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H I G H L I G H T S

• Urban three-dimensional landscapes were incorporated during the optimization process.
• Performance of optimization was enhanced due to potential development areas.
• Future land use spatial structure was optimized under shared socioeconomic pathways.
• Decline in heatstroke incidents was projected based on the optimization results.
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A B S T R A C T

The urban heat island (UHI) effect threatens human health. While optimizing the spatial structure of urban land 
use presents a promising strategy for UHI mitigation, few studies examined the feasibility of urban three- 
dimensional landscape optimization in potential development areas (PDA), resulting in unsuitable optimiza
tion results and computational inefficiency. To address these limitations, we develop a novel multi-objective 
optimization model for urban three-dimensional landscapes in PDA (3DLS-PO) that integrates the patch- 
generating simulation (PLUS) model and the particle swarm optimization (PSO) algorithm. The PLUS model 
first simulates the PDA in the future under different scenarios. The PSO algorithm then allocates urban land use 
in the PDA to mitigate the UHI effects with the explored nonlinear relationship between land surface temperature 
(LST) and urban two- and three-dimensional landscapes. We applied the 3DLS-PO model to the Tokyo Metro
politan Area (TMA) for 2030 under the shared socioeconomic pathway (SSP) scenarios. The SSP5 scenario 
achieves the maximum LST reduction of 5.18%, followed by SSP1 (4.60%) and SSP2 (2.34%). To mitigate the 
UHI effects in the TMA, high-rise buildings should be placed at the periphery of the TMA, low-rise buildings 
should be allocated to the suburbs, and green spaces should be scattered. The optimization results demonstrate 
substantial public health benefits, potentially preventing 3.01%-14.10% of heatstroke incidents in Tokyo. 
Incorporating the PDA also enhances the computational efficiency of the optimization process by 14 times. The 
3DLS-PO model can provide support for addressing urban climate change.
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1. Introduction

Urban heat island (UHI) is a phenomenon where the temperature in 
urban areas is higher than that in rural areas (Varentsova & Varentsov, 
2021). With global warming, the threat posed by UHI to human health is 
becoming increasingly severe (Akkose et al., 2021; Santamouris, 2020). 
The causes of the UHI effect are very complex. Climate change exacer
bates urban thermal environment problems by increasing temperatures, 
altering precipitation patterns, and intensifying extreme weather events. 
Human activities have directly or indirectly altered the urban thermal 
environment by releasing anthropogenic heat and modifying the surface 
structure, and are a significant driving factor for the increase in the UHI 
index on a large scale (Peng et al., 2025; Yang et al., 2025). Hard sur
faces (asphalt, concrete) can reduce bioclimatic comfort by approxi
mately 20 % and are the primary source of the UHI effect (Zhang et al., 
2024). In the future, under various scenarios (such as SSP1 and SSP5), if 
effective adaptation strategies are lacking, the average urban tempera
ture is expected to rise significantly, and the UHI effect is likely to 
intensify substantially (Wang et al., 2025). Therefore, it has become 
increasingly important to forecast future UHI effects under different 
socioeconomic scenarios and to formulate appropriate prevention 
measures.

Urban areas are composed of different types of land use and land 
cover (Vanderhaegen & Canters, 2017), such as residential, commercial, 
and industrial lands, each with different thermal characteristics (Wu, 
2014; Zhou et al., 2017). The quantity and spatial structure of these 
areas significantly influence the intensity of UHI effects (Li & Zhou, 
2019). Hu et al. (2024) noted that the reduction of farmland and forest 
areas, as well as the expansion of impervious surfaces (such as buildings 
and roads), are significant factors contributing to the increase in urban 
thermal discomfort. On the contrary, greenland and water bodies within 
cities can provide cooling effects (Tan et al., 2021). Specifically, larger 
greenland provides higher cooling effects, and circular or square 
greenlands significantly correlate with LST (Yu et al., 2017). In contrast, 
factory and residential areas tend to exacerbate the UHI effects. For 
instance, the distance to industrial land could explain 26 % of temper
ature variations at 4 PM (Coseo & Larsen, 2014). The increasing demand 
for residential areas brought by rapid urbanization has also promoted 
the UHI effect in cities (Zhao et al., 2022).

In addition to the above two-dimensional spatial structures of land 
use, the urban three-dimensional landscape plays a crucial role in 
shaping UHI effects (Yu et al., 2021). Buildings, as key components of 
the urban three-dimensional landscape, influence the UHI effects by 
altering the reflection and absorption of solar radiation as well as heat 
dispersion (Futcher et al., 2017). Specifically, LST correlates signifi
cantly with both two- and three-dimensional urban landscapes (Huang 
& Wang, 2019). High-rise buildings might mitigate UHI intensity at 
pedestrian levels due to their shading effects (Zhou & Chen, 2018). The 
average urban albedo decreases with the increase of building height, and 
the greater the height difference of buildings, the greater the solar ra
diation absorbed (Yang & Li, 2015). Urban three-dimensional land
scapes correlate more strongly with local thermal comfort than that at 
the two-dimensional level (Zhang et al., 2022). The above studies 
explored the impacts of urban two- or three-dimensional landscapes on 
the UHI effect. Based on this relationship, optimizing the spatial struc
tures of land use can contribute to mitigating the UHI effects for assisting 
urban planning (Qiu et al., 2023). However, previous studies only 
optimized the spatial structure of land use from a two-dimensional 
perspective (Ahmed et al., 2024; Qiu et al., 2023; Wardeh et al., 
2022). Considering mega-cities often feature a mix of high- and low-rise 
buildings (Zhang et al., 2020), the spatial morphology and surface 
roughness of the built environment assessed at the three-dimensional 
level exhibit more significant spatial heterogeneity. Therefore, miti
gating the UHI effect by optimizing the urban three-dimensional land
scapes would be more comprehensive.

