
R E S E A R CH AR T I C L E

Mapping fine-scale urban housing prices by fusing
remotely sensed imagery and social media data

Yao Yao1 | Jinbao Zhang2 | Ye Hong2 |

Haolin Liang2 | Jialv He2

1School of Information Engineering, China

University of Geosciences, Wuhan, China

2School of Geography and Planning, Sun

Yat-sen University, Guangzhou, China

Correspondence

Yao Yao, School of Information

Engineering, China University of

Geosciences, No. 388 Lumo Road,

Wuhan 430074, China.

Email: yaoy33@mail2.sysu.edu.cn

Funding information
National Key R&D Program of China,
Grant/Award No.: 2017YFA0604402;
National Natural Science Foundation of
China, Grant/Award No.: 41671408;
Nature Science Foundation of Hubei
Province, Grand/Award No.: 2017CFA041

Abstract
The accurate mapping of urban housing prices at a fine scale is essen-

tial to policymaking and urban studies, such as adjusting economic

factors and determining reasonable levels of residential subsidies. Pre-

vious studies focus mainly on housing price analysis at a macro scale,

without fine-scale study due to a lack of available data and effective

models. By integrating a convolutional neural network for united min-

ing (UMCNN) and random forest (RF), this study proposes an

effective deep-learning-based framework for fusing multi-source geo-

spatial data, including high spatial resolution (HSR) remotely sensed

imagery and several types of social media data, and maps urban hous-

ing prices at a very fine scale. With the collected housing price data

from China’s biggest online real estate market, we produced the spa-

tial distribution of housing prices at a spatial resolution of 5 m in

Shenzhen, China. By comparing with eight other multi-source data

mining techniques, the UMCNN obtained the highest housing price

simulation accuracy (Pearson R50.922, OA585.82%). The results

also demonstrated a complex spatial heterogeneity inside Shenzhen’s

housing price distribution. In future studies, we will work continuously

on housing price policymaking and residential issues by including addi-

tional sources of spatial data.

1 | INTRODUCTION

In the last decade, the contradiction between the housing demand from residents and high housing prices has become

a top issue in the economy and livelihood of China, especially in metropolitan cities such as Beijing, Shanghai, and

Shenzhen (Chen, Guo, & Wu, 2011; Du & Zhang, 2015; Wen & Goodman, 2013). Previous studies show that the main

reason for the rising housing prices in Chinese cities originates from the rapid increase in the urban population, which

is caused by the largest flow of rural–urban migration in the world due to China’s sustained and rapid economic devel-

opment and urbanization (Chen et al., 2011; Chen, Liu, Li, Liu, & Xu, 2016; Wu et al., 2016; Yiu, Yu, & Jin, 2013). As

the world’s largest developing country entering the middle-income club, China’s housing prices in cities play a very

important role in economics at both the macro and micro scales in factors such as gross domestic product (GDP) and
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household housing/non-housing consumption (Li & Wu, 2014). Moreover, a fine-scale spatial distribution map of urban

housing prices can provide the real estate market with valuable information for urban policymaking in order to finely

regulate urban housing prices and determine a reasonable level of residential subsidies (Chen et al., 2016), which just

have the effect of raising housing prices by the level of the subsidy.

Based on previous studies and the consideration of the complicated spatial heterogeneity of China’s urban housing

prices (Bitter, Mulligan, & Dall Erba, 2007; Wu, Deng, & Liu, 2014), this study aims to build an effective framework to

map a more accurate high-resolution distribution map of urban housing prices by fusing multi-source geospatial data-

sets via deep neural networks (DNNs) at a fine scale. First, we apply a multi-scale stochastic sampling method to build

a housing price correlated spatial dataset from high spatial resolution (HSR) images, points-of-interest (POIs), and basic

geographical information. Second, we design a convolutional neural network for united mining (UMCNN) to mine and

fuse multi-source spatial data into convolutional neural network (CNN)-based features. Third, we simulate the spatial

distribution of housing prices via a random forest (RF)-based fitting model at high resolution. Fourth, our UMCNN-

based model is applied to simulate a fine-scale spatial distribution of urban housing prices in Shenzhen, one of the

most developed metropolitan areas in China (and even in the world). By analyzing the results of the data mining model

input with various features, we have obtained the most highly optimized fused features and urban housing price map.

The remainder of this article is organized as follows. Section 2 reviews the related literature about macro-scale or

fine-scale housing price mapping. Section 3 describes the proposed fine-scale housing price mapping approach. Section

4 introduces the study area and dataset used in this study. Sections 5 and 6 report the experimental results and discuss

these using different methods. Finally, we offer conclusions in Section 7.

2 | RELATED WORK

Most previous studies about urban housing or renting problems focus on the macro scale, with study data mostly com-

ing from official statistical data and manual surveys (Basu & Thibodeau, 1998; Dub & Legros, 2014; Granziera &

Kozicki, 2015; Osland, 2010; Punzi, 2013; Rondinelli & Veronese, 2011). For example, Rondinelli and Veronese (2011)

use census data and detailed rental price data provided by real estate developers to estimate the change in rental pri-

ces; Feng, Li, and Zhao (2011) use surveying to obtain original data on commercial residential buildings in Beijing to

study housing prices; and Wu, Deng et al. (2014) gather newly built housing transaction data from a real estate man-

agement system for 35 prime cities in China to build a housing price index and note that China’s current housing mar-

ket has been suffering a greater risk of mispricing than reported by the existing official metrics. These studies adopt

the classical hedonic price-regression models, while some researchers also suggest that the spatial autocorrelation and

spatial heterogeneity of housing prices require further consideration (Basu & Thibodeau, 1998; Bitter et al., 2007; Dub

& Legros, 2014). Classical hedonic price regression models could not handle the spatial factors, so some researchers

improve this model and introduce a spatial econometrics model (Osland, 2010), although this model still uses the offi-

cial statistical data and transaction data provided by developers. In addition, Bitter et al. (2007) also consider the spatial

variance of housing prices and conduct geographically weighted regression on house sales data to predict housing pri-

ces and obtain higher accuracy than the hedonic housing price model; Kuntz and Helbich (2014) utilize statistical data

combined with the kriging interpolation method with consideration of houses’ structural and neighborhood characteris-

tics to map real estate prices. Considering the existing spatiotemporal heterogeneity and autocorrelation of housing

prices, Wu, Deng et al. (2014) and Fotheringham, Crespo, and Yao (2015) adopted detailed housing statistical data to

simulate housing price distribution, which fully takes into account that different influence factors should be considered

in different areas. As we know, these data sources have several main problems: first is their high cost, especially high

labor cost and long update cycle; moreover, these data are discrete and have difficulty demonstrating the fine spatial

patterns of city housing price distributions (Chen et al., 2016; Wu et al., 2016).

