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The spatial structure of geochemical patterns is influenced by various geological processes,
one of which may be mineralization. Thus, analysis of spatial geochemical patterns facilitates
understanding of regional metallogenic mechanisms and recognition of geochemical
anomalies related to mineralization. Convolutional neural networks (CNNs) used in previ-
ous studies to extract spatial features require regular data (e.g., raster maps) as input. Due to
the complex and diverse geological environment, geochemical samples are inevitably
irregularly distributed and even partially missing in many spaces, leading to the inapplica-
bility of CNN-based methods for geochemical anomaly identification. Also, interpolation
from samples to regular grids often introduces uncertainties. To address these problems, this
study innovatively transformed geochemical sampled point data into graphs and introduced
graph learning to extract the geochemical patterns. Correspondingly, a novel framework of
geochemical identification named GAUGE (recognition of Geochemical Anomalies Using
Graph lEarning) is proposed. To assess the performance of the proposed method, this study
recognized anomalies related to Au deposits in the Longyan area, the Wuyishan polymetallic
metallogenic belt, China. For a set of regularly distributed samples, GAUGE achieved an
accuracy similar to that of a traditional convolution autoencoder. More importantly,
GAUGE achieved an area under the curve of 0.833, outperforming one-class support vector
machine, isolation forest, autoencoder, and deep autoencoder network for a set of irregu-
larly distributed samples by 10.6, 5.2, 4.8, and 2.5%, respectively. By introducing graph
learning into geochemical anomaly recognition, this study provides a new perspective of
extracting both spatial structure and compositional relationships of multivariate geochemical
patterns, which can be applied directly to irregularly distributed samples in irregularly
shaped regions without the need for interpolation. Such an improvement greatly enhances
the applicability of machine learning methods in geochemical anomaly recognition, pro-
viding support for mineral resources evaluation and exploration.

KEY WORDS: Geochemical anomaly recognition, Graph learning, Unsupervised learning, Global
Moran�s I, Graph attention network, Autoencoder.
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INTRODUCTION

Mineral resources continue to support eco-
nomic developments at the intersection of the
industrial civilization age and the information civi-
lization age (Brooks and Andrews, 1974; Christ-
mann, 2018). As the contradiction between the
supply and demand of mineral resources becomes
acute, finding mineral deposits becomes crucial.
Geochemical exploration methods are used widely
due to their low costs and rapid implementation
(Beus and Grigorian, 1977; Chao, 1984). Geochem-
ical exploration aims to map geochemical patterns
and geochemical anomalies by analyzing the distri-
bution and variations in elements in soil, rocks, and
stream sediments (Beus and Grigorian, 1977; Ca-
meron, 2005). Mineral deposits are formed by ele-
ment accumulation due to certain geological
processes, and geochemical anomalies are often
found at and around mineral deposits that are
inconsistent with overall patterns (Zhao, 2002).
Identifying these anomalies can narrow the target
areas for mineral exploration and improve
prospecting efficiency. The key to finding geo-
chemical anomalies is distinguishing between geo-
chemical background and anomalies. Geochemical
background refers to samples that conform to a
certain pattern, while anomalies are those that
deviate significantly from this pattern (Matschullat
et al., 2000). In general, affected by complex geo-
logical processes, geochemical patterns are reflected
mainly by compositional relationships and spatial
distribution of geochemical variables. Therefore,
extracting geochemical background patterns from
these two perspectives can provide the critical
foundation for distinguishing between background
and anomalies.

The methods for identification of anomalous
geochemical patterns can be divided into traditional
methods and machine learning (deep learning)
methods. Considering the influence of geological
processes on the compositional relationships among
multiple geochemical variables, traditional methods
often use multivariate statistical methods (e.g.,
principal component analysis (PCA) (Wold et al.,
1987), factor analysis (FA), and cluster analysis
(Fabrigar and Wegener, 2011)) to analyze relation-
ships among geochemical variables, determine the
optimal combination of variables, and identify
anomalies through clustering. PCA and FA are the
most commonly used multivariate statistical meth-
ods. Additionally, to extract the spatial structure of

geochemical patterns, spatial statistics and geo-
graphical weighting are among the introduced tra-
ditional methods. For example, considering spatial
constraints on geological characteristics on geo-
chemical data, Cheng et al., (2011) used spatially
weighted PCA to analyze multivariate geochemical
variables; this type of PCA provides more informa-
tion on anisotropic spatial patterns. Zuo and Xiong,
(2020) used a spatial statistical method (i.e., Moran¢s
I) to quantify spatial patterns (including clusters of
high values (high–high), clusters of low values (low–
low), high outliers (high–low), or low outliers (low–
high)) of samples, and to find anomalous samples
that differed from the surrounding background.
Fractal/multifractal models have also been applied
in exploring spatial relationships in geochemical
data. Considering the spatial variability, geometric
attributes, and scale invariance of geochemical data,
many fractal models (e.g., concentration-area
(Cheng et al., 1994), spectrum-area (Cheng et al.,
2000), concentration-distance (Li et al., 2003)) have
been used widely in geochemical anomaly identifi-
cation.

Many of these traditional methods (especially
multifractal methods) can consider both composi-
tional relationships and spatial features of geo-
chemical variables. However, these methods rely
mostly on certain prior assumptions and consider
only linear, lower-order properties (Zuo et al.,
2019). Due to complex geological and metallogenic
processes, the distribution of geochemical patterns is
more often than not multimodal and complex, which
introduces great challenges to these traditional
methods (Zuo, 2017).

In recent years, with the rapid advancement of
information technology, scholars have increasingly
adopted a variety of machine learning methods in
geochemical analysis (Porwal et al., 2003; Twarakavi
et al., 2006; Chen et al., 2019a, 2019b, 2019c; Li et al.,
2019), due to the capabilities of these methods in
modeling nonlinear systems and capturing complex
multistage geological events (Carranza and Laborte,
2015; Zuo et al., 2019). Machine learning methods
can be classified into reinforcement learning,
supervised learning, and unsupervised/self-super-
vised learning (Jordan and Mitchell, 2015). Many
machine-learning-based geochemical anomaly iden-
tification methods are suitable for supervised or
unsupervised learning. In geochemical exploration,
anomalous areas usually cover only 1.5–5% of a
region of interest (Chen et al., 2009, 2014), thus
making it necessary to spend considerable time and
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labor finding mineralized samples. Due to the de-
mand for labeled samples (i.e., known mineral de-
posits), supervised learning methods are
unsuitable for areas without sufficient known min-
eral deposits. Unlike supervised learning methods,
unsupervised learning methods (e.g., autoencoders
and one-class support vector machines) do not rely
on labeled samples (Barlow, 1989; Ahmad et al.,
2017). Generally, unsupervised learning can be used
for anomaly detection based on two essential pre-
mises: (1) there are considerably fewer anomalous
samples than normal (background) samples; and (2)
the characteristics of anomalous samples differ sig-
nificantly from those of normal (background) sam-
ples. Specifically, unsupervised learning methods
first characterize samples using dimension reduction
or metrics. Samples that differ from the overall data
distribution are considered anomalies. Mineralized
samples are much fewer than non-mineralized
(background) samples in geochemical exploration,
thus making unsupervised learning strongly suit-
able for geochemical anomaly identification. Several
unsupervised machine learning methods, including
continuous restricted Boltzmann machines (Chen
et al., 2014), one-class SVM (Chen and Wu, 2017),
and isolation forest (Zhang et al., 2021b), have been
applied to geochemical anomaly recognition.

