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ABSTRACT 
Rising customer demands and the complexities of dynamic urban 
systems pose significant challenges for logistics distribution, espe
cially since large-scale real-time dynamic traffic information is not 
always accessible. However, few studies have focused on optimiz
ing logistics in the ever-changing traffic environments of megac
ities with multiple distribution centers. This study proposes two 
deep reinforcement learning models with Transformer architec
tures to optimize logistics distribution time costs across multiple 
depots in static and dynamic traffic scenarios, respectively. The 
first model (DTM-MDVRP) incorporates travel times between cus
tomers as edge information in the encoder to pre-plan delivery 
routes. The second model (DTM-DMDVRP) introduces a feature 
embedding module to extract real-time traffic information for 
dynamic route optimization. Wuhan city was selected for logistics 
optimization experiments. Results indicate that DTM-MDVRP sur
passes heuristic methods and other deep reinforcement learning 
methods in optimization effectiveness and computation time. In 
dynamic urban traffic environments, DTM-DMDVRP further 
improves distribution efficiency. Compared to the traditional 
attention model, DTM-DMDVRP reduces time costs by 7.77, 3.51, 
and 3.58% across three problem scales and can optimize delivery 
routes for 100 customer points within 0.30 seconds. The proposed 
DTM-DMDVRP enables the real-time dynamic scheduling of logis
tics vehicles for logistics enterprises.
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1. Introduction

Urban logistics distribution involves the allocation and transfer of goods within city 
areas through distribution centers or other logistics facilities to meet customer 
demands (Chang et al. 2020, Taniguchi et al. 2020). The process relies heavily on mod
ern information technology and various transportation modes (He et al. 2022). The 
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primary goal is to improve the efficiency and profitability of logistics companies oper
ating in urban environments (Saha et al. 2023). Urban logistics is characterized by 
timeliness, wide coverage, high activity volume, short transportation distances, numer
ous logistics nodes, and constraints imposed by urban planning and control (Marcucci 
et al. 2018, Perboli et al. 2018, Dong et al. 2021). The rapid growth of urbanization 
and the expansion of e-commerce have significantly increased the importance of the 
logistics industry in urban economic development.

The increasing demand for distribution, combined with the highly complex and 
dynamic traffic in large cities, poses significant challenges for urban logistics. The 
demand has surged due to rapidly growing mobile e-commerce (Leng and Li 2022), 
resulting in more distribution tasks and delivery time pressures (Perera et al. 2020). 
Additionally, urban logistics distribution relies on a complex city road network (Yao 
et al. 2018), while dynamic events such as traffic congestion (Hammami 2020) and 
extreme weather conditions (Wu et al. 2020, Giordano et al. 2022) further reduce logis
tics efficiency. Effective distribution necessitates the comprehensive use of both static 
and dynamic information within the urban environment, coupled with rational route 
planning, to efficiently deliver goods to all customers across the region while minimiz
ing logistics costs (Tang et al. 2023, Zou et al. 2024). Research in urban logistics distri
bution has become crucial for urban development (Strale 2019, He et al. 2022, Kaspi 
et al. 2022).

Urban logistics necessitates the transshipment and distribution of goods from mul
tiple distribution centers due to the large size of cities and the relative dispersion of 
commercial centers (Zhou and Gao 2020). Each center serves customers within a spe
cific region, catering to the needs of various locations. Consequently, logistics distribu
tion is typically modeled as a multi-depot vehicle routing problem (MDVRP) 
(Cattaruzza et al. 2017, Dubey and Tanksale 2023). Multiple distribution centers handle 
customer deliveries, each equipped with several vehicles subject to the same capacity 
constraints (Vieira et al. 2021). Vehicles start from different logistics centers, deliver 
goods to customers according to predetermined routes, and return to the centers 
after completing all tasks. The optimization objective of the MDVRP is to minimize the 
total distribution cost through effective route planning and scheduling (Arishi and 
Krishnan 2023).

The MDVRP is a variant of the vehicle routing problem (VRP) (Konstantakopoulos 
et al. 2022) and has been shown to be NP-hard (Zou et al. 2024), making quick and 
effective solutions challenging. Traditional approaches include exact and heuristic 
algorithms. Exact algorithms, such as branch-and-bound (Laporte 1984, Bettinelli et al. 
2011), can yield optimal solutions. However, the efficiency of exact methods is limited 
by the extensive computational resources and memory requirements as the problem 
size increases.

To address challenges in practical logistics, researchers employ heuristic algorithms 
to solve the VRP and various variants (Aliakbari et al. 2022, Lin et al. 2022, Hussain 
Ahmed and Yousefikhoshbakht 2023). Common approaches include genetic algorithms 
(GA), simulated annealing (SA), and ant colony optimization (ACO) (Abualigah et al. 
2022). GA uses a non-deterministic evolutionary process that maintains a set of high- 
quality solutions evolving over time, thereby effectively avoiding local optima (Imani 
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and Ghoreishi 2022). For example, Aliakbari et al. (2022) applied GA to solve a VRP 
involving multiple supply chains, time periods, and commodities. SA relies on local 
search and avoids local optima by accepting suboptimal solutions with a certain prob
ability (Fontes et al. 2023). Fan et al. (2023) developed a multi-objective SA to minim
ize a logistics company’s economic and environmental costs. ACO is inspired by the 
behavior of ants searching for food and employs pheromone-releasing and path- 
updating strategies to solve combinatorial optimization problems (Luo et al. 2020). For 
instance, Hou et al. (2024) proposed an adaptive ACO algorithm using real-time logis
tics features to improve instant delivery order scheduling efficiency. Single heuristic 
algorithms can effectively solve VRPs. However, as the scale of VRPs increases, the 
search space of heuristic algorithms rapidly expands, which significantly reduces opti
mization efficiency.

