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The biased population coverage and short temporal lengths of newly emerged data sets (e.g., data sets of

social media, mobile phones, and smart cards) obstruct the effective analysis of long-term dynamics of

landuse patterns, particularly in small and developing cities. This study proposed a framework to delineate

and analyze mixed land-use patterns and their evolution using municipal water consumption data. A two-

step classification strategy was designed based on the rotation forest scheme to differentiate the

socioeconomic types of customers (e.g., residence, commerce, public facility, manufacturing, and recreation)

using multiple features extracted from the various forms of water consumption time series. The spatial

distributions of the socioeconomic functions were then derived, and the mixed land use was measured using

a diversity index based on information entropy. Such an approach was applied to Changshu, a typical

developing county-level city in China, for the period 2004 to 2013. The results showed that the

urbanization of Changshu experienced both spatial expansion and intensification, with a slightly declining

rate of growth in recent years. Apart from the city center, two subcenters have emerged for industrial

development. The degree of land-use mixture has increased with urban growth, indicating a maturing of

urbanization. This study explored the approach of identifying individual socioeconomic functions by the

consumption patterns of municipal services and demonstrated that municipal service data sets can reveal

land-use patterns and dynamics at a fine spatial resolution to evaluate urban planning and management,

with the advantages of large population coverage and long-term temporal lengths. Key Words: land-use
patterns, mixed land use, municipal water consumption, rotation forest, social sensing.

U
rban land-use patterns are often complex

and significantly heterogeneous across cities

(Bennett, Tang, and Wang 2011; Meentemeyer

et al. 2013; Zhu et al. 2015). Urban land-use patterns

provide key information for urban planning and man-

agement, because they reflect past and current socioeco-

nomic status and human–environment interactions

(Seto, S�anchez-Rodr�ıguez, and Fragkias 2010) and

affect location-allocation decisions (Bourne 1976) and

citizen behavior (Kitamura, Mokhtarian, and Daidet

1997; Boarnet 2011). Proper land-use combinations

and arrangements are essential to the sustainability

and health of urban communities (Tian, Liang, and

Zhang 2017).
A large number of methods have been developed

to delineate and analyze urban land-use patterns.

With the advantages of wide spatial and temporal

coverages, remote sensing techniques have been

widely used in the past for land-use mapping

(Huang, Lu, and Zhang 2014; Wen et al. 2016; C.

Wu, Zhang, and Zhang 2016). Besides the classical

pixel-oriented and object-oriented classification

methods for remote sensing images (Blaschke 2010;

Zhang, Du, and Wang 2015), scene classification

methods, which use scenes rather than pixels or

objects as the basic classification units (L. Wang,

Sousa, and Gong 2004), have been applied to iden-

tify urban functional zones (i.e., areas primarily for

one or more socioeconomic functions, such as resi-

dence, industry, commerce, and recreation) and their

changes (Zhang and Du 2015). In addition, textural

classification methods, using both remote sensing

images and parcel attributes from geographic infor-

mation systems, have been used in urban land-use

mapping (S. S. Wu et al. 2009). Because the land-

use data extracted from remotely sensed images con-

tain only physical properties (Bratasanu, Nedelcu,

and Datcu 2011), lacking socioeconomic properties

that have strong correlations with human activity

(X. Liu et al. 2017), such methods have limitations

in detecting and understanding socioeconomic envi-

ronments (Y. Liu et al. 2015).
Recently, the rapid growth of big data, along with

the booming development of artificial intelligence,
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has stimulated the studies of urban land-use patterns

from the perspectives of social sensing and urban

computing through the use of various new data sets

(Elwood, Goodchild, and Sui 2012; Zheng et al.

2014; Y. Liu et al. 2015; Singleton, Spielman, and

Folch 2018). Traffic data, mobile phone data, and

social media data are the typical newly emerged data

sets that have been applied in urban land-use analysis

(Y. Jiang, Li, and Cutter 2019). For instance, mobile

phone data (Toole et al. 2012; Y. Jiang, Li, and

Cutter 2019) and taxi trajectory data (L. Yu et al.

2012) have been used to analyze urban functional

zones and land-use variations. Temporal patterns of

tweets (Soliman et al. 2017) and temporal frequency

trends of geotagged social media messages (Y. Wang

et al. 2016) have also been used to identify land-use

types. Such new data sets enable the monitoring and

analysis of socioeconomic activities in urban areas at

fine spatiotemporal resolutions (Y. Liu et al. 2015).

Mixed land use often exists in modern urban areas.

Studies have pointed out that the functional structure

of the urban environment is composed of mixed land-

use patterns (Yuan, Zheng, and Xie 2012; Chen et al.

2017; X. Liu et al. 2017; Niu et al. 2017).