There has been a lot of research in the field of land use spatial 

structure optimization (Rahman & Szabó, 2021). While few researchers 
have only one objective in optimizing the spatial structure of land use, 
multi-objective spatial optimization has emerged as the mainstream 
research direction (N. Wang et al., 2024; Pan et al., 2023; Song & Chen, 
2018). Typical methods for optimizing the spatial structures of land use 
under multiple future scenarios generally involve calculating land use 
demands for each scenario and then randomly rearranging all land 
parcels within the study area before optimization (Tong, Yang, et al., 
2024). However, these methods started optimization from randomly 
shuffled land parcels and ignored the historical information of land use 
change (Tong, Liu, et al., 2024). As a result, some optimized land parcels 
might have a low likelihood of conversion, exhibiting unsuitable land 
use spatial structure (Pan et al., 2021). Furthermore, since the optimi
zation is performed across the entire study area, the computational ef
ficiency of the optimization process tends to be comparatively low, 
leading to excessive time consumption (Li et al., 2022). An efficient 
optimization strategy worth exploring is first identifying the land parcels 
with conversion potential and then optimizing the spatial structure of 
land use. During land use change simulation, the potential development 
area (PDA) can reflect the likelihood of future conversion for each land 
parcel (Chen et al., 2020; Verburg et al., 2013). Therefore, it is feasible 
to incorporate PDA into the optimization framework to enhance its 
practicability.

Inspired by the facts, this study proposes a novel multi-objective 
optimization model for urban three-dimensional landscapes within 
PDA (3DLS-PO) that performs spatial optimization under the shared 
socioeconomic pathway (SSP) scenarios. The patch-generating simula
tion (PLUS) model (Liang et al., 2021) and the particle swarm optimi
zation (PSO) algorithm (Kennedy & Eberhart, 1995) consist of this 
proposed 3DLS-PO model. We used the PLUS model to simulate PDA, 
then the UHI effects in the TMA were optimized using the PSO algo
rithm. This study selects the Tokyo Metropolitan Area (TMA) under SSP 
scenarios as the study area. TMA is located in a humid subtropical region 
with complex land use patterns, experiencing severe heatwaves from 
May to October. Compared to 2000, Tokyo’s population growth rate 
reached 16 % in 2020, with a population of 14 million and a population 
density of 7866 people per km2. As the political, economic, and cultural 
center of Japan, TMA’s large population and urban infrastructure 
development have contributed to urban warming and exacerbated a 
climate crisis. The severe UHI effect poses a threat to people’s health. 
Therefore, mitigating the UHI effect is one of the prominent challenges 
for TMA. Land surface temperature (LST) retrieved from Landsat images 
is a critical index to quantitatively describe the relationship between 
land use and the UHI effects (Tanoori et al., 2024). We optimized the 
spatial pattern of TMA with multiple goals of minimizing LST and 
maximizing urban development suitability. SSPs contain multiple nar
ratives on the future development trends of the economy and society 
(O’Neill et al., 2014), which can provide multiple future urban devel
opment scenarios for this study. The optimization results can indicate 
the changes in LST, average building height, and spatial structure of land 
use between initial and optimized state, thus assisting urban planning 
under SSPs.

2. Materials

2.1. Study area and data sources

This study focuses on TMA as the study area. TMA covers approxi
mately 13,500 km2 and comprises four primary administrative di
visions: Tokyo, Kanagawa, Chiba and Saitama. Currently, TMA is 
adversely affected by UHI phenomena (O’Malley & Kikumoto, 2022), 
which coupled with an aging population and increasing incidence of 
heat-related illnesses (Kikumoto et al., 2016), poses a growing threat to 
public health.

Table 1 presents the data and their sources utilized in this study. 
Land use data from 2009 and 2021 are used to construct the PLUS 

S. Xiao et al.                                                                                                                                                                                                                                     Landscape and Urban Planning 264 (2025) 105490 

2 



model. The road network, Digital Elevation Model (DEM), Points of 
Interest (POI), land price, and population density are used to extract the 
conversion rules of land parcels. SSP population raster data is utilized to 
estimate future land use demands. LST and building footprint data are 
used to establish the nonlinear relationships between land use structure, 
urban three-dimensional landscape, and LST.

2.2. Land use data

We downloaded the land use data with 100-meters spatial resolution 
for 2009 and 2021 from the Ministry of Land, Infrastructure, Transport 
and Tourism of Japan to simulate the land use change. This land use data 
is classified from satellite images based on electronic maps and topo
graphic maps (https://nlftp.mlit.go.jp/ksj/index.html), which have 
high accuracy and authority. The land use data has already been applied 
in the land use simulation research (Du et al., 2018).

Local Climate Zone (LCZ) (Stewart & Oke, 2012) is a classification 
system used to describe types of urban and natural land surfaces, 
providing a standardized classification system for thermal environment 
research (R. Wang et al., 2024). Therefore, referring to the definition of 
LCZ, this study reclassifies the original land use data into the following 
10 types (Table A1): farmland, forest, wasteland, high-rise building, 
factory, low-rise building, low-rise dense building, transportation, 
public service, and waterbody. Fig. 1 illustrates the spatial distribution 
of land use.

Tables 2 and 3 present the land use areas and transition matrix for 
2009 and 2021. Between 2009 and 2021, significant changes in land use 
types occurred in the TMA, characterized mainly by a reduction in 
farmland, alongside an increase in high-rise buildings and trans
portation. Approximately 14.69 % of the land changed during this 
period. The main decrease in land use was observed in farmland, which 
was primarily converted into low-rise buildings.

Table 1 
Data required in this study.

Data Format Source

Road networks Vector Open Street Map (https://www.openstreetmap. 
org/)

Land use (2009 & 
2021)

Raster 
(100 m)

The Ministry of Land, Infrastructure, Transport 
and Tourism of Japan (https://nlftp.mlit.go. 
jp/ksj/index.html)DEM Raster 

(250 m)
POI Vector
Land price Vector
Population 

density
Raster 
(1000 m)

SSP population Raster 
(1000 m)

NASA SEDAC (https://sedac.ciesin.columbia. 
edu/)

LST Raster (30 
m)

The United States Geological Survey (htt 
ps://earthexplorer.usgs.gov/)

Building 
footprint

Vector 3D-GloBFP (Che et al., 2024)

Fig. 1. Spatial distribution of land use in the TMA for 2009 and 2021.
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2.3. Building footprint data

To model the relationship between land use and urban three- 
dimensional structure, it is necessary to use building footprint data 
that includes height attributes. The building footprint data utilized in 
this study is obtained from the 3D-GloBFP dataset (Che et al., 2024). In 
this dataset, each building is represented as a polygon feature with 
associated height attributes. Fig. A1 illustrates the building footprint 
data for the Shinjuku ward of Tokyo.