In recent years, researchers have explored the integration of various heuristics to 
develop hybrid models (Abdulkader et al. 2015). Hybrid heuristics combine properties 
from multiple algorithms to create more robust models by leveraging the strengths of 
different search strategies. For instance, Abdulkader et al. (2015) introduced a hybrid 
model for the MDVRP that integrates ACO with 2-opt improvement algorithms. Wang 
et al. (2019) proposed a hybrid heuristic algorithm based on ACO to solve the VRP 
involving customized service times. Similarly, Yao et al. (2023) developed a hybrid 
heuristic algorithm that merges Sparrow Search Algorithm (SSA) with SA, effectively 
solving the MDVRP under complex road networks and demonstrating suitability for 
large-scale urban logistics optimization. Additionally, Wang et al. (2024) proposed a 
hybrid heuristic algorithm combining spectral clustering, multi-objective ant colony 
optimization, and variable neighborhood search to solve the multi-depot vehicle rout
ing problem with time windows. Although hybrid heuristic algorithms integrate mul
tiple algorithmic advantages, the solution quality heavily depends on extensive 
parameter design and selection.

The rapid development of deep reinforcement learning (DRL) techniques has estab
lished a new technological foundation for solving VRPs. Vinyals et al. (2015) first 
applied DRL to solve the Travelling Salesman Problem (TSP), proposing a pointer net
work (PN) with an encoder-decoder structure using an attention mechanism to select 
elements from the input sequence. However, PN relies on supervised learning, and 
obtaining optimal solutions for large-scale VRP is difficult. Bello et al. (2016) extended 
the PN to reinforcement learning by setting the reward signal to the negative path 
length, eliminating the need for pre-collected optimal solutions. Nazari et al. (2018) 
further optimized the model by replacing the LSTM encoder in the PN with simple 
node embeddings, achieving results similar to traditional heuristics.

The Transformer model (Vaswani et al. 2017) has made significant breakthroughs in 
the field of natural language processing and has been applied to VRPs, demonstrating 
superior performance compared to traditional encoder-decoder models. Kool et al. 
(2018) introduced a DRL model based on the Transformer architecture and the policy 
gradient algorithm, demonstrating superiority over traditional baseline algorithms in 
solving various routing problems. Bdeir et al. (2021) developed a DRL model that com
bines the Transformer architecture with Q-Learning to tackle the capacity-constrained 
VRP and applied DRL to the MDVRP for the first time. Zou et al. (2024) proposed an 
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enhanced Transformer model that incorporates a multi-attention mechanism and an 
attention-to-attention mechanism to address the low-carbon MDVRP. Li et al. (2024) 
proposed a multi-type attention mechanism that improves MDVRP solving efficiency 
and solution quality by separately encoding depot and customer features and using 
depot rotation augmentation. Moreover, DRL has been employed to address VRPs 
under large-scale (Li et al. 2024) and real-time constraints (Tu et al. 2024). Li et al. 
(2025) proposed a hierarchical DRL model with an improved Transformer to handle 
massive customer demand in dynamic logistics environments. While DRL algorithms 
can effectively solve VRPs, few studies have addressed the dynamic MDVRP in urban 
environments. Developing DRL algorithms capable of handling multi-depot and 
dynamic urban conditions is crucial for solving real-world logistics problems.

In conclusion, the reviewed literature highlights two key issues that remain insuffi
ciently addressed. Firstly, exact algorithms and heuristic methods struggle to handle 
the multiple constraints and large-scale nature of urban multi-depot logistics, leading 
to limited computational efficiency and inadequate adaptability. Secondly, most exist
ing DRL algorithms rely on Euclidean distance calculations or static traffic data, which 
do not fully capture the dynamic changes in urban road network speeds, restricting 
real-time optimization of multi-depot logistics routing.

Consequently, we propose two deep reinforcement learning-based logistics opti
mization models for complex urban multi-depot logistics, which incorporate encoders 
for processing environmental information. We first introduce the DTM-MDVRP 
(Delivery Time Minimization for Multi-Depot Vehicle Routing Problem) for scenarios 
lacking dynamic information or with stringent time constraints. In DTM-MDVRP, travel 
times between customers are incorporated as edge information in the encoder to pre- 
plan the delivery routes, aiming to improve computational efficiency. Furthermore, we 
present the DTM-DMDVRP (Dynamic Multi-Depot Vehicle Routing Problem with 
Delivery Time Minimization), which is designed for contexts with dynamic information. 
The DTM-DMDVRP enhances delivery efficiency by incorporating a dynamic feature 
embedding module that extracts real-time traffic information for route optimization 
under changing traffic conditions. We take Wuhan as the study area, comparing the 
proposed models with other logistics algorithms based on the city’s road network and 
logistics data to verify the models’ effectiveness.

2. Study area and data description

2.1. Study area

Wuhan is located in central China at the confluence of the Yangtze and Han Rivers, 
covering an area of approximately 8,500 square kilometers. By the end of 2022, the 
city had a permanent resident population exceeding 13 million. Wuhan features a 
well-developed transportation network structured around a “circular-radial” backbone 
road system, which includes urban expressways, main roads, and inner, middle, and 
outer ring roads (Yao et al. 2023). According to the Wuhan Highway Management 
Office (wuhan.gov.cn), the total road mileage has reached 16,000 kilometers, with a 
road density of 192.6 kilometers per 100 square kilometers. Wuhan’s distinctive geog
raphy, featuring numerous bridges spanning the Yangtze River, contributes to the 
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complexity of the road network. The logistics sector represents a vital component of 
Wuhan’s tertiary industry. According to the Wuhan Statistics Bureau (https://tjj.wuhan. 
gov.cn/), the city’s logistics industry handled 615.247 million tons of freight in 2022, 
with road transportation accounting for 449.774 million tons. Given Wuhan’s intricate 
road network and substantial demand for goods transport, the city is an ideal area for 
investigating strategies to optimize urban logistics distribution routes.