Furthermore, mixed land use has close relationships

with energy consumption, transportation patterns, resi-

dent behavior, public health, and environmental prob-

lems, such as noise and air pollution (Song and Knaap

2004; Ribeiro et al. 2015; H. Yang, Song, and Choi

2016; Tian, Liang, and Zhang 2017). Several indexes

have been proposed to measure the degree of mixture

of residential and nonresidential functions in land

units (van den Hoek 2008; Tian, Liang, and Zhang

2017). Dovey and Pafka (2017) adopted the live/work/

visit triangle to analyze mixed land use and focused on

the interconnections among various functions and the

unique characteristics of New York, Barcelona, and

Bogot�a. X. Liu et al. (2017) integrated multisource

geospatial big data (e.g., social media data, taxi trajec-

tories, points of interest, and remote sensing images)

to characterize mixed-use buildings in urban areas.
Two issues, however, are associated with the use

of the newly emerged data sets in the studies of

mixed land-use patterns in urban areas:

1. Limited population coverage and biased representations:

The population coverage of the commonly used types

of big geodata, including social media data, mobile

phone data, and smart card data, largely depends on

the people who use certain types of smart devices or

Internet services (Kwan 2016). Therefore, such data

sets can only reflect the socioeconomic behaviors of

a limited proportion of the urban population.

Particularly, in small and developing cities, where

smart devices and Internet services might not be as

widely used as in large cities, such data sets could be

greatly insufficient, leading to biased and inaccurate

representations of urban socioeconomic functions.

2. Limited temporal lengths: Because social media data,

mobile phone data, and smart card data have only

been systematically collected in recent years, their

time spans are relatively short, which limits the

analysis of long-term (e.g., over ten years)

spatiotemporal dynamics.

As one of the most fundamental municipal services

in cities, municipal water is used by the majority of

citizens and covers a wide range of socioeconomic

activities in many regions, where municipal services

are well established and maintained. For example,

the Chinese government has made great efforts and

progress in improving the coverage rate of municipal

water supply in both cities and rural areas. The rural

water supply rate in Jiangsu Province, in which the

study area of this investigation is located, has

reached 96.9 percent (Luo 2008). Municipal water

supply has covered the majority proportion of cities

in China, including small and developing ones.

Therefore, compared with the newly emerged data

sets (e.g., social media, mobile phones, and smart

cards), municipal water consumption data have two

main advantages (for cities with comprehensive

municipal water services):

1. Larger population coverage and less bias: Municipal water

is usually provided or supported by government agencies,

because it is a necessity for all citizens and nearly all

human activity (Horner, Zhao, and Chapin 2011).

Therefore, municipal water consumption data have much

greater population coverage and are less biased in

characterizing the population and human activity.

2. Longer temporal spans: Municipal water consumption

data have been collected for decades in many cities

and therefore can enable the analysis of long-

term dynamics.

Efforts have been made to explore the spatial distribu-

tion of water consumption. For example, Villar-

Navascu�es and P�erez-Morales (2018) identified the

determinants of water consumption, focusing on the

variables related to urban land use and socioeconomic

factors. Chang et al. (2017) also studied the influence

of the spatial dependence of water-use patterns using a

set of spatially explicit data of water consumption,

socioeconomic activities, and biophysical environments.

2 Guan et al.



Previous studies have demonstrated that water con-

sumption is closely related to socioeconomic, cultural,

and water supply conditions (L. Shi et al. 2018), and

different types of customers exhibit different water con-

sumption patterns (J. Yang et al. 2015; Gui, Li, and

Gao 2016). Few studies, however, have used municipal

water consumption data to identify the socioeconomic

functions of urban lands and analyze mixed patterns of

land use.
Because the socioeconomic functions of urban

lands can be identified through the classification of

the water consumption patterns of individual cus-

tomers, the land-use patterns and spatiotemporal

dynamics can be delineated and analyzed. To extract

and analyze mixed land-use patterns and their evolu-

tion in cities, including small and developing ones,

this study aimed to develop a framework to identify

the socioeconomic types of individual municipal

water customers and analyze the long-term dynamics

of mixed land-use patterns. Such an approach was

applied to Changshu, a typical developing county-

level city in China, in which its mixed land-use pat-

tern and its evolution from 2004 to 2013

were analyzed.

Study Area and Data

Located at 31�310–31�500 N, 120�330–121�030 E

in Jiangsu Province, Changshu is a county-level city

in the eastern coastal area of China, where the

economy has soared over the last three decades

(Figure 1A). It covers an area of 1,264 km2, with a

population of 1,068,700 as of 2016. Industry

accounts for the largest proportion of gross domestic

product, and the textile industry has developed well

and is the leading industry in Changshu. In recent

years, with the establishment of economic develop-

ment zones, the high-tech industry has gradually

developed. Changshu can be seen as an example of

small cities where municipal services have been well

established and maintained. The municipal water

service is provided and maintained by the Changshu

Municipal Water Company, which supplied the

water consumption data for this study.