Autoencoders (AE) are among the most widely
used unsupervised machine learning methods in
geochemical anomaly recognition (Chen et al., 2014,
2019a; Xiong and Zuo, 2016, 2020; Guan et al., 2021;
Zhang et al., 2021a). An AE reconstructs data by
learning the general pattern embedded in the origi-
nal data, and then the difference between the orig-
inal data and the reconstructed data is calculated as
an indicator to detect anomalies (An and Cho, 2015;
Zong et al., 2018; Tang et al., 2020). An AE consists
of an encoder and decoder by stacking multiple
layers. The encoder is responsible for learning the
hidden features in input data and mapping these
features into a low-dimensional space. The decoder
can reconstruct the original data using latent repre-
sentations (Hinton and Salakhutdinov, 2006). After
reconstruction, samples with small probabilities (i.e.,
anomaly samples) have higher errors, while samples
with large probabilities have more minor errors.
Therefore, samples with small probabilities can be
easily distinguished based on reconstruction errors.
Shallow unsupervised machine learning algorithms,
such as AEs, do not need to learn the nonlinear
features of geochemistry under the premise of arti-
ficial hypotheses to identify anomalies. However,

AEs cannot extract deeper features from complex
geological systems (Zuo et al., 2019). More impor-
tantly, many machine learning methods cannot
represent or extract the spatial structure of geo-
chemical patterns.

Deep learning algorithms have been adopted to
identify geochemical anomalies to solve the above
problems. To address the insufficient feature recog-
nition ability of AEs, Xiong and Zuo, (2016) pro-
posed geochemical anomaly identification methods
based on deep autoencoders and compared them
with continuous restricted Boltzmann machines. The
results showed that a deeper network could better
learn the compositional relationships of geochemical
variables and identify anomalies. Considering that
background samples and anomalous samples may
have the same mean value but different variations,
Luo et al., (2020) used variational autoencoder to
identify geochemical anomalies according to recon-
struction probability rather than reconstruction er-
ror. Zhang and Zuo, (2021) also proposed an
improved adversarial learned anomaly detection
(ALAD) method, which combines the advantages of
a deep variational autoencoder and a generative
adversarial network, and significantly improves
anomaly detection performance.

Parallel to the development of traditional
methods, deep learning also needs to learn auto-
matically geochemical spatial patterns. With the
advantage of extracting spatial patterns from grid-
ded data, many studies have introduced convolu-
tional neural networks (CNNs) to qualify spatial
patterns for geochemical exploration (Chen et al.,
2019c; Li et al., 2020; Zhang et al., 2021c). Specifi-
cally, the procedure used by CNNs to learn geo-
chemical spatial patterns can be summarized in the
following three steps: (1) interpolate irregularly
distributed geochemical samples into regular grids,
such as raster maps; (2) use convolution kernels to
scan and map grids to obtain a spatial feature map;
and (3) repeat the operation of step (2) to obtain a
deep feature map. Following these steps, Li et al.,
(2019) mined the composition relationship between
the spatial distributions of geochemical data and
manganese mineral deposits using a deep CNN.
Considering that adjacent pixels are likely to belong
to the same class, Zhang et al., (2021c) combined the
pixel pair feature (PPF) and a deep CNN to solve
the insufficiency of metallogenic (anomaly) labels.

In unsupervised learning, Chen et al., (2019c)
proposed a convolutional autoencoder (CAE)
model for geochemical anomaly identification. To
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fuse the spatial pattern and compositional relation-
ship of geochemical variables, Guan et al., (2021)
proposed a spatial-compositional feature fusion
convolutional autoencoder for multivariate geo-
chemical anomaly recognition, which improved
greatly the accuracy of geochemical anomaly
recognition. In addition, acquiring and preprocess-
ing geochemical data often leads to some geo-
chemical variable data loss. Xiong and Zuo, (2021)
used a stacking convolution denoising autoencoder
(SCDAE) to extract the robust features of a model
to reduce the sensitivity to some damaged data.

Although CNNs can provide the ability to ex-
tract spatial structures, they also have a few appli-
cation limitations. For example, a convolution
kernel can handle only regularly distributed and
shaped grids (raster and images). However, due to
the complex and diverse geological environment,
geochemical samples collected in the field are often
irregularly located in space and even partially miss-
ing (Cheng, 1999; Ge et al., 2005; Xiong and Zuo,
2021). The irregularly distributed geochemical sam-
ples must be interpolated into a regular distribution,
such as raster and images, to be suitable inputs to
CNNs. Such interpolation inevitably introduces
uncertainties into the data (Wang and Zuo, 2019;
Zuo et al., 2021) and degrades the pattern learning
performance, hence lowering the ability for anomaly
recognition. Therefore, an approach is urgently
needed to learn spatial features and to identify
anomalies directly from geochemical samples at
random locations in arbitrary regions.

This study proposes a new unsupervised graph
learning framework for geochemical anomaly
recognition (GAUGE), which combines a graph
neural network (GNN) with an AE to solve the
problem. By constructing a topology graph of geo-
chemical sample points according to their adjacency
relations, GAUGE can extract both the spatial
features and compositional relationships of geo-
chemical variables collected at irregularly dis-
tributed locations and detect anomalies. The
experiments showed that GAUGE achieved the
highest anomaly detection accuracy compared with
several existing methods. More importantly,
GAUGE provides an end-to-end solution for deep-
learning-based geochemical anomaly detection using
the original geochemical samples. By enabling the
extraction of spatial features of geochemical data
from non-Euclidean data without error-introducing
interpolation, GAUGE effectively broadens the

applicability and feasibility of deep learning tech-
niques in geochemical anomaly detection.

METHODS

A novel unsupervised framework for recogniz-
ing geochemical anomalies using graph learning,
GAUGE, is proposed in this study. As the principle
of AE in the Introduction above, GAUGE identifies
anomalies by reconstructing errors. GAUGE can
extract and fuse spatial structural features and
compositional relationships of geochemical variables
collected at irregular locations for multivariate
geochemical anomaly identification.