2.2. Dataset

The primary datasets include logistics data, road network data, and taxi trajectory 
data. The logistics data, comprising customer points and logistics centers, were 
obtained from a logistics company in Wuhan via Amap (https://lbs.amap.com/). A ran
dom selection was made of 1,000 customer points and 4 logistics centers (Figure 1). 
Each customer’s data includes latitude and longitude coordinates and delivery quanti
ties (random values ranging from 1 to 100), as shown in Table 1.

The road network data (Figure 1) were sourced from OpenStreetMap (OSM) (http:// 
www.openstreetmap.org), an open-source platform that provides freely accessible digital 
map data (Vargas-Munoz et al. 2021). The extracted road network for Wuhan includes 
81,711 edges along with various associated attributes such as road latitude and 

Figure 1. Logistics centers, customers and road network data in the study areas.
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longitude, road type, length, and average travel speed. To accurately reflect actual traffic 
flow conditions, this study employed taxi trajectory data collected from a taxi company 
in Wuhan on 21 March 2013. The trajectory data contains extensive records of real-time 
location and speed information for taxis, which can be used to compute average travel 
speeds on various roads at different times. As demonstrated in previous studies, large- 
scale taxi trajectory data provides broad spatial and temporal coverage, enabling accur
ate characterization of urban traffic patterns (Wang et al. 2021, Chen et al. 2024)

3. Methodology

The following section describes the proposed DRL approach and the corresponding 
technical framework, as illustrated in Figure 2. We first present DTM-MDVRP, which 
incorporates edge information into the encoder and embeds the information into the 
Transformer’s multi-head attention layer. We then introduce DTM-DMDVRP to optimize 

Table 1. Customer point location coordinates and delivery requirements.
Sequence Longitude Latitude Delivery weight/kg

1 114.06231 30.40521 6
2 114.13948 30.48460 3
3 114.38444 30.46892 5
… … … …

Figure 2. Diagram of DRL-based learning framework: (a) policy network for DTM-MDVRP; (b) policy 
network for DTM-DMDVRP.
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routes within the context of dynamic urban environments. The DTM-DMDVRP 
accounts for temporal variations in edge weights and introduces a feature embedding 
module (Tang et al. 2023) to capture dynamic features of the MDVRP. In the decoder 
stage, a customized masking scheme ensures path feasibility and progressively gener
ates logistics vehicle routes. Finally, the policy network is trained using the policy gra
dient algorithm.

3.1. Problem description

The MDVRP is modeled as a weighted graph G N, E, Wð Þ; encompassing logistics cen
ters, customer points, and road networks. The vertex set N consists of logistics centers 

n1, n2, . . . , ndf g and customer points fndþ1, ndþ2, . . . , nLg: The E¼fe1�1, e1�2, . . . , ei�jg rep
resents the set of roads. The W¼fw1�1, w1�2, . . . , wi�jg represents the shortest weights 
between nodes. The average travel speed v0 of a road is determined by the road clas
sification. Travel time is calculated using the distance and speed of the road, yielding 
the inter-node weights wi�j:

Moreover, each customer j has a cargo demand qj: Each logistics center d operates 
a fleet of homogeneous vehicles Vd ¼ fv1, v2, . . . , vdg with a capacity of Q: Vehicles 
depart from logistics centers to distribute goods throughout the urban road network. 
The solution to the MDVRP must adhere to the following constraints: each customer is 
served by exactly one vehicle; each vehicle must depart from and return to the same 
logistics center; the total customer demand cannot exceed the maximum load cap
acity; and each vehicle can complete the distribution service only once.

Given R as the solution to the MDVRP, the corresponding logistics distribution time 
can be calculated as follows:

T Rð Þ ¼
XD

d¼1

XV

v¼1

XN

n¼1

Tðxrd
v nð Þ, xrd

v nþ1ð ÞÞ (1) 

where rd
v ðnÞ denotes the n-th customer point served by the v-th vehicle from logistics 

center d; and Tðxrd
v nð Þ, xrd

v nþ1ð ÞÞ represents the delivery time between customer points.

3.2. Markov decision process of MDVRP

The construction of a solution for MDVRP is essentially a sequential decision-making 
process. At each step, the agent selects and adds a node to the current solution until 
a complete distribution path is established. In this study, the MDVRP is modeled as a 
Markov Decision Process (MDP), with the state S; action A; reward R; and state transi
tion rule s defined as follows.

The system’s state includes both static and dynamic information. Static information 
includes the states of logistics centers and the customer points, denoted as xi ¼

ðpi, qiÞ; where pi represents the geographic coordinates of the node, and qi represents 
the node’s demand. Dynamic information covers vehicle status, customer accessibility, 
and traffic conditions. The action at determines which node the vehicle serves at time 
step t: Actions are selected based on the policy p and state st; i.e., at � pðajstÞ:

During the training phase, actions are randomly selected from the action space. 
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Various decoding strategies, such as greedy and sampling methods, are employed dur
ing the testing phase.

The system transitions from state st to state stþ1 based on the action currently 
being executed. While the node states remain static, the vehicle states, customer 
accessibility, and traffic conditions are updated concurrently with the execution of the 
action. The objective is to minimize the delivery time of logistics vehicles. Thus, the 
reward is defined as the negative value of the objective function, as shown in 
Equation (1).

3.3. Policy network

To minimize the delivery time of logistics vehicles, a Transformer-based policy network 
models the agent’s stochastic policy phðatjstÞ with parameter h. Following the MDP 
framework, the model selects a vertex at each time step and generates a complete 
sequence solution. The formulation of the agent’s probabilistic policy is presented as 
follows:

ph ajsð Þ ¼
YT

t¼1

ph atjst , a1:t−1ð Þ (2) 

where ph atjst , a1:t−1ð Þ represents the probability of taking action at at time step t;
given the state st and the history of previous actions a1:t−1:

The policy network of DTM-MDVRP consists of an encoder and a decoder, as shown 
in Figure 2(a). For DTM-DMDVRP, the policy network additionally incorporates a fea
ture embedding module, as illustrated in Figure 2(b).