The municipal water consumption data used in

this study included the consumption records of

405,768 customers, covering a time span from

January 2004 to October 2013. Each record included

the customer ID, customer name, address, coordi-

nates, reading date, and meter reading. All of the

meter reading records for a particular customer ID

were arranged as the water consumption time series

for this customer (examples shown in Figure 1B).
Note that a customer ID corresponds to a particu-

lar user of a particular meter. As requested by the

municipal service management protocol, if the user

of a meter changes, the old customer ID must be

canceled and a new ID must be assigned. Therefore,

for a particular ID, the customer type (or socioeco-

nomic function of the customer) is consistent

throughout the entire water consumption time series

associated with that ID. The original data, however,

did not include an explicit coding of the customer

type. To delineate the land-use conditions, a method

was required to determine the socioeconomic types

of individual customers, which was one of the main

focuses of this study.

Methods

This study proposed a framework to delineate and

analyze mixed land use in urban areas based on the

classification of water consumption patterns (Figure 2).

First, anomalous values in the original water consump-

tion time series were detected and processed and the

original time series was converted into three forms of

time series with various temporal granularities and

spans. A collection of features was then extracted to

represent various aspects of consumption patterns.

Second, customers, characterized by the water con-

sumption time series features, were classified via a

two-step rotation forest classifier. In the first step, the

customers were classified into residents and nonresi-

dents. In the second step, nonresidential customers

were further classified into four types of socioeconomic

functions: commerce, public facility, manufacturing,

and recreation. Finally, customers were projected onto

their geospatial locations and the urban land-use pat-

terns were delineated and analyzed based on grid parti-

tioning. Specifically, the mixed patterns of land use

were measured and the spatiotemporal dynamics over

an extensive period of time were analyzed. The

detailed procedures are described in the follow-

ing sections.

Multigranularity Time Series and
Feature Extraction

The interval of water consumption records may

vary among cities, ranging from monthly and quarterly

Sensing Mixed Urban Land-Use Patterns 3



Figure 1. Study area and examples of water consumption time series. (A) Study area: Changshu, Jiangsu Province, China. (B) Examples

of water consumption time series with various spans and vacancies.
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(where manual reading is used) to hourly and even

minutely (where automatic reading is used). Monthly

recording was used in this study, because it was the

most commonly used interval in the past decades in

China. The methodology proposed in this study can

also be applied to water consumption data with

other intervals.

Before identifying the socioeconomic types of

individual customers, the original water consumption

time series must be preprocessed and features must

be extracted to represent the consumption patterns,

which were used for the following classification

of customers.
Anomaly Detection and Processing. Owing to

reading errors and unusual events, anomalous values

existed in the original time series and required

removal, because they would otherwise sabotage the

analysis of the long-term general patterns of water

consumption and degrade the quality of classifica-

tion. The selection of an anomaly detection method

depends on the statistical characteristics of the data,

especially the frequency distribution (M. Liu and

Zhang 2011). It was found that most anomalous

time series of water consumption contained a very

small number of extreme values at random times,

exhibiting long-tailed distributions.
Therefore, head–tail breaks, a clustering algorithm

for data with a heavy-tailed distribution (Bingham

and Spradlin 2011), was used to detect anomalous

values. The head–tail breaks method recursively

divides the data into a head section (i.e., large val-

ues) and a tail section (i.e., small values) around the

mean value, until the head no longer exhibits a

heavy-tailed distribution. Through such recursive

breaks, the extreme values (treated as anomalous

values in this study) in the water consumption time

series were identified. Each anomalous value was

then replaced by the average value of its neighbors

along the time series. It is worth noting again that

the extreme values in a consumption time series

might contain important information regarding an

individual customer (e.g., abnormal events). For a

Figure 2. Methodological framework.
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group of customers of the same socioeconomic type,

however, such extreme values would reduce the

accuracy of classification; therefore, removal was

required for the purpose of this study.
Multigranularity Time Series Conversion. The

water consumption time series of different customers

are usually irregular and inconsistent, with variations

in time span and vacancies or blanks (as shown in

Figure 1B). Therefore, time series classification and

clustering methods, such as dynamic time warping

(Chen et al. 2017), are not applicable to the identi-

fication of the socioeconomic types of individ-

ual customers.
To cope with the irregularity and inconsistency of

time series, this study adapted a classification

approach based on the features extracted from the

time series. To obtain more comprehensive informa-

tion, three forms of time series with various temporal

granularities and spans were generated from the orig-

inal time series: (1) a monthly consumption time

series covering the entire time span of the study, in

which each element represented the water consump-

tion of a particular month; (2) an annual consump-

tion time series covering the entire time span, in

which each element represented the total water con-

sumption of a particular year; and (3) a twelve-

month average consumption time series, in which

each element represented the average consumption

of a particular month in all years. For example, the

average water consumption for January of all years in

the study period was used to represent the typical

water consumption in January. These three time

series forms with various temporal resolutions and

degrees of aggregation contained a wide range of

information, including monthly variation, seasonal

variation, and annual variation, that could be

extracted as numerical features for the following

classification. It is worth noting that time series with

lengths less than one year were eliminated because

they were too short to reflect seasonal variations

and trends.
Feature Extraction. As shown in Table 1, a

total of fifty-one features were extracted from the

three time series forms, including statistical and shape

features (features 1–15 in the table), time domain fea-

tures (features 16–18 in the table), frequency domain

features (feature 19 in the table), and features based

on statistical models and other models (features

20–28 in the table). All of these numerical features

were normalized into the range of [0, 1].

