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A B S T R A C T

When used for land use change modeling, Cellular Automata (CA) usually assume that each cell has only one
land use type at each time step, ignoring the mixed land use structures that are often found in land units. Mixed
cells, composed of cover proportions of multiple land use types, provide a new perspective for modeling the
spatio-temporal dynamics of mixed land use structures. Simulating land use change with mixed cells is chal-
lenging because mixed-cell CAs are fundamentally different from conventional CAs. This study develops a mixed-
cell CA (MCCA). The structure of the CA is re-designed based on the cover proportion of land uses, including the
representations of cell state, lattice, and neighborhood. The transition rules are automatically constructed by
random-forest regression using historical data and a competition mechanism among multiple land use types at
the sub-cell scale is proposed. In addition, a mixed-cell figure of merit (mcFoM) accuracy measure is proposed to
validate the MCCA. The MCCA was applied to the Wuhan metropolitan area in China, and the results show that
the MCCA was able to simulate the subtle changes of land use proportions within land units. The MCCA re-
presents a new breed of geospatial CA models for spatio-temporal dynamics of mixed land use structures, which
enables mixed land use research to leap from static analysis to dynamic simulation. The software for MCCA has
been made available at https://github.com/HPSCIL/Mixed_Cell_Cellullar_Automata.

1. Introduction

Forecasts of land use and land cover (LULC) are needed to analyze
the impacts of LULC change for a wide variety of socioeconomic and
ecological processes, including population growth, economic develop-
ment, carbon cycling, landscape dynamics, surface hydrology and cli-
mate change (Li et al., 2017; Pontius, Peethambaram, & Castella, 2011;
Sohl, Loveland, Sleeter, Sayler, & Barnes, 2010). Land use modeling can
therefore help understand the dynamics of the land use system and
project future land use change in planning practices to achieve more
sustainable development and help retain ecological security (Huang,
2014; Sohl et al., 2014; Verburg et al., 2002). Cellular automata (CA)
have been widely used for simulating land use change at multiple scales
(Basse, Omrani, Charif, Gerber, & Bódis, 2014; Dong, You, Cai, Li, &
Lin, 2018; Liang et al., 2020), as they are simple and naturally spatio-
temporally dynamic (Chaudhuri & Clarke, 2013; White, Engelen, &
Uljee, 1997; He et al., 2020).

Traditionally, geospatial CA models assume each cell within the

system to be of a uniform land use type and assign a discrete state label
at each time step (Chen, Li, Wang, Liu, & Ai, 2013; Pontius et al., 2007;
Yeh & Li, 2002; Zhai et al., 2020). In other words, the cell state of
conventional CA models is pure and discrete (Clarke & Gaydos, 1998;
Pijanowski, Alexandridis, & Müller, 2006). However, because of the
complexity of land use patterns, especially in cities, a piece of land is
usually a mixture of multiple land use types, serving multiple functions
(Abdullahi, Pradhan, Mansor, & Shariff, 2015). Therefore, at the com-
monly used scales of CA models (e.g., 30 m × 30 m and coarser), the
land space of a cell often contains various land use types with different
cover proportions, which means the lattice (also termed cell space) of a
CA model is not only composed of pure cells, but also a large number of
mixed cells with multiple land use structures (Foody, 1996). For ex-
ample, a single urban commercial cell may contain government offices
and residences, and an agricultural cell may contain roads, houses and
ponds. It is worth noting that although the term ‘mixed cell’ was first
mentioned by Hu and Li (2004), their ‘mixed cell’ meant a mixture of
points, polylines and polygons, different from the concept of ‘mixed
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cell’ in this study that represents a mixture of multiple land use types
within a cell.

The mixed structures inside land units are one of the key concerns of
planning strategies (Song & Knaap, 2004), as they are closely related to
human mobility and energy consumption (Abdullahi et al., 2015), and
so affect the environmental sustainability and the functions of land
units (Liu et al., 2018a; Yue et al., 2017). Previous studies concentrated
on the identification, measurement and change analysis of mixed land
uses (Shi & Yang, 2015), and only a few studies have focused on the
simulation of the dynamics of mixed land use (Charif, Omrani,
Abdallah, & Pijanowski, 2017; Omrani, Abdallah, Charif, & Longford,
2015). Understanding the dynamics can provide rich information for
understanding the interactions between mixed land use and driving
factors, and for making scientifically sound land use plans for a sus-
tainable future. A new modeling approach is therefore needed to si-
mulate the spatio-temporal dynamics of land use structures that cover
proportions of land use categories within mixed land units. Given the
success of CA in land use modeling, CA models with mixed cells appear
to be a promising approach to achieve this purpose.

1.1. Mixed-cell CAs vs. pure-cell CAs

Simulating the change of land use structures based on mixed cells is
a challenge, because mixed-cell CAs are fundamentally different from
conventional pure-cell CAs. CA models are composed of five basic
elements: cell, lattice (or cell space), neighborhood, a set of initial states
and transition rules. All these basic elements must be re-designed for a
CA with mixed cells. In addition, the evaluation methods must be re-
designed since the commonly used methods were primarily designed
for pure-cell CAs.

Each cell in a geospatial CA represents a land unit, and a state is
associated with every cell representing the attribute/status of the land
unit. In pure-cell CA models, a discrete state label from a finite set is
assigned to a cell, representing the uniform land use type of the land
unit (Li & Yeh, 2000). Unlike a pure cell, the state of a mixed cell is
made up by an array of continuously measured components, each re-
presenting the cover proportion of a certain land use type (Fig. 1). By
changing the state of each cell (i.e., changing the cover proportions of
land use types within a cell) along time steps, a mixed-cell CA model is
able to simulate the continuous structural change of land use mixture
within each land unit, while pure-cell CA models can only simulate the
discrete change of the whole cell (Li, Shi, He, & Liu, 2011; Liu & Phinn,
2003; Seto et al., 2012).

Usually, the lattice of a geospatial CA is composed of a group of cells
arranged in a 2D space, representing the whole region of interest. Along
time steps, the cells within the lattice change their states individually,
hence to collectively simulate the spatio-temporal dynamics of a phe-
nomenon (e.g., land use and/or land cover) in the region. With a dis-
crete state label for each cell, a pure-cell CA model has only one layer of
lattice for the target phenomenon, besides other layers of driving fac-
tors (Wu & Webster, 1998). As the state of a mixed cell is composed of
an array of land use components (i.e., cover proportions of land use
types), the lattice of a mixed-cell CA is a multi-layer structure, each
layer representing the distribution of cover proportion of a certain land
use type over the region.

Neighborhood effects are essential to CA models (Li & Yeh, 2002).
With pure cells, CA models often use the numbers of cells of various
land use types within the neighborhood (i.e., moving window) around a
certain cell to represent the neighborhood condition (Chen, Li, Liu, &
Ai, 2013; Shu et al., 2017; Wu, 2002). Therefore, the variability of land
use states within a neighborhood is limited by its size. For example,
when using a 3 × 3 window, there are no more than 8 (3 × 3–1) land
use types in the neighborhood (Chen, Li, Liu, Ai, & Li, 2016). With the
continuously measured cover proportions of multiple land use types as
the states of mixed cells, the land use structure of the neighborhood can
be represented in more detail (Fig. 1).