To solve the above mentioned problems of study data sources, some research suggests analyzing and obtaining

fine-scale housing/rental price data or related data on residents’ economic conditions by combining statistical data and

remotely sensed imagery mined from natural physical information (Anselin & Le Gallo, 2006; Duque, Patino, Ruiz, &
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Pardo-Pascual, 2015; Yu, Wei, & Wu, 2007). Anselin and Le Gallo (2006) use an interpolation method to fit the air

quality of the entire area and feed it into the prediction model, obtaining good results; Yu et al. (2007) suggest, based

on normal housing attributes, adding remote-sensing images into the housing price study and find that remote-sensing

image-generated patterns work well for simulating housing price distributions. As we know, people who have similar

social and demographic characteristics may reside in urban areas with similar physical housing conditions. Duque et al.

(2015) propose a very high spatial resolution (VHSR) image-based model of texture and structural features extracted

from VHSR images and the Slum Index measure of intra-urban poverty to obtain reasonable inter-censal and inter-

survey estimates of intra-urban Slum Index maps; the results indicate that housing conditions obtained by remote

sensing have strong correlations with the livelihoods of inner-city residents. To the best of our knowledge, the distribu-

tion of housing prices is related to socioeconomic factors, such as land-acquisition cost, development cost, marketing

fees, and developer profit (Wen & Goodman, 2013), and not all these factors can be reflected via remote-sensing

images alone.

In recent years, with the rapid development of Internet techniques, the online real estate market is able to provide

massive real-time housing information about real property transactions and rental housing (Chen et al., 2016; Hogan &

Berry, 2011; Rae, 2015). Additionally, with the swift development of spatial big data, Liu et al. (2015) and Zheng, Capra,

Wolfson, and Yang (2014) introduce the concepts of “social sensing” and “urban computing,” thus enabling economic

simulations based on social media data. Chang, Lu, Yue, and Li (2014) utilize several large-scale social network datasets

of spatial distributions of economic activities, showing that social network data such as human activity is a good indica-

tor to model high-resolution economic activity. Wu et al. (2016) apply check-in data and housing price data from

Sofang.com, combined with a geographical weighted regression model, to extend the study of housing prices even

deeper. Chen et al. (2016) use rental price data gathered from Anjuke.com and apply an ensemble learning method to

predict overall rental prices in Guangzhou, obtaining high accuracy at the level of the neighborhood committee (NC).

In the research described above, we can identify two main problems. First, the prediction models are just regular

statistical or machine learning models, which are too simple to fully mine hidden semantic information from compli-

cated geospatial datasets (Huang & Zhang, 2013; Yao et al., 2016; Zhong, Zhu, & Zhang, 2015). Additionally, each of

the above studies only utilizes a single type of data, such as manual survey data, social media data, or remote-sensing

data, instead of fusing multi-source spatial data to mine the natural physical and socioeconomic factors that affect

housing prices, which is helpful for simulating the complex heterogeneity of a housing price distribution, due to the

lack of an effective data fusion model (Chen et al., 2016; Duque et al., 2015). In recent years, DNNs (Ciregan, Meier, &

Schmidhuber, 2012), including CNNs and recurrent neural networks (RNNs), have been used fully in the fields of com-

puter vision, data mining, and data fusion, and have achieved great results (Simonyan & Zisserman, 2014; Yao et al.,

2016; Zhong, Fei, & Zhang, 2016).

The state-of-the-art DNN model also appears from time to time in related studies of remote sensing and mining

of spatial big data. For example, Zhong et al. (2016) have solved a land-use classification problem with multi-scale

effects via a multi-scale stochastic sampling method and large patch convolutional neural network (LPCNN), in which

LPCNN fully mined the context information of ground components in remote-sensing images (Zhong et al., 2016).

Meanwhile, a study published in Science introduced a novel data-based CNN model to predict and map consumption

expenditures and asset wealth in poor African countries, which indicates that the CNN model can extract patterns well

in remote-sensing images and work as a descriptor of economic conditions (Jean et al., 2016). In contrast, studies com-

bining deep learning with geospatial social media data in data mining have begun to appear in recent years, and have

obtained relatively good results (Chen & Lin, 2014; Yao et al., 2016). The aforementioned studies hold possibilities for

effectively fusing multi-source spatial data and data mining, which is one of the main issues in this study.

3 | METHODOLOGY

The flowchart of the model proposed in this study is illustrated in Figure 1. The purpose of our study is to map the

fine-scale spatial distribution of Shenzhen’s housing prices by fusing multi-source geospatial information extracted
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from both HSR remote-sensing and social media datasets via a deep learning model. This study uses four steps to

obtain a housing price map: (1) via data preprocessing and multiple-scale window sampling, we construct multi-source

and multi-scale spatial datasets of impact factors of urban housing prices as training and validation datasets; (2) we

train a lightweight convolutional neural network named UMCNN with the aforementioned datasets and graded hous-

ing prices, iterate back propagation based on the error calculated from the softmax layer, and obtain the optimal deep

learning model; (3) we remove the softmax layer of the pre-trained UMCNN model and take its output, the high-

dimensional vectors, as training features to build a RF fitting model with original housing price data; and (4) based on

the RF-based fitting model, we calculate the housing price of each pixel with a certain window size and acquire the

final housing price results at a fine scale. Moreover, we also build several fusion models with different spatial informa-

tion extracted from the proposed training dataset in this study and conduct accuracy assessment and uncertainty anal-

ysis of the results of different fusion models.

3.1 | Geospatial data preprocessing

As illustrated in Figure 1, auxiliary geospatial data consist of distance or density raster datasets computed from the

social media and basic geographical information. The selection of the data covers several main factors that influence

housing prices in Chinese cities, including living environment, traffic conditions, and the convenience of life (Li & Wu,

2014; Wu, Deng et al., 2014). In this study, the bandwidth of the Gaussian function-based kernel density analysis is

automatically determined according to the mean integrated squared error (MISE) criterion (Wand & Jones, 1994; Yuan,

Zheng, & Xie, 2012).

