-use patterns of different development models in the study
area by adjusting the constraint factors and the total amount of land-use types. Future
studies should introduce more urban development scenarios based on the proposed
DLPS-VCA model to analyze the changes in urban land use and functional structures.

Cities are increasingly considered complicated self-adaptive systems, so the evolution
of urban land use can be depicted as intertwined processes from both top-down and
bottom-up (Tian and Shen 2011, Long et al. 2012, Chen et al. 2017). In addition to self-
organization, urban land-use changes are affected by urban planning, government
decision-making and population activities, which are very complex and random pro-
cesses that create difficulties in real land-use simulations, especially in China’s develop-
ing cities. Hence, urban land-parcel division is a random and complex process (Antrop
2004, Su et al. 2012). Although DLPS-VCA achieved good simulation accuracy, this model
still did not completely match reality. In future studies, we must consider the influence
of government decision-making and human activities and obtain more comprehensive
and accurate spatial variables through an agent-based system to improve the accuracy
of urban land-use simulations.

Determining the effects of neighborhoods is a very important issue in CA, especially
in VCA (Wu et al. 2012, Dahal and Chow 2015). This study adopted a rather simple
neighborhood strategy to analyze the influence of the neighborhood distance determi-
nation, which obtained reasonable and precise simulation results. Future work should
explore how the simulation performance of the proposed DLPS-VCA model changes if
various extended neighborhood methods are applied. We must identify the most
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appropriate neighborhood configuration to achieve the best simulation results via DLPS-
VCA and further generalize this approach for practical use.

Although the above questions have not yet been solved, CA models play an increas-
ingly important role in government decision-making and urban planning (Lu et al. 2015,
Chen et al. 2016). In fact, CA models can simulate complex dynamic urban spatial and
temporal changes and can accurately predict and explain the development of cities.
Overall, our proposed DLPS-VCA model can accurately simulate and predict complex
urban expansion and land-use changes, which should provide a valuable reference for
urban planners in the future.
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