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A B S T R A C T

Better bicycle-transit integration improves the efficiency and sustainability of public transportation systems in
urban areas. Urban greenness around metro stations may affect the use of cycling to or from metro stations.
However, the evidence for the association between urban greenness and cycling behaviors is inconclusive. In
addition, few studies have been conducted in developing countries, such as China, which enjoyed the reputation
of cycling nation until the late 1990s and witness a big comeback of cycling in the last several years. This study
aimed to explore the relationship between eye-level greenness and cycling behaviors around metro stations in
Shenzhen, China, based on free-floating bicycle data and street-view image data. The results indicate that eye-
level greenness was positively associated with cycling frequency on weekdays and on weekends within three
buffer sizes around metro stations (500-m, 1000-m, and 1500-m). The effect of eye-level greenness on cycling
frequency was greater on weekends than on weekdays. Our findings suggest that providing sufficient and visible
greenery along streets and cycling lanes around metro stations may promote cycling use and bicycle-transit
integration.

1. Introduction

Cycling can benefit both individuals’ health (Oja et al., 2011) and
the environment (Maibach, Steg, & Anable, 2009). First, cycling can
increase moderate to vigorous physical activity, and hence benefits
people’s physical health byreducing the risk of obesity (Mcpherson,
2014), cardiovascular diseases (Poirier et al., 2006), diabetes and even
cancer (Kushi et al., 2010). It can also improve mental wellbeing and
reduces stress (Fox, 1999). Second, because cycling consumes little
fossil fuels, it is an environmentally friendly transportation mode that
reduces air pollution, noise and CO2 emissions (Cao & Shen, 2019;
Fraser & Lock, 2011).

Cycling for transportation purposes can be classified into two types:
cycling as the sole transportation mode for the entire trip or in com-
bination with other transportation modes, such as public transit systems
(e.g., cycling from home to a metro station and then taking the metro to
one’s office, which is often denoted bicycle-transit integration) (Lin et al.,

2018; Zhao & Li, 2017). In recent years, bicycle-transit integration has
attracted great attention from both policymakers and researchers be-
cause cycling is a sustainable and flexible transport mode that can re-
duce car use around transit stations (Martens, 2004) and improve
people’s transfer efficiency (Bachand-Marleau, Larsen, & El-Geneidy,
2011). However, studies have focused mainly on cycling as a sole
transportation mode, and evidence for bicycle-transit integration is
scarce (Zhao, 2014). Compared with cycling as a sole transportation
mode, the combination of cycling with other travel modes usually in-
volves shorter cycling distances and is more influenced by the en-
vironment around transit stations (Lin et al., 2018; Zhao & Li, 2017).

Several factors may have led to the general lack of bicycle-transit
integration studies, especially in China. First, previous studies mainly
used questionnaires about various built environment characteristics
within the participants’ neighborhood that may be a poor spatial mis-
match with the cycling trip legs in bicycle-transit integration (e.g., from
the transit station to the office) (Singleton & Clifton, 2014; Wang & Liu,
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2013). Although some recent studies have conducted surveys in transit
stations such as metro stations (Zhao & Li, 2017), these can be too
costly and labor-intensive and may only comprise a small sample size.
Second, with the implementation of Global Positioning System (GPS)
devices in free-floating bike-sharing systems, researchers can effectively
assess the use of bicycles around transit stations (Caggiani, Camporeale,
Ottomanelli, & Szeto, 2018; Pal & Zhang, 2017; Wu, Lu, Lin, & Yang,
2019). However, most studies based on free-floating bike data have
focused only on developed countries (Pal, Zhang, & Kwon, 2017; Shen,
Zhang, & Zhao, 2018), and only a handful of studies have focused on
developing countries, because free-floating bicycles bicycle-sharing
systems have just begun to expand in developing countries (Chen,
Wang, Sun, Waygood, & Yang, 2018; Du & Cheng, 2018; Wu et al.,
2019; Xin, Chen, Wang, & Chen, 2018).