To our knowledge, the CNN model goes through a softmax layer, which can be seen as a multi-class classifier,

obtains the classification error, and uses back propagation to adjust the local parameters of each neuron. The

FIGURE 1 The flowchart ofmapping housing prices by unitedmining ofmulti-source geospatial datasets via UMCNN
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appearance of the best validation accuracy indicates that the optimal CNN model has been generated (Krizhevsky,

Sutskever, & Hinton, 2012). The housing price data in this study are continuous, but we discretize them by grading

them with different standard-deviation ranks (Jean et al., 2016). First, we assume that the mean and standard deviation

of housing prices per square meter in the study area are lh and rh, respectively. During the data preprocessing, in

order to ensure the reliability of data, we remove the housing price samples that lie below 3,000 RMB yuan/m2 or

above the value lh13rh. Then, we grade the original housing price data with a step of 0:25 � rh within

lh23rh; lh13rh½ �; reducing the noise contained in the original housing price data; the graded data are used as the

input parameters of the proposed CNN model.

To solve the scale difference issues of the ground components, the multi-scale stochastic land patch sampling

strategy is proposed in this study. First, we set a sampling window centered on each of the training housing price data

points with width W. Within each window, we then randomly sample W=s samples, where s is a size that is smaller

than W and s gradually increases with a certain step until it is equal to W. A previous study indicates that by multi-

scale stochastic patch sampling, the amount of CNN training data can be enlarged, which is helpful to avoid the overfit-

ting problem and solve for the multi-scale effects of ground components in the HSR image (Zhong et al., 2016),

improving the classification accuracy of our proposed CNN model.

3.2 | Mapping housing price via UMCNN

The structure of CNN for united mining (UMCNN) designed in our study is shown in Figure 2, which is a relatively less

deep model with fewer convolution layers considering the state of computation resources and training datasets. On

the one hand, our proposed model is launched via a CPU, where, with limited computation capability, a great deal of

time will be needed to generate the optimal model; on the other hand, with regard to the actual housing price data, a

complex model will easily cause the overfitting phenomenon. Meanwhile, previous studies also note that with a small

dataset, it is essential to reduce the complexity of the CNN network to avoid the overfitting problem (Zhong et al.,

2016). Therefore, in consideration of the above factors, we manually tune the optimal CNN network structure.

As demonstrated in Figure 2, the proposed UMCNN contains seven layers, including three convolution layers, two

max-pooling layers, a fully connected layer, and a softmax layer (Krizhevsky et al., 2012). The activation function we

use in the convolution layers and the fully connected layer is rectified linear units (ReLu), which is a linear activation

function with better effect and faster training speed compared with the traditional Sigmoid function (Krizhevsky et al.,

2012). We also apply a dropout operation in the third convolution layer and the final fully connected layer, which dis-

ables the weights of some neurons randomly, effectively preventing model overfitting (Hinton, Srivastava, Krizhevsky,

Sutskever, & Salakhutdinov, 2012). During the convolution operation, we choose a convolution kernel with size 3 3 3

pixels. Previous studies show that compared with a larger convolution kernel size, the parameters of each kernel are

fewer, render a better training result, and have a faster training speed (Simonyan & Zisserman, 2014).

During the training process, the initial size of the input data patch is 50 3 50 3 N (where N depends on whether

auxiliary data are used; if we only input the triple-band remote-sensing image, N53, and N511 if we add some other

FIGURE 2 The computational framework of proposed UMCNN, used to fusemulti-source datasets

YAO ET AL. | 5



auxiliary data, as proposed in the previous section), and bilinear interpolation is conducted on data with an invalid size.

Our proposed UMCNN model not only supports mining remote-sensing data, but also supports united mining with

multi-source geospatial datasets. As illustrated in Figure 2, the first convolution layer convolutes the input data with

163 3 3 kernels and a step length of 1 pixel (three of the convolution layers have the same step length), generating

feature maps of size 48 3 48 3 16. The second layer is the max-pooling layer, where feature maps generated in the

first convolution layer are max-pooled with a kernel of size 2 3 2 and a step length of 2 pixels, generating

feature maps of size 24 3 24 3 16. The third layer convolutes with 32 convolution kernels, and the output size is

223 223 32. The adjacent fourth layer is another max-pooling layer, producing 113 113 32 feature maps. The fifth

layer is the same as the third layer, using 32 convolution kernels and generating 9 3 9 3 32 feature maps. The next

layer is the fully connected layer with 128 neurons, where the weights of this layer are the housing price fitting fea-

tures and, finally, a softmax layer is used to classify the housing prices into several classes, which indicates that the

grade of housing price is divided by data gradation. Moreover, to avoid the overfitting problem in our proposed

UMCNN model, we apply a dropout operation in the last two layers before the fully connected layer by disabling 20

and 40% of the connections among neurons. This operation can reduce complex co-adaptations of neurons by incor-

porating stochastic error, aiming to ensure the generalization ability (Abadi et al., 2016).

After training the proposed UMCNN model in the previous step, we remove the last softmax layer and the

UMCNN model has become a feature extractor, which can extract high-dimensional semantic features using a fully

connected layer (Jean et al., 2016). By inputting the UMCNN-based features into a RF-based classifier, a fitting model

between features and actual housing prices is built to generate fine-scale housing price distribution results. The RF

model has been proved to be an outstanding state-of-the-art machine learning model, which obtains relatively better

results in many classification and regression tasks (Biau, 2012; Fern�andez-Delgado, Cernadas, Barro, & Amorim, 2014).

To clarify, RF is an aggregation of decision-tree classifiers. A new sub-dataset is generated by extracting random sam-

ples from the original training dataset via the bagging method (Biau, 2012; Breiman, 2001). In the process of random

feature selection, individual decision trees are constructed from each training sub-dataset, and these decision trees are

not pruned during the growth process so we can obtain an out-of-bag (OOB)-based estimation error report for each

decision tree. The generalization error of RF can be calculated by averaging the errors of the decision trees via OOB

estimation. The RF-based fitting model introduced in previous studies overcame the multiple correlative problems

among spatial variables, especially in higher-dimensional fitting situations (Palczewska, Palczewski, Marchese Robinson,

& Neagu, 2014).

3.3 | Accuracy assessment and uncertainty analysis

To evaluate the final accuracy of our proposed model in predicting housing price distributions, this study randomly split

the original housing price data into training and validation parts, which can be used to cross-validate the proposed

UMCNN model. When mapping fine-scale housing prices, OOB-based estimation is used to estimate the accuracy of

CNN-based features and related actual housing price data. Previous studies have indicated that the OOB-estimated fit-

ting error has been proved to have better effects than cross-validation (Biau, 2012; Fern�andez-Delgado et al., 2014).

