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ABSTRACT
Along with the gradually accelerated urbanization process, simulat-
ing and predicting the future pattern of the city is of great impor-
tance to the prediction and prevention of some environmental,
economic and urban issues. Previous studies have generally inte-
grated traditional machine learning with cellular automaton (CA)
models to simulate urban development. Nevertheless, difficulties
still exist in the process of obtaining more accurate results with CA
models; such difficulties are mainly due to the insufficient considera-
tion of neighborhood effects during urban transition rule mining. In
this paper, we used an effective deep learning method, named
convolution neural network for united mining (UMCNN), to solve
the problem. UMCNN has substantial potential to get neighborhood
information from its receptive field. Thus, a novel CA model coupled
with UMCNN and Markov chain was designed to improve the per-
formance of simulating urban expansion processes. Choosing the
Pearl River Delta of China as the study area, we excavate the driving
factors and the transformational relations revealed by the urban
land-use patterns in 2000, 2005 and 2010 and further simulate the
urban expansion status in 2020 and 2030. Additionally, three tradi-
tional machine-learning-based CA models (LR, ANN and RFA) are
built to attest the practicality of the proposed model. In the compar-
ison, the proposed method reaches the highest simulation accuracy
and landscape index similarity. The predicted urban expansion
results reveal that the economywill continue to be the primary factor
in the study area from 2010 to 2030. The proposed model can serve
as guidance in urban planning and government decision-making.
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1. Introduction

In the past few decades, the rapid development of urbanization has become a high-
profile phenomenon in society (Wang et al. 2013a, Feng et al. 2016). Along with the
development of human society, the increment in non-agricultural population and the
conversion of urban development, urban scale is incessantly expanding at present
(Glaeser and Kahn 2004, Helbich and Leitner 2010). The growth of cities promotes the
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progress of human society and boosts the development of national economies.
Nevertheless, quite a few cities are progressing at an excessive speed, which results in
numerous urban problems, such as suburban environmental pollution and chaotic
public order (Seto et al. 2012, Wang et al. 2013b). To alleviate these contradictions
and maintain the human–land coordination and the sustainable development of society,
decision makers should make exact judgments on the extent of urban expansion, thus
setting urban development boundaries (Weng 2001, Jiang and Yao 2010). Consequently,
the simulation of urban expansion has drawn the attention of many urban planners and
government officials. This study simulates and analyzes the expansion of a typical urban
agglomeration in China.

Previous studies indicate that a cellular automaton (CA) model is able to effectively
simulate complex geographical processes, especially in the study of spatial simulation
during urban changes. Since the 1990s, CA models have been adopted by many pioneers
around the world to simulate urban growth (Clarke et al. 1997, Clarke and Gaydos 1998,
Wu and Webster 1998, Li and Yeh 2000, White and Engelen 2000). These studies revealed
that we can simulate complex structures by defining several simple local rules, which
provide a basis for relevant geographical analysis (Li and Yeh 2000). Quite a few spatial
variables are required in simulating urban development using a CA model. In a particular
model, each spatial variable corresponds to a parameter, which is inextricably linked with
the presentation of the model. Clarke et al. (1997) decided to ascertain parameters with
the naked eye, which was subjective and time consuming. Wu and Webster (1998)
adopted logistic regression to obtain parameters, but difficulties occurred in tackling the
intricate relationship between spatial variables. Clarke and Gaydos (1998) proposed a
method that automatically calculates the difference between the simulation results and
the actual situation using a computer, seeking the solution that leads to the minimum
error. Although the accuracy of this method was high and unconstrained by the complex-
ity of the model, it was fairly inefficient. With the development of computer technology,
machine-learning algorithms gradually entered this research field. Algorithms such as
Artificial Neural Network (ANN) (Li and Yeh 2002, Basse et al. 2014), Random Forests
Algorithm (RFA) (Biau 2012, Kamusoko and Gamba 2015), Genetic Algorithm (GA) (Li et al.
2013) and Support Vector Machine (SVM) (Yang et al. 2008) have been employed to cope
with the parameter optimization issue of CA models. These methods can optimize the
model’s parameters and obtain the best result efficiently, which solves the complex geo-
simulation problems associated with multiple spatial variables.