2.4. Land surface temperature data

We downloaded Landsat 8 Collection 2 Level-2 Science Products data 
on July 27, 2023, from the USGS (https://earthexplorer.usgs.gov/) to 
retrieve LST. This specific date was selected due to the least cloud cover 
over the TMA in recent years, ensuring reliable LST retrieval. Further
more, records from the Japan Meteorological Agency (https://www.jma 
.go.jp/jma/press/2403/22b/ccmr2023.html) indicate that the long- 
term summer air temperature trend in Tokyo (1927–2023) increased 
at a rate of 2.3 ℃ per century. This modest rate of temperature trend 
suggests minimal interannual temperature variations during recent 
summers. Therefore, we applied the linear transformation equation (1)
to retrieve LST from the 2023 Landsat 8 data (Z. Wang et al., 2024). 

LST(K) = 0.00341802 × DN+149 (1) 

where DN is the raw Digital Number (pixel value). Fig. A2 shows the 
retrieved LST for the TMA.

2.5. Spatial variables

Spatial variables play a crucial role in driving urban land use change. 
To accurately simulate the land use change, it is essential to incorporate 
spatial variables, as their quality directly influences the estimation of 
land use conversion probabilities (He, Liu, et al., 2023). In this study, we 
utilized 19 spatial variables (Fig. A3): natural elements (topography, 
water bodies), transportation infrastructure (highways, railways, 

airports), locational features (city center, government offices), produc
tion and living facilities (bus stops, hospitals, parks, etc.), and economic 
factors (land prices, population). In addition to land use change simu
lation, spatial variables also influence the three-dimensional landscapes 
and LST. We utilized a subset of these 19 spatial variables that exhibit 
minimal change during the optimization process (Fig. A4) to predict 
urban three-dimensional landscapes and LST. All spatial variables share 
the same spatial resolution as the urban land use data.

3. Method

As shown in Fig. 2, this study proposes the 3DLS-PO model that 
performs spatial optimization only for land parcels within PDA under 
the SSP scenarios. This model integrates urban three-dimensional 
landscape information during optimization to minimize LST and maxi
mize suitability. The 3DLS-PO model proposed in this study consists of a 
2030 potential development area prediction module under SSP sce
narios based on the PLUS model and a UHI effect optimization module 
that couples urban three-dimensional landscapes using the particle 
swarm algorithm.

3.1. Land use demand forecast for the TMA in 2030 under SSP scenarios

As illustrated in Fig. 2, the PLUS model needs land use demand as an 
input to predict future spatial structures of land use. This study predicts 
the land use demand for 2030 using SSP population raster, demographic 
yearbooks, and land use data. SSP includes several narratives that 
describe potential future development trends of human society until 
2100 (O’Neill et al., 2014).

Since the SSP population raster only provides national-level data, it 
is necessary to localize the SSP population raster for TMA (Chen et al., 
2024), as shown in Fig. 3. For urban land use types (high-rise building, 
factory, low-rise building, low-rise dense building, transportation and 
public service), we first established a linear regression between actual 
population and SSP population. The resulting regression equation 
(Table A1) is then used to estimate the localized SSP population for 
2030. The urban land use demand is calculated by multiplying the 
estimated population by the per capita land area. For non-urban land use 
types (farmland, forest and wasteland), the land use demand for 2030 
under SSP scenarios is calculated using the equation (2): 

Assp,i = A2021,i −

(
∑

i
A2021,i −

(

T −
∑

i
Assp,i

))

×
A2009,i − A2021,i
∑

iA2009,i − A2021,i

(2) 

where A represents the land use area; SSP represents the SSP scenarios 
for the 2030; i represents the non-urban land use types; T represents the 
total area.

Table 2 
The area and rate of each land use type in the TMA in 2009 and 2021.

Type 2009 2021

Area (km2) Rate (%) Area (km2) Rate (%)

Farmland 2535.45 27.21 2325.53 24.95
Forest 2000.62 21.48 1960.83 21.05
Wasteland 327.20 3.51 293.25 3.15
High-rise building 220.14 2.36 324.09 3.48
Factory 213.59 2.29 186.86 2.01
Low-rise building 3164.26 33.97 3148.34 33.80
Low-rise dense building 357.62 3.84 328.70 3.53
Transportation 53.61 0.58 244.54 2.63
Public service 443.01 4.76 503.36 5.40

Table 3 
Change in land use area (km2) in the TMA from 2009 to 2021.

2009 2021

FL For WL HRB Fac LRB LRDB Trans PS

FL 2155.21 68.72 31.92 2.26 3.29 227.50 0.06 29.20 17.29
For 70.92 1789.92 27.96 3.38 1.49 67.83 0.30 12.82 26.00
WL 10.44 26.99 178.01 9.74 6.50 46.79 0.19 14.67 33.87
HRB 0.13 1.21 3.71 176.71 0.56 10.91 4.80 18.35 3.76
Fac 1.25 0.99 13.38 3.17 168.12 9.66 0.29 5.84 10.89
LRB 83.65 37.09 29.57 103.09 5.79 2756.86 12.25 94.63 41.33
LRDB 0.04 0.24 0.25 15.53 0.15 12.67 308.83 17.12 2.79
Trans 1.01 0.99 0.83 1.06 0.24 2.18 0.35 46.63 0.32
PS 2.88 34.68 7.62 9.15 0.72 13.94 1.63 5.28 367.11

Note: FL (farmland); For (forest); WL (wasteland); HRB (high-rise building); Fac (factory); LRB (low-rise building); LRDB (low-rise dense building); Trans (trans
portation); PS (public service).
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3.2. Potential development area prediction based on PLUS model

This study employs the PLUS model (Liang et al., 2021) to forecast 
the spatial structures of land use of the TMA in 2030 under SSP sce
narios. The inputs for the PLUS model include the land use demand for 
2030, the 2021 land use map, and driving variables. The outputs of the 
PLUS model are the land use map for 2030 and a development potential 
map. Ten-year span was reasonable for validating the feasibility of land 

use simulation and optimization (M. Cao et al., 2022; Meimei et al., 
2023).

The PLUS model comprises two main modules: the Land Expansion 
Analysis Strategy (LEAS) module and the CA based on multi-type 
Random path Seed (CARS) module. The LEAS module constructs a 
separate random forest model for each land use type to explore the 
transition rules for each land use type. The CARS module is a CA model 
that incorporates a multi-type patch generation mechanism, integrating 

Fig. 2. Flowchart of the 3DLS-PO model.
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both “top-down” (macroscopic overall land use demand) and “bottom- 
up” (local land use competition) mechanisms. During the simulation 
process, CARS influences the overall conversion probability by calcu
lating adaptive inertia coefficients, thereby driving each type of land use 
to meet demand.