3.3.1. Policy network for DTM-MDVRP
3.3.1.1. Encoder. The encoder embeds the original features of MDVRP instances into 
high-dimensional vectors. Leveraging a multi-layer attention mechanism, the encoder 
generates embeddings for individual nodes as well as a mean embedding that cap
tures the overall graph structure. In contrast to previous studies (Kool et al. 2018, 
Arishi and Krishnan 2023), the proposed DTM-MDVRP integrates travel times between 
nodes as edge features into the initial embedding space.

The encoding process begins by embedding the node features into a high- 
dimensional vector hð0Þn i with dimension dh¼128. The initial embedding is computed 
using different parameter sets based on the node type (logistics center or customer), 
as specified in Equation (3).

hð0Þn i ¼
wx

d xi½ � þ bx
d, if i 2 D

wx
c xi, qi½ � þ bx

c , if i 2 C

�

(3) 

where xi denotes the geographic coordinates (latitude and longitude) of node i; and 
qi represents the demand associated with customer nodes. The terms wx

d; bx
d; wx

c ; and 
bx

c are the trainable parameters of the linear projection layers, corresponding to logis
tics center nodes (D) and customer nodes (C), respectively.

In parallel, the travel time from the current node to other nodes is encoded as an 
edge feature in the vector hð0Þi e of the same dimension dh¼128, as defined in Equation (4).
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hð0Þe i ¼ wedge ei½ � þ bedge (4) 

where ei denotes the travel time from the current node i to other nodes, and wedge 

and bedge are the trainable parameters of the linear projection layer associated with 
the edge features.

The encoder then combines the node and edge features through a weighted fusion 
mechanism to generate the initial embedding hð0Þ ¼ fhð0Þ0 , hð0Þ1 , . . . , hð0ÞN−1g of the 
MDVRP instance.

Subsequently, the initial embedding hð0Þ is passed through L attention layers to 
generate the final node embedding hðLÞ: Each layer consists of a multi-head attention 
(MHA) sublayer, a skip connection (SC) layer, a feed-forward (FF) layer, and a batch 
normalization (BN) layer, as detailed in Equations (5)–(7). The specifics of the MHA sub
layer follow the model proposed by Kool et al. (2018).

hðl−1Þ ¼ fhðl−1Þ
0 , hðl−1Þ

1 , . . . , hðl−1Þ
N−1 g (5) 

~h
ðlÞ
¼ BNðlÞ hðl−1Þ þMHAðlÞ hðl−1Þð Þ

� �
(6) 

hðlÞ ¼ BNðlÞ ~h
ðlÞ
þ FFðlÞ ~h

l
� �� �

(7) 

where hðl−1Þ denotes the node embeddings from the previous layer, MHAðlÞ hðl−1Þð Þ is 
the output of the multi-head attention sublayer, ~h

ðlÞ
is the intermediate embedding 

obtained by applying a skip connection and batch normalization to the attention out
put, and hðlÞ is the final node embedding produced by a feed-forward layer followed 
by batch normalization.

After passing through L attention layers, the encoder computes the mean of all 
node embeddings to obtain the graph embedding hðLÞg :

hðLÞg ¼
1
N

XN

i¼1

hðLÞi (8) 

3.3.1.2. Decoder. The decoder of the DTM-MDVRP combines the node embeddings 
hðLÞ and the graph embedding hðLÞg provided by the encoder, along with the current 
vehicle information Vt; to construct the decoder context Hc

t : Based on the constructed 
context, the decoder computes a probability distribution vector for selecting the next 
vertex. Details of the vehicle information and the decoder context are provided in 
Equations (9) and (10), respectively.

Vt ¼ rt
v , pt

v, ct
v

� �
(9) 

Hc
t ¼ hðLÞ, hðLÞg , Vt

h i
(10) 

where rt
v denotes the embedding of the nodes already visited by vehicle v; capturing 

the history of the vehicle’s route; pt
v indicates the current position of vehicle v within 

the graph; and ct
v represents the remaining capacity of vehicle v; reflecting the avail

able space for future deliveries.
At each decoding step t, the decoder generates a new context vector H0ct for the 

current state using MHA. H0ct is then linearly projected into a query vector qt and a key 
vector kt; which are used to compute the compatibility score ut with all vertices, as 
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shown in Equations (11)–(13). The compatibility score ut is computed using a scaled 
dot product between the query and key vectors, followed by a non-linear transform
ation such as tanh, to ensure numerical stability.

H0ct ¼ MHAðHc
t Þ (11) 

qt ¼ WQH0ct , kt ¼ WkH0ct (12) 

ut ¼ tanh
qT

t kt
ffiffiffiffiffi
dk
p (13) 

where WQ and Wk are learnable projection parameters.
To compute the probability vector pt; the decoder applies masking rules to exclude 

inaccessible vertices due to various constraints, including vehicle capacity, customer 
access, logistics center access, and vehicle movement. The decoder then generates the 
probability vector pt for vertex selection using the softmax function, as shown in 
Equation (14).

pt ¼ softmax Maskt utð Þ
� �

(14) 

where Maskt denotes a masking operation that assigns large negative values to 
inaccessible vertices in ut at step t:

3.3.2. Policy network for DTM-DMDVRP
The DTM-MDVRP operates using static weights when dynamic information is unavail
able. To address dynamic scenarios, we propose the DTM-DMDVRP, which incorporates 
real-time traffic data into the policy network, enabling the model to effectively capture 
the dynamic nature of the MDVRP.