To ensure the reliability of the classification result, we apply the bagging method in this study by randomly dividing

part of the data into OOB data, iterating the training and predicting process 100 times, and obtaining the average pre-

diction accuracy; the specific parameters will be discussed in the next section. Moreover, we adopt several accuracy

assessment methods to identify the performance of the proposed RF-based fitting model, including Pearson’s correla-

tion coefficient (Pearson R), the standard coefficient of determination (Standard R2), the root mean squared error

(RMSE) and its percentage (%RMSE), and the mean absolute error (MAE) and its percentage (%MAE):

Pearson R5

Pn
i51 ri;o2 �ro

� �
ri;s2�rs

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i51 ri;o2 �ro
� �2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i51 ri;s2�rs

� �2
r (1)
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where ri;o and ri;s are the actual and simulated housing prices (unit: RMB yuan/m2) for the ith building, and n is the total

number of buildings in the housing price data obtained from Fang.com. After the evaluation of RF-based fitting models,

we also compare the predicted housing price results with multi-source official statistical data at different scales to eval-

uate the applicability of the results.

4 | STUDY AREA AND DATA

This study area is located in Shenzhen (Figure 3), Guangdong province, with a total area of 1,996.850 km2 and a per-

manent population of approximately 10.779 million. Shenzhen is considered one of the largest international metropoli-

tan cities and economic centers in China, with a total GDP of 1,750.299 billion RMB yuan in 2015 (http://www.sztj.

gov.cn/xxgk/tjsj/tjnj/). As illustrated in Figure 3, Shenzhen has 10 administrative county-level districts (Futian, Luohu,

Nanshan, Yantian, Baoan, Guangming, Longhua, Longgang, Pingshan, Dapeng), within 60 street-level divisions and 734

basic NCs. Among all these districts, Futian, Luohu, Nanshan, and Yantian are the earliest special economic zones in

Shenzhen, and still the most populated and developed districts of Shenzhen, accounting for 52.48% of the total GDP

of Shenzhen. As one of four first-tier cities in China, and the city with the highest immigrant ratio, Shenzhen’s urban

land-use patterns, migrant population distribution, and economic structure are very complex, which has caused compli-

cated and diverse socioeconomic problems, such as urban sprawl, environmental deterioration, traffic congestion,

FIGURE 3 Study area: Shenzhen, Guangdong province. The background data are theHSR remote-sensing image
provided by Tianditu.cn with a spatial resolution of 5m (size: 13,9763 22,514)
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soaring housing prices, etc. (Chen et al., 2011; Hao, Sliuzas, & Geertman, 2011; Wang, Wang, & Wu, 2010). Therefore,

this study aims to develop an effective method to map housing prices at a fine scale, offering references and recom-

mendations for the relevant governmental departments to adjust the housing prices in Shenzhen.

Housing price data are the most important data in this study, provided by Fang.com, the most popular and largest

online real estate market website in China. Fang.com provides real-time rental and sale prices of newly built and

second-hand houses with abundant information for 651 cities in China, and is already influencing online real estate

agencies in Shenzhen. To our knowledge, most existing housing price index construction models rely mainly on trans-

action data from the second-hand housing market (Rondinelli & Veronese, 2011; Wu, Deng et al., 2014), but previous

studies have proposed that housing markets in most Chinese cities are currently dominated by the newly built sector

as a direct result of the large volume of new supply (Wu, Deng et al., 2014). In this study, we have compiled a program

of web crawlers to collect the newly built and second-hand housing prices in the study area from Fang.com, along with

the attributes of identity number, latitude, longitude, price/m2, residential quarter name, size of house, and number of

rooms. After correcting geographic coordinates, eliminating outliers, and cleaning data, Figure 4 displays 4,331 sets of

valid data. The number of housing price data of each district is displayed as follows: Futian (1,091), Luohu (811), Nan-

shan (951), Yantian (102), Baoan (474), Guangming (37), Longhua (359), Longgang (450), Pingshan (44), and Dapeng

(12). By analyzing the data obtained from Fang.com statistically, it is determined that housing prices in Shenzhen follow

a log-normal distribution (kurtosis52.724, skewness520.774), where the average housing price is 36,571.771 RMB

yuan/m2, with a standard deviation of 36,515.693 RMB yuan/m2; more detailed analysis will be discussed in the fol-

lowing sections.

In addition to the HSR Worldview-2 remote-sensing image, which has been downscaled to 5 m from Tianditu.cn

(Figure 3), several basic geographic and social media datasets, including POIs and OpenStreetMap (OSM) road nets, are

also applied in our study. As shown in Figure 4, the POIs in our study are provided by Gaode Map Services (http://lbs.

amap.com/), one of the most popular and biggest web map service providers in China. Approximately 211,076 records

with 432 categories in the study area were acquired with web crawlers via Gaode Map APIs (Figure 5), including busi-

ness establishments, commercial sites, educational facilities (kindergartens, primary schools, middle schools, etc.), resi-

dential communities, clinical facilities, and scenic locations. In the Chinese real estate market, the most influential

factors in housing prices are traffic, medical treatment, infrastructure, and the convenience of basic living facilities

(Basu & Thibodeau, 1998; Wu, Deng et al., 2014). Therefore, we extracted housing price-related ground components

FIGURE 4 The acquired housing price data fromFang.com, China’s biggest online housingmarket website
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from POIs, such as subway stations, bus stations, primary and secondary schools, and medical and living facilities, to

form the distance- or density-based auxiliary geospatial datasets (Figure 5). Previous study has recommended that sev-

eral explanatory variables for mapping housing price in Shenzhen (Wu, Deng et al., 2014), such as land area, green

space, building structure type, quality, etc., can be well reflected from HSR images. Moreover, considering the impact

of traffic and environmental condition on housing prices (Feng et al., 2011; Wang et al., 2010), we also take the density

of road nets and distances to main roads and coastline into consideration, as shown in Figure 5.

5 | RESULTS

Our research team built a software application and realized the model proposed in Section 3 using C11 on Windows

Server 2008 with a 32-core CPU. Several open-source C/C11 libraries, such as the CGAL (http://www.cgal.org),

GDAL (http://www.gdal.org/), and SHARK (http://image.diku.dk/shark/) libraries, were applied to this project for

FIGURE 5 The spatial distribution density of Gaode POIs and the auxiliary geospatial datasets: (a) distance to subway
stations; (b) distance tomain roads; (c) distance to other roads; (d) distance tomedical facilities; (e) density of living facili-
ties; (f) distance to primary and secondary schools; (g) density of bus stations; and (h) distance to coastlines
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mapping the spatial distribution of housing prices using UMCNN. The source codes of the proposed UMCNN platform

are implemented in C11 with OpenMP and run on a multi-processor computation server. The results of mapping

fine-scale housing prices in the study area have been released on the GeoSOS website (http://geosimulation.cn/ydoc/

shenzhen_hp/shenzhen_hp_5m.zip).

