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ABSTRACT ARTICLE HISTORY
Effective modeling of spatio-temporal contexts to support geo- Received 22 June 2025
graphic reasoning is essential for advancing Geospatial Artificial Accepted 8 February 2026

Intelligence. Inspired by masked language models, this paper
introduces the Masked Geographical Information Model (MGIM), a
novel self-supervised framework for learning context-aware repre-
sentations from multi-source spatio-temporal data. The frame-
work’s core innovations include a parcel-scale method for multi-
source data fusion and a custom self-supervised masking strategy
for diverse geographic elements. This integrated modeling
approach enables the model to capture complex spatio-temporal
relationships and achieve consistently strong performance across
diverse geographic reasoning tasks, such as trajectory inference,
people flow inference, event identification, and land parcel func-
tion analysis. MGIM accurately reasons from spatio-temporal con-
texts and dynamically adjusts inferences according to contextual
changes. The visualization of attention mechanisms further illus-
trates MGIM'’s capacity to construct contextually-aware representa-
tions and task-specific attention patterns analogous to natural
language processing models. This study presents a new paradigm
for general-purpose spatio-temporal modeling in real-world geo-
graphic scenarios, offering significant theoretical and practical
value, and promising an effective solution for building a geo-
graphic foundation model.

KEYWORDS

GeoAl; multi-source data
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1. Introduction

Cities represent complex and dynamic systems formed by interdependent interactions
among human mobility, land structure, economic activity, and social processes (Wang
and Biljecki, 2022). Gaining a deep understanding of these spatio-temporal
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interdependencies and reasoning about their interactions are crucial for applications
such as smart city management, urban planning, and emergency response (Cao et al.
2025). For example, urban planners need to anticipate how new development projects
may affect surrounding commercial vitality and residents’ travel behaviors, while emer-
gency managers must identify potential risk areas and respond to unexpected inci-
dents based on real-time population movement, traffic conditions, and event
information. These reasoning tasks require models capable of integrated, context-sen-
sitive reasoning to interpret the dynamic behavior of urban systems.

Geographic reasoning refers to the process of using available spatio-temporal infor-
mation to determine what to believe or what actions to take in a specific geographic
context (Hooghuis et al. 2014). This reasoning process is analogous to the human cog-
nitive process of perceiving the environment, analyzing situations, and solving prob-
lems (Ishikawa, 2013, Du et al. 2002), and it constitutes a fundamental basis for
developing intelligent models capable of understanding and simulating complex geo-
graphic systems.

In existing GeoAl approaches for geographic inference, mainstream research para-
digms typically decompose complex urban environments into a series of independent
prediction tasks. Although such models often achieve high accuracy on specific tasks,
their task-specific nature overlooks the ubiquitous dynamic interdependencies among
different geographic phenomena. This task-centric simplification of the real world con-
strains the models’ holistic understanding of cities as complex systems, thereby limit-
ing their generalization and applicability in dynamic real-world scenarios. In the
context of contemporary GeoAl and large models, geographic reasoning increasingly
emphasizes a cross-element, cross-task, and transferable general reasoning capability,
which fundamentally relies on a holistic understanding of the intertwined relationships
among multiple elements within complex spatio-temporal contexts, going beyond
inference targeting individual geographic phenomena.

Moving beyond single-target prediction toward general geographic reasoning mod-
els represents a crucial step for advancing GeoAl, as it enables the integration of mul-
tiple spatial and temporal dependencies (Janowicz et al. 2025). At the core of such
models is the ability to transcend single-phenomenon analysis and model multi-elem-
ent spatio-temporal contexts (Zhao et al. 2023). This necessitates a novel framework
that can autonomously learn complex intrinsic relationships from multi-source data.
Such a framework must build generalizable, adaptable representations of spatio-tem-
poral contexts for diverse reasoning tasks, providing a foundation for simulating real-
world environments.

1.1. Spatio-temporal modeling in GeoAl: from single-task prediction to multi-
source fusion

In recent years, artificial intelligence technologies, particularly deep learning, have
been widely applied in GeoAl (Janowicz et al. 2020). Researchers have developed spe-
cialized deep learning models for various geographic tasks, achieving notable results
in trajectory prediction (Musleh et al. 2022), human and traffic flow forecasting (Ali
et al. 2022), urban anomaly detection (Sharif et al. 2025), and urban functional zone
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identification (Hu et al. 2023). However, these studies generally follow a paradigm that
decomposes complex geographic problems into well-defined single-target supervised
learning tasks. The limitation is that models are typically optimized for specific tasks.
They struggle to capture the frequent interactions among geographic phenomena,
and this constrains their holistic understanding of urban systems.

