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Simulations of intra-urban land use changes have gradually attracted more attention as
these approaches are extremely helpful in regard to decision making and policy
formulation. While prior studies mostly focused on methods of developing intra-
urban level simulations, very little research has been conducted explain the factors
driving intra-urban land use change. Urban planners are highly concerned with how
inner-city structures are formed and how they function. Here, to simulate multiple
intra-urban land use changes and to identify the contribution of different driving
factors, we developed a random forests (RF) algorithm-based cellular automata (CA)
simulation model. In this study, the model applied diverse categories of spatial vari-
ables, including traffic location factors, environmental factors, public services, and
population density, as the driving factors to enhance our understanding of the dynamics
of internal urban land use. The CA model was tested using data from the Huicheng
district of Huizhou city in the Guangdong province of China. The Model was validated
using actual historical land use data from 2000 to 2010. By applying the validated
model, multiple intra-urban land use maps were simulated for 2015. Simultaneously,
spatial variable importance measures (VIMs) were calculated by using the out-of-bag
(OOB) error estimation approach of the RF algorithm. Based on the calculation results,
we assessed and analysed the significance of each intra-urban land use driver for this
region. This study provides urban planners and relevant scholars with detailed and
targeted information that can aid in the formulation of specific planning strategies for
different intra-urban land uses and support the future evolution of this area.

Keywords: cellular automata; urban planning; multiple intra-urban land use simula-
tions; driving factors analysis; random forests algorithm

1. Introduction

Urbanization is regarded as one of the most intensive human development activities and
has become the dominant factor that exerting tremendous pressure on social, economic
and urban environmental sustainability (Bihamta et al. 2015; Braimoh and Onishi 2007).
Increasing urban populations (particularly in developing countries) and accelerating urban
land use change have critical anthropogenic effects on the natural environment and have
become a global concern (Kalnay and Cai 2003). At the city level, accelerating
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urbanization poses challenges on the urban development and redevelopment processes
(Zheng et al. 2015). Consequently, the planning of urban structure, urban renewal and
urban transportation in growing urban areas has become more complex (Leao, Bishop,
and Evans 2004; Wise, Crooks, and Batty 2016). A comprehensive understanding of land
use change mechanisms and dynamics is required for future urban evolution.

The advent of urban growth models creates possibilities for comprehending urban growth
mechanisms. Such models also provide educational tools for the scientists, politicians and city
planners who can benefit from the visualization of different growth scenarios (Berling-Wolff
and Jianguo 2004). Amongst these urban growth models lie systems based on cellular
automata (CA) techniques. CA models simulate geographic space as an arrays of cells on
which each cell assumes a particular state based on its previous state and that of neighbouring
cells according to a set of transition rules (Santé et al. 2010; White and Engelen 2000). CA
models offer advantages in flexibility, intuitiveness, their ability to generate spatiotemporal
patterns, and capability to simulate complex dynamic systems (Aburas et al. 2016; Santé et al.
2010). Numerous recent studies have explored the potential use of CA models for urban
growth simulation (Liu et al. 2017; Torrens and O’Sullivan 2001), and numerous studies have
used urban CA models to simulate and predict urban growth phenomena (Abdullahi et al.
2015; Al-Shalabi et al. 2013; Azari et al. 2016; Chen et al. 2014; Feng et al. 2011; Feng and
Tong 2018; Han et al. 2009; He et al. 2008; Arsanjani et al. 2013; Lagarias 2012; Leao,
Bishop, and Evans 2004; Liu et al. 2010a, 2014, 2018; Mitsova, Shuster, and Wang 2011;
Omrani, Tayyebi, and Pijanowski 2017; Hossein and Helbich 2013).

Although many of these prior studies have focused on land cover/land use simulations at
the national scale and within city cluster areas, there is a great potential for research on land
use change simulations and mechanisms at the local scale since few of these simulations have
been scaled down to the intra-urban level. Macro-scale land cover/land use simulations view
cities as homogeneous entities for monitoring urban sprawl or ecological impacts of land
cover/land use change (Kuang 2012). However, the intra-urban simulations are not aimed at
addressing these issues but rather at understanding the urban intrinsic evolution through intra-
urban land use maps, urban socioeconomic attributes and spatial analysis tools. Decision
making at the intra-urban level is also different from that at the macro scale and must be
improved for sustainability because the intra-urban simulation aims not only to show the
recent urban land use change processes but also to explain how this trend can provide essential
information for urban planners to begin possible future spatial configuration and urban
revitalization (Godoy and Soares-Filho 2008). In view of this, some studies have tried to
scale down their analyses to the intra-urban level and apply machine learning algorithms to
simulate intra-urban land use change (Almeida et al. 2008; Benenson, Omer, and Hatna 2002;
Godoy and Soares-Filho 2008; Partanen 2016; Zheng et al. 2015). However, these relevant
studies focused on simulating intra-urban land use technically, and few of them studied land
use change mechanisms sufficiently. For example, Almeida’s study in 2014 integrated the
ANN algorithm and the CAmodel to simulate intra-urban land use dynamics in Midwest São
Paulo. Consequentially, the employment of a supervised back-propagation neural network in
the parameterization of several variables was quite meaningful. However, the proposed ANN-
CAmodel used in Almeida’s research has weaknesses. Since the internal training process that
is used by the ANN algorithm is not highly comprehensive and since this model can be easily
overfit (Hung and Hung 2014), it is difficult to use the ANN algorithm to measure the
importance of each variable, which makes identifying and analysing the driving factors
more challenging.