The GAUGE architecture consists of three
essential steps (Fig. 1): (1) geochemical topology
graph construction, which aims to construct a graph
of multivariate geochemical variables at a group of
randomly located sampling points; (2) attributed
graph autoencoder training: the AE comprises an
attributed graph encoder and an attributed recon-
struction decoder, which are responsible for model-
ing the spatial structure and compositional
relationships of geochemical variables simultane-
ously and reconstructing the variables with the ob-
tained node embeddings by a graph attention
network (GAT), respectively; (3) anomaly detec-
tion: the Euclidean distance between pairs of origi-
nal geochemical variable values and the
reconstructed background values at each sampling
point are calculated as the anomaly score, and an
anomaly map is generated.

Constructing a Geochemical Topology Graph

A geochemical dataset is usually collected as a
group of sampling points in an area. For geochemi-
cal anomaly detection, capturing the compositional
features of geochemical variables alone may be
insufficient because the spatial distribution of geo-
chemical variables also reflects complex geological
processes (e.g., mineralization). This study connects
closely related sampling points to represent the
spatial structure from point data and obtains an
undirected graph G ¼ X;Að Þ as:

X ¼ x1
!; x2

!; . . . ; xN
�!� �

; xi
!2 RF ð1Þ
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A ¼ A1;1;A1;2; . . . ;AN;N

� �

; Ai;j ¼
1; di;j � K
0; di;j[K

�

ð2Þ

where X and A represent the set of nodes (i.e.,
sampling points) and edges, respectively, N repre-
sents the number of nodes in the graph, F represents
the number of features (i.e., geochemical variable)
of each node, di;j denotes the spatial distance be-

tween stations j and i, and K denotes the distance
threshold when constructing the geochemical
topology graph.

Generally, the smaller the distance between two
points is, the more related are these two points are
(Tobler, 2004). The sampling points are connected
when the distance between two stations is less than
K. Determining the appropriate distance threshold
value (i.e., K) is critical. The connection here ex-
presses only the geographical locations of sampled
points. It does not represent the relationship be-
tween sampling points (spatial pattern of variables),
and the exact relationship has to be calculated based
on the attention coefficients of GAT as explained
below.

As shown in Figure 2a, if the distance band (i.e.,
K) is too short, the nodes have too few neighbors,
and this may lead to a situation in which background

samples do not significantly outnumber anomalous
samples in certain anomaly dense regions. The spa-
tial relationship among background samples cannot
be learned. The nodes have too many neighbors if
the distance threshold is too large (as the blue area is
in Fig. 2a); the spatial heterogeneity of the geo-
chemical variables cannot be effectively repre-
sented.

To solve the above problem, global Moran¢s I
(Goodchild, 1986; see Appendix), a metric for
measuring spatial structure, is introduced to
GAUGE to measure the spatial distribution pat-
terns of regional geochemical variables and to
determine the appropriate distance threshold (Bin
et al., 2017). As shown in Figure 2b, the global
Moran¢s I value with different distance bands was
calculated for a set of sampling points in an area. If
the Moran¢s I value decreases rapidly as the window
size increases, this indicates a strong relationship
between the spatial structure and distance. To better
learn the background features, the distance thresh-
old should be larger than the current distance. If the
Moran¢s I value decreases slowly as the distance
band increases, this indicates that the spatial struc-
ture is stable (Goodchild, 1986). This study selected
the inflection point of the curve (i.e., the black point
in Fig. 2b) as the optimal threshold (i.e., K) to bal-
ance partial heterogeneity and learning perfor-

Figure 1. The overall GAUGE framework for geochemical anomaly identification.
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mance. After the above steps, a geochemical graph
was constructed to represent the spatial structure
and the concentrations of geochemical variables for
a group of samples in an area.

Attributed Graph Encoder

Like other encoders, the attributed graph en-
coder can learn features from data and map them in
low-dimensional space. However, popular encoders
based on convolutional layers can process only data
with regular spatial arrangements and, therefore,
cannot be applied to geochemical topology graphs.
To solve this problem, we propose a new attributed
graph encoder inspired by a graph attentional layer,
namely GAT, proposed by Veli et al., (2017). Due to
its ability to model network structure and nodal at-
tributes seamlessly on an attributed graph, GAUGE
can learn the spatial structure features and the
geochemical characteristics at irregularly located
sampling points. As shown in Figure 3, the graph
attentional layer first calculates the weights (i.e.,
attention coefficients) of each graph edge according
to the masked attention mechanism (Bahdanau
et al., 2014) and then aggregates the neighboring
node features by weight.

From a geological perspective, attention coef-
ficients can, to some extent, indicate the anisotropy
of geochemical patterns. The geochemical signatures

of mineralization-favored spaces inherited from
multiple geoprocesses are often anisotropic. This
anisotropy can be characterized by the gradient
variation or correlations of geochemical element
concentrations at a sampling point with those at
surrounding sampling points. To extract the nonlin-
ear relationship between sampling points, we used a
neural network approach with an attention mecha-
nism to calculate weight eij. When extracting spatial

patterns, the model can aggregate neighbor attri-
butes (geochemical variables) based on this weight.
In other words, when a sample point communicates
with its neighbors with geochemical elements fea-
tures, eij will be weighted on this feature. The larger

the weighting coefficient is, the greater its effect on
the central sampling point is. This process allows the
model to consider the anisotropy of the geochemical
signature of each sampling point when extracting
geochemical patterns.

Mathematically, given an input graph G X;Að Þ
containing N nodes (sampling points), each node has

a feature vector xi
! and dimension F (the count of

kinds of geochemical variables or the dimension of
the extracted features). The attention coefficients eij
between nodes i and j according to the attention
mechanism is calculated as:

eij ¼ attention Wxi
!;Wxj

!� �

¼ LeakyReLU ð~aT ½Wxi
!jjWxj

!�Þ ð3Þ

Figure 2. Schematic for finding the optimal K using Moran�s I. (a) Neighborhood of sampled points at

different thresholds (with red points as an example). (b) Schematic of global Moran�s I.
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where attention() denotes a single-layer feedforward

neural network with a weight vector a!, W denotes
weight matrix for transforming the input features

into higher-level features, and :T and jj represent
transposition and concatenation operations, respec-
tively. To make the coefficients compute between
nodes efficiently, softmaxðÞ was used to normalize
the neighbors of node i.

aij ¼ softmax eij
� �

¼
exp eij
� �

P

k2Ni
exp eikð Þ ð4Þ

where Ni represents the neighbors of node i and aij
denotes the correlation between node i and node j
variables. Details of LeakyReLU can be found in
the Appendix. Fully expanded, these processes are
illustrated in Figure 3a. As mentioned before, the
anisotropy of sampling point 2 in terms of geo-
chemical signature is characterized by the relation-
ship weights of sampling point 2�s neighborhood
points {1,3,4,8} (Fig. 3b).

After obtaining the attention coefficients be-
tween nodes, GAT aggregates each neighboring
node (Fig. 3b) and finally obtains the embedded
features as:

x
0

i

!
¼ r

X

k2Ni

aijW xj
!