To overcome the limitations of single data sources, researchers have begun explor-
ing the integration of multi-source heterogeneous data to enhance model perform-
ance. For instance, in urban functional zone identification, incorporating economic
factors (Tu et al. 2024), transportation elements (Kanyepe et al. 2021), and human
activity data can significantly improve the accuracy of land-use classification. Similarly,
in human mobility prediction, integrating geographic semantic information has been
shown to enhance the precision of next-location forecasting (Yao et al. 2023). These
studies collectively highlight the value of multi-source data fusion in GeoAl
applications.

Nevertheless, most existing data fusion approaches mainly rely on feature concaten-
ation or treat additional data as auxiliary variables to improve the prediction accuracy
of a predefined target. This approach is essentially a prediction-oriented, unidirectional
form of data fusion and does not explicitly model the intrinsic, bidirectional, and com-
plex spatio-temporal dependencies among different geographic phenomena
(Choudhury et al. 2024). In reality, the spatio-temporal context represents an inte-
grated system of geographic processes in which human activities, land use, and eco-
nomic dynamics interact and evolve together (Li et al. 2022). Therefore, new
approaches are needed that go beyond single-target prediction frameworks, enabling
models to learn and represent complex spatio-temporal contexts.

1.2. Insights from NLP: masked self-supervised learning and contextual
understanding

In recent years, natural language processing (NLP) technologies, particularly large lan-
guage models, have achieved revolutionary breakthroughs, demonstrating strong
capabilities in understanding complex textual contexts. The success of NLP has largely
been attributed to the masked self-supervised learning paradigm (Devlin et al. 2019).
By randomly masking portions of text in massive corpora and training models to pre-
dict the masked content based on context, these models can learn the semantic and
syntactic relationships among words (Zhu et al. 2021).

The masked self-supervised learning paradigm provides valuable insights for devel-
oping geospatial models with spatio-temporal contextual understanding. Prior studies
have demonstrated structural and semantic similarities between geospatial data and
natural language text (Huang et al. 2025). For instance, urban regions can be concep-
tualized as documents, different land-use types as topics, and the spatial distribution
of points of interest as word sequences within a document (Yao et al. 2017). Individual
mobility trajectories can be regarded as sequences of spatio-temporal tokens (Musleh
et al. 2022). These studies support the feasibility of drawing analogies between geo-
spatial structures and linguistic constructs, opening new avenues for developing mod-
els capable of understanding complex spatio-temporal contexts.
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1.3. Existing attempts and limitations of geospatial masked models

Inspired by advances in NLP, some studies have begun exploring the application of
masked self-supervised learning to geospatial modeling. For example, Zhang et al.
(2025) proposed a masked learning framework for region-focused learning in traffic
flow prediction, while Yang et al.(2025a) introduced a masked reconstruction approach
for the completion of DEM data. The UniST model (Yuan et al. 2024) also employs a
mask-based spatio-temporal contextual modeling mechanism, demonstrating general-
ization across multiple urban spatio-temporal prediction tasks. These studies suggest
that self-supervised learning is an effective approach to enhancing the reasoning capa-
bilities of geospatial models. However, their task objectives are primarily focused on
single numerical regression tasks, limiting applicability to broader geographic reason-
ing tasks, such as functional zone identification or event inference. Moreover, they typ-
ically rely on irregular grids that may fragment geographic entities and adopt masking
strategies along a single dimension, overlooking the intrinsic relationships among mul-
tiple attributes present in real-world scenarios.

Although GeoAl has made preliminary progress in multi-source data fusion and
self-supervised learning, there remains an urgent need for a general spatio-temporal
contextual model that can overcome existing limitations. Current studies exhibit short-
comings in the semantic representation of spatial units, task generalization, and multi-
dimensional masking strategies. These limitations constrain the models’ capacity for
comprehensive understanding and reasoning within complex geographic systems. The
proposed MGIM framework aims to fill this gap. The main contributions of this work
are as follows:

1. A novel framework for general geographic reasoning: We design and implement
MGIM, a new self-supervised framework that operationalizes the masked-modeling
paradigm for GeoAl. Its core innovations are a parcel-scale fusion method that
aligns diverse, multi-source spatio-temporal data and a custom multi-element
masking strategy specifically designed to capture the complex interdependencies
among these geographic elements.