According to socio-ecological models, cycling behaviors are influ-
enced by an array of individual, social and environmental factors (Sallis
et al., 2006). Environment characteristics such as light conditions,
noise, temperatures and air quality have long been recognized as im-
portant factors influencing cycling behavior (Fraser & Lock, 2011).
Compared with other environment factors, built environment char-
acteristics have attracted increasing attention because built environ-
ment interventions can be implemented by urban planning or re-
developments initiated by policymakers (Eren & Uz, 2019; Leister,
Vairo, Sims, & Bopp, 2018; Porter et al., 2019). Among built environ-
ment characteristics, urban greenness is arguably one of the most im-
portant factors for two reasons. First, greenness can provide shade and
pleasant scenery, which may increase the comfort and attractiveness of
cycling trips and improve people’s willingness to cycle (Lu, An, Hsu, &
Zhu, 2019; Lu, Yang, Sun, & Gou, 2019; Porter et al., 2019). Second,
improving urban greenness is less costly (Jim & Chen, 2006; Liu, Chen,
Feng, Peng, & Kang, 2016; Xiao, Lu, Guo, & Yuan, 2017) and has many
other benefits, such as improving residents’ health (Helbich et al., 2019;
Liu, Wang, Grekousis et al., 2019, 2019b; Wang, Helbich et al., 2019)
and reducing noise and air pollution (Pacifico, Harrison, Jones, & Sitch,
2009; Su, Jerrett, de Nazelle, & Wolch, 2011).

The findings from studies that focused on the associations between
urban greenness and cycling behaviors are, however, inconsistent.
Some studies found a positive association between urban greenness and
cycling behaviors (Cole-Hunter et al., 2015; Fraser & Lock, 2011; Kerr
et al., 2015; Krenn, Oja, & Titze, 2014; Lu, An et al., 2019; Lu, Yang
et al., 2019; Porter et al., 2019; Zhao & Li, 2017). For example, Porter
et al. (2019) found that parks and tree canopy coverage had a positive
association with cycling frequency in Austin, Texas and Birmingham,
Alabama in the United States. Krenn et al. (2014) reported that cyclists
are more likely to choose routes with more street greenery. Fraser and
Lock (2011) reviewed 21 studies related to the relationship between the
built environment and cycling and concluded that green space has a
weak or moderate association with cycling. Yet, some studies found no
association between urban greenness and cycling (Christiansen et al.,
2016; Sun, Du, Wang, & Zhuang, 2017). For instance, Christiansen et al.
(2016) compared cycling behaviors from 14 cities in 10 countries and
found no significant association between urban greenness and cycling
behavior. Sun et al. (2017) also reported no association between one’s
proximity to greenspace and cycling behavior. In contrast, some studies
reported negative associations between urban greenness and cycling
(Mertens et al., 2016, 2017). For example, the presence of trees showed
a negative association with cycling time in five large European cities
(Mertens et al., 2017).

In recent years, researchers began to realize that assessing methods
of urban greenness may at least partially explain the inconsistent
findings for greenness-cycling associations. For example, Lu, An et al.
(2019); Lu, Yang et al. (2019) found positive associations between cy-
cling behaviors and eye-level greenness assessed by street-view images,
but not with overhead view greenspace assessed by normalized differ-
ence vegetation index (NDVI) extracted from satellite images. Studies of
built environments and cycling mainly assess greenness via GIS-based

methods (e.g., park area or NDVI) that capture greenspace exposure
from an overhead perspective (Lu, An et al., 2019; Lu, Yang et al., 2019;
Porter et al., 2019). However, some researchers have argued that eye-
level greenness measures may better represent cyclists’ perceived
greenness than overhead measures (Helbich et al., 2019; Lu, An et al.,
2019; Lu, Yang et al., 2019; Van Renterghem & Botteldooren, 2016;
Wang, Helbich et al., 2019), although less evidence is available to
support this claim, mainly due to methodological limitations (Lu, An
et al., 2019; Lu, Yang et al., 2019).