Although the traditional machine learning algorithm has optimized the geo-simula-
tion model, it is still difficult to achieve high simulation accuracy (Lin and Li 2015). In
addition to the subjective factors such as the instability of data quality and the ration-
ality and randomness of neighborhood selection, the algorithm module of urban devel-
opment suitability also requires improving. Generally, there are some traditional
algorithms such as logistic regression, ANN and RFA. ANN is superior to logistic regres-
sion when we need to handle the complex relationships between spatial variable. RFA
has the ability to obtain the better result than ANN. However, they merely accounted for
a single pixel in mining the urban development suitability evaluated according to
location factors and site properties (Li and Yeh 2000). To consider the neighborhood
information when we calculate the urban development suitability, we used the deep
learning techniques. Deep learning, which possesses strong learning ability, attains good
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effects in image processing and mining deep semantic features in text analysis. As a
typical deep learning algorithm, the Convolutional Neural Network (CNN) uses the
convolution kernel to extract the image information, taking full consideration of the
neighborhood information of each pixel in the image (LeCun et al. 2015). Jean et al.
(2016) adopts CNN to extract high-level semantic information in satellite imagery,
thereby obtaining the distribution of impoverished areas in Africa. Zhong et al. (2016)
used the improved large patch Convolutional Neural Network to classify the high-
resolution image set. Based on the Convolution Neural Network for United Mining
(UMCNN), Yao et al. (2018) combined high-resolution images and high-level semantic
features of the driving force factor data to estimate the real estate price distribution in
Shenzhen, China. Therefore, how to introduce deep learning into the process of geo-
graphical simulation and whether joint mining will enhance the accuracy of traditional
geographical simulation have become very interesting questions.

To verify the effectiveness of the deep learning techniques in urban simulation, we
use the urban development suitability calculated by deep learning techniques to con-
struct the CA model. CA is a bottom-up approach in modeling complex systems, such as
geographical process modeling and urban expansion simulation (Li and Yeh 2002, Yao
et al. 2017a). The prediction ability of the CA model is illustrated by adopting Markov
chain to calculate the total area of urban in the future. Markov chain has a key-
descriptive tool, which is the transition probability matrix. An integration of CA and
Markov chain has been already demonstrated to be an efficient hybrid geospatially
explicit approach (Arsanjani et al. 2013).

In short, the purpose of this study is to combine deep learning, Markov chain and CA
models. First, based on the conducted UMCNN training network, we obtained the overall
development probability of the city by sampling and training the factors relating to urban
dynamics in the study area. Second, by inputting the future urban growth amount predicted
by the Markov chain, the simulation results of the CA model were attained. To verify the
practicability of the model, several control groups using the traditional CA model are
constructed to simultaneously compare the simulation accuracy and landscape similarity.

2. Study area and data

The study area of this research is the Pearl River Delta, which covers a total area of
54,219.98 km2. It is an important economic zone in China (Yao et al. 2017b), with
administrative areas including Guangzhou, Shenzhen, Zhuhai, Dongguan, Zhongshan,
Jiangmen, Foshan, Huizhou and Zhaoqing, as shown in Figure 1.

The Pearl River Delta region has been experiencing rapid urbanization since the
implementation of reform and opening-up policy in 1978 (Yeh and Li 1999, Lin and Li
2015). In this area, although fragmented and dotted construction areas occur in
numerous small towns, there is a connecting tendency on the whole (Liu et al.
2017). The Pearl River Delta region involves a particular integrated development of
urban and rural areas, in which cities develop along a high-quality transport network.
With this rapid urban development, land use in the Pearl River Delta region is of great
complexity and has thus led to a series of environmental, economic and urban
development issues (Haas and Ban 2014).
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With the rapid development of modern cities, forecasting the development trends
and planning the urban morphology of the cities in the Pearl River Delta is of great
importance in transportation safety and urban construction (Weng 2002, Fu et al. 2003,
Chen et al. 2011, Haas and Ban 2014). To construct a multi-period CA model, this study
adopts the urban land use in 2000, 2005 and 2010, as shown in Figure 2. The spatial
resolution of our land cover classification is 100 m with 4220 columns and 3221 rows.
Specifically, urban land use occupies 7.98% of the total area in 2000, 11.94% in 2005 and
14.98% in 2010, generating an expansion of 7.09% over this decade.

Using the statistics for urban and non-urban land in various cities of the Pearl River Delta,
each city’s urban land-use proportion and expansion rate for the three years are calculated
and shown in Table 1. More specifically, a1 indicates the urban expansion rate from 2000 to

Figure 1. Location of the Pearl River Delta.

Figure 2. Land-use data of the Pearl River Delta for the simulation of urban expansion.
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2005, a2 represents the urban expansion rate from 2005 to 2010, while a3 indicates the total
urban expansion ratio of this decade. As the table shows, the largest city expansion ratio
during this period was generated in Dongguan City, where urban land use increased by
29.99%, while the urban areas of Foshan City, Zhongshan City and Shenzhen City increased
by 17.25%, 18.32% and 19.89%, respectively, which was consistent with Chinese policies
over the years. In contrast, the development of Zhaoqing City, Jiangmen City and Huizhou
City were slow, where urban land use merely increased by 1.27%, 3.41% and 3.44%,
respectively. Owing to geographical disadvantage or policy drift, the development speed
of these cities was far lower than other regions in this decade (Lin and Li 2015).

For large-scale land-use change simulation, complete land-use change driving factor
data should be collected to obtain better simulation results for the entire study area. This
paper accounts for the driving factors of urban development from the aspects of trans-
portation, topography, government decision and water area (Liu et al. 2017). Moreover, we
obtained the driving factors shown in Figure 3. The original data are normalized to [0,1].