2. Validation of generalization across diverse tasks: We validate the effectiveness and
high generalization of MGIM. A single pre-trained MGIM achieves strong perform-
ance across multiple geographic reasoning tasks, including trajectory location,
people flow, urban event, and land parcel function inference.

3. Evidence of spatio-temporal contextual understanding: We provide evidence that
MGIM moves beyond simple pattern fitting to acquire a functional understanding
of spatio-temporal contexts. Through task-adaptive attention analysis and dynamic
reasoning experiments, we show that the model can learn the functional implica-
tions of context on geographic processes, suggesting a semantic reasoning cap-
ability analogous to that of language models.

2. Study area and data

This study focuses on the 23 special wards of Tokyo, Japan, a region spanning
approximately 627.5km? with a population of around 9.7 million. As the political,
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economic, and cultural center of Japan and a quintessential global metropolis, the 23
wards of Tokyo are characterized by a vast scale, functional complexity, and high
population density. These attributes make the area a representative study case of
large-scale urban development, ideal for investigating spatial distribution patterns and
the functional evolution of major urban centers.

The following datasets support our analysis. The POl data is derived from the
Telepoint Pack DB (Yellow Pages), which provides multiple attributes including the POI
name, telephone number, address, postal code, category and other information. As
shown in Table S1, several key attributes are selected for display. The POls are catego-
rized into 25 types, such as education, shopping, food service, among others. Within
the study area, a total of 407,020 POlIs are included, and their spatial distribution is
illustrated in Figure 1a.

The fundamental spatial unit for analysis is the land parcel, which was generated
by segmenting the area based on the OpenStreetMap (OSM) road network. After
removing parcels that did not contain any POls, a total of 22,455 parcels were retained
for the study. The distribution of parcel areas after division is shown in Figure 1b, with
a median value of 6,036 m?.

The trajectory data were obtained from the ‘Konzatsu-Tokei (R)' dataset, consisting
of mobile device location information for 1,271,557 users within the study area
throughout May 2024 (Li et al. 2025). To focus on macroscopic movements between
land parcels and protect individual privacy, the trajectory data were preprocessed.
Duplicate and abnormal points were first removed, and then each trajectory point was
matched to its corresponding parcel. For consecutive points falling within the same
parcel, only the entry and exit records were retained. This procedure simplifies intra-
parcel activities, eliminates positioning errors and redundancies (Lin et al. 2025), and
extracts key inter-parcel travel chains to support the analysis of spatial interactions at
the city scale.

By spatially matching the trajectory data with the land parcel data, the hourly peo-
ple flow dynamics for each parcel throughout May were calculated. As depicted in
Figure 1c, the hourly people flow data exhibit a pronounced long-tail distribution,
indicating that a small minority of parcels accommodate most of the human activity.

3. Methodology

In Figure 2, the Masked Geographic Information Model (MGIM) proposed in this
study comprises five key modules: (1) Spatio-temporal Alignment of Multi-source
Data: At the parcel scale, multi-source spatio-temporal data are aligned to construct
trajectory point sequences that integrate diverse information sources. (2) Spatio-tem-
poral Masking Strategy: A variety of masking methods are designed to target the
multi-source information associated with each trajectory point, thereby generating
diverse self-supervised learning tasks. (3) Spatio-temporal Element Encoding: The
input spatio-temporal elements are uniformly encoded to obtain their corresponding
embedding representations. (4) Feature Fusion and Trajectory Reconstruction: The
encoded features are fused, and a Transformer architecture is employed to infer the
masked information, thereby capturing complex spatio-temporal contextual
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Figure 1. (a) The Study Area: Tokyo's 23 Special Wards and the Density of POI Distribution at the
Parcel Scale. (b) Statistical Distribution of Land Parcel Areas. (c) Distribution of Parcel-Level People
Flow in the Study Area.

relationships. (5) Multi-source Information Decoding: Multiple decoders are utilized
to reconstruct the various types of spatio-temporal information from the recon-
structed trajectory vectors.

3.1. Multi-source spatio-temporal data alignment

To align the multi-source, heterogeneous data, this study employs land parcels as the
fundamental spatial units for analysis. This parcel-based approach is chosen over tradi-
tional grid-based partitioning to avoid the arbitrary splitting of real-world geographic
features.
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Figure 2. Framework of MGIM.