Compared to DTM-MDVRP, the node weights in DTM-DMDVRP are dynamically 
changing, and additional state variables must be considered. Accordingly, a dynamic 
feature embedding module (Tang et al. 2023) is introduced to capture vehicle and 
traffic state information, including the vehicle’s position pt; remaining capacity ct; vis
ited nodes rt; and the current vehicle’s elapsed time to reach each customer point dt:

dt Reflects real-time traffic changes and is dynamically updated based on the continu
ously changing traffic conditions. The module extracts dynamic environment features 
through linear transformation and a feed-forward neural network (e.g., Equations (15)
and (16)), which are used for vehicle routing decisions.

lt ¼ Wlinear pt , ct , rt , dt½ � þ blinear (15) 

Ot ¼ ReLU Wff lt þ bffð Þ (16) 

where Wlinear and blinear are the trainable parameters for the linear transformation, and 
Wff and bff are the trainable parameters for the feed-forward network.

In the decoder, DTM-DMDVRP combines static node embeddings from the encoder 
with dynamic environmental features extracted by the feature embedding module. 
The fusion of information enables the decoder to compute a probability distribution 
over all candidate vertices for selection.
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3.4. Policy gradient method

A standard policy gradient algorithm with a baseline is employed to reduce variance, 
following the methodology proposed by Kool et al. (2018). The algorithm primarily 
consists of two components: the policy network and the baseline estimator. The policy 
network generates a probability distribution over actions using an attention mechan
ism and selects actions through sampling. The baseline serves as a reference by evalu
ating the policy via a greedy rollout strategy, aiming to reduce the variance of the 
policy gradient and thereby stabilize the training process. The loss function is defined 
as follows:

rhJ hð Þ ¼ Eph pjsð Þ R phð Þ − bðsÞ
� �

rhlogph pjsð Þ
� �

(17) 

where R phð Þ is the reward generated by the policy network ph; bðsÞ is the state- 
dependent baseline, and logphðpjsÞ is the log probability of selecting action a in state 
s; with p representing the policy that defines a probability distribution over actions. 
During training, a one-sided t-test is conducted to compare the performance of the 
policy network h with the current best policy h∗ after each update. The significance 
level a is set to 0.05. If h performs significantly better than h∗; then h∗ is updated; 
otherwise, h∗ remains unchanged. The pseudo-code of the algorithm is provided in 
Table 2.

4. Results

4.1. Experiment setup

The performance of the proposed models was evaluated through extensive experi
ments on MDVRP instances with 20, 50, and 100 customer points. The training and 
testing datasets were obtained from logistics records in Wuhan. The detailed experi
mental setup is shown in Table 3.

Table 2. Policy gradient algorithm operations.
The policy gradient algorithm

Input: number of epochs E; number of batches B; significance level a
Output: Optimized policy h∗

Initialize model parameters h; h∗  h

for epoch ¼ 1,2, … ,E do
for batch ¼ 1,2, … ,B do

xi  SampleBatch()
for t ¼ 1,2, … ,T do

Calculate the output of the policy network at step t
end for
Compute the reward LðhÞ for the solution R
Compute the reward Lðh∗Þ for the baseline solution R∗ using greedy 

decoding
Update h by Adam according to rhJ hð Þ

end for
if paired t-test (LðhÞ; Lðh∗ÞÞ < a; then

h∗  h

end if
end for
Return h∗
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Tables 4 and 5 present the parameters used in the study, which are determined by 
the instance size. The training instances were randomly generated, and the total num
ber of test instances is 10,000, all derived from the same distribution. The hyperpara
meters used in the experiments are shown in Table 6.

4.2. Policy network training

All experiments were conducted on a computer equipped with an AMD EPYC 9754 
CPU (2.1 GHz) and an NVIDIA GeForce RTX 3090. Figures 3 and 4 illustrate the learning 
progress of DTM-MDVRP and DTM-DMDVRP, depicting the negative average reward 
values for each epoch. As the training progresses, the distribution times gradually 
decrease and stabilize after approximately 20 epochs. Despite intermittent fluctuations, 
the training curves ultimately converge, indicating that both models have learned the 
stabilization strategy.

4.3. Comparative analysis

To evaluate the performance of the proposed models, we employed the following 
benchmark algorithms: ACO, SSA-SA (Yao et al. 2023), AM (Kool et al. 2018), and TAOA 

Table 3. The characteristics of randomly generated instance classes.

Instance class
Number of  

depots
Number of  
customers

Number of  
vehicles

Max  
capacity

Customer  
demand

C20-D2-V2 2 20 4 2 [0.2, 0.4]
C50-D2-V3 2 50 6 2 [0.1, 0.3]
C100-D3-V3 3 100 9 2 [0.1, 0.2]

Table 4. Instance size-based parameters for DTM-MDVRP.
Parameters C20-D2-V2 C50-D2-V3 C100-D3-V3

Batch size 512 128 128
Batch steps 1000 4000 4000

Table 5. Instance size-based parameters for DTM-DMDVRP.
Parameters C20-D2-V2 C50-D2-V3 C100-D3-V3

Batch size 128 64 64
Batch steps 2000 4000 4000

Table 6. Hyper parameter values.
Hyperparameters value

Epoch 100
Seed 123
Optimizer Adam
Tanh_clipping 10
Learning rate 1e-4
Encode layers 3
Warmup_beta 0.8
Embed_dim 128
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(Zou et al. 2024). DTM-MDVRP was compared with all four algorithms, while DTM- 
DMDVRP was evaluated against AM, TAOA, and DTM-MDVRP.

Tables 7 and 8 show the test results of various algorithms across different instance 
sizes with performance metrics including Objective, Optimality Gap and Computation 
Time. The Optimality Gap is defined as the normalized distance between the Objective 
and the optimal Objective. In the tables, (G) denotes the greedy strategy, and (S) 
denotes the sampling strategy used for node selection during decoding. The results in 
Table 7 show that the DTM-MDVRP (S) achieves a lower cost than all other algorithms 
except ACO within an acceptable computation time. ACO performs best among all the 
algorithms due to the strong global search capability. DTM-MDVRP outperforms SSA- 
SA, TAOA, and AM in terms of path cost, proving the effectiveness of incorporating 
edge information between nodes. Despite the computational speed of the greedy 
decoding strategy, its performance remains inferior to that of the sampling strategy.