Some important features were calculated as fol-

lows. The seasonal indexes reflect the seasonal varia-

tions in the time series (J. L. Shi 2001). Because

water consumption can be influenced by seasons and

other temporal factors, these indexes play an impor-

tant part in the analysis. First, xk , the average of

each period, is calculated as

xk ¼
Pn

i¼1
xik

n
, k ¼ 1, 2, :::,m, (1)

where m represents the number of periods (with

vacancies in between), n represents the number of

months in each period, and xik represents the value

of the ith month in the kth period. The overall aver-

age x is

x ¼
Pn

i¼1

Pm
k¼1

xik

nm
: (2)

The seasonal index Sk is

Sk ¼ xk
x
: (3)

Mann–Kendall is a nonparametric method used to

test the trend of a time series. This method contains

three possible hypotheses (negative trend, nonzero

trend, and positive trend), which are determined by

calculating the Mann–Kendall statistics (for details,

please refer to Moran and Kendall 1973).

Two-Step Rotation Forest for Socioeconomic Type
Classification

Once the features were extracted from the

water consumption time series for each customer,

customer socioeconomic type was then identified

through a two-step classification procedure using

rotation forest.
Rotation Forest. Stemming from the widely

used random forest, rotation forest is an ensemble

learning strategy. Ensemble learning consists of a

set of hypotheses in which each hypothesis “votes”

for the prediction (Dietterichl 2002). Knowledge

learned from base classifiers can be diverse, and mis-

labeled samples can be modified by additional classi-

fiers and samples. Therefore, multiple-classifier

ensembles can achieve better performance.
Rotation forest was first proposed by Rodr�ıguez,

Kuncheva, and Alonso (2006). It is a method for

generating classifier ensembles based on feature

extraction. It has been demonstrated that a greater

6 Guan et al.



diversity of classifiers results in better performance

(Margineantu and Dietterich 1997). Rotation forest

takes advantage of the features of random forest and

improves them (Akar 2018). As shown in Figure 3,

before the sampling of each subsample, the sample

feature set is randomly grouped and principal compo-
nent analysis (PCA) is applied to transform the fea-

tures to make the subsamples different, further

diversifying the base classifiers and, thus, improving

the accuracy (Xia et al. 2014).
The steps of rotation forest are as follows. Given a

data point described by n features, X ¼ [x1, x2, … ,

xn]
T, where X represents a data set with N training

objects in the form of an N� n matrix. Y ¼ [y1, y2,
… , yn]

T is a vector of class labels for the data, where

yi assumes a value from the set of class labels {w1, w2,

… , wc}. D1, D2, … , DL represent the classifiers in the

ensemble, where L is picked in advance and F repre-

sents the feature set.

The training set for classifier Di is constructed

through the following steps.

1. Split F randomly into K subsets (K is a parameter of

the algorithm). To maximize the chance for high

diversity, the subsets are made to be disjointed. In

addition, each feature subset contains M¼ n/
K features.

2. Fi,j represents the jth subset of features for the training

set of classifier Di. For each such subset, a nonempty

subset of classes is randomly selected and bootstrap

sampling of the objects is performed for approximately

Table 1. Features of water consumption time series

No. Group Feature

Monthly

time

series

Annual

time

series

Twelve-month

average

time series

1 Statistical and

shape features

Length of series � �
2 M � �
3 M (excluding outliers) � �
4 SD � �
5 Range � �
6 Median � �
7 Kurtosis �
8 Skewness �
9 Burstiness statistic � �
10 High–low mu statistic � �
11 Negative log-likelihood of data derived from a

Gaussian distribution

� �

12 Proportion of data points within p standard

deviations of the mean

� �

13 Moment of the distribution for the input

time series

� �

14 Simple mean-stationarity metric �
15 Coefficient of variation � �
16 Time domain features Seasonal indexes (four seasons) �
17 Trend (Mann–Kendall method) � �
18 Autocorrelation �
19 Frequency

domain features

Fitting parameters for the Fourier transform �

20 Features based on

statistical models

and other models

Fit (normally distributed or not) �
21 Fitting parameters of the normal distribution �
22 Fitting parameters of the geometric distribution �
23 Goodness of a polynomial fit to a time series

(three different parameters)

�

24 Sliding window measure of stationarity (two

different parameters)

� �

25 Entropy �
26 Approximate entropy �
27 Custom Pearson skewness measures �
28 Custom Bowley skewness measures �

Sensing Mixed Urban Land-Use Patterns 7



60 to 80 percent of the total samples (the commonly

used proportions for machine learning methods). PCA

is applied using only the M features in Fi,j and the

selected subset of X. The coefficients of the principal

components are stored, a(1)i,j, … , a(mj)i,j, where each

has a dimension of M � 1. Note that it is possible for

some eigenvalues to be zero; therefore, Mj � M. PCA

is applied to a subset of classes, instead of to the

entire set, to avoid identical coefficients if the same

feature subset is chosen for different classifiers.