As illustrated in Figure 3, to construct structured inputs for embedding and rela-
tionship modeling, we first align the multi-source spatio-temporal data. A raw trajec-
tory sequence is consequently transformed into an augmented trajectory sequence.

We define the augmented trajectory sequence as S = (py,pz, - +,Pn), Where n is
the sequence length. Each p, in this sequence is an augmented trajectory point, repre-
senting a multi-dimensional feature representation of the contextual information asso-
ciated with the original point, generated by aligning it to its corresponding land
parcel. This augmented trajectory point p, is defined as: p, = (Ep, T, Ln, Dn, Ps), Where
the components are defined as follows:

e £, denotes the urban event information associated with the trajectory point. In this
study, urban events are simplified as a binary variable distinguishing between
workdays and holidays.

T, represents the discrete timestamp of the trajectory point.

L, corresponds to the coordinates of the matched parcel center.

D, refers to the population density within matched parcel during the time T,,.

P, denotes the set of POIs within the matched parcel.

The p, is designed to encode not only time (T,) and location (L,), but also the
event context (E,), population density (D,), and functional attributes (P,). The aug-
mented trajectory sequence S serves as the input for our subsequent models.

3.2. Masking strategy for multiple spatio-temporal elements

The model is based on a masked self-supervised learning approach, analogous to that
of Masked Language Models (MLMs). However, a fundamental challenge arises from
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Figure 3. Spatio-temporal alignment of multi-source data at the parcel scale.

the data’s structure: while MLMs mask individual tokens in a sequence, each trajectory
point in this work comprises a set of heterogeneous spatio-temporal attributes.
Consequently, a naive strategy of masking an entire trajectory point as a single unit
would impede the model’s ability to learn the complex interdependencies among
these intra-point attributes (Choudhury et al. 2024). To overcome this limitation, this
paper proposes a set of fine-grained masking strategies.

Three masking strategies are used: (1) Single Element Spatio-temporal Masking: The
POI, urban event, people flow, time, and location information associated with a trajec-
tory point are each masked independently. This allows for an examination of how the
absence of a single element impacts the model's predictive capabilities. (2) Full
Element Spatio-temporal Masking: All spatio-temporal attributes contained within a
trajectory point are masked together as a single unit. This simulates the scenario of a
completely missing trajectory point and enhances the model’s ability to recover and
predict missing points. (3) Random Masking: Within a sequence of trajectory points,
either single-element masking or full-element masking is randomly applied. This strat-
egy improves the model’s robustness against complex patterns of missing data. The
masking process is mathematically expressed as:

Mask (S)=(1-M)OS+Mo (-1) M
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m is a binary mask indicator where a value of 1 signifies a masked element and 0 an
unmasked element. The masked elements are subsequently replaced with a special
value whereas unmasked elements retain their original information.

3.3. Multi-Spatio-temporal element encoding

An appropriate encoding and embedding methodology is crucial for enhancing a
deep learning model’s ability to perceive the heterogeneity and spatio-temporal
dependencies inherent in multi-source data. This is required for the subsequent
phases of mask-based feature selection and interaction modeling. In this study, distinct
encoding methods are employed for different types of spatio-temporal elements,
which are detailed in the following four subsections. After encoding, each of the fea-
tures is processed by its respective linear layer to be projected into a common dimen-
sionality, after which they undergo feature fusion.

3.3.1. Parcel functional attribute encoding

The Semantic2Vec method (Huang et al. 2022) is used to vectorize POI categories,
thereby obtaining an embedding vector representation for each category. To create a
parcel-level representation, the embedding vectors of all POIs located within the
boundaries of a given parcel are aggregated by summation. The resulting vector is
then L2-normalized to generate the final functional attribute encoding for that parcel.
The specific calculation method is:

XL
122 eill
e; represents the embedding vector of the i-th POl within the parcel, n is the total

number of POIs in the parcel, and V,; is the normalized functional attribute vector for
the parcel.