Factually, increasing our knowledge regarding the underlying determinants of driv-
ing factors is important because it can improve our understanding of local-scale urban
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development (Luo and Dennis Wei 2009). For urban planners and decision makers, the
phenomena of multiple internal urban land use changes and dynamics (e.g., residential,
industrial, commercial, etc.) and the drivers of these changes are some of the most
important issues (Braimoh and Onishi 2007). For example, urban planners and decision
makers are highly concerned with how inner-city structures are formed and which
factors drive the intra-urban land use changes. Clearly, effective planning strategies
and sound policies can be formulated only with a full understanding of intra-urban land
use change mechanisms. To address this important knowledge gap, during intra-urban
simulations, multiple driving factors should be selected. On this basis, reliable methods
that can explore and identify the dominant driving factors (and all other factors) are
required for improving our understanding of the dynamics of specific internal urban
land uses.

Hence, in this study, we combined the random forests (RF) algorithm and the CA
simulation model for the purpose of simulating multiple intra-urban land use changes in
Huicheng district, which is a developing area located in the Pearl River Delta (PRD) city
cluster of China. The RF algorithm was used to mine the CA transition rules. Seventeen
categories of spatial variables are involved in the implementation as the driving factors of
land use changes in this area. In recent years, mobile location-based service (LBS) and
multisource geospatial Big Data gathering techniques have been quickly developed, and
data for points of interest (POIs) can be obtained across the network (Liu et al. 2015; Yao
et al. 2017a). Previous research has shown that POIs datasets are related to various human
activities at the micro scale and effectively reflect the distribution of urban structures and
land use (Ratti et al. 2006; Yao et al. 2016). Therefore, in addition to traditional categories
and population density, this study also introduced a series of public services POIs in
spatial variables datasets. More importantly, the contribution of each driving factor of each
land use can be identified through variable importance measures (VIMs) using the OOB
error estimation of the RF algorithm (see Section 4.2 for more details). We obtained the
raw land use dataset of the study area for 2000, 2005, 2010 and 2015 from the official
planning department of Huicheng district. After developing and validating the model, the
model was deemed appropriate for simulating multiple land uses at the intra-urban scale.
By applying the validated model, the multiple intra-urban land use maps were finally
simulated from 2000 to 2015. Simultaneously, the identification of the factors driving land
use dynamics was conducted. The results and analysis of this study can aid in the
formulation of specific planning strategies for different intra-urban land uses and support
the future evolution of this area.

2. Methodology

For intra-urban simulation needs, the proper strategy is to scale down the simulation (using a
higher spatial resolution and more detailed categories of land use data) and construct a
simulation model to analyse the mechanisms, such as the driving forces of intra-urban land
use change. Since previous CA models focused only on methods of constructing intra-urban
level simulations, they cannot provide much valuable assistance for urban planners and
researchers from the endogenous perspective. As a result, we constructed an intra-urban
simulation model in this study and simulated the intra-urban land use changes from 2000 to
2015 by combining the RF algorithm and the CAmethod. The proposedmodel was calibrated
and validated by comparing the simulated land use to the actual land use for 2010. The
internal urban datasets used in this study include intra-urban land use maps and spatial
variables datasets that were obtained from the local planning department. Because the land
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use maps were updated every five years, data for 2000, 2005, 2010, and 2015 were adopted
and used in the simulation. Other driving factors include diverse public services variables that
were captured from Baidu (the world’s largest Chinese web search engine) POIs. To avoid the
oversimplification of the reality being modelled, all spatial data used in this research were
processed at a high spatial resolution of 10 metres. The flowchart for the methodology is
provided in Figure 1.

Figure 1. Structure of the RF-CA model.
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2.1 RF-CA model

When using CA models to simulate intra-urban land use change, we must develop a
nonlinear precise, less time consuming method that is difficult to overfit, includes a high
tolerance for random variables and is able to reveal the mechanisms of multiple land use
changes to mine the rules of intra-urban development and redevelopment. However, former
applications combining machine learning algorithms with CA models have their respective
shortcomings in simulating intra-urban land use change issues. More importantly, few
methods can easily analyse the factors driving land use change. For instance, the spatial
variables in traditional logistic regression are required to be linearly independent (Knol et al.
2012), while generally, most spatial variables used in a logistic-based CA model have a
certain relationship (e.g., cells that are close to the urban centre are prone to be close to
roads). Neural networks can solve the above problem, but the internal mechanism of the
training process is not clear and is prone to overfitting, and the algorithm is time consuming
and difficult to parallelize (Hung and Hung 2014). RF algorithms are some of the most
suitable machine learning methods for land use/land cover issues (Gislason, Benediktsson,
and Sveinsson 2006). Scholars have indicated that RF algorithms are capable of handling
high data multicolinearity and dimensionality and are fast and intensive to overfitting
(Belgiu and Lucian 2016, Wyner et al. 2017). In addition, recently, RF algorithms have
been proven to be the most effective classifiers (Ndez-Delgado et al. 2014). Certain scholars
have applied RF algorithms in CA models to simulate urban land use change (Du et al.
2017; Kamusoko and Gamba 2015; Yao et al. 2017b; Zhang et al. 2016). The RF algorithm
is a decision tree-based ensemble classifier that can effectively analyse multi-class issues
and is suitable for addressing categorical and numerical features, missing values, and
redundant features (Reif et al. 2006). Therefore, this study employs an RF algorithm-
based intra-urban CA model to simulate intra-urban land use changes. To summarize, we
compared our model with other intra-urban CA models and other RF-CA models to show
the improvement of our CA model (Table 1).

The RF-CA model in this study was divided into two components, namely, a
training component and a simulation component. For the training component, an RF
algorithm classifier is trained and calibrated using a training dataset that includes
land use datasets and auxiliary geospatial variables datasets, which is created by the
model. For the simulation component, the trained and calibrated classifier is used to

Table 1. Comparisons between our model and former CA models.