3. The obtained vectors are organized, with coefficients

in a sparse rotation matrix Ri, as

Ri ¼
að1Þi, 1 a

ð2Þ
i, 1 :::a

M1ð Þ
i, 1 , ½0� � � � ½0�

½0� að1Þi, 2 a
ð2Þ
i, 2 :::a

M2ð Þ
i, 2 , � � � ½0�

..

. ..
. . .

. ..
.

½0� ½0� � � � að1Þi,Ka
ð2Þ
i,K:::a

MKð Þ
i,K ,

2
66666664

3
77777775
:

(4)

The rotation matrix has a dimension of n � P
jMj.

The columns of Ri (i.e., the features) are rearranged

such that they correspond to the original features,

which results in a rearranged rotation matrix, Ra
i

(size N� n). Then, the training set for classifier Di is

represented by XRa
i.

In the classification phase for a given x, let

di,j(xR
a
i) represent the probability assigned by classi-

fier Di to the hypothesis that x is derived from class

wj. The confidence for each class wj is calculated by

the average combination method

lj xð Þ ¼ 1

L

XL

i¼1

di, jðxRa
i Þ, j ¼ 1, :::, c: (5)

Then, x is assigned to the class with the larg-

est confidence.

Customer Socioeconomic Type Classification. In

this study, the classification of customer socioeco-

nomic types consisted of two steps. With such a

two-step classification approach, the idea of hierar-

chical classification was adopted, which can effec-

tively reduce the complexity of classification to

improve the accuracy. Two-step classification was

implemented using Weka 3.8, a freely available soft-

ware package for data mining and machine learning

(see https://www.cs.waikato.ac.nz/ml/weka/).
The first step aimed to separate residents from the

rest of the customers, because all residential water

consumption had similar features that were

Figure 3. Process of rotation forest. Note: PCA¼ principal component analysis.
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sufficiently unique to be identified. For the training

of the first classification, a total of 30,000 customers

with known resident or nonresident labels (deter-

mined by customer name) were selected as samples

and divided into the training set (60 percent), valida-

tion set (20 percent), and test set (20 percent).

Trained using the training sample set and validated

using the validation set, the rotation forest achieved

an accuracy of 83 percent for the test sample set,

which was higher than the accuracy of 81 percent

achieved by random forest. By applying the trained

model to the entire data set, 405,768 customers were

classified, resulting in approximately 91.5 percent of

customers as residents and 8.5 percent as nonresidents.
The second step then considered the variations

among types of nonresidential water consumption.

The nonresidential customers were further classified

into commerce, government and public facilities,

manufacturing, and recreation. The number of sam-

ple customers with known socioeconomic functions

(determined by customer name) varied greatly across

the classes. To balance the sample size by increasing

the sample sizes for the classes with fewer customers,

random sampling with replacement was used such

that some customers might be sampled more than

once. Finally, approximately 20,000 samples were

obtained, and the proportions of the training, valida-

tion, and test sets were also 6:2:2. After training and

validation, the classification achieved an accuracy of

76 percent over the test set. The classification results

of all nonresidential customers showed that the pro-

portions of commerce, government and public facili-

ties, manufacturing, and recreation were 29.6

percent, 8.1 percent, 54.8 percent, and 7.5 percent,

respectively.

Delineating Mixed Land-Use Patterns

After all customers’ socioeconomic types were

identified, the land-use patterns of all years were

delineated by projecting the socioeconomic types at

their corresponding locations. Because the locations

of customers are points, the spatial area of the land

use of each customer is unknown. Therefore, instead

of analyzing the areal structure of land use as per-

formed in many other studies (Eck and Koomen

2008; Tian, Liang, and Zhang 2017), this study

focused on the intensity structure of land use in

each land unit. The concept of land-use intensity is

often used in agricultural and environmental studies,

referring to land-based production in a broad sense

(including agriculture, grazing, and forestry), which

can be measured by various metrics of inputs (capi-

tal, labor, and technologies) and outputs or effects

(agricultural products and biodiversity) per land unit

(Kuemmerle et al. 2013). This study expanded the

concept and defined the intensity of a certain type

of land use as the intensity of the corresponding

socioeconomic activities, which can be reflected by

the amount of water consumption of the correspond-

ing type of customers within a land unit. In other

words, the land-use patterns were derived from the

structural composition of water consumption within

a group of land units.

Two sets of maps were produced to represent the

mixed land-use patterns using the results of the two

classification steps: one for residential and nonresi-

dential types from the first classification and the

other for all five types of socioeconomic types from

the second classification. The mapping procedure

was as follows: (1) the entire study area was divided

into regularly shaped 500m� 500m grids (a total of

5,485 grids) and (2) the amounts of water consumed

through the various socioeconomic activities and

their percentages within each grid were calculated to

indicate the intensities of the socioeconomic activi-

ties in a land unit. In addition, the growth of total

water consumption over the years was calculated for

each grid to represent the expansion and intensifica-

tion processes of socioeconomic activities.
After the first step of classification, the customers

were divided into residents and nonresidents. Based

on the ratio of residential to nonresidential water

consumption in each grid, the land-use pattern of

residential–nonresidential functions was obtained.