The transition rules of mixed-cell CA models are different from
those of pure-CA models in two major ways. First, pure-cell CA models
simulate land use change through competition among different land use
types at the cell scale (Yang, Su, Chen, Xie, & Ge, 2016). However,
mixed-cell CA models must estimate the proportion changes of land use
types through competition among the land use components inside each
cell. The transition rules of mixed-cell CA models must consider not
only the effects at the cell scale (e.g., the influences of driving factors at
the locations of cells), the neighborhood scale (e.g., neighborhood
conditions) and the regional scale (e.g., land demands) as pure-cell CA
models (Verburg & Overmars, 2009), but also sub-cell scale competition
among multiple land use components. Second, compared with pure-cell
CA models that simulate the qualitative change of land use for each cell,
mixed-cell CA models simulate the quantitative changes among land
use components inside each cell. This characteristic determines that the
construction of transition rules of mixed-cell CA models should be
based on the quantitative analysis of historical land use transitions.
Thus, the prospect of mixed-cell CA models is of great significance for
the move of CA models from qualitative simulation to quantitative si-
mulation at the sub-cell scale when simulating the land use change of

Fig. 1. Mixed-cell CA vs. pure-cell CA: representations of cell, neighborhood and lattice.
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multiple land use types.
Finally, the simulation results of mixed-cell CA models are the dis-

tributions of cover proportions of multiple land use types (i.e., the
multi-layer lattice in Fig. 1). The conventional evaluation methods,
such as the ‘confusion matrix’ (Congalton, 1991) and ‘figure of merit’
(Pontius & Cheuk, 2006) are designed for discrete simulation results of
pure-cell CA, and are unable to evaluate the continuous and multi-
dimensional simulation results of mixed-cell CA models. Thus, evalua-
tion of the accuracy of a mixed-cell CA model is an issue to be dealt
with. The cell state of a mixed cell is a multi-dimensional array, re-
presenting the land use structure of the corresponding land unit.
Therefore, the similarity of land use structure between simulation re-
sults and ground truth is an important part of the performance assess-
ment of mixed-cell CA models. A thorough mixed-cell simulation fra-
mework needs reasonable and reliable evaluation methods, which can
assess the accuracy of continuous and multidimensional distribution,
the structural similarity of mixed land use between simulation results
and ground truth, and even the change accuracy of mixed-cell simula-
tion.

1.2. Relevant studies

Some scholars have been aware of the importance of simulating the
dynamics of mixed urban land structures. For example, Li and Yeh
(2000) proposed a grey-CA that can represent the percentages of urban
within cells. Yeh and Li (2002) presented a CA model that incorporates
density gradient in the simulation of urban development. Liu and Phinn
(2003) developed a fuzzy-set CA to simulate the change of degree of
membership of urban land in each cell. Sunde, He, Zhou, Hubbart, and
Spicci (2014) proposed an I-CAT model that can provide quantitative
information on impervious surfaces within each cell. Recently, Liu et al.
(2018a) developed a gradient-CA model, which can express the tem-
poral evolution characteristics of different urbanization stages. Mustafa
et al. (2018) also developed a cellular automaton based on multinomial
logistic regression and a genetic algorithm to simulate the densification
change of urban land. However, these studies only focused on the
growth of the urban fraction, and are not applicable to the simulation of
the structural change of multiple land use types. Ching and S., Milne, G
(2003) developed an Epidemic CA (ECA) model that includes popula-
tion densities and mobility in each cell, and Tovar, Patel, Niebur, Sen,
and Renaud (2006) also proposed a Hybrid CA model (HCA) for to-
pology optimization in mechanical design. The cell states of ECA and
HCA are composed of a set of variables, which are similar to the mixed
cell in this study. However, because of the differences in research fields
and modeling theories, the ECA and HCA models cannot be used in the
field of geospatial studies to simulate the structural change of mixed
land use.

It is worth mentioning that Omrani et al. (2015) introduced the
multi-label (ML) concept, where each spatial unit can belong to mul-
tiple classes simultaneously. Omrani, Tayyebi, and Pijanowski (2017)
also simulated multi-label land use change with an ML-CA-LTM model,
which was a great stride forward in simulating the dynamics of mixed
land use. Charif et al. (2017) uses a multi-label learning method-a
multi-label support vector machine, Rank-SVM-to define the transition
rules of ML-CA that significantly improved the simulation accuracy.
However, the multi-label land use data used in the ML-CA series model
does not include the cover proportion of land use types in each cell.
Therefore, a mixed-cell CA model, specifically designed to simulate the
continuous and quantitative changes of cover proportions of multiple
land use components within cells, is still missing.

The performance of CA largely depends on the transition rules
(Yang, Liu, Li, Li, & Ge, 2018). In geospatial studies, and especially in
land use change studies, the transition rules of CAs are often derived
using one of two approaches: (1) transition rules are set by model de-
signers, and the parameters/coefficients are then calibrated using his-
torical data. Typical examples include the DUEM (Batty, Xie, & Sun,

1999), SLEUTH (Clarke & Gaydos, 1998) and multi-criteria evaluation
(Yang et al., 2016) models; or (2) transition rules are automatically
constructed by a data mining model/algorithm using historical data
(Hagenauer, Omrani, & Helbich, 2019). In recent years, a large number
of CA models have been developed using the second approach, as it
makes fewer subjective assumptions and is more flexible. For example,
the Artificial Neural Network (ANN) model (Liang, Liu, Li, Zhao, &
Chen, 2018a; Yang, Guo, Li, Zhang, & Li, 2019; Yeh & Li, 2002),
Random Forest (RF) model (Kamusoko & Gamba, 2015; Zhang et al.,
2019), and cuckoo search algorithm (Cao, Tang, Shen, & Wang, 2015)
have been used to derive the relationships between land use types/
changes and their driving factors. Given the discrete state label of pure-
cell CAs, previous studies usually regard the mining of transition rules
as a classification problem. The transition rules output a discrete land
use type (i.e., label) for a certain cell under the influences of driving
factors. Such a classification approach can only obtain qualitative and
ad hoc transition rules.

Different from conventional CA models, mixed-cell CA models are
concerned with the continuous and quantitative changes of multiple
land use components in each cell. Therefore, instead of classification,
the construction of transition rules of mixed-cell CAs should be re-
garded as a regression problem, to discover the relationships between
the quantitative changes of land use components and the driving fac-
tors. Regression methods have been used in CA models. For example,
Liu et al. (2018a) employed Support Vector Regression (SVR) to mine
the relationship between urban growth and its driving factors. How-
ever, this study only simulated the continuous change of one land use
type (i.e., impervious surface), which cannot be used in the simulation
of the more complex mutual transitions among multiple land use
components (i.e., the structural change) inside mixed cells. Thus, pre-
vious studies lack a mining framework for quantitative transition rules
of mixed-cell CA models.

In summary, mixed-cell CA models are fundamentally different from
conventional CA models in many important ways, including the cell
state, lattice, neighborhood, transition rules, and the evaluation
methods. Previous methods are unable to simulate the structural
changes of multiple land use components inside mixed cells. This study
aims to develop a mixed-cell CA framework for land use structural
change simulation, which includes a mining method for constructing
quantitative transition rules based on a regression approach, a CA
model for simulating mutual changes of land use components inside
mixed cells, as well as ways to validate the simulation accuracy of
mixed-cell CA models. The development and evaluation of mixed-cell
CA models are important advances in land use models, which can
provide an effective simulation method and important support for
planners and researchers for regional policy making, as well as for ex-
ploring the causes and consequences of land use change.