Figure 3. The total cost of the model over epochs for different DTM-MDVRP instances.

Figure 4. The total cost of the model over epochs for different DTM-DMDVRP instances.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 13



In small-scale scenarios, the performance of traditional baseline methods is compar
able to that of DTM-MDVRP. However, as the problem scale increases, the expansion 
of the search space negatively impacts the computation time of heuristic methods, 
thereby reducing the efficiency of ACO and SSA-SA. The DTM-MDVRP demonstrates 
high computational efficiency, effectively balancing transportation costs and computa
tion time. Consequently, the DTM-MDVRP is suitable for complex urban logistics 
systems.

The results in Table 8 indicate that the path cost of the greedy strategy is slightly 
higher than the sampling strategy in dynamic scenarios, consistent with the previous 
findings. Compared to the DTM-MDVRP, the path costs planned by the dynamic DTM- 
DMDVRP are reduced by 13.18, 24.98 and 12.21%, respectively. The reduction demon
strates the ability of DTM-DMDVRP to flexibly adjust the path planning of logistics 
vehicles according to dynamic traffic conditions, thereby improving the efficiency of 
logistics distribution. Additionally, in all three problem scales, the proposed DTM- 
DMDVRP outperforms both AM and TAOA, demonstrating the effectiveness of the 
dynamic feature embedding module in reducing path costs under the sampling strat
egy. Furthermore, the proposed DTM-DMDVRP model can optimize delivery routes for 
100 customer points in 0.30 seconds, demonstrating good real-time response 
capability.

4.4. Route analysis

4.4.1. Optimized route of DTM-MDVRP
To evaluate the advantages of the DTM-MDVRP, three randomly generated problem 
instances of different sizes were optimized using DTM-MDVRP, ACO, SSA-SA, TAOA, 

Table 7. Comparison of DTM-MDVRP algorithm efficiency.

Method

C20-D2-V2 C50-D2-V3 C100-D3-V3

Obj.(h) Gap (%) Time(s) Obj.(h) Gap (%) Time(s) Obj.(h) Gap (%) Time(s)

ACO 6.23 0 30.90 11.63 0 150.45 17.91 0 743.57
SSA-SA 6.64 6.58 34.61 13.28 14.19 55.30 21.92 22.39 82.16
AM (G) 7.05 13.16 0.04 13.22 13.67 0.09 21.73 21.33 0.21
AM (S) 6.79 8.99 0.06 12.93 11.18 0.12 21.31 18.98 0.24
TAOA(G) 7.04 13.00 0.04 13.01 11.87 0.10 20.03 11.84 0.24
TAOA(S) 6.69 7.38 0.08 12.24 5.25 0.16 19.61 9.49 0.29
Proposed DTM-MDVRP (G) 6.95 11.56 0.03 13.04 12.12 0.09 20.34 13.57 0.17
Proposed DTM-MDVRP (S) 6.52 4.65 0.07 12.10 4.04 0.13 18.99 6.03 0.27

Table 8. Comparison of DTM-DMDVRP algorithm efficiency.

Method

C20-D2-V2 C50-D2-V3 C100-D3-V3

Obj.(h) Gap (%) Time(s) Obj.(h) Gap (%) Time(s) Obj.(h) Gap (%) Time(s)

DTM-MDVRP (G) 8.59 13.18 0.03 18.16 24.98 0.09 26.55 17.48 0.17
DTM-MDVRP (S) 8.80 15.94 0.07 18.63 28.22 0.13 25.36 12.21 0.27
AM(G) 8.40 10.67 0.04 15.05 3.58 0.10 23.97 6.06 0.21
AM(S) 8.18 7.77 0.07 15.04 3.51 0.14 23.41 3.58 0.24
TAOA(G) 8.27 8.95 0.05 15.41 6.06 0.12 23.31 3.14 0.29
TAOA(S) 7.65 0.79 0.08 15.16 4.34 0.17 23.04 1.95 0.35
Proposed DTM-DMDVRP (G) 8.23 8.43 0.04 15.67 7.84 0.11 23.24 2.83 0.29
Proposed DTM-DMDVRP (S) 7.59 0 0.08 14.53 0 0.14 22.60 0 0.30
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and AM. Each algorithm was executed 30 times, and the best result was retained for 
analysis. The optimization results were quantitatively analyzed using the following 
metrics: average length of optimized routes (RAL), average coverage area of optimized 
routes (RACA), average distance from customer points to logistics centers (ADCL), cus
tomer neighborhood ratio (CNR), and maximum service distance (MSD) of the logistics 
center (Table 9).

DTM-MDVRP performs best in both RAL and ADCL, with values of 156.66 km and 
27.67 km, respectively. The optimized routes effectively minimize total travel length 
and the average distance from customer points to logistics centers, indicating a priori
tization of customer points clustered around depots (Figure 5(A1, A2, A3)). The RACA 
of DTM-MDVRP is slightly higher than that of SSA-SA and AM, reflecting broader 
regional coverage while maintaining delivery efficiency. The CNR value is the lowest 
among all methods, indicating a high degree of spatial aggregation of customer 
points along the optimized routes. Additionally, the MSD of DTM-MDVRP is 82.55 km, 
which is comparable to other algorithms. DTM-MDVRP allows logistics centers to rea
sonably select service customer points and effectively partition large cities with com
plex demands into smaller areas served by different logistics centers. In contrast, 
distribution vehicles in other models may start from one logistics center but travel to 
customer points near another center, leading to increased distribution costs (Figure 
5(B1, D1, E2, E3)).