Vpoi (4)

3.3.2. Urban event and temporal encoding

The cyclical nature of hourly information is captured using sine and cosine functions,
which map discrete hours into a continuous vector space. The temporal encoding vec-
tor Viime is mathematically expressed as:

Vime = [sin <21r-hour>lcoS (2n-hour> ] (5)

24 24
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hour denotes the hour of the day (ranging from 0 to 23) for the current trajec-
tory point’s timestamp. This cyclic encoding preserves temporal continuity and pre-
vents discontinuities caused by treating time as a scalar variable. Concurrently, to
differentiate between holidays and workdays, an event flag vector Ve,en is defined as
follows:

Vo 1 if event # holiday (©)
event =) 2 if event = holiday

By multiplying the temporal encoding vector with the event flag vector, a joint
encoding result is obtained. This result is then passed through a linear transformation
function f(x) to compute the temporal embedding for the event:

E = f(Viime ® Vevent) 7

The output of this encoding module, E is a fixed-dimension feature representation.
This encoding captures temporal periodicity and increases model sensitivity to urban
events, thereby providing a robust feature foundation for subsequent multi-source
fusion and prediction tasks.

3.3.3. People flow encoding

To characterize people flow patterns, this study constructs a time-series sequence
(d1,d;...dy) based on the people flow data for the parcel associated with the cur-
rent trajectory point over the preceding 24 hours. Here, d; represents the number of
people in the parcel during the t-th hour. The LSTM is used to model temporal pat-
terns in people flow. This produces Vyensity, an encoding vector representing the par-
cel’s people flow feature. Its mathematical expression is as:

Vdensity = LSTM(d, d; . . . das) (8)

The LSTM effectively captures the dynamic evolutionary patterns of people flow,
generating stable time series embedding representations (Yu et al. 2019). The Vensiy
provides information about human mobility for the MGIM.

3.3.4. Location information encoding

To ensure numerical stability and capture fine-grained spatial variations, land parcel
locations are represented using projected offsets rather than raw coordinates. All tra-
jectory points are projected onto the UTM Zone 54N system (EPSG:32654), which is
appropriate for Tokyo. To minimize issues related to numerical precision, coordinates
are stored as offsets relative to the southwest corner of the study area’s bounding
box:

Vpos = (Xl - Xminr Yi - Ymin) (9)

(Xi, Y;) represents the planar coordinates of a trajectory point i in the projected
coordinate system. (Xmin, Ymin) represents the coordinates of the southwest corner of
the study area’s bounding box. V. is the resulting relative positional encoding for
the trajectory point.
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3.4. Feature fusion module

The feature fusion module is designed to integrate complementary information from
multi-source data and mitigate the limitations of single-feature representations.
Feature aggregation is first performed through channel-wise concatenation, followed
by convolutional layers and activation functions that learn adaptive feature weights.
These weights modulate the fused representation, enhancing the model’s expressive
capacity and generalization. A residual connection is incorporated to preserve original
information and prevent feature degradation. The module architecture is illustrated in
Figure 4.

3.5. Loss functions definition

A multi-task loss function is designed to jointly optimize diverse objectives, including
trajectory vector completion and multiple decoding tasks, arising from our multi-spa-
tio-temporal masking strategy. The trajectory vector reconstruction loss Lygm primarily
updates the model modules responsible for completing missing information, including
the feature encoding, feature fusion, and Transformer modules. It is mathematically
defined as the Euclidean distance between the predicted and ground-truth trajectory
vectors:

1
Limgm = Nz |Ptrgj, = Luraj, |, (10)

The Py, represents the model’s output for the reconstructed trajectory vector. The
Ligj, is the ground-truth trajectory vector. N is the total number of samples.

To further optimize the inference performance for different types of information,
this study applies several decoding loss functions, each targeting its corresponding
encoding module. For temporal information prediction, the decoder loss uses the
Mean Absolute Percentage Error (MAPE), which is defined as:

L _ Z Mape(Ptime: Ltime)
time — N

Ptime is the predicted time value and Lyp. is the ground-truth time value.

(1



12 (&) X.ZHANG ET AL.

The loss for the location information decoding module is measured by the distance
between the predicted and ground-truth locations:

S B+ (=)’ (12)
N

loc =

P, P, are the predicted location coordinates output by the model, while I,,/, are the
ground-truth location coordinates.