2. Method

A mixed-cell CA framework for land use structural change simula-
tion is proposed in this study. Such a framework is based on the con-
ceptual representations of cell state, lattice and neighborhood for mixed
cells, as mentioned in Section 1.1 (Fig. 1), and contains three main
parts: (1) a mining method for discovering the quantitative relation-
ships between the changes of land use components within mixed cells
and various driving factors; (2) a CA model for simulating the structural
changes of mixed cells; and (3) a set of evaluation methods for assessing
the performance of the mixed-cell CA (Fig. 2).

2.1. Mining relationships between land use structural changes and driving
factors

2.1.1. Random forest regression (RFR)
To enable a CA model to simulate the structural changes of mixed

cells, the relationships between the changes of land use components
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and driving factors must be derived. As mentioned above, the discovery
of such relationships should be regarded as a regression problem in-
stead of a classification problem, as the structural changes of cells are
continuous rather than being discrete. Many regression methods can be
used for this purpose, such as the Artificial Neural Network (ANN)
model, the Support Vector Machine (SVM) or the Random Forest (RF).
In this study, RF was used for its ability to overcome the multiple
correlative problems among spatial variables, especially in higher-di-
mensional fitting situations (Palczewska, Palczewski, Marchese
Robinson, & Neagu, 2014). RF is an aggregation of the decision-tree
algorithm, in which an individual decision tree is constructed from each
training sub-dataset. The generalization error of RF can be calculated
by averaging the errors of these decision trees (Yao et al., 2017a). RF is
commonly used in solving classification (RFC) and regression (RFR)
problems, and has proved to be an effective method for mining the
transition rules for land use change simulations (Gounaridis,
Chorianopoulos, Symeonakis, & Koukoulas, 2019; Yao et al., 2017a,
2017b).

The principle of RFR is that for an arbitrary feature (e.g., a driving
factor in this study) A, a point of demarcation s that divides the feature
A into two datasets D1 and D2 can be determined, which makes both the
mean square errors (MSEs) of D1 and D2 and the sum of the MSE of D1
and D2 minimum at the same time. The objective function of RFR is as
follows:

+[ ]min min y c min y c( ) ( )
A s c x D A s

i c x D A s
i, ( , )

1
2

( , )
2

2

i i1 1 2 2 (1)

where xi is the features of the i-th training sample; yi is the depen-
dent variable of the ith training sample; c1 is the sample mean of dataset
D1; and c2 is the sample mean of dataset D2. The regression value of the
RFR algorithm is the mean values of the outputs of all regression trees
(Fig. 3).

2.1.2. Mining the development potentials of land use components
The RFR is used to fit the relationship between the proportional

change of each land use component and the driving factors with mixed
cells. Once such a relationship is derived by the training process of RFR
using historical samples, the change potential of the corresponding land
use component of a certain mixed cell at a certain time step can be
predicted, given a set of driving factor values at the corresponding lo-
cation and time. Unlike classification problems that are commonly
solved by training on multiple land use types, training each land use
component in the regression problem is a more common way (Liu et al.,
2018a). In addition, simultaneously fitting multiple arrays may affect

the fitting precision of RFR. Therefore, we trained the development
potential of each land use type separately in this study. This training
method has been widely used in many other studies based on logistic
regression (Verburg et al., 2002; Sohl, Wimberly, Radeloff, Theobald, &
Sleeter, 2016). Although interactions between multiple land use com-
ponents cannot be addressed in the training process, nevertheless, we
still can address the interactions into the competition between different
land use components in the simulation process, which is discussed in
Section 2.2.

Before training the RFR, the proportional change of each land use
component must be converted to the dependent variable of RFR:

=
>

Y
PC PC

PC
0

0 0i k
i k i k

i k
,

, ,

, (2)

where PCi k, represents the proportion change of land use component
k in mixed cell i between different periods; and Yi k, is the dependent
variable of the RFR. Note that the cover proportion of a land use
component within a mixed cell may increase ( >PC 0i k, ) or decrease
(PC 0i k, ) between two periods. Since the land use components of a
mixed cell are mutually constraining, an increase of a component
means the decrease of others. Therefore, we only need to focus on the
increases of land use components, and can regard the decreases as ‘no
increase’, in order to avoid repeated calculations.

After such preprocessing, the relationship RFk between the propor-
tion change (i.e., increase) of land use component k and driving factors
is derived through the training process of RFR, using randomly ex-
tracted samples from the historical dataset:

=RF RFR train Y DF_ ( , )k i k
s

i
s

, (3)

where Yi k
s
, denotes the sample dataset of Yi k, ; DFl

s represents the
sample dataset of various driving factors; and RFR train_ ( ) denotes
the training process of the RFR.

Once RFk is obtained, the development (i.e., increased) potential of
land use component k can be predicted by the following equation:

=DP RFR predict RF DF_ ( , )i k k i, (4)

Where DFi represents the dataset of driving factors; RFR predict_ ( )
denotes the predicting process of RFR; and DPi k, denotes the develop-
ment potential of land use component k (Gounaridis et al., 2019) at
mixed cell i. For K land use components, K RFs must be trained. At each
iteration of CA simulation, the development potential of each land use
component of a certain cell is predicted and used as a key part of the
transition rules.

Fig. 2. Framework of mixed-cell CA model.
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2.2. CA model for land use structural change simulation

We propose a CA model combining top-down (i.e., macro land use
demands) and bottom-up (i.e., local land use competition) effects to
simulate the spatio-temporal dynamics of land use structures. The
feedbacks between land use demands and land use structures are passed
by a self-adaptive coefficient, driving the amount of land use to ap-
proach the target land use demands. In the simulation process, multiple
land use components first compete with each other within each mixed
cell through a roulette wheel approach, to determine whether or not the
cover proportion of a land use component increases, and the amount of
the increase. Then the amounts of other land use components converted
to the increasing land use component are estimated through a set of
quantitative transition rules. Details are given in Fig. 4.

2.2.1. Feedbacks between land use demands and land use structures
Based on the DPi k, calculated by RFR, this study proposes a demand-

driven (or scenario-based) mixed-cell CA model for land use structural
change simulation. First, the total change probability of land use
component k can be represented as:

= × ×TP DP Drivi k
t

i k i k
t

k
t

, , , (5)

where TPi k
t
, is the total change probability of land use component k

of mixed cell i at iteration t ; i k
t
, represents the neighborhood effects of

mixed cell i, which are the cover proportions of land use components k
within the neighborhood (cover proportions of all components re-
present the land use structure of the neighborhood); and Drivk

t is the
feedback of future demand for land use type k, which is a self-adaptive
coefficient that depends on the gap between the current amount at

iteration t and target demand of land use k. The self-adaptive method of
Drivk

t is as follows:
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where D| |k
t 1 and D| |k

t 2 represent the absolute values of the differ-
ences between the cumulative amount and future demand of land use
type k at the t 1th and t 2th iteration. We add 1 to them to prevent
the numerator and denominator from becoming 0. However, the sum of
all Driv'kt may not be equal to 1. So a normalization is carried out
through the following equation to ensure the range of Drivk

t is in the
range 0–1:

=
=

Driv Driv
Driv

'
'k

t k
t

k
K

k
t

1 (7)

The Drivk
t drives the amount of land use k to approach the future

demand during the iterative process, which is similar to the self-adap-
tive inertia coefficient proposed by Liu et al. (2017) and Liang et al.
(2018b). It combines the “top-down” effects provided by the land use
demands and the “bottom-up” influence that is rooted inside cells and
neighborhoods (Liang et al., 2018b).