To understand the distributions of urban residential

and nonresidential land use, kernel density analysis

(Portnov and Zusman 2014) was deployed to identify

the city centers.
After the second step of classification, the nonres-

idential customers were further divided into four

types: commerce, government and public facility,

manufacturing, and recreation. All five types of cus-

tomers (i.e., residents and four types of nonresiden-

tial customers) were used to analyze mixed land use.

To quantify the mixed degree of landuse, the landuse

diversity index based on information entropy (L. I.

Jiang and Guo 2002) was used. Instead of the areas

of land-use types, the water consumption amounts of

various types of customers were used to measure the
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mixed degree in every 500m� 500m grid. The

diversity index was calculated as follows.

The total water consumption within a grid is

denoted as S, number of land-use types is denoted as

m, and amount of water consumption for the ith
type within the grid is denoted as Si.

S ¼
Xm

i¼1

Si, i ¼ 1, 2, :::,m: (6)

Therefore, the proportion of the ith type within the

grid can be calculated as

Pi ¼ Si
S

X
i

Pi ¼ 1: (7)

According to the theory of information entropy, the

land-use diversity index H is defined as

H ¼ �
Xm

i¼1

Pið ÞlnðPtÞ: (8)

This index describes the complexity of land-use types,

in which a larger H indicates a higher degree of land-

use mixing in the area. H¼ 0 indicates unmixed land

use. When S1 ¼ S2 ¼ … ¼ Sm, Hmax ¼ ln(m), and
the mixed land use is well proportioned. In general,

more types and better proportions indicate that the

mixed land-use diversity is higher.

Results

The results showed that the number of municipal

water customers (especially residential customers)

gradually increased during the period of 2004 to

2013 in Changshu (Figure 4A). Among the four cat-

egories of nonresidential customers, manufacturing

and commercial customers saw large increases during

the time period (Figure 4B).

Overall Water Consumption Patterns

The spatial distributions of water consumption for

all years were represented by a series of maps, depict-

ing the spatiotemporal dynamics of water consump-

tion during the period of 2004 to 2013. Over the

ten years, the proportion of grids with nonzero water

consumption increased from 46.73 percent to 55.31

percent of the 5,485 grids, and the average water

consumption per grid increased from 1897.36m3 to

2674.3m3, indicating not only the spatial expansion

but also the intensification of socioeconomic

activities in Changshu (Figure 5). Furthermore, the

areas with higher water consumption (hot spots) are

clearly shown in Figure 5A, indicating the spatial

concentration of socioeconomic activities. Figure 5B
shows that the areas with rapid water consumption

growth were concentrated around the city center in

the early years (i.e., 2004–2007) and then gradually

spread out over the years. In particular, the subcen-

ters in the northeast and south experienced high
water consumption growth in later years. Overall,

the growth of water consumption was faster in the

early years, indicated by the rapid expansion of non-

zero consumption grids (i.e., newly appeared grids in
Figure 5B) and the large number of grids with high

growth rates (i.e., red grids in Figure 5B).

Residential Land Use versus Nonresidential
Land Use

The ratio of residential/nonresidential water con-

sumption can be used as an indicator to identify typ-

ical residential areas in the city (Zelinsky and Sly
1984). The higher the ratio, the more likely the area

Figure 4. Profile of the number of customers for the various

types of socioeconomic functions from 2004 to 2013. (A)

Changes in the numbers of residential and nonresidential

customers. (B) Changes in the numbers of four types of

nonresidential customers.
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Figure 5. Spatial distributions and growth rates of water consumption from 2004 to 2013. (A) Spatial distributions of water consumption

in various years, where darker blue indicates higher water consumption. (B) Growth rates of water consumption from 2004 to 2013,

where cooler color (i.e., negative growth rate) indicates larger decrease of water consumption and warmer color (i.e., positive growth

rate) indicates larger increase of water consumption.
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is a residential community. As shown in Figure 6,

Grid A (located in the Longjiang community) and

Grid B (located in the Hejiabang community) are

typical residential areas, because their ratios of resi-

dential/nonresidential consumption are 0.996 and

0.956, respectively. On the contrary, Grid C

(located in an industrial park in the town of

Yushan) and Grid D (located in the Changshu high-

tech industrial development zone) are typical non-

residential areas, because their ratios are 0.088 and

0, respectively. The twelve-month average consump-

tion time series of these grids are also shown in

Figure 6. The water consumption curves of the resi-

dential grids (e.g., Grids A and B) are similar, in

terms of both amount and temporal variation. The

curve usually has a spike during the period from

June to October (Figures 6A, 6B), which is a typical

seasonal characteristic of residents. However, the

water consumption curves of nonresidential grids

(e.g., Grids C and D) are relatively various, because

different nonresidential functions result in different

water consumption patterns (Gui, Li, and Gao

2016). Some exhibit apparent seasonality, whereas

other fluctuate. For example, Grid C is an industrial

area where some material factories are located,

whereas Grid D is a commercial area where some

electronic corporations are located, resulting in quite

different water consumption curves (Figures 6C,

6D). In general, water consumption patterns are

largely related to the socioeconomic activities;