Traditional methods for assessing eye-level greenness include
questionnaires (Takano, Nakamura, & Watanabe, 2002) and field-audit
methods (de Vries, Van Dillen, Groenewegen, & Spreeuwenberg, 2013),
but they are expensive and time-consuming (Helbich et al., 2019; Lu,
An et al., 2019; Lu, Yang et al., 2019; Wang, Helbich et al., 2019).
Recent development of machine learning and street-view image ser-
vices (e.g., Google Street Image) allow the rapid extraction of eye-level
greenness data from street-view images on a large geographic scale
(Helbich et al., 2019; Lu, An et al., 2019; Lu, Yang et al., 2019; Wang,
Helbich et al., 2019). This novel method has proven useful in assessing
eye-level greenness exposure and has recently been used in epidemio-
logical studies (Helbich et al., 2019).

In sum, several gaps must be addressed in studies of the association
between the built environment and cycling. First, studies have focused
mainly on cycling behaviors in residential neighborhoods, but less at-
tention has been paid to cycling behavior as a transfer mode in bicycle-
transit integration (i.e., cycling to or from transit stations). Second,
although bicycle-transit integration has attracted some research atten-
tion in developed countries, evidence from developing countries re-
mains scarce. Third, most cycling trips occur on streets or designated
cycling lanes along streets, so greenness extracted from eye-level street-
view images are more likely to reflect cyclists’ daily greenness exposure
(Lu, 2019). However, previous studies mainly used overhead-view
greenspace indicators such as park area or NDVI to assess greenspace
exposure, thus leading to inconsistent findings.

This study aimed to use free-floating bicycle data to explore the
relationship between eye-level greenness and cycle use around metro
station areas in Shenzhen, China, by focusing on the effect of eye-level
greenness on the frequency of shared bicycle trips to or from metro
stations. We further explored whether there was any temporal variation
in the greenspace-cycling associations, by comparing the associations
on weekdays and thoese on weekends. This study extended previous
research in several respects. First, it enhanced our knowledge of the
built environment–cycling association by focusing on bicycle-transit
integration around metro stations. Second, it used free-floating bike big
data to assess cycling use in China, which enriched our understanding
of cycling behaviors in developing countries. Third, this study focused
on eye-level greenness exposure based on street-view image data and
further enhanced our knowledge of the effects of urban greenspace on
cycling behavior.

2. Methods

2.1. Variables

2.1.1. Outcome: cycling frequency
In this study, the cycling data was obtained from a large bike-

sharing company, Mobike, with a major market share in Shenzhen,
China. Mobike was the first free-floating bicycle-sharing system which
entered in Shenzhen from October 2016. Mobike had a fleet of 900,000
bicycles in Shenzhen as of December 2017 (Wu et al., 2019). Shenzhen
municipality provide designated bike parking areas near metro stations
for public-sharing bicycles only, but not for personal-owned bicycles.
Hence, many people using Mobike bicycles around metro stations. The
data consisted of approximately 20 million cycling trips in Shenzhen
over a 14-day period from 1 to 14 December 2017. The weather during
this period was sunny, and the temperature ranged from 16 °C to 25 °C,
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which was suitable for cycling. The location (latitude, longitude) and
the time-stamps for the origin and destination were recorded in the
original data for each trip.

We focused on cycling trips around metro stations and trips that
began or ended within three buffer zones (with a radius of 500-m,
1000-m, and 1500-m) were counted from the original data. The de-
pendent variable was the frequency of bike trips per day around metro
stations for each station. The cycling frequency data were further se-
parated into workdays and weekends to identify any potential temporal
differences.

The data processing consisted of three steps: data cleaning, estab-
lishing buffer zones around each metro station, and assigning cycling
trips to each metro station. First, we excluded cycling trips with an
abnormal duration (< 1 min or> 30 min) or speed (> 3 m/s). The
cycling speed was calculated as the ratio of straight-line trip distance
(based on start and end points of a trip) and duration, as shown in
Equation (1). The actual trip distance is longer than straight-line dis-
tance, however we cannot identify the actual trip distance due to the
lack of trip route data.