 !

xi
!2 Ni ð5Þ

where xi
! and x

0

i

!
denote input data and embedded

features, respectively, and r is a nonlinear activation
function. For a graph, all the above calculation
processes can be expressed as:

X kð Þ ¼ X k�1ð Þ;AjW kð Þ
� 	

ð6Þ

where Xðk�1Þ is the input for the graph attention

layer k� 1 and XðkÞ is the output of the graph
attention layer.

Any node can reach other nodes in a few steps
in a small graph. Therefore, the perceptual field
needs to have only a few layers to cover the entire
graph and adding more layers will not be much help.
Previous studies have shown that graph neural net-
works with two layers perform better (Kipf and
Welling, 2016; Zhang et al., 2020). This study used
two graph attention layers to construct the attrib-
uted graph encoder. The attributed graph encoder
can be formulated as:

X 1ð Þ ¼ Relu X0;AjW 1ð Þ
� �

;X0 ð7Þ

Z ¼ X 2ð Þ ¼ Relu X1;AjW 2ð Þ
� �

ð8Þ

where W 1ð Þ is an input-hidden layer with input

graph Xð1Þ and W 2ð Þ is a hidden-hidden layer with

Figure 3. Illustration of the graph attention layer: (a) the attention mechanism; and (b) aggregating

features of the node 2-based attention mechanism, with neighborhood {1,3,4,8}.
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hidden feature Xð1Þ. After applying two layers, the
geochemical input graph can be learned and mapped
to a low-dimensional vector space Z, which can
seamlessly learn network structure and nodal attri-
butes (i.e., spatial structural features and composi-
tional relationships of geochemical variables).

Attribute Reconstruction Decoder

Similarly, to calculate reconstruction errors, we
propose an attribute reconstruction decoder that
reconstructs the nodal attributes (i.e., geochemical
variables) from the encoded latent representations
Z. Specifically, the attribute reconstruction decoder
structure is symmetric to that of the encoder, and
both use a graph attention layer to predict the
original node attributes as:

X 3ð Þ ¼ Relu X 2ð Þ;AjW 3ð Þ
� 	

ð9Þ

X̂ ¼ X 4ð Þ ¼ Sigmoid X 3ð Þ;AjW 4ð Þ
� 	

ð10Þ

Due to input data normalization, we applied the
activation function SigmoidðÞ to restrict the recon-
struction values in the range of [0,1]. Details of Relu
and Sigmoid can be found in Appendix.

Anomaly Detection

Geochemical anomaly scores are calculated for
the sampling points. However, the widely used cost
function in prediction models, i.e., the mean square
error (MSE), focuses only on the reconstruction
error of each variable while ignoring the differences
in elemental contribution to mineralization among
sampling points (Paszke et al., 2019). To address this
issue, we replaced the MSE with the SPRE (sam-
pling point reconstruction error), which is calculated
as:

LSPRE ¼ 1

N

X

N

i¼1

Ai ð11Þ

Ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

F

k¼1

xki � x0ki
� �2

v

u

u

t ð12Þ

where xki and x0ki denote the k th original and
reconstructed features, respectively, of the i th node,

N and F represent the number of nodes and the
number of variable categories, respectively, and Ai

represents the reconstruction error for each node.
By minimizing the above cost function, our pro-
posed model can continuously learn the background
structure and compositional relationship from the
input geochemical graph and then approximate
iteratively the input attributed graph with encoded
latent features until the cost function converges.
Subsequently, we input the original geochemical
variables into the completed training model to ob-
tain the reconstructed values (background values)
for each node. The multivariate Euclidean distance
between the original geochemical values and the
reconstructed background values is calculated as the
reconstruction error. The anomaly map is generated
based on the final reconstruction errors (i.e., Ai).

Performance Assessment

The primary purpose of geochemical explo-
ration is to delimit areas of interest for further
exploration; thus, geochemical anomaly detection
should be evaluated from two perspectives: the
percentage of discovered mineral deposits to the
total mineral deposits and the size of the anomalous
area. In this study, we used the prediction–area (P–
A) plot (Yousefi and Carranza, 2015) and the re-
ceiver operating characteristic curve (ROC curve)
(Fawcett, 2006) to evaluate GAUGE. Eight anom-
aly detection algorithms proposed in previous stud-
ies were chosen for comparison with GAUGE.

Comparison Methods

The selected algorithms can be applied to geo-
chemical data collected at irregularly located points
and can be classified into the following three cate-
gories.

(1) Linear Models, including minimum covariance
determinant (MCD (Hardin and Rocke, 2004)
and one-class support vector machine
(OCSVM) (Schölkopf et al., 2001; Zuo and
Carranza, 2011): embed the data in low-di-
mensional space, and the data that indicate
poor results after projection in the low-di-
mensional space are considered outliers. Al-
though these models have been applied
successfully in geochemical anomaly detection,
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they consider only nodal attributes (Xiong and
Zuo, 2020).

(2) Proximity-based Models, including local out-
lier factor (LOF) (Breunig et al., 2000), con-
nectivity outlier factor (COF) (Tang et al.,
2002), cluster-based local outlier factor
(CBLOF) (He et al., 2003) and isolation forest
(IForest) (Liu et al., 2008): the distribution of
anomalous and normal points is different in
some indicators. Based on these indicators,
proximity-based models compare each point
distribution with the overall points to find the
anomaly. LOF and COF measure the prox-
imity of each point by calculating the local
reachable density and the average connection
distance ratio, respectively. IForest detects
anomalies by comparing the number of spatial
divisions required to isolate samples (Carranza
and Laborte, 2015; Zhang et al., 2021b). Note
that the distribution and density mentioned
above describe the feature space. In other
words, these models ignore the geographic
locations of sampling points.

(3) Neural Network Models, including autoen-
coder (AE) (Kingma and Welling, 2013), deep
autoencoder network (DAN) (Xiong and Zuo,
2016), convolutional autoencoder (CAE)
(Chen et al., 2019c) and the proposed
GAUGE: as mentioned in the Introduction
and Method sections above, autoencoder net-
works are typically unsupervised anomaly
detectors based on neural networks. These
methods use the reconstruction error as the
anomaly score. Compared with traditional
methods, these methods have the advantages
of nonlinear modeling systems and broader
scalability and they have been used widely in
geochemical anomaly detection (Zuo et al.,
2019; Zhang et al., 2021a). It is worth men-
tioning that CAE can only be applied to an
interpolated rectangular area because it con-
siders the spatial characteristics of geochemi-
cal variables.

Prediction–Area (P–A) Plot

The prediction area (P–A) plot is a traditional
indicator that evaluates models prospectively by
combining the known mineral occurrence proba-
bility and the areas occupied. There are two y-axes

in the P–A plot: the prediction rate of known
mineral deposits (P) and the percentage of the
anomaly region area (A). We can calculate and
plot two curves (i.e., P–A). The intersection of
these curves indicates that the sum of the predicted
rate and the occupied area equals 100 and is a
proper indicator to evaluate an anomaly map. If
the intersection point is higher on the y-axis, the
model identifies a smaller anomaly area and a
higher prediction rate.