4.4.2. Optimized route of DTM-DMDVRP
To further analyze the optimization capability of DTM-DMDVRP under dynamic traffic 
scenarios, 20 customer points were randomly selected for route optimization. Table 10
presents the distance and time distribution of routes passing through different speed 
sections. The results indicate that DTM-DMDVRP, TAOA and AM all achieve zero travel 
distance and time in the 0–10 km/h speed section, demonstrating that the optimized 
routes effectively avoid low-speed driving and improve delivery efficiency. DTM- 
DMDVRP exhibits a higher proportion of time spent in the 60–120 km/h speed sections 
than TAOA, AM, and DTM-MDVRP, contributing to improved overall performance. In 
conjunction with the results in Figure 6, DTM-DMDVRP can dynamically adjust vehicle 
routes to avoid highly congested road sections and optimize distribution efficiency.

4.4. Algorithm generalization

To evaluate the generalizability and robustness of the proposed models across diverse 
urban topologies, additional experiments were conducted involving 100 customer 
points across five districts of Wuhan: Jianghan, Hanyang, Wuchang, Hongshan, and 
Dongxihu. The selected districts feature a variety of road network structures, including 

Table 9. Quantitative analysis comparison of optimization results.
Method RAL (km) RACA (km2) ADCL(km) CNR MSD(km)

DTM-MDVRP 156.66 316.20 27.67 1.28 82.55
ACO 168.13 319.47 28.14 1.40 81.86
SSA-SA 220.23 222.67 29.14 1.31 82.55
TAOA 169.36 381.20 35.20 1.42 82.55
AM 158.81 280.74 32.23 1.69 82.55
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Figure 5. Different MDVRP instances (1: 20 customers, 2: 50 customers, 3: 100 customers) of the 
multi-depot logistic optimization results for five models: (A) Proposed DTM-MDVRP, (B) ACO, (C) 
AM, (D) TAOA, (E) SSA-SA.
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grid-based layouts, irregular historical cores, bridge-constrained zones, and wide-road 
industrial areas. The performance of the proposed models, including DTM-MDVRP and 
DTM-DMDVRP, was compared against benchmark algorithms. The results are shown in 
Tables 11 and 12.

Across all five districts, both DTM-MDVRP and DTM-DMDVRP achieved stable and 
competitive performance. DTM-MDVRP maintained low distribution time under static 
conditions, while DTM-DMDVRP consistently achieved the best results in dynamic traf
fic scenarios. The results indicate that both models adapt well to various road network 
structures and urban forms. The stable performance in different urban districts con
firms the generalizability and operational applicability of the proposed methods in 
real-world logistics scenarios.

5. Discussion

5.1. Interpretation of findings

Highly complex urban road networks and rapidly increasing distribution demands 
pose significant challenges for modern logistics distribution optimization. However, 
most existing studies focus on theoretical innovations (Bdeir et al. 2021, Arishi and 
Krishnan 2023), primarily considering Euclidean distances between customer points 
and overlooking the structural complexity of urban road networks. Moreover, few 
studies address dynamic urban logistics distribution scenarios, failing to account for 
real-time changes in urban traffic, which limits practical applicability.

To address the problems, this study proposes the DTM-MDVRP for pre-planning 
logistics distribution routes in static scenarios and the DTM-DMDVRP for real-time 
route optimization in dynamic urban environments. Wuhan was selected as the study 
area, and the proposed models were trained at scales of 20, 50, and 100 customer 
points. Through training, the two models progressively optimized the travel time of 
logistics distribution routes. The training curve stabilized over time, ultimately yielding 
effective optimization strategies.

Regarding path cost optimization, DTM-MDVRP outperforms classical algorithms, 
including SA-SSA, TAOA, and AM. DTM-MDVRP reduces distribution costs by an aver
age of 3.98, 6.42, and 10.89% compared to AM across three problem scales, demon
strating that the incorporation of inter-node edge features enhances the learning 
capabilities of DTM-MDVRP. Compared to heuristic algorithms, DTM-MDVRP achieves 
solutions within a few seconds. At a scale of 100 customer points, the average compu
tation time of DTM-MDVRP is 0.27 seconds. DTM-MDVRP effectively addresses both 
transport costs and computation times in real logistics scenarios, better meeting the 
demands of complex urban logistics systems.

Table 10. Percentage analysis of distance and time on different speed segments.

Method

0–10km/h 10–30km/h 30–60km/h 60–120km/h

Length Time Length (%) Time (%) Length (%) Time (%) Length (%) Time (%)

DTM-DMDVRP 0 0 0.36 0.96 29.08 42.25 70.56 56.79
AM 0 0 1.00 2.44 27.15 42.88 71.85 54.68
TAOA 0 0 1.14 2.13 17.23 49.17 81.63 48.70
DTM-MDVRP 0.75% 1.67% 1.18 2.76 38.77 54.37 59.30 41.20
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Figure 6. (A) Traffic speed changes from 8:00 to 10:00. (B) Details of delivery vehicle routes, includ
ing starting points, delivery stops, and endpoints.
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The DTM-MDVRP effectively optimizes distribution paths, generating reasonable 
routes that meet urban logistics needs. Compared to baseline algorithms, DTM-MDVRP 
provides zoned distribution services with an average route length of 155.66 km and an 
average distance of 27.67 km from customer points to the logistics center. Customer 
points in DTM-MDVRP exhibit high spatial agglomeration, with a nearest neighbor 
ratio of 1.28, which is lower than the baseline algorithms’ average of 12.03%. Without 
additional optimization strategies, DTM-MDVRP enables logistics centers to select ser
vice customer points reasonably. The DTM-MDVRP effectively divides large areas into 
smaller zones served by different logistics centers, accommodating cities with expan
sive and complex demands.