This study validates the PLUS model’s performance using the 
Figure of Merit (FoM) accuracy metric, Overall Accuracy (OA), Kappa 
coefficient, and landscape metrics by comparing the ground truth and 
land use simulation in 2021. FoM is calculated as the ratio of correctly 
predicted changes to the total number of predicted changes, excluding 
unchanged cells from the correct predictions. It provides a relatively 
comprehensive evaluation of the model and is widely used in CA 
simulation studies (Chen et al., 2014; X. Li et al., 2020). OA represents 
the ratio of correctly simulated cells to the total number of cells and is 
widely used for model accuracy assessment (Han & Jia, 2017). The 
Kappa coefficient measures consistency and is similarly employed in the 
evaluation of CA simulation accuracy (Liu et al., 2017). The formulas for 
the FoM metric, OA metric, and Kappa coefficient are shown in equa
tions (3), (4), and (5), respectively. 

FoM =
B

A + B + C + D
(3) 

OA = 1 −
A + C + D

N
(4) 

Kappa =
P0 − Pe

1 − Pe
(5) 

where A represents the number of land parcels that actually changed but 
were not simulated as changed; B represents the number of land parcels 
that actually changed and were correctly simulated as changed; C rep
resents the number of land parcels that actually changed but were 
incorrectly simulated as changed; D represents the number of land 
parcels that did not actually change but were simulated as changed; N 
represents the total number of cells in the study area; P0 represents the 
accuracy of the prediction; and Pe represents the chance agreement.

By inputting the land use demand, the 2021 land use map, and the 
spatial variables into the calibrated PLUS model, the land use map for 
2030 was simulated. To identify the PDA, the simulation process was 
repeated 10 times. As shown in Fig. 4, each 2030 land use map was 

compared with the 2021 map to identify the change areas. These change 
maps were then summed pixel by pixel, and the result was divided by 10 
to obtain the PDA. The pixel values in the PDA indicate the likelihood of 
land use change occurring between 2021 and 2030.

3.3. UHI effect mitigation using PSO within PDA

The optimization problem addressed by 3DLS-PO consists of two 
objective functions: minimizing LST and maximizing suitability (Fig. 5). 
To minimize LST during the optimization process, we need to mine the 
nonlinear relationship between LST and the spatial structure of land use. 
The mined nonlinear relationship was applied to predict LST after each 
step during the optimization process in PDA. Using the PSO algorithm, 
we can reallocate the spatial structure of land use to mitigate the UHI 
effect based on SSP scenarios. The following sections will provide a 
detailed explanation of multi-objective functions and technical details.

3.3.1. Multi-objective functions
(1) Minimizing LST
The optimization problem of the UHI effect in this study can be 

described as follows: for the land parcels within the PDA, reallocate their 
spatial positions and estimate the average height of the buildings within 
these land parcels, so that the spatial structure of land use optimally 
achieves the objective of minimizing the sum of LST for the land parcels 
in the PDA. Besides the three-dimensional landscape of buildings and 
the two-dimensional land use density within the neighborhood, we also 
considered spatial variables (Fig. A4) that exhibit minimal change 
during the optimization process as independent variables for fitting LST. 
The objective function for optimizing the UHI effect by coupling average 
building height is presented in equations (6) and (7): 

Max
∑N

i=1
− fLST(fH(LUDi, SVi), LUDi, SVi ) (6) 

LUDk
i =

∑
M×Mcon(ci = k)

M × M
(7) 

where i represents the i-th parcel; N is the number of parcels in the PDA; 
LUDi (Land Use Density) is the land use density of various land use types 
for the i-th parcel; SVi (Spatial Variable) is the spatial variable for the i-th 

Fig. 3. Flowchart of the forecasting method for future urban land use demand under SSP scenarios.
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parcel; fH is the function for estimating the average building height 
within parcels; fLST is the function for estimating the LST within parcels; 
LUDk

i represents the land use density of land use type k for the i-th parcel; 
M is the size of the neighborhood window used for calculating land use 
density; and 

∑
M×Mcon(ci = k) represents the area of parcels with land 

use type k within an M × M neighborhood window.
To construct the objective function, this study employs RFR to fit the 

functions fH and fLST in equation (6). RFR is a supervised ensemble 
method based on decision trees, which has been applied in various 
studies (Yao et al., 2017). RFR randomly selects samples and features 
from the training dataset, handles high-dimensional feature data, and 
addresses multicollinearity issues among features. The RFR outputs a 
given parcel’s average building height within neighborhood and LST. 
We constructed a separate RFR model for each type of land use. When 
fitting fH, the SV and the LUD are used as features; when fitting fLST , the 
SV, LUD, and the average building height within the neighborhood are 
used as features. We applied coefficient of determination (R2), and root 
mean squared error (RMSE) as the predictive accuracy. The accuracy of 
RFR is shown in Table A3.

(2) Maximizing suitability
In this study, the suitability of a parcel is quantified based on the land 

use development potential output by the PLUS model in equation (8). 

Max
∑K

k=1

∑N

i=1
I(xi = k)suitk

i (8) 

where i represents the i-th land parcel; k represents the k-th type of land 
use; N is the number of land parcels in the PDA; K is the number of parcel 
types; I(•) is an indicator function; xi denotes the land use type of the i-th 
parcel; suitk

i represents the suitability of the k-th type of land use for the 
i-th parcel.

3.3.2. Particle swarm representation
In the particle swarm optimization (PSO) algorithm, a particle rep

resents a solution in the solution space. Each particle moves through the 
solution space at a certain velocity, which is updated based on the 
particle’s personal best solution and the swarm’s global best solution 
(Wang et al., 2018).

Fig. 4. Potential development area extraction.

Fig. 5. Flowchart of UHI effect mitigation using PSO within PDA.
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As shown in Fig. 6, since this study only optimizes the land parcels 
within the PDA, first use the mask of the non-PDA to extract the land use 
map in the non-PDA, then calculate the quantity of the land use types in 
the non-PDA, and subtract it from the land use demand in 2030 to obtain 
the quantity of the land use types in the PDA. A particle is represented as 
a land parcel sequence. Replicate the land parcel sequence N times to 
generate the particle swarm as an N × M matrix, where N is the swarm 
size, and M is the number of land parcels in the PDA. For each particle in 
the swarm, the order of land parcels within the swarm is randomly 
shuffled to serve as the initial particle swarm.