Research Objective Neighbourhood size Cell space VIMs

(Zheng et al. 2015) MILU Moore neighbourhood (3 × 3) Not explicit None
(Almeida et al. 2008) MILU Moore neighbourhood (3 × 3) and

varying neighbourhood size
50 m None

(Godoy and Soares-Filho
2008)

MILU Not explicit 10 m None

(Kamusoko&Gamba
2015)

DLC Not explicit 30 m Done

(Du et al. 2017) MLC Moore neighbourhood (3 × 3) and
varying neighbourhood size

100 m Done

Our research MILU 7 × 7 neighbourhood and varying
neighbourhood size

10 m Done

Note: DLC represents dual state land cover issues (urban/non-urban), MLC represents multiple land cover issues,
MILU represents multiple intra-urban land use issues
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calculate potential intra-urban multiple land use transitions and completes the
simulation.

The RF algorithm is a multi-classifier combination algorithm that includes a large
number of decision trees. Each decision tree can calculate an independent classification
result sample, and then, the RF algorithm generates different training sub-datasets to
increase the diversity between classifiers through feature selection in each sample.
Therefore, the RF algorithm is considered an effective machine learning algorithm for
minimizing the potential overfitting during the training process, which improves the
predictive ability. When the multi-classifier RF algorithm has been generated using M
training decision trees, Equation (1) measures the probability that unclassified data θ falls
into each category, and Equation (2) generates the final classification results (Biau 2010;
Breiman 2001).

Pi xð Þ ¼ I hi xð Þ ¼ Yið Þ
M

(1)

H xð Þ ¼ argYimax
XM
i¼1

I hi xð Þ ¼ Yið Þ (2)

Specifically, H(x) is the result of the multi-classifier combination algorithm, h(x) is the
result of a single decision tree, Yi is the classification result of a single tree, and I(•)
denotes the indicator function. The classification result of an RF algorithm is based upon a
majority voting rule.

The global development probability P of each cell in this model consists of four factors
(including the multi-class transition probability, neighbourhood interactions, stochastic
factor and restriction), which is similar to ordinary CA models. In our study, the proposed
model takes the advantage of the spectacular ability of the RF algorithm in multi-class
classification to calculate each cell’s transition probability. In Equation (1), Pi(x) expresses
the probability that unclassified data θ will be classified into category i. As a result, the
probability that the N-class (N > 2) transition of cell k will be classified into category l at
time t can be expressed by Equation (3).

Pg k; t; lð Þ ¼ I hk θð Þ ¼ Ylð Þ
M

l ¼ 1; 2; 3; . . . ;Nð Þ (3)

Neighbourhood interactions are some of the primary elements in land utilization simula-
tion models that are based on CA (Shafizadehmoghadam et al. 2017; Verburg et al.
2004a). Generally, traditional urban CA models adopt a 3 × 3 Moore neighbourhood,
which is more appropriate for dual-state issues (urban/non-urban). For a multi-classes
issue, a larger neighbourhood should be used to better reflect the influence of the
surroundings on the central cells. This research adopted a larger Moore neighbourhood
to fully consider the possibility that the central cell shifts to all other land use categories.
However, using an excessively large neighbourhood may cause fewer differences between
the amounts of all land use categories in this neighbourhood, which reduces the sensitivity
of the CA model’s neighbourhood interaction (and thus reduces the simulation’s accu-
racy). In addition, since human activities are influenced by wider spaces, an appropriate
definition of the neighbourhood is essential (Li& Wenkai 2015; Verburg et al. 2004b;
White and Engelen 2000). Therefore, this study conducted constant experimentation in the
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model calibration and validation procedures (mentioned in Section 3.2) to determine the
effects of neighbourhood size on the model performance. Thus, we define an expression
Ωt

k;l to represent the neighbourhood interaction for cell k transforming into category l at

time t. As Equation (4) shows, Ck represents the land use category of cell k, and Stk;l is a

discriminant function through assignment to judge whether Ck is l.

Stk;l ¼
1; ifCk ¼ l
0; ifCk�l

�
Ωt

k;l ¼
P

n�nS
t�1
k;l

n� n� 1
l ¼ 1; 2; 3; . . . ;Nð Þ (4)

In this equation, the function of
P
n�n

St�1
k;l is to sum up the values of St�1

k;l to count the

number of cells that belong to the l-th land use category in a n� n neighbourhood after
the last iteration. On the basis of knowing the current category of the central cell, Ωt

k has
N values of Ωt

k;l that correspond to N cases of variable l.
Scholars have shown that land use transformation is influenced by some complex and

stochastic factors (Wu and Martin 2002). We introduced the stochastic factors (Ra) to
control the effect of model stochastic perturbation in our research. The stochastic factors
are expressed as 1þ �lnγð Þα, where γ is a uniform random variable that ranges from 0 to
1 and α ranges from 0 to 10. CA models often use restriction (the factor Rs is used in this
model) or constraints to represent the particular land use types that do not change to others
during the simulation (Lin and Xia 2016). In this study, water bodies and urban road
systems are selected as restricted development areas.

Within each iteration, every land use class will typically lose (or gain) some of its land
to one or more of the other classes, and this process is decided by the global development
probability. The global development probability is multivalued and is a concrete reflection
of the complexity of simulating multiple land use changes. Equation (5) expresses the
global intra-urban development probability of cell k at time t transforming into category l,
which multiplies the multi-class transition probabilities, neighbourhood interactions, ran-
domization and restrictions in the CA model. If there are N categories of land use that are
included in the simulation with no restriction limits, then category l will include N values
and P k; t; lð Þ also corresponds to N values. Each cell k at time t can only transform into
one land use category. Therefore, the global development probability for cell k is the
maximum value in NP k; t; lð Þ and can be expressed as shown in Equation (5).