In dynamic urban traffic environments, DTM-DMDVRP effectively reduces logistics 
distribution costs. Compared to DTM-MDVRP, DTM-DMDVRP reduces the time cost of 
dynamically optimized paths by 13.18, 24.98, and 12.21% across three problem instan
ces. Furthermore, DTM-DMDVRP outperforms the baseline DRL methods AM and TAOA 
under the sampling decoding strategy, consistently producing lower path costs. An 
analysis of the distribution routes’ passing distances and time shares in different speed 
sections shows that the optimized routes of DTM-DMDVRP are concentrated in non- 
congested areas, resulting in lower distribution costs. Validation in real traffic environ
ments demonstrates that DTM-DMDVRP significantly improves urban logistics effi
ciency and reduces costs, providing essential technical support for the development of 
future intelligent logistics systems.

In addition to optimization performance, the proposed models demonstrate strong 
scalability across different problem configurations. Experimental results under varying 
numbers of depots, customer nodes, and vehicles indicate that DTM-MDVRP and DTM- 
DMDVRP consistently achieve high optimization quality and maintain low computa
tional time. Generalizability was further evaluated through experiments conducted in 
five urban districts of Wuhan, each characterized by distinct road network structures. 
Stable and competitive performance across all districts confirms the adaptability of the 
proposed models to heterogeneous urban environments. Scalability across logistical 
configurations and generalizability across spatial structures together confirm the 
robustness and applicability of the proposed models in complex urban logistics 
systems.

Table 11. Generalizability of DTM-MDVRP across different urban districts in Wuhan.
ACO SSA-SA AM TAOA DTM-MDVRP

Jianghan 9.25 12.72 12.32 10.45 10.41
Hanyang 11.97 16.68 12.81 12.20 12.10
Wuchang 7.65 10.87 10.11 8.81 8.46
Hongshan 11.28 16.17 14.11 12.22 12.15
Dongxihu 13.17 19.00 15.94 14.34 14.27

Table 12. Generalizability of DTM-DMDVRP across different urban districts in Wuhan.
DTM-MDVRP AM TAOA DTM-DMDVRP

Jianghan 15.80 14.44 14.30 14.19
Hanyang 16.76 15.01 14.83 14.65
Wuchang 12.86 12.67 12.53 12.37
Hongshan 18.63 14.65 14.57 14.41
Dongxihu 19.04 15.27 15.14 14.93
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5.2. The application of DTM-MDVRP and DTM-DMDVRP in a complex urban 
system

The primary scientific contribution of this study is the development of a rapid real- 
time algorithm for optimizing logistics distribution paths. The proposed algorithm is 
specifically tailored to urban dynamic logistics scenarios, with a strong emphasis on 
practical engineering implementation. To ensure applicability in real-world urban logis
tics, we consider multiple constraints, including the presence of multiple distribution 
centers, vehicle capacity limitations, and the complexity of urban road networks. 
Based on the constraints, this study introduces the DTM-MDVRP built on the Encoder- 
Decoder architecture of the Transformer. By incorporating inter-node edge features in 
the encoder, the DTM-MDVRP captures richer embedding information and enhances 
the optimization of urban logistics distribution. Furthermore, the DTM-DMDVRP is pro
posed for dynamic logistics optimization by utilizing real-time traffic data. The DTM- 
DMDVRP includes a feature embedding module in the policy network that enables the 
model to extract dynamic environmental features and select the most efficient paths.

While the current study focuses on Wuhan, the proposed models are theoretically 
applicable to urban logistics systems in other countries, provided that similar data 
inputs are available. Open-source platforms such as OSM provide comprehensive POI 
and road network data for cities in Europe and the United States. In addition, traffic 
datasets such as MeTS-10 (Neun et al. 2023) offer real-time traffic speed and volume 
information suitable for dynamic routing tasks. The structure and format of the men
tioned datasets are compatible with the input requirements of the proposed model 
framework and can be integrated with minimal modification.

5.3. Limitations and future works

The study presents several limitations. One major limitation is that the current research 
focuses mainly on distribution efficiency. Future work will consider additional cost fac
tors such as energy use and carbon emissions to address the optimization needs of 
various scenarios. Additionally, the framework can be extended to more complex 
MDVRP variants, including heterogeneous vehicle fleets and delivery time windows. 
Redefining the reward function and adjusting the masking mechanism will enable the 
integration of more intricate operational constraints. Another limitation arises from the 
heterogeneity of city sizes and structures. Although the model’s generalizability has 
been validated across various regions of Wuhan, testing the proposed models across 
different city types is essential for fully validating the effectiveness of each model. The 
current models also struggle with larger customer numbers, such as 1,000 customer 
points. Future research will explore methods for optimizing city logistics on a larger 
scale with limited computational resources. Potential solutions may involve paralleliz
ing the simulation of decision-making environments and distributing model training 
across multiple computing units, which can help accelerate experience collection, 
reduce memory bottlenecks, and enable the application of the models to more com
plex and large-scale urban logistics scenarios.

20 Q. GUAN ET AL.



6. Conclusions

This study addresses the optimization of logistics distribution in complex urban road 
networks and dynamic traffic environments. We introduce an innovative end-to-end 
DRL model DTM-MDVRP to tackle the MDVRP in intricate road networks. Extensive 
experiments in large-scale urban logistics optimization demonstrate that DTM-MDVRP 
effectively generates high-quality vehicle routing solutions with consistent algorithmic 
performance. Furthermore, we present DTM-DMDVRP, designed to optimize urban 
logistics paths in real-time. Experimental results indicate that DTM-DMDVRP signifi
cantly reduces distribution costs in dynamic urban traffic conditions, confirming the 
applicability to real-world logistics distribution scenarios.

This study offers a feasible solution for dynamic urban logistics. By achieving real- 
time path optimization, the proposed DTM-DMDVRP can enhance logistics enterprises’ 
efficiency, reduce operational costs, and provide valuable insights for the development 
of future intelligent logistics systems. Future research will apply the DTM-DMDVRP to 
complex urban scenarios, such as temporary road closures and urban flooding, to fur
ther validate real-time optimization capabilities in dynamic environments.
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