3.3.3. Particle swarm update
In the PSO, each particle’s fitness is assessed using the objective 

function. The best solution found by each particle in its history is known 
as the personal best, Pbest , and the best solution among all particles is 
known as the global best, Gbest . Each particle is updated based on Pbest 
and Gbest , completing the optimization process iteratively.

This study aims to mitigate the UHI effect by reallocating the spatial 
positions of land parcels. In geographical space, the positions of land 
parcels are discrete. However, the original PSO was initially designed for 
optimizing continuous functions, making it not directly applicable to 
this study. (Kang-Ping et al., 2003) introduced the concepts of Swap 
Operator (SO) and Swap Sequence (SS) and redefined some operators to 
make PSO compatible with discrete combinatorial optimization prob
lems. The update formulas for a single particle are provided in equations 
(9) and (10): 

Vt+1 = Vt ⊕ α(Pbest − Xt) ⊕ β(Gbest − Xt) (9) 

Xt+1 = Xt +Vt+1 (10) 

where the operator ⊕ is defined as the combination of two swap se
quences into a new swap sequence; t represents the iteration count; Vt 
represents the swap sequence at iteration t; (Pbest − Xt) is defined as the 
swap sequence of the particle at iteration t relative to its personal best 
solution; (Gbest − Xt) is defined as the swap sequence of the particle at 
iteration t relative to the global best solution; acceleration constant α 
and β are random numbers between 0 and 1, representing the proba
bility of applying the swap sequences, where larger α indicates a greater 
influence of the particle’s personal best on the particle, and larger β 

indicates a greater influence of the global best on the particle; equation 
(10) defines the application of the swap sequence Vt+1 to particle Xt to 
obtain the new particle Xt+1.

This study employs a non-dominated sorting algorithm (Deb et al., 
2000) to select Pbest and Gbest . Specifically, for Pbest , if the particle at 
iteration t performs better on both objective functions than the particle 
at iteration t − 1, then this particle is used to update Pbest . Otherwise, one 
is randomly selected between the two as Pbest . As for Gbest , the first step is 
to identify the non-dominated set of solutions among the particles in the 
swarm and then select the particle with the highest crowding distance 
from this non-dominated set as Gbest . The formula for crowding distance 
is given in equation (11): 

CDi =
|f1(xi+1) − f1(xi− 1) |

f1(xmax) − f1(xmin)
+
|f2(xi+1) − f2(xi− 1) |

f2(xmax) − f2(xmin)
(11) 

where CDi is the crowding distance of the i-th particle; f1(⋅) and f2(⋅) are 
the two objective functions; xi represents the i-th particle; xmax repre
sents the particle that achieves the maximum value on the objective 
function; and xmin represents the particle that achieves the minimum 
value on the objective function.

Fig. 7 illustrates the update method for a particle in the particle 
swarm. The swap sequence is obtained based on Gbest and Pbest , which 
contains swap operators. A swap operator is a pair of numbers that 
indicate the indices in the parcel sequence to be swapped. After 
executing the swap operations sequentially according to the swap op
erators, the land parcel sequence within the particle should exactly 
match the best solution. The swap sequence SSP is extracted from the 
current particle and its personal best solution Pbest , and the swap 
sequence SSG is extracted from the current particle and the global best 
solution Gbest .

The swap sequences SSP and SSG are combined to obtain Vt+1. Then, 
execute the swap sequence Vt+1 sequentially on the particle Xt. Execute 
the swap operator in the swap sequence with probability, and the 
probability is calculated by equation (12): 

swapprobability = max(P1, P2) × accelerationconstant (12) 

where P1 and P2 are the likelihood values of the two land parcels in the 
PDA; if the swap operator is from the SSP, the accelerationconstant is α; if 

Fig. 6. Particle representation and particle swarm generation.

S. Xiao et al.                                                                                                                                                                                                                                     Landscape and Urban Planning 264 (2025) 105490 

8 



it is from SSG, the accelerationconstant is β. Once all swap operators have 
been executed, a new solution sequence Xt+1 is obtained. The land parcel 
sequence in Xt+1 is then restored to the land use map in spatial order 

from left to right and top to bottom, resulting in the optimized spatial 
structure of land use.

Fig. 7. Flowchart for extracting swap sequence.

Fig. 8. Land use map (a) and land use simulation map (b) in the TMA.
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4. Result

The proposed 3DLS-PO model is used to allocate spatial structure of 
land use to mitigate the UHI effect. We conducted experiments in the 
TMA under SSP scenarios and compared the changes in LST, average 
building height, and spatial structure of land use between initial and 
optimized state. Finally, we examined the changes in heatstroke in
cidents in Tokyo based on the optimization results to highlight the 
application of the 3DLS-PO model.

4.1. Simulating 2021 land use using PLUS in the TMA

This study uses the PLUS model to simulate the spatial structure of 
land use of the TMA in 2030. Before making predictions, we need to 
calibrate the PLUS model. The land use data from 2009 for the TMA was 
used as the initial layer to simulate the spatial structure of land use in 
2021. Fig. 8 shows the simulation results and details of area #1, #2, and 
#3. We evaluated the model using the Kappa coefficient, FoM, and 
overall accuracy. The final Kappa coefficient was 0.88, the FoM metric 
was 0.20, and the overall accuracy was 0.91, indicating high precision. 
Moreover, we compared 15 landscape metrics (Liang et al., 2021) be
tween the ground truth and simulation results (Table A3). While most 
landscape metrics showed small differences, the number of patches 
exhibited a substantial disparity. This disparity is primarily due to the 
land use simulation incorporating neighborhood influence, a factor that 
reduces land fragmentation.

4.2. Predicting 2030 potential development area under SSP scenarios

This study selects three scenarios to predict PDA for 2030: SSP1, 
SSP2, and SSP5. SSP1 is the Sustainable Development scenario that 
ensures urban development within a healthy ecological environment. 
SSP2 is the Middle of the Road scenario, where urban development does 
not significantly deviate from historical patterns. The difference be
tween the SSP1 and SSP2 scenarios is that the SSP1 scenario maintains 
economic growth while controlling population growth and increasing 
technological investment. SSP5 is the Fossil-Fueled Development sce
nario, where the economy and technology in the region develop rapidly.