P k; tð Þ ¼ max P k; t; lð Þð Þ ¼ max Pg k; t; lð Þ � Ωt
k;l � Ra � Rs

� �
l ¼ 1; 2; 3; . . . ;Nð Þ

¼ max
I hk θð Þ ¼ Ylð Þ

M
�
P

n�nS
t�1
k;l

n� n� 1
� 1þ � ln γð Þαð Þ � Rs

 !

(5)

2.2 Variable importance measures

The RF-based regression model is capable of calculating the contribution weights of the
involved auxiliary variables contribution weights, namely, the VIMs (Biau 2010; Breiman
2001; Palczewska et al. 2013).

Specifically, VIMs are calculated in the training component of RF-CA model. The RF
algorithm creates the training dataset Xi (i = 1,2,. . .,n trees), which includes n tree items, by
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using bootstrapping with replacement in the training component. Xi includes approximately
66% of the data from the initial dataset X, and the remaining 34% of the data create an out-of-
bag (OOB) dataset. Specifically, we can obtain an OOB-based estimation error report for each
decision tree and then measure the importance of the variables. The mechanism that conducts
the OOB estimation to measure the importance of the variables in the RF algorithm can be
generalized as follows (Breiman 2001). First, consider that V input variables exist for each
OOB. After each decision tree in the RF is constructed, we calculate the OOB estimation
errors (expressed as OOBerror1) using the corresponding OOB. Next, the process is repeated
for v = 1,2,. . ., V. Then, we calculate an additional OOB estimation error (expressed as
OOBerror2) based on increasing the value of the v-th variable in each OOB. Finally, we
compare and identify the difference between OOBerror1 and OOBerror2. The quantified
result of this difference can be expressed as the importance of the v-th variable.

2.3 Model accuracy assessment

The RF-CA model adopts the “figure of merit” (FoM) indicator and the kappa statistic to
estimate the simulation results of the model by comparing the model results to historical data.
For the level of the cell, a “FoM” indicator has been commonly used by numerous scholars
(He et al. 2015). The “FoM” indicator is a ratio that is included in Equation (6). The numerator
(B) represents the number of samples that are observed and simulated correctly. The denomi-
nator (A) represents the error due to observed developments and is simulated as the persis-
tence.C is defined as the error that is caused by the observed developments and is simulated as
an incorrect gaining category. D represents the error caused by observed persistence and is
simulated as developed (He et al. 2015; Pontius et al. 2008).

FoM ¼ B

Aþ Bþ C þ Dð Þ (6)

The kappa statistic and overall accuracy are other reliable assessment indices for land use
simulation models (Vliet et al. 2016), particularly for multi-class simulations. When using the
kappa statistic to assess the results of a multi-class simulation, a confusion matrix must be
constructed, and then, Equation (7) is calculated using the values from the confusion matrix.
For Equation (7), pik represents the rate that cells are simulated in category j, and pki represents
the rate of cells for category j in the actual map. pij represents the proportion of cells that are
simulated in category i but are actually in category j of the actual map. The assessment result
depends on the value of Equation (7). Generally, the simulation results are good when the
value is greater than 0.7, and a higher value implies a superior result (Sim and Wright 2005).

Kappa ¼
Pj

i¼1 pii �
Pj

i¼1 pik � pki
1�Pj

i¼1 pik � pki
(7)

3. Implementation

3.1 Study area and data

3.1.1 Study area

The proposed model was tested in Huicheng district, which is in the centre of Huizhou
city in the PRD of the Guangdong province, China. Huizhou, the 4th biggest city in the
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PRD economic zone, is the regional economic centre of the PRD. Huizhou possesses
large-scale electronic information estates and a number of manufacturing industries based
on petroleum and chemical engineering. With the rapid economic development over the
past decade, Huizhou is now a representative city of the rapid urbanization phenomenon
in China. In addition, the Huicheng district, which is the downtown area of Huizhou, is
the focus of local governmental regional planning efforts. Huicheng district has a popula-
tion of approximately 1.1 million people and a land area of 27.8 km2. The population
grew at an annual average rate of 7% over the past 5 years according to the most recent
official census. In addition, the intra-urban land use categories for this district include
residential, administration and public services and industrial and commercial land use.
Because of the potential urban development in Huicheng district, the land use types are
continuously changing. After a long period of urbanization (Figure 2), the local

Figure 2. Trends of intra-urban land-use change from 2000 to 2015 in Huicheng district.
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government is now facing the challenge as to how to formulate specific planning
strategies for future urban evolution. Given this challenge, we decided to choose
Huicheng district for testing our model as a specific case to assist urban planners in better
comprehending the forces driving urban land use change.

3.1.2 Data and data source

The first step in intra-urban CA simulation is to develop internal urban datasets. Ensuring
that the data are reliable is important due to a lack of fine-scale spatially consistent
datasets, especially datasets with detailed intra-urban structure changes that reflect urban
socioeconomic attributes (Kuang 2012; Xie et al. 2007). Similar studies have indicated
that government departments and government research projects are common and reliable
sources for data (Almeida et al. 2008; Godoy and Soares-Filho 2008; Zheng et al. 2015).
This study obtained a raw land utilization dataset for the study area for 2000, 2005, 2010
and 2015 from the official planning department of Huizhou.

The initial land utilization dataset included 13 classes (Table 2). To simplify the initial
dataset, the data were generalized and reclassified into 5 categories and similar land use
types were reclassified into the same category. Water bodies were added, and the final
experimental land use map included 6 classes. Every urban use map includes 4,016,732
cells with 1,798 rows and 2,234 columns. All the data layers applied in our study were
registered to the Universal Transverse Mercator (UTM) coordinate system. All data were
resampled at a 10 m × 10 m resolution.