3. Methodology

Our proposed method is integrated by UMCNN, CA model and Markov chain. We adopt
UMCNN to calculate the urban development suitability, which acts as an input para-
meter of the CA model to simulate the future urban development of the Pearl River
Delta region. Figure 4 shows the flowchart of this study. The study is divided into the
following steps. (1) Based on the existing urban land-use data and auxiliary data in the
Pearl River Delta, we constructed the driving factor data set and the sampled the land-
use change data. (2) With the sample data and driving factor data set, the UMCNN
model is trained and the optimal deep learning model is selected based on the accuracy
of network training. Then, the softmax trainer in the UMCNN model is removed, and the
remaining high-dimensional vector data set is extracted, which acts as an input in the
RFA model to obtain the urban development suitability. (3) The overall urban develop-
ment probability, calculated by the urban development suitability, neighborhood
effects, constraint factors and stochastic factors, is used to simulate the data of the
known year, which rectified the input parameters of the CA model. (4) By using the
Markov chain, the urban growth amount in the future is predicted as the total prediction

Table 1. Urban land use proportion in cities inside the Pearl River Delta. a1: expansion ratio from
2000 to 2005, a2: expansion ratio from 2005 to 2010, a3: expansion ratio from 2000 to 2010. Pearl
River Delta (PRD), Guangzhou (GZ), Foshan (FS), Shenzhen (SZ), Dongguan (DG), Huizhou (HZ),
Jiangmen (JM), Zhaoqing (ZQ), Zhuhai (ZH), Zhongshan (ZS).

2000 2005 2010 a1 a2 a3
PRD 7.89% 11.94% 14.99% 4.05% 3.05% 7.10%
GZ 11.56% 17.55% 21.96% 5.99% 4.41% 10.40%
FS 14.73% 25.01% 31.98% 10.28% 6.97% 17.25%
SZ 30.78% 40.56% 50.67% 9.78% 10.11% 19.89%
DG 26.30% 45.99% 56.29% 19.70% 10.30% 29.99%
HZ 3.73% 5.44% 7.14% 1.71% 1.70% 3.41%
JM 5.85% 7.17% 9.29% 1.32% 2.12% 3.44%
ZQ 1.90% 2.63% 3.17% 0.72% 0.55% 1.27%
ZH 14.68% 19.94% 24.31% 5.26% 4.37% 9.63%
ZS 12.36% 24.95% 30.68% 12.59% 5.73% 18.32%
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area, and is regarded as input data in the CA model to obtain urban development in the
future. We input the maximum iteration times additionally to avoid the loop time of CA
is considerably large. To attest the accuracy and practicability of the proposed model,
the logistic regression CA model (Arsanjani et al. 2013), artificial neural network CA
model (ANN-CA) (Li and Yeh 2002) and the random forest CA model (RFA-CA)
(Kamusoko and Gamba 2015) are constructed to serve as contrast experiments.

3.1 Setting and training of UMCNN

As shown in Figure 5, the UMCNN model of this study includes seven layers, including
three convolution layers, two max-pooling layers, one fully connected layer and one
softmax layer (Krizhevsky et al. 2012, Yao et al. 2018). The activation function adopted in
the convolution layers and the full-connection layer is the Rectified Linear Units (RELU),
which can improve the training speed without losing the network accuracy and can
reduce the probability of gradient disappearance (Krizhevsky et al. 2012). Previous
studies also indicate that the use of small data sets could effectively reduce the com-
plexity of the CNN network to avoid the emergence of over-fitting problems (Zhong
et al. 2016). Hence, this study adds dropout operation in the convolution layers and the

Figure 3. The driving factors in the Pearl River Delta. (a) DEM, (b) distance to airports, (c) distance to
town centers, (d) distance to railway stations, (e) distance to trunk roads, (f) distance to highways,
(g) distance to railways, (h) distance to rivers, (i) slope.
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full-connection layer, which prevents the case of over-fitting by randomly discarding the
weight in the network (Hinton et al. 2012).

In this study, the UMCNN model adopts a 3 × 3 convolution kernel and a 2 × 2
pooling layer (Simonyan and Zisserman 2014). As mentioned above, the model adopts
nine driving factor layers altogether, where patch size of the initial input data is 50 × 50.
According to Figure 5, the first layer is the convolution layer. As the first layer consists of
sixteen 3 × 3 convolution kernels, a feature image of 48 × 48 × 16 is exported after
inputting the initial data. The second layer is composed of a pooling layer of 2 × 2,
eventuating a feature image of 48 × 48 × 16. As the third layer establishes thirty-two
convolution kernels of 3 × 3, input data will be converted to 22 × 22 × 32. The fourth
layer is also a pooling layer of 2 × 2, where a dimensional feature image of 11 × 11 × 32