2.2.2. Land use competition within mixed cells
After the total development probability TPk l

t
, is obtained, a roulette

selection mechanism is used to address the land use competition at the
sub cell scale during the simulation (Fig. 4). First, the total development

Fig. 3. The schematic diagram of Random Forest Regression (RFR).
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probabilities of various land use components are normalized using the
following equation:

=
=

TP
TP

TPi k
t i k

t

k
K

i k
t,

,

1 , (8)

where TP n k
t
, is the normalized total change probability of land use

component k of mixed cell i at iteration t (the sum of TP i k
t
, for all

components is equal to 1). K represents the number of land use com-
ponents in the study area. Then a roulette wheel Ri

t can be constructed
according to the TP i k

t
, , each sector of the roulette wheel represents a

land use component. Then the order of land use components is ran-
domly shuffled, each component competes with others through the
roulette wheel Ri

t according to the shuffled order. That is, there are K
rounds of competition for each cell, each round for a land use compo-
nent k. If land use component k wins in its competition round, k is
selected as the changed land use component. The changed amount of
component k of cell i at iteration t can be calculated as:

= × ×IA TP Rai k
t

i k
t

k, , (9)

where IAi k
t
, represents the increased proportion of land use com-

ponent k, ranging within [0, 1]; Ra denotes a random number ranging
from 0 to 1, which represents the stochastic perturbation of land use
change; and k is the step size of the amount change of component k at
each iteration ranging from 0 to 1, which is an empirical parameter set
by users.

2.2.3. The quantitative transition rules of land use components
When land use component k wins in its competition round, the

amount of component k will increase in a mixed cell, which also means
declines of other components. Similarly, the declining probability of a
land use component can be estimated according to the growth prob-
abilities of other components. Therefore, we define the declining
probability of land use component o as the sum of the total develop-
ment probabilities of other components:

=
=

SP TP w oi o
t

w

K

i w
t

,
1

,
(10)

where SP i o
t
, represents the declining probability of component o of

mixed cell i at iteration t . Thus when land use component k increases,
the declining proportion of component o can be estimated using the

following equation:

= ×
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where DAi o
t
, denotes the declining proportion of land use component

o of mixed cell i at iteration t ; and cono k represents a transition matrix
that determines whether the original land use type o is allowed to
convert to the target type k (1 denotes inevitable conversion and 0
denotes impossible conversion). If a conversion is impossible
( =con 0o k ), the value of IAi k

t
, is adjusted as: =IA IA DAi k

t
i k
t

i o
t

, , , , then
the value of DAi o

t
, is set as 0. The schematic diagram of the competition

and quantitative conversion mechanisms of the mixed cell CA model is
shown in Fig. 4.

Driven by the future demands of various land use types, the above
transition rules are applied to all cells, to determine the increasing and
declining land use components and to evaluate the transition amount of
each land use pair. When the simulated land use amounts are equal to
the target land use demands, the mixed-cell CA model will output the
simulated results with K layers. Each layer represents the simulated
distribution of a land use component.

2.3. Evaluation of the mixed-cell CA model

Conventional evaluation methods, such as the ‘confusion matrix’
(Congalton, 1991) and ‘figure of merit’ (Pontius & Cheuk, 2006), are
primarily designed for assessing the accuracy of discrete simulation
results produced by pure-cell CAs, and cannot be used to evaluate the
continuous and multidimensional simulation results of mixed-cell CA
model. Therefore, we propose an evaluation scheme, which can assess
the simulation accuracy of mixed-cell CA model from three aspects: (1)
the total accuracy of the distributions of all land use components; (2) a
new Figure of Merit indicator for mixed-cell simulation; and (3) the
similarity of land use structure between the simulation and ground
truth.

Fig. 4. The feedback, competition and quantitative transition mechanisms of the mixed-cell CA model.
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2.3.1. Sub-pixel confusion matrix
The Sub-pixel Confusion Matrix (SCM) is employed in this study to

assess the total accuracy of the simulation results of the mixed-cell CA
model. SCM, proposed by Pontius and Cheuk (2006), is an improved
version of the conventional Confusion Matrix for evaluating the accu-
racy of soft classification, and is suitable for assessing the simulation
result of mixed-cell CA models.

The first step is to randomly select a number of cells from both si-
mulated and actual land use maps. The second step is to calculate the
agreement of each land use component (u or v) for diagonal elements
( =u v) of the sub-pixel confusion matrix, and the disagreement of each
land use component for off-diagonal elements (u v) of each sample
cell i according to the following equation:

=
=

=

p
MIN s a u v

s p u v

( , ),

( ) ,iuv

iu iv

iu iuu
a p

a p
( )

(
iv ivv

v
N

iv ivv1 ) (12)

where piuv is the element of the SCM for the i-th sampled cell; siu is
the simulated cover proportion of land use component u of cell i; aiv is
the actual cover proportion of land use component v of cell i; and
MIN ( ) is the rule to select the minimum value among siu and aiv. The
final SCM is constructed by averaging the SCMs for all sample cells, and
each element of the final SCM is represented as pvv.

After the final SCM is built, several accuracy indices, including the
Overall Accuracy (OA) at the map level and Producer’s Accuracy (PAv)
and User’s Accuracy (UAv) at the category level, can be calculated
through the following equations:

=
=

OA p
v

K

vv
1 (13)

=PA p a/v vv v (14)

=UA p s/v vv v (15)

We used the OA derived from SCM as the evaluation metric to assess
the total precision of the mixed-cell CA model.

2.3.2. Mixed-cell Figure of Merit (mcFoM)
The accuracy of mixed-cell simulation cannot be validated by the

traditional Figure of Merit (FoM) (Pontius et al., 2008; Pontius &
Millones, 2011) that is commonly used in pure-cell simulation. This
study proposes a mixed-cell Figure of Merit (mcFoM) to validate the
simulation accuracy of the mixed-cell CA model. First, we obtained the
actual (DAk i, ) and simulated (DSk i, ) proportion change of cell i by
subtracting the ground truth (Gk i, ) and simulated components (Sk i, ) with
the initial components (Ik i, ).

=DA G Ik i k i k i, , , (16)

=DS S Ik i k i k i, , , (17)

where k is the arbitrary land use type. Second, we compared each
mixed cell of DAk and DSk and divided the change of all cells into four
parts: A: area of error due to underestimating the change of compo-
nents; B: the agreement of all classes (area of correct) according to the
minimum rule (Eq. (16)), because the agreement cannot be more than
the minimum value of the two proportion changes; C : area of error due
to misestimating the change directions of components (e.g., observed
increase but predicted decrease); and D: area of error due to over-
estimating the change of components.