To forecast the 2030 land use demand under SSP scenarios, this study 
uses the demographic yearbook and 2021 land use data to calculate the 
per capita land area. Based on the per capita area and the forecasted 
2030 population, the land use demand for all types is calculated. Table 4
presents the land use demand for the TMA in 2030 under the SSP1, SSP2, 
and SSP5 scenarios. Compared with 2021, the area of urban land use in 
each scenario is projected to increase, while the area of non-urban land 
use (FL, For and WL) is projected to decrease. The largest urban growth 
area is projected under the SSP5 scenario, followed by SSP1 and SSP2. 

Although SSP2 represents the Middle of the Road scenario, its lowest 
population growth before 2030 results in the smallest urban growth area 
among these scenarios, as confirmed by Chen et al. (2020).

Based on the 2030 land use demand, the calibrated PLUS model was 
used to simulate the spatial structures of land use for 2030 10 times. We 
extracted the areas that changed compared to 2021. Fig. 9 shows the 
land parcels that will change in 2030, with a higher likelihood value 
indicating that the parcel is more likely to change in 2030. The most 
significant changes occur under the SSP5 scenario, followed by SSP1 and 
then SSP2. Area #1 represents the core area of TMA, with changes pri
marily occurring in the surrounding areas. Area #2 is a suburb far from 
the core. As illustrated in Fig. 9, the PDA exhibits a patchy distribution 
across the study area, characterized by high likelihood values in the 
center of the patches and lower values at the edges. Moreover, the lo
cations and shapes of the PDA patches are similar across different SSP 
scenarios. However, under scenarios with more pronounced changes, 
the patches display higher likelihood values. For example, as shown in 
the areas within the black dotted circles, the PDA patches under the 
SSP5 scenario appear redder than those under the SSP1 and SSP2 sce
narios. The area for each land use type within the PDA is calculated by 
subtracting the area outside the PDA from the SSP scenario area in 
Table 4. The results are shown in Table 5. Under the SSP2 scenario, the 
area of each land use type is smallest, followed by SSP1 and SSP5.

4.3. Optimizing urban land use to mitigate UHI effect under SSP scenarios

In this study, under the SSP5 scenario, we obtained the result of 
optimized state at different window sizes (5 × 5, 7 × 7, 9 × 9, and 11 ×
11) (Table A3). The results show that land use density integrated within 
a 9 × 9 window size achieves maximum optimization effects. Then, we 
also obtained the result of optimized state at different land use resolu
tions (100 m, 200 m, and 300 m) under the optimal window size 
(Table A4). The results indicated that finer resolution enhances the 
optimization effect for LST but decreases it for land suitability. However, 
coarser resolution leads to more mixed pixels, which affects the reli
ability of the optimization results and hinders urban planning decisions. 
Finally, the optimal parameter combination was determined to be a 9 ×
9 window size and a 100 m land use resolution.

Land parcels that changed between 2021 and 2030 were selected for 
optimization. The goal of the optimization was to maximize the negative 
sum of LST for all targeted parcels while considering their suitability. 
After the optimization process, the optimal solution was compared with 
the initial state of land use (as shown in Table 6), demonstrating sig
nificant improvements in both optimization objectives. Under the SSP5 
scenario, LST saw the largest decrease at 5.18 %, followed by SSP1 at 
4.60 %, with SSP2 experiencing the smallest decrease at 2.34 %. Fig. 10
illustrates the changes in LST within the PDA after optimization. We 
used the Zonal statistics tool in QGIS 3.34 to highlight the changed 
areas.

Spatially, we compared the kernel density of land use pixels within 
the PDA between the initial state (where land use pixels were randomly 
distributed within the PDA) and the optimized state to highlight the 
areas that were optimized, as shown in Fig. 11. Based on the optimized 
spatial locations of different land use types under each SSP scenario, we 
can identify the urban spatial form with the optimal UHI effect to assist 
urban planning. Since the PDA area under the SSP5 scenario is the 
largest (Table 5), it exhibits the greatest change in kernel density, fol
lowed by SSP1 and SSP2. The land use type with the most significant 
change in kernel density is LRB, as it is the primary land use type within 
the PDA. HRB was primarily allocated to the periphery of the core area 
of the TMA and northern Chiba, balancing the two optimization objec
tives of this study—maximizing suitability and minimizing LST. Fac was 
allocated to suburban areas far from the urban core and near water 
bodies, as both locations are typically associated with lower LST. LRB 
and LRDB, as the primary residential land use types, were allocated 
throughout the study area. Finally, green spaces were scattered across 

Table 4 
Per capita area of various land use types and the increase in area under SSPs in 
2030 compared to 2021.

Type Area per capita 
(10-4 km2/ 
people)

2021 area 
(km2)

Increased area by 2030 
compared to 2021 (km2)

SSP1 SSP2 SSP5

FL / 2325.53 − 104.29 − 24.35 − 154.99
For / 1960.83 − 19.77 − 4.62 − 29.38
WL / 293.25 − 16.87 − 3.94 − 25.07
HRB 8.82 324.09 9.64 2.25 14.33
Fac 5.08 186.86 5.56 1.30 8.26
LRB 85.67 3148.34 93.69 21.88 139.24
LRDB 8.94 328.70 9.78 2.28 14.54
Trans 6.65 244.54 7.28 1.70 10.81
PS 13.69 503.36 14.98 3.50 22.26

Note: FL (farmland); For (forest); WL (wasteland); HRB (high-rise building); Fac 
(factory); LRB (low-rise building); LRDB (low-rise dense building); Trans 
(transportation); PS (public service).
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the study area to exert their cooling effect.

4.4. Preventing heatstroke incidents in Tokyo

To demonstrate the practical implication of the optimized result, this 
section calculated the change rate of heatstroke incidents. O’Malley & 
Kikumoto (2021) examined the quantitative relationship between LST 
and heatstroke incident rates in Tokyo at the ward level. Hence, we 
selected Tokyo as a case study area to calculate the average LST change 
rates of wards and estimate the variations in heatstroke incident rates 
between initial and optimized state, as shown in Fig. 12. By incorpo
rating the ward-level population data, we estimated the change rate of 
heatstroke incidents after optimizing the spatial structure of urban land 

Fig. 9. Changes in land parcels for 10 simulations under SSPs.