hence, they are related to the land-use types.
The results of the kernel density analysis showed

that there was one large residential center in the

central area of the city, in which the residential

land use had been gradually intensified over the

years, indicated by the increase in residential water

consumption in this area (Figure 7A). As for nonres-

idential land use, a main center was located in the

central area of the city in the early years, later split

into several smaller subcenters around the central

area (Figure 7B). Meanwhile, some subcenters

appeared in the northeast and south and expanded

gradually over the years. In addition, the distribution

and evolution of the overall water consumption

(Figure 7C) were more similar to those of nonresi-

dential socioeconomic functions, indicating that

nonresidential users had a greater influence than res-

idential users in terms of water consumption.
The central area of Changshu was clearly the core

of the city, where a large number of residents,

manufacturing, and retail activities were located.

The subcenters in the northeast and south (Regions

1 and 2 in Figure 7C) emerged in later years where

nonresidential activities were clustered, resulting in

a higher proportion of nonresidential land use. The

gradual expansion and intensification of socioeco-

nomic activities occurred at these subcenters during

the time span of the study. These phenomena were

Figure 6. Water consumption time series of typical residential and nonresidential grids. Grids A and B represent typical residential areas,

Grid C is an industrial area, and Grid D is a commercial area.
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inseparable from the development of Changshu.

Explanations in detail are given later.

Mixed Urban Land-Use Patterns

The land-use diversity analysis showed that highly

mixed grids were concentrated in the centers of the

city and towns, indicating a higher degree of urbani-

zation with relatively well-balanced work–residence

mixture and more convenient access to various facil-

ities for residents (Figure 8). Furthermore, some

highly mixed grids were distributed along the major

roads, because convenient accessibility is one of the

key factors in the concentration and intensification

of nearly all types of socioeconomic activities.

Temporally, the degree of land-use mixing

increased throughout the study period. The propor-

tion of mixed grids increased from 33 percent in

2004 to 42 percent in 2013. Meanwhile, the aver-

age land-use diversity index for all nonzero water

consumption grids increased from 0.26 to 0.34. In

addition, Figure 8 shows that mixed land use

expanded from the central area to its surrounding

areas. The increase in land-use mixing mainly

occurred in the central area of the city in the early

years and then scattered into other areas (especially

the northeastern and southern subcenters) in later

years. Such a trend in land-use mixing was consis-

tent with the spatiotemporal dynamics of the over-

all water consumption, indicating the maturity of

urbanization following the spatial expansion of

urbanization.

We also identified the dominant socioeconomic

function of each grid according to the proportions of

socioeconomic types. As shown in Figure 9, the fol-

lowing observations were found.

1. Resident-dominated grids occupied the largest

proportion of the urban area.

2. Grids dominated by recreational functions (including

the catering industry, shopping malls, and other

leisure venues) only comprised a very small part of the

Figure 7. Concentrated areas of (A) residential water consumption, (B) nonresidential water consumption, and (C) overall water

consumption during 2004 to 2013. Because nonresidential water consumption is much larger than residential water consumption,

different intervals are used in (A), (B), and (C).
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Figure 8. Mixed land-use patterns during 2004 to 2013. (A) Mixed land-use patterns in various years measured by the land-use diversity

index, where darker red indicates a higher degree of land-use mixing. (B) Changes in land-use diversity indexes from 2004 to 2013,

where cooler color (i.e., negative value) indicates a larger decrease in land-use mixing, and warmer color (i.e., positive values) indicates a

larger increase in land-use mixing.
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urban area and were mainly distributed in the city

center and town centers.

3. Grids dominated by public facilities (e.g., government

agencies and infrastructures) were also rare, because

public facilities were often mixed in residential or

various industrial areas but did not occupy a dominant

proportion. This type of grid was mainly located in

the city center and town centers.

4. Manufacturing-dominated grids accounted for the

second largest proportion of the urban area and were

distributed in several areas; for example, in the

northeastern and southern subcenters and along the

main roads.

5. Commerce-dominated grids were the second largest

nonresidential land use, with a distribution similar to

that of the manufacturing grids.

Discussion and Conclusions

Mixed urban land-use patterns are formed during

the process of urban development and are mainly

affected by socioeconomic activities. This study pro-

posed a framework to delineate and analyze mixed

land-use patterns and dynamics by identifying the

socioeconomic types of individual municipal water

customers and measuring land-use mixing using

information entropy. Through the application of the

proposed framework to a typical county-level city in

China, Changshu over the ten-year period of 2004

to 2013, the following observations were made.

Rapid Urbanization with a Declining Rate. The urbaniza-

tion of Changshu experienced both spatial expansion

and intensification during the period from 2004 to

2013. The development rate was high in the early

years and gradually declined in the later period. The

expansion of the central area and the developments

along the river were consistent with the findings

from other studies regarding the urbanization of fast

developing areas in China (Chen et al. 2013). Many

studies have demonstrated that Changshu is a city

with rapid urbanization (Cao and Zhang 2010).