= × >A DA DS DA DS DA DS(| | | |) 0, | | | |
i k

k i k i k i k i k i k i, , , , , ,
(18)

=B DA DSmin(| |,| |)
i k

k i k i, ,
(19)

= × <C DA DS DA DS(| |) 0
i k

k i k i k i k i, , , ,
(20)

= × > <D DS DA DA DS DA DS(| | | |) 0, | | | |
i k

k i k i k i k i k i k i, , , , , ,
(21)

The equations of the mixed cell Figure of Merit (mcFoM) can be
expressed as:

=
+ + +

mcFoM B
A B C D (22)

=
+ +

PA B
A B C (23)

=
+ +

UA B
B C D (24)

Where PA and UA represent the producers accuracy and users ac-
curacy respectively.

2.3.3. Relative entropy for land use structural similarity assessment
The similarity of land use structure is another important aspect for

evaluating the simulation result of mixed-cell CA, which is a unique
characteristic of multi-dimensional simulation results. The land use
structure of a cell refers to the array of cover proportions of land use
components of this cell, and the sum of all land use components is equal
to 1. We computed the Relative Entropy (RE) as an indicator to evaluate
the similarity of land use structure, which can represent the information
decay of the simulation process (Song & Knaap, 2004). The RE of each
cell is defined as:

=
=

RE P k P k
Q k

( )log ( )
( )i

k

K

i
i

i1 (25)

=
=

meanRE RE M/
i

M

i
1 (26)

where REi denotes the relative entropy of the actual and simulated
land use structure of mixed cell i; Pi and Qi represent the actual and
simulated land use structure, respectively; while M is the total number
of mixed cells. RE is able to measure the similarity between two vectors.
In the calculation process, a very small constant value can be added
(∊ = 2.220 × 10−16, DBL_EPSILON) to Q k( )i and P k( )i to avoid a zero
denominator according to http://hanj.cs.illinois.edu/cs412/bk3/KL-
divergence.pdf. When the actual and simulated land use structures of
mixed cell i are identical, REi is 0. A larger REi value indicates a greater
difference between the actual and simulated land use structure. After
the REs for all cells are calculated, the mean RE of the whole region is
calculated as the measurement of similarity of land use structure at the
regional level.

3. Experiment and performance assessment

3.1. Study area

The proposed mixed-cell CA model was applied to a simulation of
the Wuhan Metropolitan Area (WMA), which is located in central China
and encompasses an area of 57,800 km2 (Fig. 5). Wuhan is the central
city of WMA, which is also the biggest city, transportation hub and
education center in central China. The WMA contains eight large- and
medium-sized cities around Wuhan, including Huangshi, Ezhou,
Huanggang, Xiaogan, Xianning, Xiantao, Qianjiang and Tianmen. The
WMA is one of the biggest urban agglomerations in central China, and
is an important economic center of the Yangtze River Economic Zone of
China. In 2017, the Gross Domestic Product (GDP) in WMA was about
305.93 billion U.S. dollars and the population was 38 million. Ac-
cording to the ‘The Rise of Central China’ strategy enacted by the
Chinese government, the WMA is expected to develop into the fourth
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economic growth pole in China (besides the Yangtze River Delta, Pearl
River Delta and the Beijing-Tianjin-Hebei metropolitan area) with a
resource-saving and environment friendly focus.

3.2. Data preparation

In practical applications, the mixed-cell land use data can be ob-
tained using at least four approaches: (1) the remote sensing inversion
method (Liu et al., 2018a); (2) decomposition of mixed pixels (Shi &
Wang, 2014); (3) extracting the land use mix structure from multi-
source big data (e.g., social network data, taxi trajectories, points of
interest) (Liu et al., 2018b; Shi & Yang, 2015); or (4) aggregating fine-
resolution land use data into coarse-resolution data (Omrani et al.,
2017). The purpose of this experiment is to demonstrate and evaluate
the proposed mixed-cell CA model, so we used the fourth approach –
the most convenient method to obtain the mixed-cell land use data.

The China Land Use/Cover Dataset (CLUD), the most commonly
used and highest-quality national land use/cover database for China
(Kuang, Liu, Dong, Chi, & Zhang, 2016), was used in this study at its
original fine resolution (30 m × 30 m). The CLUD includes six land use
types: cropland, woodland, grassland, waterbody, built-up, and other.
In this study, the built-up land use was further divided into urban land
and rural settlement. Thus in total 7 land use types were considered for
the experiment.

The study region was divided into 250 m × 250 m regular cells (in
total 1,433,256 cells), and the cover proportions of 7 land use com-
ponents for each cell were calculated from the original 30 m-resolution
CLUD data. Through such a process, the mixed-cell land use data for
2000 and 2015 were generated. They were used to train the RFR model
for the mining of relationships between the changes of land use com-
ponents and driving factors, and to assess the simulation accuracy of the
mixed-cell CA model.

In addition to the mixed land use data, we formulated a collection of
spatial variables to represent the driving forces of land use structural
change, including socioeconomic, climatic and environmental data
(Table 1). These factors have been commonly used in previous studies
(Li et al., 2017; Liu et al., 2017; Chen et al., 2020). All the spatial da-
tasets were resampled to the resolution of 250 m × 250 m.

3.3. Model calibration and validation

3.3.1. Historical simulation
For the model calibration, the RFR for each land use type was

trained using samples from the mixed land use data of the period of

2000–2015 in WMA. The sampling rate was set as 10%, and 100 re-
gression trees were used to construct each RFR model. Other para-
meters of the mixed-cell CA model are listed in Table 2. The fitting
precision of RFR was evaluated by the out-of-bag root-mean-square
error (OOB RMSE). As shown in Table 2, the OOB RMSE of all land use
components was lower than 0.04, indicating that the RFRs were well
trained and capable of capturing the relationships between land use
structural changes and driving factors. The step sizes represent the
conversion rates of all land use types. The larger the step size for the
MCCA model, the fewer the iterations for the simulation process.
Considering that sufficient iteration is encouraged for the CA model
(Yeh & Li, 2006), we assume that the conversion rates of all the land use
types are the same and set the step sizes at 1 using trial-and-error (Feng
& Tong, 2020), to balance the number of iterations and the runtime of
the MCCA model.

After training, the mixed-cell CA model was used to simulate the
land use structural change for the period of 2000–2015. Specifically,
the trained RFRs were applied to calculate the development potentials
of all land use components of each cell by importing all the driving
factors, and the changes in proportion of land use components were
calculated by the CA model for land use structural change simulation.

During the simulation, land use changes were constrained such that
some conversions were not allowed, which is a typical step in land use
modelling (Li et al., 2017; Schaldach et al., 2011; Verburg & Overmars,
2009). For instance, urban land cannot be converted to any other land
use type, whereas cropland can be transformed to new rural settle-
ments. Allowable conversions were specified in a conversion matrix for
this experiment (Table 3). In addition, we assume that open water (a
sub-category of waterbody) is not allowed to convert to other land use
components. Therefore, a distribution map of the cover proportion of
open water was used to provide the minimum quantity of waterbody of
each cell, which means that the cover proportion of waterbody within
each cell is not less than the cover proportion of open water. Mean-
while, the mutual conversions between other pairs of land use com-
ponents are allowed in these cells.

The maps of simulated and actual land use structures in 2015 are
shown in Fig. 6, with RGB images generated using different combina-
tions of land use components to display details of the simulation results.
The results showed that the simulated distribution of land use mixture
matched well with the actual distribution at the regional scale.