Given the prominent long-tail distribution of people flow data, using Mean Squared
Error (MSE) can cause the model to be dominated by a small number of high-value
samples, thereby degrading generalization performance. Therefore, we employ the
Huber loss. The Huber loss function provides the fine-grained optimization of a
squared loss for small errors while using a linear loss for large errors to reduce the
impact of high-value outliers. This approach improves the model’s robustness to data
imbalance, and is defined as follows:

——————— if|Ppeo — Lpeo| < O
2 ( Ppeo _ Lpeo)2 | peo peo| >

'Cpeo = S
5 (\ppeo — Lpeo| — 5) if|Ppeo — Lpeo| >

(13)

Ppeo represents the predicted people flow value. L, is the actual observed people
flow value. & is a hyperparameter used to control the robustness of the loss function.

The urban event decoding module involves a classic classification task. Therefore,
this study uses the Cross-Entropy Loss function to classify the event types:

> CrossEntropy (Pevent, Levent) (14)
N

Pevent is predicted probability distribution over the event classes. Leyen is the ground-

truth class label.

The land parcel functional attribute decoding module focuses on learning continu-
ous semantic representations rather than discrete classes. Therefore, this study
employs the Cosine Similarity Loss to measure the consistency between the predicted
and ground-truth functional attribute vectors:

>~ CosineSim(Pfunc, Lfunc)
N

where Py, denotes the predicted functional attribute vector, and Lg,, represents the
ground-truth vector.

ﬁevent =

(15)

ﬁfunc =1-

3.6. Experimental setup and evaluation strategy

To evaluate the effectiveness of the MGIM framework, we randomly partitioned the
trajectory sequences into training and testing sets at a 9:1 ratio. To prevent data leak-
age, we ensured that all trajectories belonging to a single user were restricted to only
one of the sets. For the model configuration, a pre-training masking probability of 0.2
was selected. The empirical justification for this choice is detailed in Appendix B.
Furthermore, to qualitatively demonstrate the model’'s performance across diverse
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tasks, we extracted a representative three-day trajectory sequence from the test set
for case studies and visualization. This sample covers both weekdays and holidays and
includes distinct residential and outdoor activities, providing a robust basis for inter-
pretative analysis. Detailed data for this sample is available in Table S2.

To evaluate the model’s performance across diverse geographic reasoning tasks, we
employ a suite of task-specific metrics. For numerical regression tasks, including trajec-
tory vector reconstruction, location inference (m), and time inference (h), we measure
performance using the Euclidean distance or Mean Absolute Error to quantify physical
deviations. For people flow inference, both Mean Absolute Percentage Error (MAPE)
and Root Mean Square Error (RMSE) are reported to account for the data’s long-tail
distribution. And for semantic tasks, we use classification accuracy (%) for urban events
and cosine similarity for land parcel functions.

4. Results

The results are organized in two main parts. Section 4.1 provides a quantitative evalu-
ation of model performance, analyzing the pre-training convergence and the impact
of varying masking ratios on inference tasks. Section 4.2 presents case studies and
visualization, utilizing representative trajectory sequences to illustrate specific inference
outcomes and attention patterns.

4.1. Model training and quantitative performance evaluation

4.1.1. Pre-training results under the Random masking strategy

Figure 5 illustrates the pre-training convergence using a random masking strategy. As
training progresses, the loss curves for all six tasks consistently decrease and trend
towards convergence. These results indicate the model’s convergence and stability.
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Figure 5. Pre-training convergence curves for all tasks under the random masking strategy. The
plots show training loss versus test error/accuracy for trajectory vector reconstruction and the five
spatio-temporal element inference tasks.
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Table 1. Final loss and performance of the pre-trained model.

Task type Train loss Performance
Trajectory vector reconstruction (ﬁmgm) 7.11 7.15
People flow 85.79 MAPE: 0.48

RMSE: 30.4 people
Trajectory point location 415.21 Mean:575.38 m
Time 1.79 3.55h
Urban event 0.03 96.98%
Function of land parcel 0.04 0.94
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Figure 6. Model performance on spatio-temporal inference tasks and the corresponding change in
trajectory vector reconstruction loss across different masking probabilities. The x-axis represents the
masking probability.

Table 1 presents the model’s final loss values and performance metrics on the test
set after pre-training. The model demonstrates robust performance across all objec-
tives, achieving low inference errors in continuous spatio-temporal tasks while main-
taining high fidelity in semantic inference tasks. The results validate the effectiveness
of the proposed method and the MGIM’s multi-task inference capability.