Rapid development often leads to problems, how-

ever, such as insufficient facilities and large differ-

ences between urban and rural areas, eventually

resulting in a decrease in the pace of urbanization

(T. Yu, Zhang, and Luo 2010). Our study revealed a

large difference in urbanization between the central

area and suburban or rural areas and a decrease in

the urbanization rate in recent years in Changshu,

in accordance with previous studies.

Rise of Subcenters for Industrial Development. Besides the
main center of Changshu, two subcenters gradually

emerged in the northeast and south over the study

period. The central area, Yushan town, was the most

developed part of Changshu, with the largest popula-

tion and highest gross domestic product. The textile

industry has been well established in Yunshan, which

was known as the textile town famous for winter

clothing manufacturing (Zhao 2013). The formation

of subcenters in the northeast and south was due to

the development of national-level economic and

technological development zones. In recent years,

high-tech industries, such as automobile and machin-

ery manufacturing, have been rapidly growing in the

development zones, resulting in a higher proportion

of nonresidential land use.

Increasing Degree of Land-Use Mixture. The land use of

the central area of Changshu was highly mixed, and

the degree of land-use mixture has increased along

with urban growth, indicating the maturing process

of urbanization. The textile industry in Changshu,

Figure 9. Spatial distribution and areal proportions of dominant

landuse types in 2013. (A) Spatial distribution of dominant land-

use types in 2013. (B) Areal proportions of dominant landuse

types in 2013.
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especially in Yushan town, started as family-owned

manufacturing businesses in the early years. With

the growth of the textile industry, the center of

Changshu gradually developed into an area in which

a large number of residents were integrated into the

functions of the textile industry, including produc-

tion and sales. This increasing degree of mixture was

partly caused by the spatial concentration of indus-

try, especially in Yushan town (central area of

Changshu) and Bixi District (subcenter in the

northeast; Ding et al. 2014).
Methodologically, this article presents a new

approach to quantitatively delineating and analyzing

mixed urban land use. Compared with existing data-

driven urban land-use studies, the main contribu-

tions of this article can be described in two aspects.

First, this article proposes a framework to identify

the socioeconomic types of individual customers and

analyze mixed land-use patterns using municipal

water consumption data. Through the transformation

from the original time series to multigranular time

series and the extraction of features, the proposed

method can handle the irregular and inconsistent

time series of municipal services. Furthermore, with

the adoption of the idea of hierarchical classifica-

tion, the two-step rotation forest used in this frame-

work can effectively improve the accuracy of

classifying complex consumption patterns.
In the application to Changshu, the municipal

water customers were first classified into residents

and nonresidents with an accuracy of 0.83, and the

nonresidents were further classified into four socio-

economic types with an accuracy of 0.76. Such clas-

sification accuracies are comparable with those of

other studies on land-use classification using social

sensing data. The accuracies obtained using a single

data source are often below 0.8. For example, in the

Toole et al. (2012) study, the land-use classification

based on mobile phone activities using random forest

achieved an accuracy of 0.54, whereas the accuracy

for nonresidential land use was 0.4. Based on points

of interest, Yao et al. (2017) achieved an accuracy of

0.55 using frequency-inverse document frequency, an

accuracy of 0.74 using probabilistic latent semantic

analysis, and an accuracy of 0.67 using latent

Dirichlet allocation. Therefore, our study demon-

strated that through the classification of individual

customer socioeconomic functions based on municipal

water consumption patterns, urban land-use patterns

can be delineated at fine scales.

Second, this article presents the analysis of long-

term urban land-use dynamics, whereby commonly

used big data sources, such as social media, can only

reflect short-term land-use patterns and remote sens-

ing data can hardly reflect socioeconomic informa-

tion. In addition, previous data-driven urban land-

use studies mostly focused on large or developed cit-

ies, because of the easy availability and large popula-

tion coverage of social media and public transit data

for large cities. This study takes advantage of the

fact that municipal water consumption data cover a

major proportion of the population and a wide range

of socioeconomic activities, which provides an

opportunity for the study of small or developing cit-

ies and towns where smart devices and Internet serv-

ices are less widely used. In addition, this article

sheds light on the overall distributions and long-

term evolution of mixed land use in cities, as well as

the relevant formation mechanisms. These elements

help to not only understand the process of urbaniza-

tion but also discover the characteristics of a specific

city, which is key to the sustainable development

and management of cities.
This study also has limitations. There are still

some developing cities in China where municipal

water is not as widely available as in the study area

presented in this article, and the water consumption

data might not cover a major proportion of the popu-

lation. In future work, we will discuss the bias of

water consumption data and consider the use of mul-

tisource data fusion to improve the population cover-

age. Moreover, we have not obtained municipal water

consumption data from other cities. If this method is

applied to other cities, we need to fully consider the

spatial and temporal heterogeneities among cities. In

addition, the classification granularity of the socioeco-

nomic types in this study is relatively coarse. In our

future work, more detailed classification will be intro-

duced to differentiate the different types of industrial

and commercial functions.
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