Figure 4. The flowchart of simulating urban expansion via UMCNN-CA.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 7



is obtained after pooling the input data. Similar to the convolution kernel of the third
layer, the fifth layer turns the feature image into 9 × 9 × 32 (Yao et al. 2018). This is
followed by the full-connection layer of the sixth layer, where 100 neurons are adopted.
Finally, the classification result is obtained using softmax regression. Figure 6 shows an
example of the working process of the sampling windows. The receptive field of UMCNN
is the convolution kernel, which is used to extract feature from multiple spatial variables
and calculate development suitability. By adopting the convolution kernel, more infor-
mation can be considered compared to traditional methods (Schmidhuber 2015). To
avoid over-fitting, dropout layers that randomly discard 20% of the network are added
in front of the fifth and sixth layers. In particular, after training the UMCNN model, the

Figure 5. The computation framework of proposed UMCNN.

Figure 6. The working process of convolutional neural network.
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softmax regression layer is removed and the RFA classifier only incorporates high-
dimensional features of the upper layer to obtain the ultimate urban development
suitability. Previous studies have verified that RFA classifier is the state-of-the-art
machine learning models, which is able to obtain the better classification and fitting
results than other machine learning classifiers and regression methods (Biau 2012,
Fernández-Delgado et al. 2014). RFA is an aggregation of the Decision Tree. By using
the bagging method, a new sub-dataset is generated by extracting random samples
from the original training dataset (Breiman 2001, Biau 2012). When each decision tree
selects random feature, it is constructed from each training sub-dataset, and they are
not pruned during the growth process. We can obtain an Out-Of-Bag (OOB) from the
estimation error report for each decision tree. The generalization error of RFA can be
obtained by calculating the mean value of the errors of the decision trees. RFA has
ability to solve the correlative problems among multiple spatial variables, especially in
high-dimensional fitting situations (Palczewska et al. 2014).

3.2 UMCNN-based cellular automata (UMCNN-CA)

Proximity is one of the essential geospatial elements that emphasize the dynamics of
various change events (Arsanjani et al. 2013). Previous studies have shown that neigh-
borhood configuration affects the effects and the role of the CA model (Li et al. 2017).
The transformation probability P of each cell in the traditional CA model is composed of
four parts: overall development suitability Pg, neighborhood effectΩ, constraint coeffi-
cient Pc and stochastic factor RA.

The calculation of overall development suitability Pg in the CA model is mostly based
on socioeconomic, geographical and ecological factors. In general, some statistical
models, such as logistic regression, are used. However, how to determine the weight
of different driving factors is so complex that it cannot be expressed with simple
mathematical models, so machine learning models such as artificial neural networks
are adopted. Compared with the artificial neural network, the deep learning network
used in this paper is more suitable for mining the driving factors in large scale and large
data volume, to obtain more exact overall development suitability Pg.

Next, neighborhood effect Ω is a vital characteristic factor in the CA model, which can
effectively prevent broken and messy layout in the expansion simulation (Li and Yeh
2002, Dahal and Chow 2015). The most frequently employed neighborhoods are the von
Neumann neighborhood, Moore neighborhood and the extended square neighborhood.
The selection of neighborhoods in the CA model is very likely to produce disparate
effects, so the choice of neighborhood has always been a very critical and complex
problem in CA simulation (Li et al. 2017).

Constraint coefficient Pc is a specific land-use category that is not permitted to
convert into urban land during the simulation process (Liu et al. 2012, Lin and Li
2016). In this study, water areas are deemed a constraint type, that is, water areas
cannot develop into cities. Moreover, urban land-use change is of great complexity
and randomness (Li and Yeh 2002, Wu and Martin 2002). To append stochastic factors
into the CA model, this study introduced stochastic factor RA. In short, the probability
that a single cell will convert at time t is described as follows:

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 9



Pti;k ¼ Pgti;k � Ωt
i � Pcti � RA

where Pti;k is the probability that cell i converts to the k-state at time t. As for the actual
situation in this study, Pti;k also represents the total development probability of non-

urban land converted to urban land at time t. Pgti;k is the overall development suitability

of cell i at time t. Ωt
i refers to the neighborhood effect of cell i at time t. Pcti represents

the constraint factors of the cell’s development. RA is a random factor, which shifts in the
range of 0–1. During the simulation, we compute the Pgti;k by UMCNN. The constraint

factor is water and the neighborhood we chose is the von Neumann neighborhood.
Then, we input the Pti;k into the CA model to simulate urban expansion.

This study uses a Markov chain to predict future urban growth amount. A Markov
chain is a stochastic process model that can be used to describe the transition process
from one state to another within a system (Green 1995). To simulate the urban devel-
opment status of 2020 and 2030 in the future, the Markov chain model uses multi-
period land-use data, thus obtaining the transition matrix of state change at the
corresponding time (Arsanjani et al. 2013, Guan et al. 2011, Yang et al. 2012, 2014).