5.1 | Mapping housing prices via different feature combinations

By the aforementioned multi-scale land parcel sampling method, we set the limited size of the sampling window as 50

pixels and obtain a multi-scale spatial dataset D containing more than 25,000 records. Then, we split the dataset D into

the training dataset DT , which is fed into the proposed UMCNN model, and the testing dataset for evaluating the final

accuracy, with ratios of 80 and 20%, respectively. During the training process of the UMCNN model, we randomly

pick 80% of the data in DT for model training, and the remaining 20% of the data are used for validation and error

back propagation.

After the training of the CNN has been completed, an RF-based fitting module is employed to replace the original

softmax layer, and then this module is sent for training in order to fit the actual housing prices. We split the original

housing price data into two parts: 60% (2,598 records) for training data and 40% (1,732 records) for validation data, to

evaluate the fitting accuracy of this module. Previous studies indicate that RF is an effective and novel non-parametric

machine learning model, which is widely used to solve high-dimensional non-linear fitting and classification issues, with

relatively good effect (Fakhraei, Soltanian-Zadeh, & Fotouhi, 2014; Fern�andez-Delgado et al., 2014). We set up 100

decision trees and 20% OOB data, then cross-validate the result with boosted random sampling and iterate 100

epochs to obtain the average accuracy for the most reliable result.

As illustrated in Table 1, we designed nine different experiments in order to highlight the advantage of our pro-

posed model. Within these nine experiments, Groups A and C only use features extracted from an HSR image via

UMCNN and several spatial datasets, respectively, while Groups D and F use two different data fusion methods: Group

D manages to apply UMCNN for united mining of the deep features of multi-source spatial datasets, while Group F

directly combines the CNN-based features via HSR images with spatial data. Furthermore, a previous study adopted

principal component analysis (PCA) to reduce the dimension of UMCNN-based features to obtain better classification

results (Jean et al., 2016). Therefore, in Groups B, E, and G, we take the top 10 principal components of the CNN-

TABLE 1 The methods of mapping housing prices via different fusion or combination methods used to fuse
multi-source features

Expr. ID Expr. description Label

A Using original features extracted from HSR images via CNN only CNN (HSR)

B Using lower-dimensional features extracted from HSR images via CNN
only

PCA-CNN (HSR)

C Using spatial datasets extracted from SD only SD

D Using original features extracted from HSR images and spatial datasets,
and fusing by CNN

CNN (HSR & SD)

E Using lower-dimensional features extracted from HSR images and spatial
datasets, and fusing by CNN

PCA-CNN (HSR & SD)

F Combination of original features extracted from HSR images via CNN
and original features extracted from SD

CNN (HSR) & SD

G Combination of lower-dimensional features extracted from HSR images
via CNN and original features extracted from POIs

PCA-CNN (HSR) & SD

H Using original features extracted from HSR images via SD only CNN (SD)

I Combination of features extracted from HSR and SD via CNN
respectively

CNN (HSR) & CNN (SD)
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based high-dimensional features to build fitting models and evaluate their accuracy and validity. Additionally, we

designed Groups H and I to verify the potential validity of the proposed UMCNN in multi-source spatial dataset mining.

Table 2 presents the accuracy assessment results of the fitting models with different input features shown in

Table 1, where we can observe some interesting phenomena. In general, each experimental group reaches a relatively

high total accuracy, where Pearson’s correlation coefficients are higher than 0.8. Through comparison among the four

groups of experiments with the highest accuracy (Groups D, I, F, and A), it can be ensured that when the input data

contained features from both an HSR image and auxiliary geospatial data, the RF-based fitting models (Groups D, F,

and I) obtain higher accuracies than fitting models that use only a single type of input data (Groups A, C, and H). This

indicates that united mining on multi-source spatial datasets—or just simply applying feature combination—is able to

fuse the natural physical and socioeconomic information from multiple sources effectively. In contrast, CNN works

well for mining high-level semantics and context information (Chen & Lin, 2014; Simonyan & Zisserman, 2014; Yao

et al., 2016; Zhong et al., 2016), which helps achieve high classification accuracy. In addition, we apply a multi-scale

sampling method and reduce the dimensions of UMCNN-based features, which solves the problem that exists in Jean

et al.’s (2016) model, where the number of feature dimensions is much larger than the size of the training dataset. PCA

is used to simplify the CNN-based features, but it also misses part of the feature information, resulting in some loss of

fitting accuracy (Geiger & Kubin, 2012; Lu, Wang, Wang, Yan, & Lam, 2004). At the same time, as far as we know,

single-band spatial data (SD) possesses very little structural and textural information, but multi-band SD is equipped

with spatial features of rich object attributes. Through comparing the results of Groups C and H, where Group H

obtains relatively higher accuracy, the ability of the proposed UMCNN to effectively exploit the potential spatial struc-

ture and high-level semantic features from the multi-source SD is certified.

As shown in Figure 6, we compare the results of different fitting models with actual housing price data at the NC

level. Traditional approaches that fit the model via auxiliary geospatial datasets (Chen et al., 2016; Wu et al., 2016),

such as that shown in Figure 6c, can only obtain relatively high accuracy in areas with concrete human activities, such

as downtown areas, but lower accuracy in regions with sparse human activities and economic backwardness due to a

lack of online real estate market data. Zhong et al. (2016) notes that CNN can extract the local features and generalize

the global information directly from the ground component level instead of the sub-object parts. However, even using

the features obtained from mining spatial data via UMCNN to fit the housing prices (Figure 6h), the resulting error dis-

tribution is still similar to the conventional approaches (Figure 6c).