=
− + −

Speed
(X X ) (Y Y )

Durationn
a b

2
a b

2

n (1)

where a and b represent the start and end points, and X and Y represent
the latitude and longitude, respectively.

Second, to examine the effects of urban greenspace on cycling be-
havior on various spatial scales, we chose three buffer-zone radii from a
metro station (500, 1000, and 1500 m) (Fig. 2). To avoid any potential
overlapping between buffer zones (Fig. 1a), the Thiessen polygon
method was used to create non-overlapping buffer-zones (Fig. 1b)
(Alani, Jones, & Tudhope, 2001; Lu, An et al., 2019; Lu, Yang et al.,
2019; Pardo‐Igúzquiza, 1998; Rhynsburger, 1973). In this way, each
cycling trip could be assigned to a sole metro station. The Thiessen
polygons were created by taking metro stations as discrete points in
ArcGIS 10 (Esri Inc., Redlands, CA). Finally, the number of cycling trips
on both weekdays and weekends were calculated for each metro sta-
tion.

2.1.2. Eye-level greenness exposure
We collected street-view images from Tencent Online Map (https://

map.qq.com), the most comprehensive online street-view image data-
base in China, as previously described (Helbich et al., 2019; Wang,
Helbich et al., 2019, 2019b; Wang, Liu et al., 2019). Street-view sam-
pling points were created with 100-m spacing along the street network
in Shenzhen. The street-network data in 2016 were obtained from
OpenStreetMap (Haklay & Weber, 2008). For each sampling point, we
collected street-view images with four headings of 0°, 90°, 180°, and
270° (Helbich et al., 2019; Wang, Helbich et al., 2019, 2019b, 2019c).

We collected 262,140 street-view images from 65,535 sampling points
in this study.

Following previous studies (Helbich et al., 2019; Wang, Helbich
et al., 2019, 2019b; Wang, Liu et al., 2019), a fully convolutional neural
network of semantic image segmentation (FCN-8 s) was used to assess
eye-level greenness exposure based on the ADE20 K dataset of anno-
tated images for training purposes (Zhou et al., 2019). This method can
segment images into different ground objects with artificial in-
telligence. It can outperform color-based segmentation method, for
example, green cars in this study would be identified as car instead of
vegetation. After image segmentation, the proportion of all vegetation
(e.g. grasses, trees and shrubs) in each images was calculated as street-
view greenness (SVG). The accuracy of the FCN-8 s was with 0.814 for
the training data and 0.811 for the test data. The SVG for a sampling
point was determined as the average SVG of four images with four
headings for that point. We calculated the SVG for each metro station
by averaging the SVG values for all sampling points within the 500-m,
1000-m, and 1500-m circular buffers around the centroid of each metro
station.

2.1.3. Covariates
Following previous studies (Lu, An et al., 2019; Lu, Yang et al.,

2019; Porter et al., 2019; Zhao & Li, 2017). We calculated the built
environment factors that may influence cycling within the buffer-zones
around each metro station. These factors were population density,
street intersection density, land-use mix, the number of bus stops and
retail stores, and the terrain slope. The population density was defined
as the residential population per unit of land area. The street inter-
section density was defined as the number of intersections per unit of
land area. The land-use mix (entropy score) was calculated by the
number of land-use types (residential, working, commercial, and lei-
sure) based on points of interest (POIs) obtained from Gaode POI data
using an API interface (https://www.amap.com/). The data consisted of
various categories of facilities such as residential communities, com-
mercial and business areas, tourist attractions, food and shopping pre-
cincts, educational facilities, government and public service buildings,
financial services zones, and public facilities. We also calculated the
number of bus stops and retail shops with POI data. The average degree
of slope within the buffer zones was calculated based on the 30-m slope
raster file, which was obtained from the geospatial data cloud (GDC) in
China (https://www.gscloud.cn/).

2.2. Data analysis

Since the dependent variable was a count variable, we used a
multivariate Poisson regression model to examine the association be-
tween SVG and the cycling frequency around metro stations. The full
model was specified as follows (Equation (2)):

Fig. 1. Buffer areas around metro stations.
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where yi represents the use of shared bikes around a metro station, SVGi

represents a vector of variables of SVG, Covariatesi represents a vector
of covariates, λ represents the Poisson event rate, and εi represents
random errors.