3.3 Accuracy assessment and uncertainty analysis

To test and evaluate the urban expansion result simulated by the above-mentioned
model, this study is evaluated from two aspects: cell and landscape pattern. At the cell
level, previous studies have mostly adopted the overall accuracy (OA) and Kappa
coefficient to verify accuracy (Arsanjani et al. 2013, Li et al. 2008, Liu et al. 2008).
Nevertheless, many studies believe that the confusion matrix is unqualified to evaluate
the accuracy of geographical simulation, especially under large-scale data volume.
Unlike the classic methods, Pontius et al. proposed the use of Figure of Merit (FoM) to
evaluate the model’s accuracy, which is primarily determined by the numbers of varia-
tions in the simulation process (Pontius et al. 2007).

FoM ¼ B= Aþ Bþ C þ Dð Þ

Product0s accuracy PAð Þ ¼ B= Aþ Bþ Cð Þ

User0s accuracy UAð Þ ¼ B= Bþ C þ Dð Þ
where A is the area of error due to observed change predicted as persistence, B is the
area of correctness due to observed change predicted as change, C is the area of error
due to observed change predicted as change to the wrong category (here C should be
set as 0 because the UMCNN-CA only simulates the change of non-urban cells), and D is
the area of error due to observed persistence predicted as change (Chen et al. 2016, Yao
et al. 2017a).

From the perspective of landscape pattern, we use a series of landscape pattern
indices: the number of urban patches (NP), mean Euclidean nearest-neighbor distance
(ENN) and mean perimeter-area ratio (PARA), which could all be calculated with
FRAGSTATS 4.2 (McGarigal et al. 2012). The pattern-level similarity is measured based
on the above indicators, which can distinguish the differences between the predicted
image and the actual image (Chen et al. 2013, 2016).
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al ¼ 1� 1
n

Xn

i

Δli

Δli ¼
li;s � li;o
�� ��

li;o
� 100%; l ¼ NP; ENN; PARA

where li;s and li;o represent the landscape indices of the i-th prediction and the actual
image, respectively, and Δli is the normalized result of all the indices. al is the similarity
of the landscape pattern, calculated by means of Δli. n is the number of landscape
indices, set as 3 in this study since three types of landscape indices are used.

4. Results

4.1 Implementation and results

The UMCNN-CA model proposed in this study is established through known data from
2000, 2005 and 2010. Moreover, to verify the utility of this model, the model’s simulation
accuracy is compared to three other traditional CA models (RFA-CA (Kamusoko and
Gamba 2015), ANN-CA (Li and Yeh 2002) and Logistic-CA (Arsanjani et al. 2013)). In the
UMCNN module, the network’s sampling window is set to 50 pixels. Then, 80% of the
sample data is used as training data in the CNN model and the other 20% is employed
as accuracy calculation and error feedback. Furthermore, after training the CNN module,
the original softmax layer is replaced by RFA for the fitting process, where 60% of the
data is adopted for training and the rest is used to assess the accuracy of the module.

This section uses known data from the years 2000, 2005 and 2010. First, using the
data of the previous two years, model calibration and the urban simulation of 2005 are
conducted simultaneously. Then, using the land-use status of the latter two periods, the
urban simulation of 2005 is acquired using the calibrated model. Figures 7 and 8
demonstrate the actual and simulated urban land use results in 2005 and 2010 by
using the four models mentioned above.

The accuracies are showed in Table 2. As shown in Table 2, in the simulated two years,
UMCNN-CA can get good results with the highest overall accuracy, Kappa coefficient and
FoM. Compared with the other three traditional models, the simulation result of UMCNN-CA
increased by 5.60%–7.70% in 2005 and 10.00%–12.30% in 2010, which demonstrated that
UMCNN-CA is more suitable in mining the transition rules. Previous studies also indicate
that, compared to other machine-learning models, CNN possesses a stronger ability to
automatically extract the characteristics and morphological features of the region, thus
obtaining better pattern recognition results (Hinton et al. 2012, Krizhevsky et al. 2012).

In Table 3, the FoM of each city’s simulation result in the Pearl River Delta region of 2010
is counted. In general, the FoM in the study area reached 0.346, which is significantly higher
than the previous study (Chen et al. 2013, Lin and Li 2015). More specifically, Guangzhou,
which is the capital of Guangdong Province, and Dongguan, Shenzhen, Zhongshan and
Foshan, which are relatively developed, have above-average FoM. In contrast, the FoM
values of Zhaoqing, Jiangmen, Huizhou and Zhuhai, which are relatively underdeveloped,
are below 0.2, especially in Zhaoqing, with a city coverage rate of merely 3.17% in 2010, as
shown in Table 1, which is far below the average level of the entire research areas. This
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result illustrates the complexity of urban development: Urban development in developed
areas is mainly promoted by the conversion of interior urban land use. The development in
economically backward areas is greatly dependent on the expansion of surrounding urban
agglomerations, which is more susceptible to geographical factors, resulting in slow urban
development (Dai et al. 2010, Wang et al. 2013b, Zheng et al. 2014).