Receiver Operating Characteristic Curve

Although the P–A plot can evaluate model
performance, it applies to the intersection only and
cannot consider the full range of possible anomaly
thresholds. To deal with these issue, the ROC curve,
a commonly used evaluation method for machine
learning, was also adopted in this study. Using the
known deposits as references, at a certain anomaly
score threshold all samples can be divided into four
groups: true positive (TP), false positive (FP), true
negative (TN), and false negative (FN). Then, the
true positive rate (TPR) and the false positive rate
(FPR) at multiple thresholds can be calculated to
generate a curve as follows:

TPR ¼ TP

TPþ FN
ð13Þ

FPR ¼ FP

TN þ FP
ð14Þ

In geochemical anomaly detection, TPR is the
proportion of deposits labeled anomalous to all
known deposits. FPR refers to the proportion of
nonmineral points labeled anomalous to the total
true nonmineral points. The larger the TPR value
and the smaller the FPR value, the fewer the non-
mineral points and the larger the mineral points
among the anomalies delineated by a model. To
evaluate the performance of the model compre-
hensively, the ROC curve is plotted with FPR and
TPR as the x and y-axes, respectively. The area
under the curve (AUC) indicates the comprehensive
performance of a model considering all thresholds.
The closer the AUC is to 1 (i.e., the maximum value
of FPR 9 TPR), the greater the accuracy of the
model. ROC curve is a popular indicator for evalu-
ating geochemical anomaly results based on ma-
chine learning.
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EXPERIMENT AND EVALUATION

Study Area and Dataset

Geology of the Study Area

To demonstrate the performance of the pro-
posed method, the Longyan area in the Wuyishan
polymetallic metallogenic belt in China was used as
a case study area to identify geochemical anomalies
related to Au deposits (Fig. 4a). The Wuyishan
metallogenic belt, located within the active conti-
nental margin of southeastern China, is an important
metallogenic area in the Cenozoic tectonic–mag-
matic belt of the Circum-Pacific (Mao et al., 2010;
Lin et al., 2020). This region has long experienced
the convergence of global supercontinents and the
breakup of northern and southern continents (Jian-
hua et al., 2016). Such a special tectonic environ-
ment and the long-term complex tectonic–magmatic
evolution history provided favorable geological
conditions for mineralization. This region has many
known deposits, and it is especially well known for
the Zijinshan mega-gold mine, a typical case area for
studying gold ore (So et al., 1998; Zhang et al., 2015;
Li and Jiang, 2017).

The case study area (i.e., Longyan area, as
shown in Fig. 4a) is located in the central part of the
Wuyishan polymetallic metallogenic belt, southwest
Fujian. The area is characterized by strong In-
dosinian–Yanshan periods of magmatic activity and
the development of various stock, bedrock, and

dike. In addition, the surrounding rocks in the area
are strongly altered and the combination of various
alteration material types has a distinct zoning pat-
tern, which is a significant indicator of hydrothermal
mineralization (Li et al., 2013; Mathieu, 2018). Al-
though there are 12 Au deposits (including the
Zijinshan mega-gold mine), except for Zijinshan,
there are no published studies about most of the
gold mines in Longyan.

According to previous geological studies, it can
be determined that the gold mine here and the
Zijinshan field belong to the same source and the
same period of medium-acidic magmatic rock min-
eralization evolution. The main Au deposits in this
region are ‘‘Zijinshan type’’ low-sulfidation
epithermal Au deposits, porphyry Au deposits and
medium–low temperature hydrothermal Au depos-
its (Zhang et al., 2015; Li and Jiang, 2017; Chen
et al., 2019b). The geochemical anomaly model of
these Au deposits in Longyan can be inferred from
the confirmed Zijinshan gold mine.

Geochemical Characteristics of the Zijinshan Au
Deposit

Recently, many studies analyzed the metallo-
genesis of Zijinshan Au deposits systematically by
using geochemical data (Zhang et al., 2005; Zaw,
2007; Singer et al., 2008). The Au mineralization in
the Zijinshan field is dominated by Cu–Au miner-
alization. The Au mine consists mainly of natural

Figure 4. The case study area. (a) The Longyan area is located in the central part of the Wuyishan polymetallic metallogenic belt,

southwest Fujian. (b) Simplified geological map of the Longyan area (data from the Institute of Geophysical and Geochemical

Exploration, Chinese Academy of Geological Sciences (IGGE)).

Q. Guan et al.



Au endowment in limonite, accompanied by Ag, Cu,
and Pb.

The regional geochemical elements of the
Zijinshan mineral field are characterized by high
concentrations and strong couplings, and there are
obvious centers of high concentration aggregation.
There is a clear boundary in the distribution of high
and low concentrations of Cu, Pb, Au, Ag, Bi, and
Mo, which can indicate the center and exterior of
the field. The distributions of Cu, Pb, Zn, W, Bi, and
Cd extend in the NE direction; those of Au, Bi, and
Zn extend NW; those of Au and Mo extend E–W;
and that of Sb spreads N–S. These elements� diver-
sity and complex distributions reflect the interaction
of different geological formations and multiple
hydrothermal fluids. These geological effects are
superimposed in the complex rock masses of Zijin-
shan, thus eventually leading to different element
enrichment patterns in different geological sites
(Dikang et al., 1997).

Specifically, the relationships between metallo-
genesis and accompanying elements can be catego-
rized into the following three groups (Dikang et al.,
1997; Huang et al., 1999):

(1) Au, Ag, Sb, Cu, Pb: these elements are asso-
ciated with low-temperature volcanic-subvol-
canic hydrothermal gold mineralization and
low-temperature subvolcanic solution-type
gold mineralization;

(2) Cu, W, Mo: these elements are associated with
porphyry gold mineralization;

(3) Ti, V: spillover elements during gold mineral-
ization.

Au Mineralization Indicator Element Dataset

Benefiting from unsupervised learning,
GAUGE requires only geochemical variables for
training. In total 4,812 sampling points at a scale of
1:200,000 were explored in the study area to collect
stream sediment geochemical data, including 32
elements and five oxides (Xie et al., 1997). Due to
lack of published studies on most Au deposits in
Longyan, we cannot obtain detailed geochemical
patterns of Au deposits in Longyan. However, the
Au deposits here and in the Zijinshan field belong to
the same source and the same period of medium-
acidic magmatic rock mineralization evolution. The
Zijinshan mega-gold mine has also been analyzed

from a geochemical perspective. Thus, the geo-
chemical anomaly model for the Au deposits in
Longyan can be inferred from the confirmed Zijin-
shan mega-gold mine. In other words, we tried to
recreate the actual application scenario, i.e., how to
detect other gold-related anomalies in the area when
the geochemical pattern of only one mine in the area
is known. We selected 12 geochemical indicator
variables (i.e., Ag, Au, Bi, Cu, Mo, Pb, Sb, Sr, Ti, V,
W and Fe2O3). Because GAUGE enables direct
learning of spatial features among nodes, we needed
only to normalize the original sampled point data
rather than interpolate or crop the data into rect-
angles. The normalized data were scaled to [0,1],
thus maintaining the original elemental relation-
ships. The data distribution was similar to that of the
output data of the output layer after sigmoid map-
ping. Such an operation alleviates gradient disap-
pearance and enables better loss calculation and
model training.