CA models always repeat the selection of spatial variables even though their rules
are quite different. For most CA models, the common spatial variables selected include
road accessibility, distance to urban centres, environmental factors, planning factors,
and population density (Santé et al. 2010). Previous studies indicated that these
variables can reasonably reflect urban planning and human activities (Chen et al.
2017; Long and Liu 2015). Therefore, in this paper, we adopt various traffic-location
factors, slope, elevation, and population density as part of the spatial variable datasets.
To our knowledge, because of the limitations in data sources, certain public services-
factors were not widely considered in previous CA simulations. With the growing

Table 2. Reclassification and generalization of land-use categories.

Initial land use categories
Spatial
resolution Generalized land use categories

Commercial land use 10 metres Commercial land use (CL)
Industrial land 10 metres Industrial land use (IL)
Residential land use
Village residential land use 10 metres Residential land use (RL)
High-rise residential land use
Sports land use
Cultural land use
Sanitary land use 10 metres Administration and public services land use (APL)

Educational land use
Land-use for public facilities
Administration land use
Non-urban 10 metres Non-urban (NU)
Water body 30 metres Water body
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popularity of mobile LBS and multisource geospatial Big Data gathering techniques,
the data for POIs can be obtained across the network, which provides us with abundant
information that reflects the distribution of public services (Liu et al. 2015; Sun et al.
2011; Yao et al. 2017a). Therefore, in addition to the basic selection of variables,
several POIs datasets that represent public services factors were applied in our study.
We retrieved Baidu’s POIs datasets by using geospatial Big Data techniques and these
POIs include public services such as hospitals, parks, bus stations, factories, and
business establishments. In all, this study involved 17 spatial variables, including
traffic-location factors, public services, natural factors, and population density as
illustrated in Table 3. Figure 3 illustrates the raster layer for each auxiliary spatial
variable that is used in this study.

3.2 Model calibration and validation

In this study, we built the RF-CA model by using C/C++ in Microsoft Visual Studio 2012.
The RF algorithm was implemented by using C++ with the open-source C/C++ library
Alglib 2.9 package (http://www.alglib.net/). The related applications will be released on
the GeoSOS website (http://geosimulation.cn/).

Through calibration, the RF-CA model was trained, and certain parameters were
properly set. The size of the neighbourhood in this CA model was calibrated based on
constant experiments (Table 4). As Table 4 shown, from 3 × 3 to 7 × 7, the overall
accuracy and kappa statistic value increased slightly as the neighbourhood size increased.
It is because the larger window size can better consider the possibility that the central cell
shifts to the existing land use categories in the neighbourhood window. While using an
excessively large neighbourhood (for example 9 × 9) may reduce the sensitivity of the CA
model’s neighbourhood interaction (and then reduces the simulation’s accuracy). For all
land use types considered the neighbourhood tends to become less specific with distance
from the central cell. As a consequence, the size of the neighbourhood in this CA model
was set to 7 × 7 based on the better model performance.

Additionally, some parameters and settings were also calibrated and optimized using
the calibration procedure. We divided the training datasets into the training data and
validation data, and the shares were set to 60% and 40%, respectively, to ensure the fitting
accuracy and stability of this model. We also established 80 decision trees and 20% OOB
data and cross-validated the model with boosted random sampling.

After the model calibration, the model was then validated by comparing the simulated
land use map for 2010 and the actual land use map for 2010. The simulated map for 2010
was constructed based on the land use map in 2000 (See in Figure 4). Figure 4(a) is the
actual land use map for 2000, Figure 4(b) is the actual land use map for 2010, and
Figure 4(c) is the simulated land use map for 2010.

The model validation results indicate that the “FoM” indicator value is 24.31%, as indicated
by Table 5 and the confusion matrix in Table 6. The kappa statistic is 0.7063, and the overall
accuracy (OA) is 89.2%. The results of the “FoM” indicator and the kappa statistic indicate that
the simulation accuracy of the model has met the simulation accuracy requirement.

GIScience& Remote Sensing 11
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4. Results

4.1 Simulation results and accuracy assessment

To obtain the simulation results for multiple intra-urban land uses after validating the model,
we constructed 5 transition probability maps of multiple land uses using the RF algorithm of
the simulation component of the RF-CA model (see Figure 5). These maps visualized the
transition probability of 5 intra-urban land use types after the minimum-maximum

Figure 3. Raster layers of auxiliary spatial variables in this study.
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normalization (min-max scaling) method. This process makes it easy for the simulation to
accurately capture the distribution of each land use category and to compare the value of the
probability for each land use in every raster of the probability map. Next, by continuously
running the simulation component of the RF-CA model, multiple intra-urban land uses in

Table 4. Calibration of model neighbourhood’s size.

Size of Neighbourhood 3 × 3 5 × 5 7 × 7 9 × 9 11 × 11

Overall Accuracy 88.16 88.35 89.15 84.53 83.38
Kappa Index Value 0.6997 0.6983 0.7039 0.6726 0.641

Figure 4. The real and simulated intra-urban land-use maps in 2010. (a) Real land-use map of year
2000. (b) Real land-use map of year 2010. (c) Simulated land-use map of year 2010.
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2015 were simulated (see Figure 6) based on multiple global development probabilities,
which were calculated by integrating the transition probability, neighbourhood interactions,
randomization and restrictions.