4.1.2. Evaluation of model performance for inference tasks

Based on the pre-trained model, we conducted few-shot fine-tuning tests across five
inference tasks. Compared to the pre-training baseline, the fine-tuned model exhibited
consistent performance improvements across all metrics. As presented in Figure 6 and
Table 2, the model demonstrated robust performance at a 0.2 masking probability,
achieving high accuracy in semantic tasks and low error in numerical spatio-temporal
inferences. Notably, the significant disparity between the mean and median location
inference errors suggests that the overall metric is disproportionately skewed by a
small number of high-error outliers, a phenomenon further examined in the discussion
section.

Figure 6 illustrates a consistent performance degradation across all tasks as the
masking probability increases. Inference errors for location (a), time (d), and people
flow (c) reach their minimum at a masking probability of 0.2-0.3 before rising sharply.
In the case of urban events (b) and parcel functions (e), accuracies peak within the
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Table 2. Results across multiple geographic inference tasks at 0.2
masking probability.

Inference tasks Performance

People flow MAPE: 0.336
RMSE: 26.05 people

Trajectory point location Mean: 504.15m
Median: 284.44 m

Time 231h

Urban event 97.00%

Function of parcel 0.95

0.1-0.25 range and subsequently follow a fluctuating downward trend. These results
show that MGIM retains robust reasoning capabilities until the context becomes exces-
sively sparse. The model maintains notable resilience in tasks (b) and (e), demonstrat-
ing the ability to infer semantic information even under high masking ratios.

The relative importance of each spatio-temporal element is determined by compar-
ing their impact on trajectory vector reconstruction loss under various masking pro-
portions. Figure 6f highlights the hierarchy of influence among elements. Location
information has the most significant impact, followed by time, urban events, and par-
cel functional attributes. In contrast, people flow exerts a less significant influence,
although its associated loss consistently increases with the masking probability.

4.2. Case studies and visualization across different tasks

To further demonstrate the model’s performance across different tasks, we randomly
selected a real trajectory sequence of a user from the preprocessed test set for case study
and visualization. The selected trajectory spans three days and contains a total of 44 tra-
jectory points, covering both weekdays and a holiday. It includes clearly identifiable resi-
dential locations and outdoor activities, making it representative and suitable for
interpretative analysis. All results presented below are based on this sample. Detailed
information about the trajectory sequence can be found in the appendix Table S2.

4.2.1. Inference result for trajectory location

With the masking probability set to 0.2, the model was tasked with inferring the
masked locations. Figure 7 shows that 87.5% of the masked points were correctly
restored to their original parcels. Only a single point (T-id 33) exhibited a minor devi-
ation, landing adjacent to its true parcel. The result demonstrates that the proposed
model can accurately infer masked trajectory locations.

Visualizing the Transformer’s attention scores (Figure 8) reveals that when recon-
structing a trajectory vector, the model does not just focus on the current point but
also considers information from other key points in the sequence. In this location
inference example, the model paid significant attention to trajectory points with IDs 8,
13, 19, 24, and 28. An analysis based on the raw data shows that points 8, 13, 30, and
28 are in areas with sparse crowds, indicating the model can identify features in an
individual’s trajectory that deviate from mainstream patterns. At the same time, the
point (ID 24) with the highest attention score is in a subway station area, which sug-
gests the model is highly sensitive to important geographical locations in a person’s
daily travel.
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Figure 8. Attention scores in the trajectory point location inference task. The horizontal and verti-
cal axes represent trajectory point IDs. See Appendix Table S2 for trajectory point details.

4.2.2. Inference result for parcel people flow
The model’s performance on people flow inference (Figure 9) was evaluated on the
same sample. For masked parcels, the inferred values align closely with the ground-
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cific time point of the trajectory. (b) Historical people flow values for masked parcels, showing pat-
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truth data, demonstrating the model’s proficiency in people flow imputation. For
unmasked parcels, the reconstructed values showed high fidelity to the original data.
This result suggests that the model’s information encoding and feature fusion compo-
nents effectively capture and preserve the dynamics of people flow.

To further assess the model’s understanding of urban event contexts, the input
urban event type attribute was altered to observe the impact on people flow infer-
ences. The model’s inferences correctly reflected real-world patterns: changing a holi-
day to a weekday increased the predicted people flow for relevant parcels (e.g. ID
3025 from 532 to 578), while the reverse change decreased flow for locations typically
quieter on holidays (e.g. IDs 3031, 3037, 3004). Additionally, for parcels with historically
stable people flow regardless of event type (e.g. ID 3100), the predicted value differed
from the observation by only one person.