3.3.2. Simulation accuracy at the regional scale
The Sub-pixel Confusion Matrix (SCM) and mcFoM were employed

to quantitatively assess the consistency between the simulated result

Fig. 5. Location and topography of the Wuhan Metropolitan Area.
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and the actual land use pattern. The overall accuracy (OA = 0.9303),
the mixed cell Figure of Merit (mcFoM = 0.2959) at the map level, and
their User’s Accuracy and Producer’s Accuracy were calculated
(Table 4, Table 2). These accuracy indices indicate that the simulation
result of the mixed-cell CA was acceptable. In addition, we compared
the simulation results of the mixed-cell CA model with a widely used
pure-cell CA model (Fig. 6), namely the FLUS model (Liu et al., 2017),
with the same development potentials and land use demands. The si-
mulation result of the FLUS model from 2000 to 2015 was validated
with the traditional confusion matrix and Figure of Merit. The OA and
FoM values of the pure-cell CA model are 0.8967 and 0.1530 respec-
tively, which are lower than the result simulated by the mixed cell CA
model. We also compared the change map simulated by both the mix-
ed–cell CA model and the pure-cell CA model (Fig. 7). The patterns of
simulated change of all land use components are similar to that of the
actual change of land use components, compared to the discrete si-
mulation result from the pure-cell CA model. The distribution of

simulation results of the mixed-cell CA model is continuous in space
and contains the quantitative information of the change of land use
components within cells.

3.3.3. Similarity between simulated and actual land use structures
In addition, the Relative Entropy (RE) among the simulated and

actual land use structures of all cells was calculated according to Eqs.
(23) and (24). The spatial distribution of RE is presented in Fig. 8, the
mean RE (mean RE) of the study region was 0.9768 (Table 2), which
represents the information loss of the simulation process. The meanRE
can thus be regarded as an indicator to describe the similarity between
the actual and simulated land use structures of the whole study region.
For each cell or the whole region, the lower the RE, the more similar are
the simulated and actual land use structures. Fig. 8 shows that the
mixed cells with significant structural differences mainly distribute at
some of the regions along the new roads and at the edges of the urban
area, but most of the simulated land use structures are similar to the

Table 1
The spatial driving factors of land use change in this study.

Category Data Year1 Original Resolution Data resource

Land use/cover data Land use/cover data 2000–2015 30 m CAS (http://www.resdc.cn)
Socioeconomic data Population 2000–2015 1000 m http://www.resdc.cn/Default.aspx

GDP
Proximity to Wuhan 2014 – World Urbanization Prospects: The 2014 Revision, CD-ROM Edition
Proximity to city center
Proximity to Town center
Proximity to highway 2018 – OpenStreetMap (https://www.openstreetmap.org/)
Proximity to arterial road
Proximity to primary road
Proximity to secondary road
Proximity to tertiary road
Proximity to high-speed railway
stations

2018 http://lbsyun.baidu.com/

Climatic and environmental data Soil type 1995 1000 m HWSD v 1.2 (http://westdc.westgis.ac.cn/data/844010ba-d359-
4020-bf76-2b58806f9205)

Annual Mean Temperature 1970–2000 30 arc-sec WorldClim v2.0 (http://www.worldclim.org/)
Annual Precipitation
DEM 2016 30 m NASA SRTM1 v3.0
Slope

1 Driving factors collected from different time periods is allowed (Long, Han, Lai, & Mao, 2013), and we have made the time periods of the driving factors as recent
as possible.

Table 2
Parameters and accuracy indexes of mixed-cell CA model for the experiment.

Parameters Cropland Woodland Grassland Waterbody Urban land Rural settlements Other

RFR Parameter Sampling rate 0.1
Number of regression trees 100

Accuracy index OOB-RMSE 0.0191 0.0177 0.0070 0.0302 0.0372 0.0097 0.0076

CA for land use structural change Parameter Neighborhood 3 × 3
Step size 1 1 1 1 1 1 1
Land use demand in 2015 (km2) 22193.26 14717.40 1188.43 5186.35 2115.64 1706.14 148.83

Accuracy index OA 0.9303
mcFoM 0.2959 (PA = 0.3745, UA = 0.4011)
Mean RE 0.9768

Table 3
Land use conversion matrix (1 = conversion possible; 0 = not possible).

Change to → Cropland Woodland Grassland Waterbody Urban land Rural settlements Other

Cropland 1 1 1 1 1 1 0
Woodland 1 1 1 0 1 1 0
Grassland 1 1 1 0 1 1 0
Waterbody 1 0 0 1 1 1 0
Urban land 0 0 0 0 1 0 0
Rural settlements 0 0 0 0 1 1 0
Other 1 1 1 1 1 1 1
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actual structures in the study region. Although most of the land use
change happens in the regions along new roads and edges of urban
areas, these places are the most difficult parts for simulating land use
change. It is also very normal that most errors come from these regions.
A lack of planning data may lead to this shortage because Chinese cities
are largely impacted by planning policies. In our future work, we will
try to use the planning data to improve the simulation of the mixed-cell
CA model.

3.3.4. Effect of spatial aggregation on the model’s performance
To examine the spatial aggregation effect of different aggregated

grids on the MCCA’s simulation accuracy. We also aggregated the si-
mulation data to 500 m, 750 m, 1000 m, 1250 m, and 1500 m grids and
tested the different accuracy indicators of the mixed-cell CA model
respectively (Fig. 9). The variation of model performance with the
growth of the aggregated grid size is shown in Fig. 9. We found that the
mcFoM indicator shows a significant decreasing trend with the growth
of the aggregated grid size, and the OA slightly decreases with the
growth of the aggregated grid size. The mixed-cell CA model obtained
the highest OA and mcFoM when the aggregated grid size was 250 m.
Different from the previous two indicators, the changing trend of the
meanRE is descending first and ascending last. The mixed-cell CA
model obtained the highest structural similarity when the aggregated

grid size is 750 m (with the lowest mean RE value).

3.4. Simulation of future land use structure

3.4.1. Projecting future land use demands
The mixed-cell CA is a scenario-driven model. The first step of

prediction is to determine the total areas of land use types for the future
period. The quantities of changes are then spatially allocated to in-
dividual cells during the prediction process of the mixed-cell CA model.

Future land use demands can be determined by many methods, such
as using expert knowledge (Sohl, Sayler, Drummond, & Loveland,
2007), linear regression (Pontius & Malanson, 2005), Markov chains
(Yang, Zheng, & Chen, 2014), the system dynamics model (Huang,
2014), or an integrated assessment model (Dong et al., 2018; Sohl et al.,
2014; Verburg & Overmars, 2009). Considering that the purpose of this
experiment is to demonstrate the capability of the proposed mixed-cell
CA model, we employed linear regression, one of the simplest fore-
casting methods, to project the future land use demands based on the
historical data of 2000, 2005, 2010 and 2015. Fig. 10 depicts the fitting
equations and the projected trajectories of seven land use types from
2015 to 2035.

Fig. 6. RGB images to exhibit the mixing distribution of three land use components. Panel (I) depicts the mixing distribution of Rural settlements (R), Crop land (G)
and urban land (B); Panel (II) shows the mixing distribution of Glass land (R), Woodland (G) and Waterbody (B); Panel (III) represents the mixing distribution of
Other (R), Rural settlements (G) and Glassland (B). In the dark areas, the proportions of the three land use components are all very low. Panel (IV) shows the
simulation result of a pure-Cell CA model and the pure-Cell ground truth.