We choose four typical areas from the simulated results in 2010 to illustrate the
superiority of the proposed model as shown in Figure 9. On the one hand, obviously, the

Figure 7. Simulated urban expansion by the four models for 2005.

Figure 8. Simulated urban expansion by the four models for 2010.
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simulation generated by UMCNN-CA can better match the actual pattern than the
results produced by other methods in the big cities such as Guangzhou and
Shenzhen. On the other hand, it can also eliminate the phenomenon of ‘salt-and-
pepper’. The UMCNN model, which fully accounts for the neighborhood information
by using convolution kernels, is superior to other typical methods in the field of mining
urban land-use transition rules and obtaining landscape pattern details.

Table 4 lists the comparative analysis of landscape indices for four different models at
the landscape scale. As seen from the table, compared to the other three models,
UMCNN-CA has a better performance in landscape similarity. In the simulation results
for 2005, the landscape similarity between the UMCNN-CA simulation result and the
actual result is 94.16%, with an NP value difference of merely 184, and the total similarity
was 6.40%–7.86% higher than the other three models. Simulation results for 2010
declined slightly, but the proposed model still maintained a landscape similarity of
89.87% to 94.16%. In general, the above results reflected that UMCNN-CA obtains
satisfactory effects in simulating the urban landscape.

4.2 Parameters sensitivity analysis

In the UMCNN-CA model, the size of the sampling window in UMCNN is not only closely
related to the information mining in the original data but also plays a pivotal role in the
simulation and accuracy of the subsequent CAmodel. Therefore, to explore the relationship
between the size of the sampling window and the simulation accuracy, several verification
tests are conducted. We conducted a set of experiments every 25 units from the window
size of 25 × 25 to 150 × 150. Figure 10 shows the FoM from the simulation result for 2005
using truthful data from 2000 under different samplingwindows. The simulation accuracy of

Table 2. Comparison of the simulated results.
Simulation UMCNN-CA RFA-CA ANN-CA Logistic-CA

OA 0.953 0.947 0.947 0.945
2005 Kappa 0.778 0.750 0.749 0.738

FoM 0.268 0.212 0.210 0.191
OA 0.931 0.924 0.924 0.923

2010 Kappa 0.729 0.703 0.703 0.701
FoM 0.346 0.240 0.246 0.223

Table 3. FoM of the simulated results in different cities for 2010. Pearl River
Delta (PRD), Guangzhou (GZ), Foshan (FS), Shenzhen (SZ), Dongguan (DG),
Huizhou (HZ), Jiangmen (JM), Zhaoqing (ZQ), Zhuhai (ZH), Zhongshan (ZS).

PA UA FoM

PRD 51.39% 51.39% 0.346
GZ 50.62% 53.86% 0.353
FS 48.52% 60.73% 0.369
SZ 59.11% 63.32% 0.440
DG 67.32% 70.17% 0.523
HZ 29.57% 35.45% 0.192
JM 35.61% 23.87% 0.167
ZQ 33.81% 12.47% 0.100
ZH 43.23% 24.12% 0.183
ZS 63.68% 51.84% 0.400

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 13



Fi
gu

re
9.

Co
m
pa
ris
on

of
si
m
ul
at
ed

pa
tt
er
ns

fo
r2

01
0
ge
ne
ra
te
d
by

se
ve
ra
lm

od
el
s
(U
M
CN

N
-C
A/
RF
A-
CA

/A
N
N
-C
A/
Lo
gi
st
ic
-C
A)

in
st
ud

y
ar
ea
.(
a1
)–
(e
1)

do
w
nt
ow

n
ar
ea
s
of

G
ua
ng

zh
ou

,(
a2
)–
(e
2)

do
w
nt
ow

n
ar
ea
s
of

Sh
en
zh
en
,(
a3
)–
(e
3)

do
w
nt
ow

n
ar
ea
s
of

Zh
on

gs
ha
n,

(a
4)
–(
e4
)
do

w
nt
ow

n
ar
ea
s
of

D
on

gg
ua
n.

14 J. HE ET AL.



UMCNN-CA varies between 0.210 and 0.268 with a significant trend, where the number
gradually increases from 25 to 100 and begins to decline from 100.

Figure 11 shows the FoM results of employing different window sizes in the UMCNN-
CA simulation for 2010. FoM alters from 0.321 to 0.346, although the span is much
smaller than in 2005, yet with an evident trend. The simulation accuracy gradually

Table 4. Comparison of observed and simulated values of landscape metrics. al: similarity of the
landscape pattern.