The cycling frequencies on weekdays and weekends were examined
separately in two regression models, because previous studies indicated
that people’s cycling behaviors may vary between weekdays and
weekends (Ho & Mulley, 2013). Furthermore, we used three buffer-zone
sizes around metro stations to explore whether the association between
cycling frequency and SVG varied across spatial scales (Wu et al.,
2019).

3. Results

3.1. Descriptive statistics

Table 1 summarizes the characteristics of the variables. The average
cycling frequency increased with the buffer-zone size and was higher on
weekdays than on weekends. The average cycling frequencies on
weekdays were 2566.383 (500-m buffer zone), 4664.826 (1000-m
buffer zone), and 5686.946 (1500-m buffer zone), whereas the average
cycling frequencies on weekends were 2319.479 (500-m buffer zone),
4293.761 (1000-m buffer zone), and 5257.203 (1500-m buffer zone).
The average SVG values around metro stations (0.280 in the 500-m
buffer zone, 0.267 in the 1000-m buffer zone, and 0.241 in the 1500-m
buffer zone) decreased with the buffer-zone size.

The average population densities were 76542.487 (500-m buffer
zone), 67311.535 (1000-m buffer zone), and 55590.381 (1500-m buffer
zone), whereas the average street intersection densities were 48.903

(500-m buffer zone), 45.080 (1000-m buffer zone), and 42.484 (1500-
m buffer zone). Thus, both variables decreased with the buffer-zone
size.

In addition, the average numbers of retail shops were 49.851 (500-
m buffer zone), 99.299 (1000-m buffer zone), and 159.880 (1500-m
buffer zone), whereas the average numbers of bus stops were 47.072
(500-m buffer zone), 77.479 (1000-m buffer zone), and 42.484 (1500-
m buffer zone). Thus, both variables increased with the buffer-zone
size.

The average land-use mix values were 0.802 (500-m buffer zone),
0.792 (1000-m buffer zone), and 0.803 (1500-m buffer zone), whereas
the average terrain slopes were 5.904° (500-m buffer zone), 5.734°
(1000-m buffer zone), and 6.062° (1500-m buffer zone).

3.2. Associations between SVG and cycling frequency around metro stations

Table 2 presents the associations between SVG, the built environ-
ment characteristics, and cycling frequency around metro stations on
weekdays in the three buffer zones. SVG showed a positive association
with cycling frequency in all three buffer zones.

With respect to the covariates, the population density, street inter-
section density, land-use mix score showed positive associations with
cycling frequency. However, the number of retail shops showed a ne-
gative association with cycling frequency in the 1000-m and 1500-m
buffer zones. The terrain slope showed a negative association with cy-
cling frequency. The number of bus stops did not show a significant
association with cycling frequency in any buffer zone.

Table 3 presents the associations between the SVG, the built en-
vironment characteristics, and cycling frequency around metro stations
on weekends. SVG again showed a positive association with cycling
frequency in all three buffer zones.

For covariates, the population density, street intersection density,

Fig. 2. 500-m,1000-m,1500-m Thiessen-Polygon buffers.
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land-use mix score showed positive associations with cycling frequency.
The number of retail shops showed a negative association with cycling
frequency in the 1000-m and 1500-m buffer zones. Finally, the terrain
slope showed a negative association with cycling frequency. The the
number of bus stops showed no significant association with cycling
frequency in any buffer zone.

4. Discussion

4.1. Eye-level greenness and cycling frequency around metro stations

Our results suggest that eye-level greenness exposure was positively
associated with cycling frequency on both weekends and weekdays in
all three buffer zones. Previous studies also found that greenspace ex-
posure assessed in terms of the size of urban parks showed a positive
relationship to cycling use in metro station areas (Zhao & Li, 2017).
However, Wu et al. (2019) reported that greenspace exposure assessed
via NDVI had no association with cycling use in metro station areas. In
a comparison study, Lu, An et al. (2019), Lu, Yang et al. (2019) in-
dicated that the odds of cycling showed a positive association with eye-
level greenness extracted from street-view images, but not with over-
head-view greenness via NDVI, possibly because eye-level greenness
extracted from street-view images can more accurately measure peo-
ple’s exposure to small-scale vegetation such as street trees and pocket
gardens (Helbich et al., 2019; Wang, Helbich et al., 2019).