Table 4
The Sub-pixel Confusion Matrix for the simulation from 2000 to 2015 (PA represents the producer’s accuracy, UA is the user’s accuracy).

Category Cropland Woodland Grassland Waterbody Urban land Rural settlements Other UA

Cropland 0.444164 0.004671 0.00039 0.008108 0.010073 0.002566 0.000241 0.944597
Woodland 0.004995 0.302976 0.000568 0.000907 0.002811 0.000287 0.000036 0.969271
Grassland 0.000291 0.002269 0.023485 0.000312 0.000244 0.000026 0.000017 0.881398
Waterbody 0.0105 0.000483 0.0002 0.095759 0.001168 0.000166 0.000781 0.878053
Urban land 0.008055 0.001521 0.00024 0.00252 0.029881 0.00146 0.000078 0.682902
Rural settlements 0.001708 0.000205 0.000037 0.000204 0.000428 0.032024 0.000018 0.924857
Other 0.000233 0.000015 0.000014 0.00103 0.000103 1.24E-05 0.001914 0.521871
PA 0.945237 0.970575 0.942138 0.881714 0.668537 0.876336 0.626748
OA = 0.9303

X. Liang, et al. Landscape and Urban Planning 205 (2021) 103960

10



3.4.2. Future prediction from 2015 to 2035
The mixed cell model was used to produce future land use structures

for the period of 2015–2035, using the transition rules obtained from
the period of 2010–2015 through RFR. Other simulation parameters are
also listed in Table 2, which have been successfully calibrated. Fig. 11
depicts five sub-regions in WMA that respectively show the simulated
changes of 5 land use components. In Fig. 11, panels (a1) to (a4) show a
large increase of urban land in the central area of the WMA, mainly in
Wuhan and its surrounding areas (e.g., Ezhou and Xiaogan). The urban
area in Wuhan will expand in multiple directions simultaneously,
among which the eastward expansion to Ezhou and the southwestward
expansion along the Yangtze River are the most obvious trends. Sti-
mulated by the fast urban expansion in Wuhan, the urban land in north
Ezhou will develop rapidly and is eventually connected with the urban
area in Wuhan in 2025, which matches the development strategy of
“the Integration of Wuhan and Ezhou” formulated by the provincial
government. By 2035, the urban layout of Ezhou will be composed of
several big urban patches, including two new urban patches along the
main road. The urban growth in Wuhan will first expand with relatively
low density (Fig. 11(a1) and (a2)), then the cover proportion of urban
land in mixed cells will increase from the inner city to the edge of the
new urban areas (Fig. 11(a2) and (a3)). The mixed cells with relatively

Fig. 7. Panel (a–g): actual (left) and simulated (right) change of each land use component from 2000 to 2015 in the mixed cell simulation; Panel (h): actual (left) and
simulated (right) change cells of the pure-Cell simulation.

Fig. 8. The distribution of the relative entropy of the simulation result from
2010 to 2015.
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low urban density mainly distribute along the rim of the urban areas,
with only a few scattered inside the high-density urban areas. These
characteristics are consistent with the development regulation of the
cities and reflect the spatial heterogeneity of land use distribution. Such
characteristics cannot be expressed by traditional pure-cell CA models.

The fast development of the urban land is accompanied by a rapid
loss of cropland in WMA. Fig. 11 (b1)–(b4) depicts the process of
cropland loss from 2015 to 2035 in a sub-region in the western WMA,
where the cropland is the most intensive and contiguous. Therefore, the
protection and sustainable use of cropland in this region is of great
significance for WMA. The urban expansion in this place will certainly
have a negative impact on the integrity and connectivity of cropland in
this region. By generating spatially continuous simulation results, the
mixed-cell CA model improves our capability of assessing the influence
of urban growth on the landscape connectivity.

In addition, rural settlements are an important source of urban land.
Although the cover proportion of rural settlements is small, rural set-
tlements scatter across China and the sprawl of rural settlements also
causes a large amount of cropland loss (Tian, Qiao, & Gao, 2014).
However, the rural settlements have been given less attention in pre-
vious studies (Kuang et al., 2016). According to the predicted land use
demands for WMA (Fig. 10), the net change of rural settlements is very
small. In this case, the result generated by traditional pure-cell CAs

would only show very limited change. However, the simulation results
of the mixed-cell CA model can explicitly reflect the density change of
rural settlements at a fine scale under such a slow increase scenario
(Fig. 11(c1, c2, c3)). These hot-spots of rural settlement change cannot
be expressed by traditional pure-cell CA models, because they are un-
able to simulate the change in density of land use.

The fast development of urban land will also lead to the decline of
woodland in various areas. In Fig. 11, panels (d1)–(d4) depict the
change of woodland in Xianning, southern WMA. The woodland around
high-density urban land has a higher risk of occupation by the rapid
urbanization. In the southern and northern mountainous areas of WMA,
many woodlands are most likely to degrade to grassland and result in a
density decrease in the following decades. While cells with increasing
woodland proportions will also scatter across the region and most of
them occur in the eastern WMA. The amounts of increase and decrease
in woodland proportion are approximately balanced, and the total
amount of woodland in the WMA will remain almost unchanged in the
following decades. In Fig. 11 panels (e1)–(e4) show the simulated ex-
pansion of grassland in the northern WMA. The process of the density
increase of grassland in this region can also be projected by the mixed-
cell CA model.

Fig. 9. Simulation accuracies versus aggregated grid size.

Fig. 10. Trajectories of the actual (2000–2015) and predicted (2015–2035) land use proportions in Wuhan Metropolitan Area.
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3.4.3. Change of land use mix
The mixture of land use components in land units is closely related

to the socioeconomic activities, environmental functions and landscape
amenities, and is very important for regional sustainable development
(Abdullahi et al., 2015; Manaugh & Kreider, 2013; Musakwa & Niekerk,
2013). Different from pure-cell CA models, mixed cell CA models have
the advantage of simulating the changes of land use structure within

individual cells. The cell-level mixture can be directly measured by
their entropy according to the cover proportions of land use compo-
nents:

= =H
p p

K
ln( )

ln( )i
k
K

i k i k1 , ,

(27)

where Hi represents the entropy of mixed land use within cell i,

Fig. 11. The predicted cover proportions of four important land use components in WMA.
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ranging from 0 to 1; pi k, is the cover proportion of land use component k
in cell i. A higher entropy means a higher degree of mixture or diversity
of land use in an individual cell.

Fig. 12 demonstrates the changes of land use mixture during the
prediction from 2015 to 2035. In the period of 2015–2020, the cells
with decreasing mixture are obviously more than the cells with in-
creasing mixture. In the cells whose mixture is increasing, the cover
proportions of one or more land use components start increasing,
leading to an increase in land use diversity. The later period
(2020–2025) exhibits the opposite trend: the number of cells with in-
creasing mixture tends to increase and they mainly distribute in the
surroundings of the western WMA. The decrease of mixture in these
areas is mainly due to the increase of the urban density. The periods of
2025–2030 and 2030–2035 continue the trend, but the cells with
changes of land use mixture decentralize over time. In general, the land
use mixture in WMA will decrease first in the west, and then increase in
the east, caused by the continuous growth of urban land and grassland,
and the evolution of woodland.