Application of GAUGE

The global Moran�s I value for different ele-
ments and oxides was calculated (Fig. 5a). There
was a clear inflection point at approximately 20 km.
As mentioned in the Methods section, we used
20 km as the distance threshold for constructing the
topology graph. An edge connects a pair of sampling
points if the distance between them is less than
20 km. Then, a topology graph of the geochemical
sampling points was constructed for network train-
ing and anomaly detection.

To better train the autoencoder network in
GAUGE, the learning rate decay strategy was
introduced in this study. Figure 5b shows that the
learning rate decreased to half of the original rate
when the loss value did not decrease for 10 epochs.
The encoder and reconstruction decoder learned
and reconstructed the multivariate geochemical
background better through this mechanism. Encoder
and decoder training was completed when the loss
stabilized at a low value (Fig. 5b). Then, we input
the geochemical topology graph into the attribute
encoder and attribute reconstruction decoder in turn
and obtained the background values for each sam-
pling point. Finally, the multivariate Euclidean dis-
tance (i.e., the anomaly score) between the original
geochemical concentrations and the reconstructed
concentrations was calculated per sample to gener-
ate the anomaly map.
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Performance Evaluation

The anomaly values of the sampling points near
the known Au deposits were higher than those far-
ther ones (Fig. 6a). The anomaly score decayed with
increasing distance from the deposits. More mean-
ingfully, the anomaly distribution had a high coin-
cidence with the Au deposits trend, and the anomaly
can better reflect the mineral distribution. In addi-
tion, as the intersection of the two curves in the P-A
plot (Fig. 6b) shows, GAUGE predicted more than
75% of the known Au deposits in less than 25% of
the study area. This indicates the strong coincidence
between the known mineral deposits and the areas
with high anomaly scores; in other words, the
anomaly map obtained by GAUGE can be used to
guide mineral exploration.

The accuracy of autoencoder-based methods
was higher than those of the other machine learning
anomaly detection methods (Table 1). In particular,
the AUC of GAUGE (0.833) with the graph atten-
tion layer was significantly higher than those of the
other methods, thus indicating that GAUGE per-
formed the best in geochemical anomaly detection
of Au mineralization. To further demonstrate the
advantage of GAUGE, we replaced its graph
attention layer with a graph convolution layer
(GCN) (i.e., GAUGE* in Table 1). Although the
AUC obtained by GAUGE with the graph convo-
lution layer did not reach 0.833, it was still more

accurate compared to those of the other models. The
reason for the difference between GAUGE and
GAUGE* is that GAT can extract automatically
and assign weights to the edges between nodes. Such
a mechanism is similar to anisotropy in geochemical
pattern. In geochemistry, the relationship between
two sampling points is not just a binary one calcu-
lated based on geographic location (i.e., presence of
an edge/absence of an edge). The relationship be-
tween a certain sampling point and a neighboring
point varies at different directions. Various geolog-
ical interactions cause the anisotropy and ultimately
manifest themselves in the spatial distribution of
geochemical elements. Therefore, the influence of
geochemical variables at sampling sites on the rela-
tionship (i.e., continuous edge weight) should also
be considered. This relationship among sampling
points can be learned automatically and extracted
through the GAT�s attention mechanism, which
helps GAUGE to reconstruct geochemical back-
ground and detect anomalies.

From a geological perspective, the study area
has strongly magmatic history and it has many
polymetallic deposits associated with intrusive and
volcanic rocks. The granite in the region is one of
the controls on mineralization (Qiu et al., 2010;
Jianhua et al., 2016). The mineralization period in
the Zijinshan region is divided into the Indosinian
and Yanshanian periods, and Au deposits associated
with extensional tectonics and mixed magmatism

Figure 5. (a) Variation in global Moran�s I index with different distance bands (i.e., K). (b) Variation in cost function and learning rate

with number of training epochs.
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also occurred in the late Yanshanian period
(Development Research Center of Survey. and Fu-
jian Institute of Geological Survey, 2014). The geo-
chemical anomalies detected by GAUGE are
located in or near granites (Figs. 4b, 6a). In addition,
due to the indicators variables we obtained from the
geochemical model of the Zijinshan area with a
complex metallogenic environment, some mineral-
ization dominated by tectonic precipitation (south-
eastern deposits) was also identified as high
anomalies. For example, the Yongding area (south-
eastern part of Longyan) experienced slow subsi-
dence and deposition from the Late Devonian
onwards to the Early Triassic. The intrusive rocks in
this area were not well developed; thus, the poly-
metallic deposit in this area is presumed to be vol-
canic hydrothermal–sedimentary types (Nai-Zheng

et al., 2008; Development Research Center of Sur-
vey and Fujian Institute of Geological Survey, 2014).
All the aforementioned results indicate that the re-
sults of GAUGE were credible. The detected geo-
chemical anomalies can also provide significant
indications for further exploration.

To better comprehend and highlight the
advantages of GAUGE in considering spatial
structure, we visualized the results obtained by the
AE-based methods according to the optimal
threshold determined by the AUC (Fig. 7). Com-
pared with AE and DAN, GAUGE considers the
neighborhood and spatial structure characteristics of
the sampled points, thus making background or
anomalies purer (e.g., region A). In other words,
there is fewer ‘‘salt-and-pepper noise’’ anomalies
and background in the region, and the anomaly map
has better visual effect. In addition, we noted that,
compared to the value of anomalies obtained by
DAN, the value of anomalies obtained by GAUGE
can better distinguish between anomalies and
backgrounds. The high anomaly scores obtained by
GAUGE are more significant and closer to the
known Au deposits in region B, indicating that
GAUGE results are more indicative of mineral re-
sources.

To verify the ability of GAUGE to extract
spatial features to identify anomalies, CAE and
GAUGE were compared in this study. CAE cannot
be applied to an irregular area for geochemical
anomaly identification; hence, this study selected a
rectangular area in the Longyan area to compare

Figure 6. (a) Anomaly map obtained by GAUGE. (b) Prediction–area (P–A) plot.