With only local high-level semantic features mined from remote-sensing images by UMCNN, the fitting model

(Figure 6a) obtains results with better accuracy than mining only with auxiliary geospatial data; after united mining

with auxiliary geospatial data and remote-sensing image features, we observe an apparent increase in the prediction

accuracies of the housing prices in the suburban areas near downtowns. These results prove one of our assumptions:

housing price is strongly correlated with building location, as well as with many potential neighborhood environmental

TABLE 2 The accuracy assessment results of different combination methods: (A) CNN (HSR), (B) PCA-CNN
(HSR), (C) SD, (D) CNN (HSR & SD), (E) PCA-CNN (HSR & SD), (F) CNN (HSR) & SD, (G) PCA-CNN (HSR) & SD,
(H) CNN (SD), (I) CNN (HSR) & CNN (SD)

Expr. A B C D E F G H I

Pearson R 0.905 0.878 0.824 0.922 0.882 0.915 0.900 0.869 0.916

Standard R2 0.724 0.665 0.586 0.745 0.664 0.752 0.724 0.606 0.739

RMSE 19.180 21.135 23.484 18.456 21.172 18.172 19.189 20.781 18.658

%RMSE 15.73% 17.33% 19.25% 15.13% 17.36% 14.90% 15.73% 17.04% 15.30%

MAE 9.568 10.056 14.492 9.757 10.279 9.523 10.308 12.907 9.901

%MAE 24.54% 25.70% 28.71% 26.20% 28.65% 24.19% 27.19% 28.39% 26.11%

t Test <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

YAO ET AL. | 11



factors (such as the distance to the metro station and the density of living facilities), which can be extracted well from

the proposed auxiliary geospatial datasets.

Additionally, Figures 6d, f, and i blend the information well from multi-source spatial datasets and have similar

error distribution patterns. However, we can also find that Figure 6f shares a similar error distribution with Figure 6a,

with corrections in some of the areas, and therefore improves the fitting accuracy. To our knowledge, the number of

dimensions extracted by CNN is far larger than the number of features extracted from auxiliary geospatial data. This

indicates that the feature combination method cannot fuse the multi-source spatial data properly because all fitting

models, when applied to a high-dimensional problem, have a high tendency to only select some of the features from

some dimensions, which is called “the class imbalance problem” and may cause overfitting errors (Wasikowski & Chen,

2010). The methods adopted by Groups I and D can effectively avoid the class imbalance problem, but with similar

overall accuracy (Table 2), while the training time and parameter adjustment requirements in Group D, which employs

a joint mining strategy, are only half those in Group I. To sum up, the proposed united mining approach based on HSR

images and geospatial big data (Group D) can effectively and reasonably fuse multi-source spatial data and obtain the

best prediction accuracy.

To further explain the advantages of our proposed CNN (HSR & SD) model, 20 input parcels were randomly

selected from the study area, and trained with adjusted CNN (HSR), CNN (SD), and CNN (HSR & SD), outputting the

features of the first convolution layer. Through inspecting the randomly selected samples in the study area, we ensure

that the chosen sample covers the house price distribution in the vast majority of locations. By employing the PCA

dimensionality reduction method to the features of the first convolution layer, the first three principal components are

synthesized into RGB false color images, as shown in Figure 7. In Figure 7, areas with higher hue values indicate the

FIGURE 6 The correlation analysis results of different combinationmethods between actual housing price data and
simulation results at the NC level: (a) CNN (HSR); (b) PCA-CNN (HSR); (c) SD; (d) CNN (HSR& SD); (e) PCA-CNN (HSR&
SD); (f) CNN (HSR) & SD; (g) PCA-CNN (HSR) & SD; (h) CNN (SD); and (i) CNN (HSR) & CNN (SD)
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higher importance in the subsequent determination. It can be found that UMCNN excavates not only the structural

features of high-resolution remote-sensing images (Figure 7, #2), but also the structural features of multi-source spatial

variable sets (Figure 7, #3). The spatial function structure and land use of the land parcels are strengthened and high-

lighted through combined mining of both feature sets (Figures 7a–j), which demonstrates that CNN (HSR & SD) is able

to fuse the physical and economic features quite well, and more accurately identify the housing structure, urban land

use, and their relation to housing prices.

It can be found from Figures 7k–t that, in comparison with CNN (HSR), CNN (HSR & SD) identified other core

affected areas (such as water and roads, etc.) on the basis of strengthening the spatial functional structure within the

land parcel, which shows that in the training process of CNN (HSR & SD), various driving factors affecting housing pri-

ces were explored based on remote-sensing images and multi-source spatial datasets, so the result of convolution is

not limited to the spatial structure of housing obtained from remotely sensed imagery. In the prediction process, CNN

FIGURE 7 UMCNN first-layer convolution output graph of the random samples: (#1) original remote-sensing image
parcels; (#2) dimensionality reduction output of CNN (HSR); (#3) dimensionality reduction output of CNN (SD); (#4)
dimensionality reduction output of CNN (HSR& SD)
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(HSR & SD) adopts diverse rules to establish a spatial non-linear housing price model. In general, the properties of the

house itself play a leading role in the development of housing prices, while the peripheral traffic, economic, natural

environment, and other factors also occupy a very important impact ratio.

5.2 | Spatial distribution of housing prices at a fine scale

Based on the above result and analysis, we adopt a UMCNN trained via CNN (HSR & SD) to predict the housing prices,

in units of “RMB yuan/m2,” per pixel in the study area, with a spatial resolution of 5 m; the results are shown in

Figure 8. Generally, we can observe that the high housing price areas (� 40,000 RMB yuan/m2) are mainly located in

the center of Futian, in Nanshan district, along the Shenzhen coastline, and at the junction area of Yantian and Futian

districts, where the overall accuracies of these areas are higher than 90%, as demonstrated in Table 3. Longgang,

Pingshan, Dapeng, and Guangming districts have lower overall accuracies (<70%), because these regions are newly

developed, resulting in a lack of housing price samples and large amounts of “shanty towns” (Chen et al., 2016), causing

fitting errors in the UMCNN model.

Figure 9 illustrates the overall histograms of housing price data from Fang.com and simulated fine-scale housing

prices, where the overall histograms are similar to the standard normal distribution. The housing price data provided by

Fang.com were mainly sampled from the newly built and second-hand houses in Shenzhen, ignoring most of the fully

residential communities and relatively cheaper real estate in rural areas, causing a low average housing price in the

simulated results; however, an overall accuracy of 85.82% is still achieved. In addition, we also find something interest-

ing in Figure 9, where a peak value exists between 40,000 and 50,000 RMB yuan/m2 in both the actual and simulated

data. By comparison with remote-sensing images, we found that the areas within a certain range centered at this peak

value are filled with newly developed high-rise residential buildings, which always have stable housing prices. In gen-

eral, via the united mining method proposed in this study, we can map Shenzhen’s housing prices at a fine scale, espe-

cially in the economically well-developed regions.