Each simulated land use displayed on the simulation map (Figure 6(b)) presented
various distinguishing features. Residential land use was the most significant land use in
the Huicheng district and was modelled acceptably. In the southern region of Huicheng
district, residential land use had more vitality and ductility, and the residential areas of this
region occupied a relatively large space. The shape and location of administration and
public services land uses were simulated well and these regions was scattered around
Huicheng district. Industrial land use was simulated properly at the industrial estate in the
northeastern part of Huicheng district. Factories are clustered and industrial land use was
more likely to be located in this area. In addition, the commercial land use was displayed
in detail, particularly in the southern region of Huicheng district, which was the oldest and
largest business area. Furthermore, the simulated commercial land use had prominent
morphological similarities to the distribution of the actual map. (Figure 6(a)).

To assess the simulation results obtained by the RF-CA model, this study used the
FoM indicator and the kappa statistic value. The simulation results indicate that the FoM
indicator is 26.89% (Table 7), the kappa statistic value is 0.7306, and the OA is
approximately 89.56% (Table 8). Therefore, when considering that this study simulated
multiple land uses at an intra-urban scale rather than simple dual-state issues (urban/non-
urban) at a macro scale, the simulation results and accuracies are quite acceptable.

4.2 Spatial variable importance measures and the identification of driving factors

When using CA models to simulate land use change, the spatial variable datasets in CA
models are equivalent to driving factors for land use transformations. In addition, to
implement the CA model, several relevant auxiliary spatial variables that represent the
driving factors for land-use conversions are required (Conway and Wellen 2011; Lin and

Table 5. The “FoM” indicator value of model validation.

Year: A B C D “FoM” value

2000–2010 116,477 129,278 128,913 157,055 24.31%

Table 6. The confusion matrix of accuracy for model validation.

Reality (Unit: percent)

Simulation (Unit: percent) 0 1 2 3 4 Total

0 73.87 2.56 1.26 0.16 0.82 78.68
1 3.01 7.40 0.25 0.05 0.42 11.12
2 0.61 0.04 2.57 0.01 0.06 3.30
3 0.31 0.04 0.04 1.30 0.03 1.73
4 0.77 0.19 0.08 0.02 4.11 5.17
Total 78.58 10.23 4.20 1.55 5.44 100.00

Note: 0 represents non-urban land, 1 represents residential land use, 2 represents administration and public
services land use, 3 represents commercial land use, 4 represents industrial land use
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Figure 5. Transition probabilitymaps of each land-use categories in 2015. (a) Probability of non-urban
land-use. (b) Probability of residential land-use. (c) Probability of commercial land-use. (d) Probability
of industrial land-use. (e) Probability of administration and public services land-use.

Figure 6. Simulation results of intra-urban land-use in 2015. (a) Real land-use map of year 2015.
(b) Simulated land-use map of year 2015
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Xia 2016; Wu and Martin 2002). Hence, the measurements of spatial variable importance
in CA models is coincident with the identification of driving factors acting on land use
changes, and RF algorithms can accomplish both of these processes simultaneously.

From the perspective that the simulation was scaled down to the internal urban level,
intra-urban spatial variables should be identified and analysed because they are viewed as
driving factors that reflect land use dynamics and urban spatiotemporal patterns. We did
not doubt that the land use types would transform quickly considering that the city was
experiencing a period of rapid urbanization. However, these transformations were influ-
enced by many relevant driving factors, particularly a series of urban spatial variables.
Among these driving factors, certain factors were dominant, and others were inconse-
quential to intra-urban land use changes. As previously mentioned, the RF algorithm can
obtain the OOB error to estimate the accuracy of the RF algorithm classifier and measure
the importance of the spatial variables. For each intra-urban land use category, by using
the trained RF algorithm classifier, the importance ranking of each spatial variable that
was used in the simulation was calculated (see Figure 7).

Figure 7(a) illustrates that the distance to city life-related structures (markets, infra-
structure POIs, restaurant POIs, etc.) and the distance to certain traffic location factors are
more important for residential land use changes. Areas that are closer to downtown areas
or key roads provide exceptional advantages for travelling to work or recreation and
enjoying the convenience of city life-related facilities, which makes these spaces attractive
for citizens to live in.

According to Figure 7(b), with regard to commercial land use, the distance to the city
centre has the most influence on commercial land use changes. The city centre has the
advantage of land value and attracts numerous citizens to purchase items in this area,
which increases the attractiveness of business investments here. This phenomenon is
evidenced by the categorical population density, which is the secondary factor in the
measurement and constitutes 30 percent of the importance when considered with the
distance to the city centre.

Table 7. The “FoM” indicator value for simulation of 2010 to 2015.

Year: A B C D “FoM” Value

2010–2015 122,261 135,552 139,191 107,056 26.89%

Table 8. The confusion matrices of accuracy for simulations of 2010 to 2015.

Reality (unit: percent)

Simulation (unit: percent) 0 1 2 3 4 Total

0 72.12 2.62 0.79 0.91 1.09 77.54
1 2.45 10.04 0.02 0.31 0.02 12.83
2 0.46 0.07 1.48 0.00 0.00 2.01
3 0.60 0.16 0.02 4.15 0.01 4.94
4 0.75 0.13 0.01 0.00 1.78 2.68
Total 76.39 13.02 2.32 5.37 2.90 100.00

Note: 0 represents non-urban land, 1 represents residential land use, 2 represents administration and public
services land use, 3 represents commercial land use, 4 represents industrial land use
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Figure 7(c) indicates that transportation factors (including the distance to the express-
way and the main road) and the density of factory POIs contribute nearly 30 percent of the
importance for industrial land use changes. In the Huicheng district, industry primarily
focuses on manufacturing and is generally located in scattered industrial areas. The
distribution and density of factory POIs is relatively important for industrial land use. In
addition, improved transportation factors can promote the flow of productive elements,
reduce transportation costs, and accelerate the spatial agglomeration of manufacturing.