Environmental psychological theories such as stress reduction
theory (SRT) and attention restoration theory (ART) have highlighted
the role of perceived greenness for attention restoration and psycho-
logical stress-reduction (Kaplan, 1995; Ulrich, 1981). SRT indicates that
humans likely obtained protection and food from vegetation in the
process of evolution, and exposure to vegetation can also evoke positive
emotions and reduce stress in modern humans (Ulrich, 1981). ART
suggests vegetation has four types of restorative features: being away,

extension, compatibility and fascination, which combine to help reduce
people’s psychological fatigue (Kaplan, 1995). Hence, the availability of
greenery can improve the perceived preference of the surrounding en-
vironment, which is also important for cycling behaviors (Lu, An et al.,
2019; Lu, Yang et al., 2019; Porter et al., 2019). For example, street
trees have the function of providing shade (Li, Ratti, & Seiferling,
2018), and their shade may also cool cyclists during hot weather,
especially for trips over long distances. Hence, urban greenery, espe-
cially along streets, provides cyclists with a comfortable and attractive
experience, which thereby encourages cycling use.

In contrast, NDVI measures large greenspace infrastructure such as
urban parks or preserved natural areas (Ye et al., 2018). Cycling be-
haviors mainly occur on streets, so cyclists may not traverse through or
even perceive large greenspaces unless cycling lanes are present within
these areas (Lu, An et al., 2019; Lu, Yang et al., 2019). Hence, due to the
low visibility to cyclists of large greenspaces assessed through the GIS-
method (e.g., NDVI), large greenspace infrastructure may have weaker
influence on people’s psychological feelings, an important component
of the cycling experience (Helbich et al., 2019; Wang, Helbich et al.,
2019). For example, Helbich et al. (2019) found that eye-level green-
ness based on street-view data showed a positive association with
psychological wellbeing, but this association was not found for over-
head greenspace based on NDVI or land-use data. Thus, the difference
ways of measuring greenspace (overhead view vs. eye-level) may par-
tially explain the inconsistent findings from previous studies that ex-
amined greenspace-cycling use in metro station areas.

Our results further indicate that the effect size of eye-level greenness
on cycling frequency was higher on weekend than on weekdays, as
demonstrated by larger coefficients for cycling frequency on weekends
than on weekdays. The different effect size may be explained by the
different cycling purposes on weekdays and weekends. People are more
likely to cycle for recreational purposes on weekends than on weekdays
(Ho & Mulley, 2013; Liu, Zhang, Jin, & Liu, 2020), so they may pay

Table 1
Summary statistics for all variables.

500-m buffer 1000-m buffer 1500-m buffer

Variables Mean (SD) Mean (SD) Mean (SD)
Dependent variable
Cycling frequency on weekdays (number of rides/day) 2566.383(1557.723) 4664.826(3074.209) 5686.946(4518.491)
Cycling frequency on weekends (number of rides/day) 2319.479(1372.563) 4293.761(2899.526) 5257.203(4236.457)
Urban greenspace
Street View Greenspace (SVG) 0.280(0.093) 0.267(0.078) 0.241(0.061)
Covariates
Population density (person/km2) 76542.487(40535.064) 67311.535(43720.074) 55590.381(25796.596)
Street intersection density (number/km2) 48.903(26.588) 45.080(23.240) 42.484(21.453)
Land-use mix (entropy score) 0.802(0.047) 0.792(0.056) 0.803(0.040)
Number of retail shops 49.851(46.171) 99.299(82.332) 159.880(118.193)
Number of bus stops 23.168(10.761) 47.072(19.805) 77.479(30.339)
Terrain slope (degree) 5.904(2.302) 5.734(2.357) 6.062(2.369)

SD = standard deviation

Table 2
The associations of urban greenspace, built environment characteristics and cycling frequency around MTR stations on weekdays (Shenzhen, China, N = 167).