To further illustrate the fine scale and rationality of our proposed model, in Figure 8 we present the detailed hous-

ing price distributions of three typical areas in Shenzhen, and the overall results are also available online. The area in

Figure 8a includes the public administration center of Futian district, Shenzhen, which is also the location of the Shenz-

hen convention center and the largest shopping mall; thus, it has the highest housing prices in Shenzhen. An urban vil-

lage named Lianhua village, located in the northeast corner of Figure 8a, has relatively lower housing prices compared

FIGURE 8 Some details of the spatial distribution of Shenzhen’s housing prices simulated via CNN (HSR& SD) in Figure
9: (a) Shenzhen’s public administration center in Futian district; (b) Nantou inNanshan district; and (c) Zhonghai real estate
in the Longgang district
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TABLE 3 The average values, standard deviations, and overall accuracies of different districts in Shenzhen

Actual Simulation

District Mean St. dev. Mean St. dev. OA

Futian 44,114.810 31,617.661 42,006.874 16,030.465 95.22%

Luohu 36,556.088 36,729.468 37,334.489 13,845.462 97.87%

Nanshan 49,573.861 27,338.270 43,176.652 18,074.621 87.10%

Yantian 30,785.033 20,562.288 30,415.693 16,429.687 98.80%

Baoan 29,170.748 19,937.242 27,192.262 14,432.516 93.22%

Longhua 25,491.366 20,098.939 30,331.736 14,186.353 81.01%

Longgang 23,726.156 14,630.571 31,079.579 14,513.756 69.01%

Pingshan 18,516.147 12,633.294 30,040.577 16,023.564 37.76%

Dapeng 21,401.600 22,374.080 32,588.309 15,594.998 47.73%

Guangming 15,220.643 15,559.348 24,120.337 13,330.930 41.53%

Shenzhen 36,571.771 20,515.693 31,387.255 15,922.300 85.82%

FIGURE 9 The histogram distribution of Shenzhen’s housing prices obtained via UMCNN trained byCNN (HSR& SD):
(a) frequency histogram; and (b) accumulated frequency histogram
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with other areas, which was well displayed in our simulated result. At the junction area near Shenzhen customs, such

as Nantou in Nanshan district (Figure 8b), the luxury residential area and urban village located on opposite sides of the

road might have similar location properties, but the spatial heterogeneity of these two types of land use can also be

observed in our simulated results. The spatial heterogeneity of the housing price distribution cannot be observed well

at a very fine scale if only auxiliary geospatial datasets are used, as in previous studies (Chen et al., 2016; Kuntz & Hel-

bich, 2014; Wu et al., 2016). The area shown in Figure 8c includes the Longgang district, with lower overall housing

prices and a high housing price area inside this area consisting of luxury residential areas newly built by Zhonghai

Investment Co., one of the biggest real estate development companies in China. To sum up, the proposed method not

only simulates the housing price distribution at a fine scale, but also adopts a multi-source spatial data-based united

mining method to display the spatial heterogeneity well at a fine scale, which has not been fully addressed in previous

studies.

5.3 | Parameter sensitivity analysis

The housing prices of a certain area are correlated not just with the architecture itself, but also with the overall envi-

ronment, its neighborhood conditions, etc. (Basu & Thibodeau, 1998; Wu, Deng et al., 2014). Therefore, the variation

of the sampling window is of vital importance in the training and prediction of our proposed UMCNN model. To cover

the scale differences of ground components, we propose the multi-scale land patch sampling strategy in this study. In

this section, we first clip samples with a certain window size and overlap the samples with a step of 25 pixels. The

accuracy results are shown in Table 4. The results demonstrate that as the sampling window size increases, the valida-

tion accuracy shows a gradual increase and finally stabilizes at approximately 80%, which is similar to the result from a

previous study (Zhong et al., 2016). When using our trained UMCNN model to simulate the distribution of housing pri-

ces, we also observe several similar trends in prediction accuracy. When the sampling window size is larger than 50 3

50 pixels, the simulation results tended to be stable, and the Pearson R value is approximately 0.920. Moreover, the

UMCNN network model built in this study has not been accelerated via GPU computing; we will improve this in the

future by refactoring the codes using the CUDA framework. In general, in this study, in consideration of computing

accuracy and speed, we adopt a sampling window size of 50 pixels.

6 | DISCUSSION

Housing prices have been among the most pressing issues in China and have received considerable scholarly attention,

especially in China’s metropolitan cities (Du & Zhang, 2015; Wu, Deng et al., 2014; Wu, Li, & Huang, 2014; Yi &

Huang, 2014). However, previous studies of housing prices focus mainly on the driving factors of housing prices

instead of sensing the spatial distributions of urban housing prices at a fine scale due to the lack of available data and

TABLE 4 Training and prediction accuracies of mapping housing prices via UMCNN trained by CNN (HSR & SD)
using different sampling window sizes

Window size 25 50 75 100 125 150

Training accuracy Training 73.24% 90.63% 90.60% 91.97% 90.91% 90.91%

Validating 74.61% 80.29% 80.70% 83.31% 79.01% 82.30%
Time (s) 3,125 3,777 5,067 7,188 10,336 12,898

Predicting accuracy Pearson R 0.764 0.922 0.920 0.919 0.907 0.911

Standard R2 0.530 0.745 0.743 0.742 0.738 0.740
RMSE 26.524 18.456 19.887 19.606 20.066 19.141
%RMSE 21.75% 15.13% 16.31% 16.08% 16.45% 15.69%
MAE 13.534 9.757 10.578 9.839 9.959 9.817
%MAE 36.15% 26.20% 28.93% 26.32% 27.31% 26.18%
t Test 0.269 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

16 | YAO ET AL.



models (Chen et al., 2016; Kuntz & Helbich, 2014; Wu et al., 2016). This study proposed an effective deep learning-

based framework for mapping Shenzhen’s housing prices at a very high spatial resolution of 5 m via a united data min-

ing method. To tackle the multi-scale problem of geospatial data, we adopt a multi-scale sample-based RF algorithm to

build a UMCNN prediction model for housing prices, and with the help of this model, we obtain a fine-scale housing

price distribution map of Shenzhen.

This study first introduces a deep learning method into fine-scale housing price prediction and obtains a high over-

all accuracy (Pearson R50.922, OA585.82%). We also use several different information fusion methods to mine the

features from HSR images and geospatial data. Both of these methods can blend the natural physical and socioeco-

nomic information well (via multi-source geospatial data). The proposed UMCNN-based united data mining on multi-

source spatial datasets can avoid the overfitting problem caused by feature combination with the class imbalance prob-

lem (Wasikowski & Chen, 2010) and produce the housing price distribution results with the highest accuracy.