Table 5 
Area of each land use within the 2030 PDA (Km2).

Scenario FL For WL HRB Fac LRB LRDB Trans PS

SSP1 652.13 263.01 89.02 9.64 5.56 613.35 48.60 7.28 14.98
SSP2 183.25 36.94 25.17 2.25 1.30 104.25 46.84 1.70 3.50
SSP5 731.01 338.93 101.40 14.33 10.22 813.93 64.34 10.81 22.26

Note: FL (farmland); For (forest); WL (wasteland); HRB (high-rise building); Fac (factory); LRB (low-rise building); LRDB (low-rise dense building); Trans (trans
portation); PS (public service).

Table 6 
Comparison of objective functions between initial and optimized state in each 
scenario.

Scenario LST (℃) Suitability

Initial Optimized Initial Optimized

SSP1 47.22 45.05 59.24 60.84
SSP2 48.82 47.68 45.78 47.73
SSP5 45.72 43.35 58.62 60.03
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use under SSPs. As shown in Fig. 12, the areas with a significant decline 
in heatstroke incidents are mainly concentrated in the middle of Tokyo, 
especially Kokubunji and Musashino wards, followed by Kiyose, Sugi
nami, and Setagaya wards; the heatstroke incidents also decreased 
significantly under SSP1 and SSP5 scenarios. These wards are mainly 
distributed with low-rise buildings and low-rise dense buildings (Fig. 1), 
where large population concentration exacerbates heat vulnerability. In 
contrast, the minimal change rate of heatstroke incidents is estimated in 
the east of Tokyo, such as Chiyoda, Minato, and Chuo wards. The land 
parcels of these wards have rarely changed as they are Tokyo’s political, 
economic, and cultural center (Fig. 9).

We also applied a geographical detector to investigate further the 
contribution of each land use type to the change rate of heatstroke in
cidents (Song et al., 2020). In this geographical detector, we used land 
use kernel density change as the independent variable and the change 
rate of heatstroke incidents as the dependent variable. As shown in 
Table 7, the results reveal differences across the SSP scenarios. Under 

the SSP1 scenario, the top three contributors to the change rate of 
heatstroke incidents are HRB, LRDB, and Trans, which are close
ly associated with urban environments. In contrast, under the 
SSP2 scenario, the highest contributions come from FL, WL, and For, 
indicating that in a more moderate development scenario, the thermal 
impact of rural land transformations plays a more critical role. Under the 
SSP5 scenario, the top 3 contributors are PS, WL, and Trans. This result 
may reflect the more intensive urban expansion and infrastructure 
development associated with high-emission, where heat exposure in 
public service and transportation-related areas becomes more critical.

5. Discussion

5.1. Policy implications

As the UHI effect threatens human health, mitigating the UHI effects 
under various scenarios is of significant practical importance for future 

Fig. 10. LST change between initial and optimized state within PDA.
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urban planning and climate adaptation planning (Parsaee et al., 2019). 
With rapid urbanization, the expansion of mega-cities has gradually 
slowed down, particularly in the city centers where available land re
sources are extremely limited. It is increasingly challenging to reduce 
LST in the city centers by constructing new urban land parcels with a 
cooling effect (Masoudi et al., 2021). As urban renewal has become a 

major development strategy for mega-cities (He, Zhang, et al., 2023), 
optimizing the spatial structure of land use has emerged as a practical 
approach to mitigate the UHI effects. Incorporating the urban three- 
dimensional landscapes into the optimization model is necessary as 
they strongly relate to the UHI effect (S. Cao et al., 2022; Wu et al., 2022; 
Zhu et al., 2023). Therefore, the 3DLS-PO model can be used as an 

Fig. 11. Change in kernel density of land parcels by comparing the kernel density of land parcels in the initial state and the optimized state.

Fig. 12. Change rate of heatstroke incidents in Tokyo between initial and optimized state.
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efficient supporting tool for policymaking, as it can simulate UHI-related 
indicators to mitigate UHI. We can estimate the number of reduced 
heatstroke incidents with the optimization results to provide evidence- 
based indicators for allocating public health resources. Besides, urban 
planners and policymakers can formulate and implement more 
comprehensive strategies to enhance the urban microclimate and 
strengthen urban resilience to climate change based on the optimization 
results, including constructing green buildings (He, 2019), allocating 
mixed-functional areas (Liang et al., 2024), and planning transportation 
infrastructure (A. Wang et al., 2024).

To effectively mitigate the UHI effect, it is crucial to propose region- 
specific policies tailored to the study area (Ferrario et al., 2024). This 
study mapped the changes in the kernel density of land use within the 
PDA between initial and optimized state (Fig. 11). First, HRB is currently 
mainly concentrated in the core area of the TMA (Fig. 1). Under the 
SSP1, SSP2, and SSP5 scenarios, the land use area of HRB is projected to 
increase by 9.64, 2.25, and 14.33 km2 by 2030, respectively. These new 
HRBs are primarily allocated to the areas surrounding the TMA core area 
and northern Chiba. To further enhance its cooling effect and urban 
functionality, HRB should be integrated with LRB and LRDB in a mixed 
development pattern. Second, the Factory should be located near 
waterbodies and away from the city center, such as in northwestern 
Saitama, central and northern Chiba, and coastal areas of Kanagawa. 
Third, LRB, as the primary type of residential land, should be expanded 
toward suburban areas to avoid forming densely concentrated residen
tial areas that are prone to high-LST (Y. Li et al., 2020), and medium-rise 
buildings with a higher floor area ratio (FAR) should be developed 
nearby. Finally, pocket parks and green spaces should be developed 
throughout the TMA to utilize their cooling effect fully.

5.2. Model contribution

Compared to traditional land use optimization models, the main 
contribution of the 3DLS-PO model can be concluded in three aspects: 
integration of three-dimensional spatial patterns, focused optimization 
of potential development areas (PDA), and broad applicability.

First, due to the lack of three-dimensional information on the land 
parcels, traditional land use optimization models were applied at the 
two-dimensional level (Ahmed et al., 2024; Qiu et al., 2023; Wardeh 
et al., 2022). This study innovatively incorporates building heights as 
crucial three-dimensional information into land use optimization. Given 
that the urban three-dimensional structure is closely related to the urban 
environment (Wang et al., 2021; Xu et al., 2021). The three-dimensional 
land use optimization results can better assist urban planners to 
comprehensively evaluate the impact of the optimized land use spatial 
structure on the UHI effect.