NP PARA ENN al
2005
Observed 7631 161.818 534.318 –
Simulated(UMCNN-CA) 7447 177.524 563.185 94.16%
Simulated(RFA-CA) 6062 161.137 618.434 87.76%
Simulated(ANN-CA) 6313 156.718 623.190 87.65%
Simulated(Logistic-CA) 6054 153.873 617.236 86.30%
2010
Observed 7060 151.703 544.322 –
Simulated(UMCNN-CA) 6662 178.418 583.261 89.87%
Simulated(RFA-CA) 4842 151.150 658.483 82.42%
Simulated(ANN-CA) 4816 135.720 684.732 77.29%
Simulated(Logistic-CA) 5096 154.803 650.858 83.52%

Figure 10. Accuracy assessment (y-axis) of UMCNN-CA in relation to the size of window (x-axis) for 2005.

Figure 11. Accuracy assessment (y-axis) of UMCNN-CA in relation to the size of window (x-axis) for 2010.
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increases with the sampling window size from 25 to 75 and peaks at 75. The accuracy is
slightly lower between 75 and 100, but followed by a rising trend until 125, where the
accuracy drops again. In general, this variation trend is similar to the one in the
experiment for 2005, and the optimal sampling window size is in the range of 75–125.
If the sampling window is set to be small, although the amount of computation is
reduced, insufficient neighborhood information is under consideration. With a larger
sampling window, however, excessive information may be mixed within a single win-
dow, affecting the accuracy of data mining (Zhong et al. 2016).

4.3 Future scenarios simulation

To forecast the future urban expansion in the Pearl River Delta, based on the Markov chain
model and the combination of the urban and non-urban data for the known years, the
transformational relation between the urban land and other lands is calculated and shown
in Table 5. As shown in the table, the time span of the transfer matrix obtained by themodel
is limited to 10 years owing to the use of data for the two years of 2000 and 2010. As the
total amount of land use in the study area remains the same, the land use of the next state
can be predicted based on the 2010 data, which is the urban growth in 2020. Similarly, the
urban growth of 2030 can be obtained based on the land-use data of 2020.

The total area of the study area is 54,219.98 km2. As shown in Table 1, the urban area in
2010 is 8,127.58 km2, and according to the conversion matrix in Table 5, the amount of
urban growth is 2,172.36 km2 in 2020 and is 3,407.14 km2 in 2030. In the UMCNN-CAmodel,
the future urban land use in these two years can be obtained by geographical simulation,
taking the amount of urban growth of two future years, respectively, as shown in Figure 12.

Table 5. Markov transition probabilities matrix.
Other Urban Other Urban

Probability value of 2020 based
on transition matrix of
2000–2010

Other 0.895 0.329 Probability value of 2030 based
on transition matrix of
2000–2010

Other 0.835 0.515

Urban 0.105 0.671 Urban 0.165 0.485

Figure 12. Simulations of urban expansion for the years 2020 and 2030.
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Table 6 shows an overview of urban land-use growth in each city in the future scenario.
a1 represents the shifts in the proportion of urban land use from 2010 to 2020, a2 indicates
the changes from 2020 to 2030, and a3 represents the total expansion rate over the 20 years.
It can be seen from the table that: (1) In the next 20 years, the urban area in the Pearl River
Delta region is expected to expand by 6.28%, with an 0.82% decrement in the expansion
rate compared to the previous 10 years; (2) Dongguan, Foshan and Shenzhen are expected
to maintain a relatively rapid pace of urban development; (3) Zhaoqing, Jiangmen and
Huizhou are still developing at the slowest speed in the Pearl River Delta region.

Compared to the past decade, the future development areas in the Pearl River Delta
are mainly encompassed by the developed economic region. Owing to abundant water
bodies and forests, low urban density areas such as Zhaoqing and Jiangmen are not
suitable for urban development. Thanks to the presence of urban agglomerations and
affluent bare land and farmland, which retain great potential to develop into urban
lands, high-density urban areas such as Shenzhen, Guangzhou, Foshan and Dongguan
are expected to maintain a rapid pace of development (Haas and Ban 2014).

5. Discussion and conclusion

Urban expansion simulation has been a hot research topic, and how to accurately
unearth the rules of urban land-use change has always been the key point of geo-
graphical simulation (Li et al. 2017). The purpose of this study is to verify the effec-
tiveness of deep learning in urban simulation. To our knowledge, we are the first to
integrate deep learning techniques with CA and Markov chain. To simulate urban
expansion at a large scale, we selected the Pearl River Delta region as the research
area and coupled the UMCNN, the Markov chain and the CA model. First, based on the
driving factor data excavated by UMCNN model and the sample data of urban land-use
change for known years, the urban development suitability of the whole study area
was obtained by fitting the RFA model. Then, the CA model was constructed and
further revised with the land-use simulation for 2005 and 2010. Last, by using the
predicted urban growth amount in the next 10 and 20 years with the Markov chain as
input parameter in the rectified CA model, the urban expansion state of the Pearl River
Delta in 2020 and 2030 was simulated.