Because of the distance decay, if the immobile public goods are distributed at a farther
distance, the residents will be less likely to use their (potential) benefit (Gregory et al.
2009). Some particular public facilities (hospitals, stadiums, libraries, etc.) and institutions
have their own geographic service areas (GSAs) with circular buffers surrounding each
facility for better coverage (Donnelly 2013; Kong et al. 2017; Xiong and Luo 2017).
Therefore, the administration and public services land use is located near where the
residents live or where there is high transportation accessibility (Abdullahi et al. 2015)
to conveniently provide public services for residents. As Figure 7(d) indicates, transporta-
tion factors (including the distance to bus stations and to the express-way) and location
factors (including the distance to city centre and the distance to market) are relatively
important factors driving the public service land use transformation.

Urban planners may not pay special attention to relatively unimportant factors, but
rather care more about how the different dominant driving factors act on each land use.
Particularly, as the distance decreases, urban planners also consider whether the influence
of dominant factors driving the land use change is spatially varying. Therefore, we adopt
two indices here to analyse and explain this issue quantitatively. We use buffer analysis to
build different buffers around the target driving factor features in the GIS analysis soft-
ware. The buffers are zones or rings with specific distances around the target driving
factor (Liu et al. 2010b). The first index (expressed as R1) can be understood as the ratio
of land change pixels in each buffer zone (Ai) to the area of each buffer zone (Si). The

Figure 7. Spatial variables importance measures for each land-use category.
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second index (R2) expresses the ratio of the land change pixels in each buffer zone ðAiÞ to
the total of land change pixels in all buffer zones. The expressions are illustrated as
follows:

R1 ¼ Ai

Si
; R2 ¼ AiPn

i¼1 Ai
i ¼ 1; 2; . . . ; nð Þ (8)

For each dominant driving factor, we calculated both R1 and R2 to quantitatively analyse
the influences that these factors have on each land use category.

Road network – residential land use

We analysed the relationship between the distance from the Huicheng road network and
residential land use change by calculating the R1 and R2 indices (Figure 8(a)). The results
show that the region approximately 100 metres away from the road network is most
attractive for residential estates and investments. This attraction decreases as the distance
increases and the two indices vary accordingly.

Figure 8. Quantitative analysis on the relationship between particular factors and land use change:
(a) distance from road network – residential land use change, (b) distance from city center –
commercial land use change, (c) distance from bus stations and administration – public services
land use change, (d) distance from industrial estates – industrial land use change.
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City centre – commercial land use

Figure 8(b) shows the relationship between the distance from the Huicheng city centre and
commercial land use change. As the R1 index shows, the relative amount of commercial land
use change decreases slightly as the distance from road network increases. Thus, the distance
to the city centre is an important determinant of commercial land change. Moreover, at
distances as far as 1500 metres to 3000 metres from the city centre, from the R2 index, we
can see that the amount of commercial land use change has the largest proportion of all, which
illustrates that this distance range is a hot spot of formally developing commercial estates.

Bus stations – administration and public services land use

Previous studies have indicated that the “‘distance to bus stations’” does affect neighbouring
land use conversions (Cervero and Kang 2011; Estupiñán and Rodríguez 2008). In this paper,
we perform similar implementations for analysing the relationship between public services
land use and the “distance to bus stations” through calculating the R1 and R2 indices. As
Figure 8(c) shows, administration and public services land use change is less likely to occur in
the vicinity of bus stations. We believe this could be due to the effect of the nuisance of heavy
traffic and busy bus stations. Administration and public services land change is more likely to
occur at the distances beyond 100 metres from bus stations. Beyond a distance of approxi-
mately 300 metres, administration and public services land use change is drastically reduced.

Industries – industrial land use

The analysis on the relationship between industrial land use change and distances from
industrial district is supposed to be clear. However, the two indices actually show an
unclear trend (Figure 8(d)): Industrial land use changed little at closer (within 300 metres)
and farther (beyond 1500 metres) distances from industrial estates, the pixels for industrial
land use change rise and fall in the range of 300 metres to 1500 metres to R1 or R2, and
the proportion of industrial land change sharply declines at a distance of approximately
800 metres. We inferred that this decline may be caused by the occupancy of other land
use at 800 metres distance away from the industrial cluster.

5. Discussion and conclusions

The purpose of this study was to propose an RF algorithm-based CA model (RF-CA model)
to simulate multiple intra-urban land use changes and identify the contributions of each
driving factor. The RF-CA model was successfully applied to the medium-sized Huicheng
district located in Guangdong province in southern China. The internal urban datasets used in
this study included intra-urban land use maps of the study area for 2000, 2005, 2010 and 2015
and multiple spatial variables. This study calibrated and validated the RF-CA model by
comparing the simulated land use map for 2010 with the actual land use map for 2010. By
applying the validated model, the multiple intra-urban land use map was simulated for 2015
with acceptable simulation results (“FoM” = 26.89%, kappa = 0.7305 and OA = 89.56%).
Based on obtaining the intra-urban simulation results, this study focused on identifying the
contribution of each driving factor (spatial variable) for each intra-urban land use using VIMs
to understand how each driving factor influences each specific land use type.