The proposed UMCNN model can not only map the distribution of housing prices at a fine scale, but also highlight

the existence of spatial heterogeneity. In the field of image understanding, CNN is able to recognize different objects

in the image by constructing complex convolution network and multiple recognition rules (Krizhevsky et al., 2012;

Simonyan & Zisserman, 2014; Zhong et al., 2016). That is to say, through the training of multi-source spatial data

(including HSR image and social media data) and housing price data, UMCNN is able to exploit the physical and socioe-

conomic driving factors that affect housing prices in different regions and the rules based on these factors. We can

observe from the mapping result that even in the simulation of housing prices in different areas, through consideration

of the spatial heterogeneity such as closed ground components and other multi-environment elements, the proposed

model is still able to map the distribution of housing prices well. It is worth mentioning that based on the proposed

UMCNN framework, further research on spatial data fusion and analysis from extra sources can easily be integrated,

and therefore it is important to study the influence of each spatial factor well in the future.

Our proposed UMCNN-based data fusion model is more than just a mapping of urban housing prices; it incorpo-

rates many fields of urban research, such as human activity pattern recognition and classification of urban land-use

conditions. To our knowledge, the distribution of housing prices can represent the economic conditions of residents to

some extent (Chan, 2001); thus, the result can be the basic data for economics research in the future. By fusing multi-

source temporal–spatial big data, such as social media check-in data (Hu, Wang, & Li, 2014; Zhou, Wang, & Hu, 2013),

the GPS trajectory data of floating cars (Li, Zhang, Wang, & Zeng, 2011), the signal data of cell phones (Deville et al.,

2014), and multi-source volunteered geographic information (Hultquist, Sava, Cervone, & Waters, 2017), we can carry

out many different analyses on human activity pattern recognition of urban residents with different economic condi-

tions. In addition, determining how to improve the accuracy of classifying urban city land use is a research focus in the

remote-sensing field (Li, Wang, Wang, Hu, & Gong, 2014; Pei et al., 2014). The proposed model enables urban land-

use classification at a fine scale via multi-source spatial data fusion.

This study chose the built-up area of Shenzhen to conduct our study without distinguishing the residential and

commercial areas, which is mainly due to the inner complexity of the urban function structure at both area and building

scale (Chen et al., 2017; Wang, Wang, & Wu, 2009; Wu, Li et al., 2016). With the input data collected via the Internet,

the proposed UMCNN model obtains good housing price mapping accuracy without being given the urban function

structure. In further studies, the proposed model can be extended to study the relationship between urban function

structures and housing price spatial distributions, which is a very meaningful topic.

The land price and property management spend are also vital factors that affect housing prices (Wu et al., 2014).

The reason for not applying land price data in this study comes from the difficulties in gathering timely official land

price data of the study area. The timely housing prices we use for training the proposed model are collected via the

Internet, which can reflect the timely land prices to some extent, making up for the deficiency in the actual land price.

With sufficient real-time online housing price data and geospatial social media data, the proposed UMCNN model pro-

vides a possibility to study the spatial distribution of housing prices at a fine scale. Moreover, the proposed UMCNN

model can be applied to predict housing price change of cities in different urban planning scenes. For example, it is pos-

sible to simulate the influence of the construction of a new subway station or a new road on nearby housing prices.
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Determining how to automatically tune the parameters of deep learning models, including the total layer count

and convolution kernel size, is still an open problem in the field of machine learning (Abadi et al., 2016; Chen & Lin,

2014; Krizhevsky et al., 2012; Simonyan & Zisserman, 2014), as well as our future concern. The main purpose of this

study is to prove the effectiveness of a deep learning neural network model in fusing multi-source spatial data and

mapping housing prices. The design of the UMCNN model mainly relied on human intuition and continuous attempts,

which is a simple but effective approach that most studies use (Abadi et al., 2016; Krizhevsky et al., 2012). Moreover,

the proposed UMCNN model possesses deep learning and predictive power to carry out house price mapping using

multi-source spatial variables, but it does not explain the individual contributions of the independent variables. How to

increase the interpretability of deep learning-based models is an issue currently being explored by the computer sci-

ence community, and also a problem that we must face in the future.

The UMCNN model achieves high house price mapping accuracy when only inputting high-resolution remote-

sensing images, so the model is also applicable to sparsely populated areas. However, we also need to go through

and provide the UMCNN model with transfer learning capability to simulate and map the housing prices of any

region with high accuracy and limited input data. How to extract the semantic features of the house internal struc-

ture data (such as number of rooms, type of structure, garage or not, attached or not, age of structure) provided on

the network, inputting them into the proposed UMCNN and applying the model to a larger area, needs to be care-

fully studied. Finally, there is a strong correlation between housing price distribution and urban resident activities, so

how to integrate human activities into the UMCNN model is a worthwhile question to discuss and study in the

future.

7 | CONCLUSIONS

Determining how to curb the soaring housing prices has become an issue of great importance and urgency in big cities

(Clayton, 1996; Du & Zhang, 2015; Wu, Deng et al., 2014). Therefore, it is fundamentally important to first map the

housing price distributions at a fine scale. This study first proposes an effective deep learning-based framework named

UMCNN for mapping fine-scale urban housing prices by fusing various geospatial datasets, including HSR images,

social sensing data, and basic geographical data. Through comparing several simulated housing price results generated

by multiple data mining methods, the proposed UMCNN-based multi-source data fusion method, which can effectively

blend physical and socioeconomic information, obtained the highest housing price prediction accuracy (Pearson

R50.922, OA585.82%). In addition, this study also adopts a multi-scale sampling method on multi-source spatial

data, which solved the multi-scale problem well. The simulated results of Shenzhen’s housing prices indicated that the

proposed UMCNN can not only construct a housing price prediction model at a fine scale, but also is very robust, as

the multi-source spatial data-based united mining method can consider well the spatial heterogeneity of urban housing

price distributions.

We will carry out future work in three aspects. First, to increase the interpretability of the UMCNN model in urban

spatial variability mapping; second, to consider semantic quantification of the house internal structures on the Internet,

and input them into the UMCNN model to achieve housing price mapping and analysis at the building scale; and third,

to enhance the learning capability of the model in order to map housing prices in a wider range, such as at national and

global scale. Above all, the results of this study are relevant to issues such as governmental management, private busi-

ness performance, housing price prediction, and urban planning. It also lays a solid foundation for further studies on

fine-scale urban economics and residential activities.
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