Table 1. Performance indicators of various methods

Method AUC

COF 0.712

OCSVM 0.753

LOF 0.767

IF 0.792

MCD 0.794

AE 0.795

CBLOF 0.809

DAN 0.813

GAUGE* 0.828

GAUGE 0.833

GAUGE* is the framework with GCN instead of GAT
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CAE and GAUGE (Fig. 8a). The AUCs of CAE
and GAUGE were 0.786 and 0.796, respectively
(Fig. 8b). There is little difference in accuracy be-
tween the two models. Comparing Figure 8c and d
shows that the distributions of different levels of
background and anomalies obtained by the two
models were also similar. The difference is that the
background recognized by GAUGE was mostly le-
vel 1, thus making the anomaly score boundary be-
tween the background area and the anomaly area
more obvious. In general, similar to the above, CAE
and GAUGE showed the same advantages as DAN
and AE because of the consideration of spatial
structure feature or relationship among points be-

sides attributes (i.e., element concentrations).
Overall, the graph deep learning was feasible for
geochemical anomaly identification. However, due
to the advantage of graph neural networks,
GAUGE can not only learn the spatial pattern of
geochemical elements such as CAE but it can also
be applied to irregular areas.

Uncertainty Analysis

The GAUGE can learn geochemical patterns
and identify geochemical anomalies related to min-
eralization in irregular regions. In addition to model

Figure 7. Anomaly recognition results of AE-based models using the optimal threshold obtained by the ROC curve. Detailed methods

can be found in Chen et al., (2019a) and Guan et al., (2021).
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structure, graph construction and choice of loss
function produce many uncertainties in a model�s
performance. Different constructing methods and
loss functions allow models to perform differently.
In this study, comparative experiments were con-
ducted separately to infer the optimal settings of the
parameters by analyzing the accuracy variations to
improve the application of GAUGE.

Comparison of Methods to Construct Topology
Graph

In addition to distance thresholds, the influence
of faults on geochemical spatial structure should be
considered when constructing a geochemical graph.

Similar to elemental concentrations, faults are
readily available and basic in most geological data-
sets. From a data-driven perspective, it is natural to
analyze whether the involvement of fault data in the
graph affects the accuracy of a model. In general,
faults are often the boundaries between two geo-
logical bodies, and the lithologic configuration of
two sides of a geological body differs. To some ex-
tent, sampling points within the same geologic body
are more strongly related than sampling points in
different geologic bodies because of lithology.
Therefore, this study compared the two methods
(with fault truncation processing and without fault
truncation processing) for constructing topology
graphs. If a fault truncates the edge between two
sampling points, this side is removed.

Figure 8. (a) Rectangular area selected for comparison of GAUGE and CAE. (b) AUCs of CAE and GAUGE. Anomalies detected by

(c) GAUGE and (d) CAE.
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The relationship between faults and Au min-
eralization is also impacted by the timing of the
formation of the faults. However, the purpose of the
proposed GAUGE in this study was to identify
geochemical anomalies more automatically and
efficiently, and it was applied to unknown regions
where detailed public information is lacking.
Therefore, we discarded all a priori knowledge and
used all faults for the composition graph and anal-
ysis (Fig. 9).

Compared with the AUCs of graphs without
fault truncation processing, the AUCs of graphs with
fault truncation processing were more stable be-
cause the fault truncation processing caused most of
the edges in the graph to be truncated. Therefore,
graph�s and nodes� abilities to converge surrounding
features were stable. However, due to fault trunca-
tion processing, some useful edges were also trun-
cated thus causing the AUC of the graph to decrease
after fault truncation processing (especially when
the distance threshold was in the range from 0 to
50 km). Finding a reasonable threshold by using
Moran�s I was effective, thus ensuring that GAUGE
obtained the highest accuracy. Additionally, we do
not recommend truncating the edges when geologi-
cal information is missing. The model accuracy is
degraded because sampling points cannot obtain
sufficient neighborhood information.

Comparison of Cost Functions

Unlike the MSE commonly used in many ma-
chine learning methods, the cost function in
GAUGE improved (i.e., SPRE, as mentioned in the
Methods section). To compare the performance of
the two cost functions, we applied SPRE and MSE
to various neural network methods. The AUCs of
the methods using SPRE were significantly higher
than those using MSE (Fig. 10). In particular, the
AUC reached 0.833 when using GAUGE with
GAT. These indicate that the performance of geo-
chemical anomaly detection can be improved using
the SPRE. This is because the MSE considers only
the errors of each input and output variable equally.
In other words, MSE treats different variables at
different sampling points equally, thereby ignoring
differences in the contribution of variables to min-
eralization among different sampling points. There-
fore, the performance improved when we focused on
the sampling point errors (i.e., by calculating each

sampling point error first and then averaging the
SPRE).

DISCUSSION AND CONCLUSIONS

The main task of geochemical exploration is to
quantify spatial patterns and composition relation-
ships of geochemical variables, and to identify geo-
chemical anomalies related to mineralization.
Geochemical patterns reflect complex geochemical
processes. Better learning of these patterns has al-
ways been the main melody of developing geo-
chemical methods. The emergence of deep learning
methods (especially CNNs) provides approaches to
learning complex and nonlinear geochemical pat-
terns and to recognition of anomalies. Although
combining CNNs and AE frameworks is the most
popular and efficient unsupervised geochemical
anomaly detection approach, there are still many
problems. The deep learning model relies on a
rectangular convolution operation in extracting
spatial patterns (LeCun et al., 2015). Therefore, it is
necessary to interpolate sampled point data into
raster grids, which inevitably introduces uncertain-
ties into the data. More seriously, existing deep
learning methods that consider spatial patterns
cannot be applied to irregular regions because geo-
chemical data are inconsistent in resolution, partially
missing and irregular. This study creatively intro-
duces graph learning and constructs the GAUGE
framework. This method can detect geochemical
anomalies by extracting spatial structure and com-
position relationships directly from unlabeled geo-
chemical sampling points. The Longyan area was
selected as an irregular case area, and some geo-
chemical sampling points are missing in this area.
GAUGE was applied successfully to this study area.
More than 75% of the known gold deposits were
predicted in less than 25% of the study area, and the
AUC obtained by GAUGE was 0.833. The pro-
posed method solved the problem that the deep
learning model cannot be applied to the geochemi-
cal anomaly recognition in irregular areas.

Unlike CNNs, which use convolution to extract
spatial features, GAT and GCN are more similar to
the improvements of DAN. Graph learning for
extracting geochemical compositional relationships
is the same as that of DAN. The difference is that
GAT and GCN add a communication process be-
tween sampling points to learn spatial patterns (Veli
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et al., 2017; Zhou et al., 2018). In other words, the
features extracted at each sampling point are the
relationships of its own collected attributes and the
patterns of spatial relationships with surrounding
sampling points. According to the Moran�s I index,
these patterns are similar to the aggregation patterns
of sampling points quantified by Zuo and Xiong,
(2020). In an irregular region, to compare with
existing methods that consider only compositional
relationships among geochemical variables (i.e.,

node attributes), the GAUGE framework (including
GAT and GCN) achieved higher accuracy (an
average improvement of 6.26%). Figure 8 illustrates
that both the anomalous region and the background
are purer when spatial pattern features are learned.
Such a result is also more consistent with the geo-
chemical distribution, i.e., the properties of adjacent
samples are similar. Although the results and per-
formances of GAUGE and CAE are similar, the
former can be applied in irregular areas whereas
that latter cannot. Therefore, graph deep learning
methods (e.g., GAT and GCN) can replace CNNs in
geochemical anomaly identification models. More
deep learning models can be applied to identify
geochemical anomalies in irregular areas. More
importantly, GAUGE is helpful in geochemical
anomaly identification and many other geoscience
fields that need to consider spatial relations.