Model predictor Model 1 (500-m buffer) Model 2 (1000-m buffer) Model 3(1500-m buffer)

Coef.(SE) Coef.(SE) Coef.(SE)
Greenness
SVG 1.983***(0.026) 2.095***(0.023) 2.551***(0.028)
Built environment
Population density (in log) 0.040***(0.001) 0.177***(0.002) 0.315***(0.002)
Street int. density (in log) 0.204***(0.003) 0.211***(0.003) 0.298***(0.003)
Land-use mix 0.135***(0.035) 1.129***(0.035) 2.032***(0.045)
Number of retail shops 0.001(0.001) −0.001***(0.000) −0.001***(0.000)
Number of bus stops 0.011(0.010) 0.003(0.002) −0.004(0.006)
Terrain slope −1.363***(0.046) −0.231***(0.031) −0.019***(0.000)

Coef. = coefficient; SE = standard error; *p< 0.1. **p< 0.05. ***p< 0.01.
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more attention to the cycling experience and hence the surrounding
greenness. However, people are more likely to cycle for transportation
purposes on weekdays (Ho & Mulley, 2013), so they may pay more
attention to the efficiency of cycling trips instead of the surrounding
environment.

The sensitivity analysis shows that the associations between eye-
level greenness and cycling use in metro station areas were significant
in all three buffer zones, ensuring the robustness of our results.
Although previous studies indicated that the frequency of cycling with
shared bikes may decrease with distance (Chen et al., 2018; Du &
Cheng, 2018; Shen et al., 2018; Wu et al., 2019), our results suggest
that greenspace-cycling associations remain significant across all three
buffer zones. Hence, the effect of street environments such as green-
space on cycling behavior may be relatively stable within 1500-m
buffer.

4.2. Other built environment factors

Our results suggest that population density, street intersection
density and land-use mix score had positive associations with cycling
use, while number of retail shops and terrain slope had negative asso-
ciations with cycling use around metro stations, and this finding was
consistent with those of previous studies (Lin et al., 2018; Zhao & Li,
2017; Zhao, 2014). The demand for cycling is larger in metro station
areas due to their high metro passenger volumes (Xue & Sun, 2020).
Street intersection density is associated with street connectivity which
can increase people’s odds of taking active transportation mode such as
cycling (Berrigan, Pickle, & Dill, 2010). The reason may be that con-
nectivity could lead to the ease of cycling by creating more and shorter
routes from place to place (Berrigan et al., 2010). Also, higher land-use
mix score indicates diverse land uses which may provide more non-
residential destinations (Fraser & Lock, 2011). In addition, population
density, street intersection density and land-use mix are potential in-
dicators of urbanization (Zhang & Shun, 2003), and more urbanized
areas are more likely to have a better cycling infrastructure, which may
further encourage cycling behaviors (Wang, 2010).

The number of retail shops showed a negative association with cy-
cling use around metro stations, which is consistent with previous
studies in Beijing (Lin et al., 2018; Zhao & Li, 2017). This negative
association might be explained in part by the competition in such areas
between walking and cycling (Wu et al., 2019). That is, retail shops
provide more convenience for pedestrians than for cyclists, so people in
metro station areas with more retail shops may choose walking over
cycling. Also, steeper terrain slope is associated with more exhausting
cycling experience and decrease people's enthusiasm for cycling (Lu, An
et al., 2019; Lu, Yang et al., 2019).

4.3. Implications for urban design and planning

We can draw some important urban planning implications from our
findings. First, eye-level greenness exposure showed a positive

association with cycling frequency around metro stations. Thus, to
improve bicycle-transit integration, more attention should be paid to
green infrastructure around metro stations, especially those visible from
streets or cycling lanes. Compared with large green infrastructure such
as parks, small-scale street vegetation including trees or pocket gardens
are more relevant to what cyclists perceive. Also, street vegetation can
be more easily improved than large green infrastructure because of the
lower cost and smaller areas required, so urban planners should pay
more attention to the former around transit stations. Second, popula-
tion density was positively related to cycling frequency, which indicates
that metro stations with more nearby residents also have a higher de-
mand for shared bikes. Therefore, population density should also be
taken into account in cycling-transit integration system.