We compared our method with former relevant studies (Almeida et al. 2008; Benenson,
Omer, and Hatna 2002; Godoy and Soares-Filho 2008; Partanen 2016; Zheng et al. 2015) and
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summarized the superiorities of this paper’s method. First, this study involved diverse categories
of spatial variables, including traffic-location factors, natural factors, public services POIs, and
population density as the driving factors to better reflect urban planning and human activity
characteristics. Notably, public services POIs, which have rarely been considered in previous
intra-urban CA models, were introduced in this study. These POIs were introduced because in
intra-urban areas, particularly in areas such as Huicheng district in China, which are undergoing
rapid urbanization, intra-urban POIs are important nodes for human activity and are very
valuable in studying intra-urban land use change (Yao et al. 2017b). Generally, the distribution
of public services POIs were closely related to citizens’ behaviours (such as investing and
purchasing houses) and influenced the distribution and transformation of intra-urban land uses.
For example, urban citizens in China prefer to purchase residential homes in areas that are
located near primary or secondary schools and to take advantage of the government’s welfare
policy regarding school district houses. In addition, urban citizens prefer to live near municipal
hospitals. Because of these characteristic behaviours, internal urban POIs are essential factors
that should be introduced in this study to enhance simulations at the intra-urban scale.

More importantly, we assessed and analysed the significance of each intra-urban land
use driver for this region. With regard to the RF algorithm’s VIMs, each category of intra-
urban land use is sufficiently distinctive to be identified with the characteristics of
different importance ranks in this paper (Table 9). After the importance ranks were aligned
to each land use, the sequence of importance for each spatial variable are able to explain
the reasons for land use changes. Furthermore, the importance sequences illustrate the
types of driving factors that are crucial or dominant for a specific land use change (see in
Section 3.4). Therefore, we can provide evidence and advice regarding development and

Table 9. The ranked contribution of each driving factors for four intra-urban land uses.

Driving factors (spatial variables) RL IL APL CL 

Distance to small road 9.56% 4.73% 4.24% 4.86% 

Distance to market 11.32% 7.44% 10.48% 8.98% 

Distance to main road 10.25% 13.61% 5.40% 7.21% 

Distance to expressway 8.22% 9.62% 9.05% 7.47% 

Distance to city centre 9.21% 5.94% 9.64% 19.40% 

Distance to bus station 7.09% 5.62% 10.17% 6.33% 

Density of shopping centre POIs 1.78% 6.43% 2.96% 6.00% 

Density of school POIs 3.87% 3.22% 2.92% 1.45% 

Density of restaurant POIs 5.45% 4.99% 8.24% 5.42% 

Density of parking lot POIs 3.56% 3.24% 5.56% 3.65% 

Density of infrastructure POIs 6.17% 6.45% 5.84% 6.83% 

Density of government organization POIs 3.35% 3.78% 2.83% 2.97% 

Density of factory POIs 3.94% 8.02% 3.65% 1.58% 

Density of entertain facility POIs 4.56% 4.71% 6.84% 3.18% 

DEM 5.23% 4.84% 5.39% 3.61% 

Slope 1.94% 2.21% 1.82% 1.33% 

Population density 4.49% 5.13% 4.95% 9.72% 

Note: RL represents residential land use, IL represents industrial land use, APL represents adminis-
tration and public services land use, CL represents commercial land use. Background colour ranging
from green to red indicated that the increasing influence of the driving factors acting on the current
land use.
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redevelopment for different intra-urban land use changes to assist decision-makers and
urban planners with helpful and targeted information on future urban planning.

The integration of RF algorithms within CA models, which contributed to the
application to Huicheng district, also has some limitations. One of the limitations is
that we have not tested our model on other areas due to the lack of fine-scale datasets
with sufficient intra-urban structures and details. In addition, due to the lack of various
land use regulation datasets, including conservation areas, historical heritage sites, and
green belts, this model considers only water bodies and urban road systems as the
restriction area in the simulation. Consequently, the RF-CA model does not explicitly
consider various scenarios of multiple intra-urban land uses dynamics. However, this
limitation does not indicate that the model is lack of model pervasiveness and sustain-
ability. By integrating the model with high-resolution remote sensing images and
auxiliary spatiotemporal data, obtaining time series of urban spatial datasets at fine
scales is feasible using GIS software (Treitz and Rogan 2004).Thus, simulations in
other study areas under various land use scenarios (such as fast-development scenarios
or scenarios under strict planning guidance) based on a more thorough preparation of
the data must be introduced in our future studies.

To our knowledge, most CA models use common categories of spatial variables to
simulate all land use types even though the factors driving each land use type may be
unique. Whether we can apply more unique and typical spatial variables in the CA models
to better represent the uniqueness of different urban land use types deserves additional
considerations. In future studies, our RF-CA model has great potential in analysing the
uniqueness of different land use types to assist in urban planning issues because the RF-
based CA model is relatively robust compared to other machine learning algorithms-based
CA models since RF algorithm is stable of overcoming the multiple correlative problems,
nonstationarity issues, and noise among spatial variables.

Although the above questions have not yet been solved, our study can accurately
identify the potential factors driving land use sprawl in cities. The mechanisms of multiple
land use dynamics were explained to a large extent, and targeted information i that will be
valuable for future urban planning is provided. Ongoing studies will analyse various
simulation scenarios to better assist in urban planning decision making. In addition, finer
categories of intra-urban land use and more targeted driving factors will be introduced into
our method to improve our model’s sustainability and applicability.

Highlights

● We proposed an RF-based CA model (RF-CA model) for simulating multiple intra-
urban land-use change at a high resolution of 10 m with acceptable results (‘FoM’
= 26.89%, Kappa = 0.7306, OA = 89.56%).

● We identified the contributions of 17 driving factors for each intra-urban land-
use through Variable Importance Measures (VIMs). These factors were categor-
ized as traffic-location factors, natural factors, public services, and population
density.

● We ranked the contribution of all driving factors for each land-use, identified the
dominant factors driving each land use transformation, and quantitatively analysis
the reasons for their formation. We believe that it would help urban planners and
urban researchers to better understand how inner city structures are formed and how
they function. This study would support the future evolution of this field.
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