Second, traditional land use spatial optimization models usually 
randomly distribute all land parcels in the study area before optimiza
tion (Tong, Yang, et al., 2024). The 3DLS-PO model only optimizes the 

land use pixels in PDA, which brings two advantages: 1) Since the 
simulation of PDA is based on historical land use changes, the optimi
zation results of 3DLS-PO, coupled with the historical laws of land use 
changes, will be more reasonable compared with the optimization re
sults of traditional models. 2) The 3DLS-PO model has higher execution 
efficiency than the traditional model. We compared the execution effi
ciency in different optimization regions. The experimental results show 
that it takes 43 s to update the particle once if all the land parcels in the 
study area are optimized, but only 3 s (a 14-fold increase in efficiency) if 
only the land parcels in the PDA are optimized. The high efficiency could 
support land use spatial optimization in a larger spatial scale.

Third, although the 3DLS-PO model prioritizes reducing LST as the 
optimization objective, the framework of “identify PDA first, then 
optimize the spatial structure of land use within the PDA” can be 
transferred to other tasks such as controlling carbon emission or energy 
consumption.

5.3. Model assumptions and potential limitations

To complete three-dimensional land use optimization in TMA, the 
3DLS-PO model has two assumptions due to the limitations of data 
acquisition and technology: 1) The 3DLS-PO model is a pixel-based 
model, assuming urban land use change occurs at the pixel level. 
Since the official land use data is pixel-based, each 100 × 100 m pixel 
represents a single land use type. However, in large metropolitan areas 
like the TMA, land use pattern is typically complex, characterized by 
irregularly shaped land parcels and often featuring mixed-use functions. 
As a result, the pixel-based optimization results obtained by the 3DLS- 
PO model may result in a fragmented land use pattern. 2) The 3DLS- 
PO model utilizes static spatial variables to fit LST, assuming they 
remain constant during the optimization process. However, fine-scale 
spatial variables related to human activities also significantly influ
ence the UHI effect, such as energy consumption and traffic flow. Due to 
a lack of accessible open data sources, these dynamic spatial variables 
were not considered in the 3DLS-PO model. Ignoring the anthropogenic 
heat generated by human activities may lead to an underestimation of 
the UHI effect in certain regions.

Given that the 3DLS-PO model is constructed based on the afore
mentioned assumptions, we identify two potential limitations: 1) While 
the optimization results of the 3DLS-PO model are applicable for macro- 
level urban planning regulation, they may not adequately support fine- 
scale, functionally diverse policy interventions. The lack of parcel-level 
land use data and parcel-level optimization model restricts the 3DLS-PO 
model’s ability to simulate the optimization process of irregular shaped 
land parcels. 2) The nonlinear relationship used to predict LST cannot 
fully capture the impact of human activities due to a lack of supporting 
data. This limitation could lead to an underestimation of the UHI effect 
in certain regions, thereby affecting the validity of the optimization 
results. The 3DLS-PO model results could not support formulating UHI 
mitigation strategies that require human-activity-based interventions.

5.4. Future works

Future improvements to the 3DLS-PO model should focus on two 
aspects, addressing its potential limitations: 1) The framework of the 
3DLS-PO model can be extended to optimize parcel-level mixed urban 
land use structure. To better represent complex land use pattern, the 
model could transfer from a pixel-level to a parcel-level approach for 
simulating PDA. Developing an effective approach to optimizing irreg
ular shaped land parcels is a technical challenge that needs to be 
addressed in the future. 2) Fine-scale human activity data can be inte
grated into the 3DLS-PO model. Since human activities significantly 
influence both land use change and the UHI effect, incorporating fine- 
scale data such as building-level electricity usage, GPS trajectories, 
and mobile phone signaling could enhance the simulation accuracy of 
the model for PDA and improve its interpretability for human activities. 

Table 7 
Contributions of land use kernel density change to change rate of heatstroke 
incidents.

Land use SSP1 SSP2 SSP5

FL 0.17 0.59 0.26
For 0.34 0.42 0.19
WL 0.35 0.43 0.35
HRB 0.44 0.18 0.16
Fac 0.18 0.30 0.22
LRB 0.37 0.20 0.23
LRDB 0.44 0.33 0.25
Trans 0.39 0.29 0.28
PS 0.22 0.33 0.39

Note: FL (farmland); For (forest); WL (wasteland); HRB (high-rise building); Fac 
(factory); LRB (low-rise building); LRDB (low-rise dense building); Trans 
(transportation); PS (public service).
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This enhanced capability would support formulating more reasonable 
strategies to mitigate the UHI effect.

6. Conclusion

This study proposed a land use spatial optimization model, 3DLS-PO, 
by integrating the PLUS model and PSO algorithm to mitigate the UHI 
effect. The 3DLS-PO model focuses on optimizing only those land parcels 
expected to change and considers the urban three-dimensional land
scapes during the optimization process. Based on the optimization re
sults of future scenarios, decision-makers or urban planners can predict 
and evaluate the possible consequences of different urban planning 
policies before making decisions.

To validate the effectiveness of the 3DLS-PO model, we conducted 
experiments in the TMA under different SSPs. The PLUS model 
demonstrated satisfactory accuracy (Kappa = 0.88, FoM = 0.20) in 
proving the reliability of conversion rules. The optimization results 
indicate that under the SSP5 scenario, the optimized LST achieves the 
largest decrease of 5.18 % (45.72℃ to 43.35℃), followed by SSP1 and 
SSP2 with decreases of 4.60 % (47.22℃ to 45.05℃) and 2.34 % 
(48.82℃ to 47.68℃), respectively. In Tokyo, the number of heatstroke 
incidents decreased by 10.81 %, 3.01 %, and 14.10 % under SSP1, SSP2, 
and SSP5 scenarios, respectively. The spatial comparison of land use 
allocation reveals several strategies to mitigate UHI effects: decentral
izing high-rise buildings to the TMA periphery, expanding low-rise 
housing into suburban areas, locating factories near waterbodies and 
away from the city center, and distributing green spaces evenly to 
enhance cooling effects. The proposed 3DLS-PO framework offers a 
methodological foundation for sustainable urban planning and provides 
novel insights for mitigating UHI effect through three-dimension land 
use spatial structure optimization.
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