Table 6. Expansion ratio of each city under future scenario simulation. a1: expansion ratio from 2010
to 2020, a2: expansion ratio from 2020 to 2030, a3: expansion ratio from 2010 to 2030. Pearl River
Delta (PRD), Guangzhou (GZ), Foshan (FS), Shenzhen (SZ), Dongguan (DG), Huizhou (HZ), Jiangmen
(JM), Zhaoqing (ZQ), Zhuhai (ZH), Zhongshan (ZS).

2010 2020 2030 a1 a2 a3
PRD 14.99% 18.99% 21.27% 4.01% 2.28% 6.28%
GZ 21.96% 28.35% 31.75% 6.39% 3.39% 9.79%
FS 31.98% 45.27% 51.17% 13.29% 5.90% 19.19%
SZ 50.67% 60.91% 66.46% 10.24% 5.55% 15.79%
DG 56.29% 69.10% 72.72% 12.81% 3.62% 16.43%
HZ 7.14% 10.62% 13.19% 3.48% 2.56% 6.05%
JM 9.29% 10.92% 12.26% 1.63% 1.35% 2.97%
ZQ 3.17% 3.49% 3.87% 0.32% 0.38% 0.70%
ZH 24.31% 25.93% 27.98% 1.61% 2.05% 3.66%
ZS 30.68% 36.15% 40.49% 5.47% 4.34% 9.81%
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To verify the practicability of the proposed model, we constructed three traditional CA
models, ANN-CA, RFA-CA and Logistic-CA (Arsanjani et al. 2013, Li and Yeh 2002, Kamusoko
and Gamba 2015). As evidenced by comparing several experiments, the UMCNN-CA model
obtains the best simulation accuracy (FoM2005 = 0.268, FoM2010 = 0.346), where the simula-
tion result exceeds 5.60%–7.70% in 2005 and 10.00%–12.30% in 2010. In the aspect of
landscape similarity, UMCNN-CA also got the highest similarity (al-2005 = 94.16%，al-
2010 = 89.87%), where the results increased by 6.0%–7.66% in 2005 and 6.35%–12.58% in
2010. These results indicate that UMCNN can excavate the law of urban development more
accurately under large-scale simulation, which is mainly due to the consideration of neigh-
borhood influence and improvements in single-pixel calculation. Although the accuracy of
the model is greatly affected by the size of the training window, its lowest simulation
accuracy is still higher than the traditional CA model.

The process of urban development is fraught with uncertainty and complexity. Many
studies regard the development of modern cities as a self-adaptive mechanism, which can
be divided into a top-down pattern and a bottom-up pattern (Tian and Shen 2011, Long
et al. 2012). Under this adaptive development cognition, urban land change is related not
only to environmental factors but also to urban planning, government decision-making
and human activities. These factors are of great complexity and randomness, which
hinders the prediction of city simulation at the present stage. Therefore, although urban
simulation using the UMCNN-CA model received better results compared with the tradi-
tional CA model, it is still inconsistent with the actual situation. In the future studies, we
expect to take a more comprehensive account of the impact of the environment, socio-
economic and urban planning on urban development. Meanwhile, to construct a more
stabilized UMCNN-CA model, mining conversion rules in different urban partitions, respec-
tively, and adding more trainings in deep learning should be considered.

Chen et al. (2013) presented several possible scenarios in urban modeling (such as
economic development and low-carbon urban). Based on these scenarios, more detailed
city simulation and analysis can be executed in the future. Moreover, owing to the quality of
the environmental driving factors in the CA model, accurate multi-period data is difficult to
obtain. To solve this issue, Li et al. (2017) and Liu et al. (2017) proposed the FLUS-CA model,
which usesmerely a single period of driving factor data to forecast and simulate future land-
use changes. In future work, we will also draw on the idea of the FLUS-CA model.

How to adjust the CNN parameters automatically, including the number of hidden
layers and the size of the convolution kernel, has always been an open question in deep
learning (Krizhevsky et al. 2012, Simonyan and Zisserman 2014, Abadi et al. 2016). Owing
to the complexity of the UMCNN-CA model (Yao et al. 2018), adjusting the parameters
manually will not only increase the overall run time of the model but also introduce
subjective factors. Meanwhile, similar to traditional machine learning methods, it is
difficult for the UMCNN model to measure the weight between various types of driving
force factors. Hence, future work will attach importance to improving the parameter
adjustment part and the overall efficiency of the model. In addition, other efficient deep
learning techniques, such as autoencoder or deep belief network, might be able to be also
considered as the tool to mine the transition rule of urban growth in future research.

In short, the proposed UMCNN-CA model achieves much higher simulation results
than the traditional CA models, which is of great significance for future urban planning
and government decision-making (Chen et al. 2016). With the acceleration of
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urbanization, it is increasingly difficult for the traditional model to meet the needs of
contemporary urban simulation. The arrival of the information age has generated more
vast and more diversified data with preferable quality. Accordingly, continuously
improving the traditional CA model is of great significance for simulating and predicting
future urban expansion. Future work will also emphasize diversified data, fine-scale
urban expansion simulation and other aspects.
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