When extracting the spatial pattern of geo-
chemical elements, graph convolution depends
mainly on the interaction (edge) between nodes to
represent the spatial relationship. How to convert
geochemical exploration data into a graph is also a
very important question. This study creatively pro-
poses transforming geochemical sampled points into
geochemical graph data. Referring to the method of
determining the optimal convolution window size
(Chen et al., 2019c; Guan et al., 2021), Moran�s I was
used to quantify the degree of spatial aggregation at

Figure 9. Effect of fault truncation processing on method accuracy. Comparisons of (a) accuracy (AUC) at different distance thresholds,

and (b) average degree of graphs constructed at different distance thresholds.

Figure 10. Performance of various methods with two cost

functions (i.e., MSE and SPRE).
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different thresholds and to determine the optimal
distance threshold. GAUGE obtained the highest
accuracy because the constructed graph balanced
the spatial structure information and spatial
heterogeneity. In addition, the influence of fault
processing on accuracy of the model was analyzed.
The results show that, when a geochemical graph
without fault truncation was used, GAUGE per-
formed better in anomaly detection. This result is
consistent with Chen et al., (2019b). Hydrothermal
mineralization is predominantly present in the
Yongyan area (Chen et al., 2019b). Heat sources,
fluid flow, activity pathways and chemical/physical
traps are processes critical to hydrothermal miner-
alization. Faults/fractures likely provided favorable
active pathways and physical traps for gold-bearing
fluids (Mathieu, 2018). The difference in lithology is
not highly critical in hydrothermal mineralization.
The Moran�s I index can detect the spatial distribu-
tion patterns of elements due to faults. More valu-
ably, the comparison experiment demonstrated that
we can manipulate the edges to give the graph some
geological information, such as faults, thereby
increasing the potential for GAUGE applications.
Unlike a raster, edges in a graph can be carried or
expressed more information. On the one hand, the
importance of faults on mineralization is quantified
by extracting the weights of edges of a trained model
when the geological structure is unknown. On the
other hand, when the influence of faults on miner-
alization is known, the effect can be added to the
edge as a known weight to improve anomaly iden-
tification accuracy.

This study also analyzed the influence of a
model�s cost function (i.e., SPRE and MSE). Com-
pared to the popular cost function MSE, the im-
proved cost function SPRE also allowed GAUGE to
maximize performance because it considers the dif-
ferences in the contributions of variables to miner-
alization among the different sampling points. Such
performance improvement is similarly effective for
other autoencoder networks.

This study still has limitations and opportunities
for future studies. First, the data used in this study
are the original sampling data of geochemical
exploration variables. However, due to the way
geochemical data are measured, they carry the clo-
sure problem (Chayes, 1971). In the future, we will
carry out suitable logratio transformation of geo-
chemical exploration data to address the closure
problem and thus further improve the accuracy of
using GAUGE in extracting geochemical patterns

for anomaly recognition. Second, compared to
CNNs, graph learning is slower in extracting geo-
chemical patterns for a larger quantity of data. Al-
though GAT speeds up somewhat, its speed is
intermediate in the range of comparative models. To
the best of our knowledge, this is the first time that
graph learning is introduced into the field of geo-
chemical exploration. Graph deep learning can help
a deep learning model applied to the recognition of
geochemical anomalies in irregular areas. However,
graph deep learning in other directions of geo-
chemical exploration (e.g., prospectivity mapping)
needs to be verified and further optimized. In the
future, we believe that increasingly more research
will be carried out on graph learning.

In general, this study introduces graph learning
into geochemical feature extraction for the first time.
A geochemical anomaly recognition framework
(GAUGE) was constructed based on graph deep
learning. Additionally, we innovatively proposed
converting geochemical sampling point data into
geochemical graphs. By constructing an unsuper-
vised graph autoencoder, this study solved the
problem that traditional deep learning models can-
not extract geospatial patterns in irregular regions.
When this framework recognizes anomalies in a
regular area, GAUGE has the same advantages as
the CAE. Compared to traditional methods,
GAUGE considers the spatial pattern in irregular
areas, and its model accuracy is higher compared to
other models. This research firstly verified the
adaptability and usability of graph learning in geo-
chemical anomaly recognition, thereby greatly
expanding the application of deep learning models
in geochemical anomalies. We expect that graph
learning will be broadly applied in future analysis of
geochemical data for mineral exploration.
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APPENDIX

GLOBAL MORAN¢S I METHOD
FOR SPATIAL AUTOCORRELATION

Spatial autocorrelation indicates a significant
spatial distribution pattern in space through the
degree of correlation between spatial objects in a
region. Global Moran¢s I is a common metric for
quantitative representation of spatial autocorrela-
tion (Goodchild, 1986). Its mathematical equation is:

I ¼ n

S0

Pn
i¼1

Pn
j¼1 wi;j xi � xð Þ xj � x

� �

Pn
i¼1 xi � xð Þ2

ð15Þ

where xi, xj are sampling values at sampling point

i and j, respectively; x is the mean value; wi;j de-

notes weights representing the proximity relation-
ship between sampling points i and j. Generally,
wi;j is related to the distance band selection, and

here we calculated the spatial weights for samples
only within distance K. S0 is the sum of all ele-
ments of the spatial weight matrix W. I is Global
Moran�s I value, which ranges from -1 to 1. The
closer it is to 1, the stronger the spatial autocor-
relation is.

ACTIVATION FUNCTIONS IN GAT

The activation function is a function that maps
inputs to outputs in neurons. It is important for deep
learning models to extract and understand complex
and nonlinear patterns. Sigmoid, LeakyReLU, and

ReLU are used in GAUGE, and their mathematical
equations are as follows:

Sigmoid (Finney, 1952):

Sigmoid xð Þ ¼ 1

1þ e�x
ð16Þ

ReLU (Glorot et al., 2011):

Relu xð Þ ¼ max 0; xð Þ ð17Þ
LeakyReLU (Maas et al., 2013):

LeakyReLU xð Þ ¼ max ax; xð Þ ð18Þ

where x indicates the input of activation function.
Sigmoid xð Þ, Relu xð Þ, and LeakyReLUðxÞ are the
output of the respective functions. The
aofLeakyReLU defaults to 0.01.
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