4.4. Strengths and limitations

This study has several strengths. First, it used free-floating shared
bike data to investigate bicycle-transit integration, thus addressing
many limitations of previous studies. For example, previous studies
mainly used survey methods, covering limited study areas with a small
sample size. In this study, we covered all 167 metro stations in
Shenzhen with a sample size of 12 million cycling trips (all trips in 1500
m buffer). The large sample size ensured the generalizability of our
findings. Second, we used street-view images to assess eye-level
greenness exposure. Eye-level greenness based on questionnaires and
field audit is either subjective or labor-intensive, whereas our method
enabled efficient, objective, and accurate assessment of cyclists’ daily
exposure to urban greenness over a large research area. Third, we
compared the associations of eye-level greenness and cycling use in
metro station areas on both weekdays and weekends. The free-floating
bike data included the date and time of each cycling use, so we could
distinguish the cycling trips on weekdays and on weekends. Finally,
three buffer-zone sizes were used for sensitivity analysis, imparting
robustness to our study.

The following limitations of this study should also be noted. First,
our research was based on the analysis of cross-sectional data, and we
could not infer any causation between eye-level greenness and cycling
behaviors. Second, neighborhood-level demographic and socio-
economic variables such as income, age and gender distribution, and
education level were not included in this study due to data unavail-
ability. Future studies may need to consider these variables. Third,
some environment factors such as light condition (Fotios, Uttley, & Fox,
2019) and noise exposure (Aletta, Van Renterghem, & Botteldooren,
2018) were not included in this study which may be important for
cycling behaviors. Some other limitations stem from the nature of big
cycling data. For example, the lack of cyclists’ individual and socio-
economic information, as well as cycling purposes (e.g. for recreational
or transportation purposes) in our dataset prevented us from controlling
for such covariates. Furthermore, some cyclists used their personal bi-
cycles, and their cycling trips were not available in our dataset. Further
studies may include cyclists with personal bicycles.

Table 3
The associations of urban greenspace, built environment characteristics and cycling frequency around metro stations on weekends (Shenzhen, China, N = 167).

Model predictor Model 4 (500-m buffer) Model 5 (1000-m buffer) Model 6 (1500-m buffer)

Coef.(SE) Coef.(SE) Coef.(SE)
Greenness
SVG 2.520***(0.027) 2.728***(0.024) 3.807***(0.029)
Built environment
Population density (in log) 0.048***(0.001) 0.225***(0.002) 0.372***(0.003)
Street int. density (in log) 0.168***(0.003) 0.153***(0.003) 0.227***(0.003)
Land-use mix 1.007***(0.037) 0.156***(0.037) 0.159***(0.047)
Number of retail shops −0.000(0.000) −0.002***(0.000) −0.002***(0.000)
Number of bus stops 0.011(0.010) 0.001(0.001) −0.003(0.006)
Terrain slope −1.481***(0.048) −0.281***(0.033) −0.019***(0.001)

Coef. = coefficient; SE = standard error; *p< 0.1. **p< 0.05. ***p< 0.01.
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5. Conclusions

This study is the first to systematically explore the association be-
tween eye-level greenness and cycling behaviors in metro station areas
in China based on free-floating bike data and street-view data. The
results indicate that eye-level greenness showed a positive association
with cycling frequency both on weekdays and on weekends. Also, the
population density and numbers of bus stops showed a positive asso-
ciation with cycling frequency both on weekdays and on weekends. In
contrast, the numbers of retail shops showed a negative association
with cycling frequency in the 1000-m and 1500-m buffer zones.

Hence, to promote cycling-transit integration, policymakers and
planners are advised to pay close attention to the location and visibility
of street vegetation around metro stations.
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