4. Discussion

This study introduces a new breed of CA models with mixed cells.
The cell state, lattice, and neighborhood are re-designed to represent
the mixed land use structures within land units. Consequently, the
transition rules and evaluation methods are also re-designed to ac-
commodate the unique characteristics of mixed cells. The differences
between traditional pure-cell CA models and the mixed-cell CA model
are summarized in Table 5. One of the biggest advantages of mixed-cell
CA models is the capability of simulating the quantitative and con-
tinuous changes of multiple land use components inside cells, while
pure-cell CA models can only simulate the qualitative and discrete
change of land uses at the cell level. Therefore, mixed-cell CA models
are able to simulate subtle changes in land use structures caused by

minor variations of socio-economic, eco-environmental and political
driving factors, providing a detailed perspective for understanding the
land use change process.

Also, the quantitative and continuous simulations generated by
mixed-cell CA models that contain the information for land use struc-
ture in each cell have the potential to help researchers to more precisely
evaluate the impacts of land use change on many environment vari-
ables, such as air quality, the urban heat island effect, landscape con-
nectivity, net primary production (NPP), ecological service value,

Fig. 12. The changes of land use mixture in WMA during 2015–2035.

Table 5
A summary of the differences between mixed-cell CAs and pure-cell CAs.

Basic elements Attributes Pure-cell CA model Mixed-cell CA
model

Cell state State Discrete Continuous
Dimension One-dimension Multi-dimension

Neighborhood State Discrete Continuous
Classes Limited classes

sometimes
All classes

Lattice – One layer Multiple layers

Transition rules – Qualitative Quantitative
Competition scale Cell scale Sub-cell scale
Mining method Classification Regression

Functions Type Yes Yes
Structure No Yes
Mixed land use No Yes
Cell level mixture No Yes

Evaluation
methods

Map level
accuracy

Confusion Matrix Sub-pixel
confusion Matrix

Changed cell
accuracy

Figure of merit
(FoM)

Mixed-cell FoM

Structural
similarity

– Relative entropy
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energy consumption and more. Mixed-cell CA models may better sup-
port space-time continuous analysis and the quantitative calculation of
environment variables. In addition, mixed-cell CA models provide an
enabling approach to the simulation of structural changes of mixed land
use, as most previous studies focused on the measurement and static
analysis of mixed land use structures and ignored their dynamic evo-
lution. The mixed-cell CA model can simulate gradual changes in land
use structures and help researchers understand how the multiple
driving factors interact to generate the future distribution of mixed land
uses. It is worth mentioning that the simulation results of the mixed-cell
CA model can be easily converted to traditional discrete land use data
for specific uses by extracting the dominant land use type of a cell.
Therefore, the simulation results of mixed-cell CA models are capable of
covering all the functions of pure-cell simulation results.

Despite many obvious advantages of mixed-cell CA models, they are
more complex to implement than pure-cell CA models. Therefore, this
study also developed a software package for the mixed-cell CA (freely
available at https://github.com/HPSCIL/Mixed_Cell_Cellullar_
Automata). This software is written in the C++ programming lan-
guage and contains data pre-processing, simulation and evaluation
modules. The authors are responsible for the long-term maintenance
and updates of the mixed-cell CA software. In our future work, the
MCCA model will be coupled with mixed pixel decomposition algo-
rithms to simulate the quantitative change of mixed land use structure.
The mixed pixel decomposition algorithms can be used to provide
multi-period mixed pixel land use data with higher resolution (e.g.,
Landsat imagery with a 30 m resolution), and the mixed-cell CA model
will simulate the change trend of mixed land use structure of each pixel.
The mixed pixel decomposition algorithms directly provide the data
source for mixed-cell simulation, and the mixed-cell Cellular Automata
can act as a new application of the output of mixed pixel decomposition
studies.

5. Conclusion

This paper presents a new approach for the simulation of land use
structural change – mixed-cell CA, which is fundamentally different
from conventional pure-cell CA models. Specifically, the cell state of
mixed-cell CA is composed of an array of continuously valued land use
components, each representing the cover proportion of a certain land
use type within a mixed land unit. Consequently, the lattice and
neighborhood of CA are re-designed to accommodate the unique
characteristics of mixed cells. Mixed-cell CA models are able to simulate
the continuous change of multiple land use components, hence the
structural change of mixed land units, which cannot be achieved by
pure-cell CA models with discrete land use labels for cells.

The multi-dimensional representation of cell state also leads to a
fundamental re-design of transition rules. To enable the simulation of
continuous change of land use components within mixed cells, the
discovery of the relationships between land use structural change and
land use change driving factors must be regarded as a regression pro-
blem, instead of a classification problem as in pure-cell CA models.
Also, the competition and the mutual conversions among multiple land
use components within mixed cells (at the sub-cell scale) must be
considered when constructing transition rules, in addition to the effects
of cell-scale conditions, neighborhood conditions, and regional de-
mands. Also, the evaluation methods for assessing the performance of
CA models must be re-designed, because the commonly used methods
are primarily designed for pure-cell CA and are not applicable for multi-
dimensional and continuously valued land use structures.

Therefore, this study proposes a CA modeling framework to ac-
commodate all these unique characteristics of mixed-cell CA. The re-
lationships between land use structural change and driving factors are
mined from historical data using random forest regression (RFR). Based
on the development potentials of land use components derived from
trained RFRs, transition rules determine the inter-conversion of land

use components within cells by considering the feedbacks among land
use demands, neighborhood effects, and sub-cell scale land use com-
petition. Finally, the sub-pixel confusion matrix and relative entropy
are used to evaluate the simulation accuracy. A new validation in-
dicator, the mixed cell Figure of Merit (mcFoM), is proposed to assess
the accuracy of the simulation of the changed cells of the mixed-cell CA
model.

The proposed mixed cell CA model was applied to the land use
structural change simulations in WMA. The mixed-cell CA model was
calibrated using the land use structure data from 2000 to 2015. The
simulation result achieved a high simulation accuracy (OA = 0.9303,
mcFoM = 0.2959, mean relative entropy = 0.9768). The mixed-cell CA
model was then used to project future land use structure change from
2015 to 2035, driven by the future land use demands that were fore-
casted through linear regression according to the historical trends. The
results showed that the mixed-cell CA model can not only discover the
hot-spots of land use density, but also can reflect the continuous change
and spatial heterogeneity of the land use distribution. Finally, the
change trends of land use mixture were analyzed.

In summary, mixed-cell CAs can effectively simulate the continuous
and quantitative change of multiple land use components within mixed
land units, providing key information for assessing the causes and
consequences of land use change. The effects of land use structural
change on socioeconomic and ecological environments can be eval-
uated by combining the mixed-cell CA model with other models. Mixed-
cell CA models have a high potential in studying the function and
structural change of land units, which can provide critical support for
land management and urban planning. The mixed-cell CA model is a
key link to the next stage of mixed land use study, moving from static
analysis to dynamic simulation at the sub-cell scale, and can be re-
garded as an important addition to the theory and applications of
Cellular Automata. In the future, using the mixed pixel decomposition
as inputs, the mixed-cell CA model can also act as a bridge between
mixed pixel decomposition and mixed cell simulation.
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