The attention scores for people flow inference reveal the model’s reasoning process
(Figure 10). Similar to the location inference task, the model looks beyond the current
point, allocating high attention scores to areas of significant human activity, such as
train stations. Concurrently, the model also focuses on infrequent visit areas for the
user (e.g. trajectory point ID 13), which reflects its ability to capture unique individual
behavioral patterns. A key difference from the location completion task is the model’s
added focus on trajectory point ID 32 which the source data identifies as the user’s
residence. Since residential areas are often key origin/destination points and exhibit
regular temporal patterns, this focus highlights MGIM’s ability to model the spatio-
temporal dependencies of core behavioral nodes.

4.2.3. Inference result for urban events
The urban event inference task was conducted on the same test sample, with the
results presented in Table 3. The model achieved 100% accuracy under two distinct
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Figure 10. Attention scores in the parcel people flow inference task.

Table 3. Inference results for urban events.

Sample Trajectory points during holidays  Trajectory points during workday
Ground truth id: 0-18 id: 19-43
Inference results at 20% masking probability id: 0-18 id: 19-43
Inference results at 100% masking probability id: 0-18 id: 19-43

masking probabilities: 0.2 and 1.0. This accuracy, particularly under complete urban
event information masking, demonstrates that urban events can be reliably inferred
from other available spatio-temporal information, such as trajectory location and par-
cel people flow.

Observing the attention scores reveals a key difference in this task. In contrast to
other tasks that prioritize spatial information, this task demonstrates the model’s
heightened sensitivity to temporal dynamics. As illustrated in Figure 11, the model
focuses most on trajectory point IDs 19-22. The original data confirms that these
points are located precisely at the transition between a holiday and a weekday. This
targeted attention suggests that the model has learned to identify critical turning
points within urban events.

4.2.4. Inference result for time information
In the time information inference task, the model’s output demonstrates a high degree
of accuracy. As shown in Figure 12, the decoded values for unmasked time points
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Figure 13. Attention scores in the time information inference task.

closely align with the ground-truth values. For the masked time points, the inferred
results also exhibit minimal deviation from the ground-truth.

The attention score results reveal a unique focus for the time information inference
task. In addition to the current trajectory point, the model assigns high attention
weights to the first point in the sequence and to points located at day transitions
(such as points 19-22 and 32 in this case, which mark the beginning of the second
and third days). The result indicates that when performing temporal inference, the
model references trajectory points that have distinct temporal stage characteristics,
reflecting how the model leverages the sequence’s temporal structure (Figure 13).

5. Discussion

To address the challenges of spatio-temporal contextual understanding in geographic
reasoning, this study introduces the Masked Geo-Information Model (MGIM), inspired
by the masked self-supervised learning paradigm in natural language processing.
Experimental results demonstrate that MGIM exhibits stable training dynamics,
well-converged loss functions, and strong performance across multiple geographic rea-
soning tasks, validating the effectiveness of the proposed framework. However, the
contribution of MGIM extends beyond serving as a superior general learning frame-
work compared to single-task models. More importantly, the findings of this study
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reveal a possibility: that a model can move beyond mere pattern fitting to develop a
deeper semantic understanding of spatio-temporal contexts.

This semantic understanding is most clearly reflected in the analogy between MGIM
and language models. As illustrated in Figure 14, natural language understanding
requires identifying relevant contextual components in response to different queries
to produce appropriate answers (Warschauer and Healey, 1998, Karanikolas et al.
2023). MGIM constructs spatio-temporal contexts from multi-source data. It further
exhibits task-specific attention patterns that vary with the inference objective. This
ability to flexibly adapt its internal representations according to task requirements pro-
vides evidence that the model goes beyond static feature perception toward a seman-
tic understanding of geographic processes.

The effectiveness of MGIM across multiple geographic reasoning tasks provides a
foundation for analyzing the model’s spatio-temporal contextual understanding. As
shown in Figure 6f, location information contributes most to trajectory vector recon-
struction, highlighting the role of spatial position as a core anchor in geographic rea-
soning (Mai et al. 2022). Therefore, we focus on the location inference task to further
examine MGIM's performance. The observation that the mean error exceeds the
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median error indicates that prediction deviations are primarily caused by a few highly
fluctuating, non-regular scenarios, reflecting the dual nature of human mobility: high-
frequency periodic behaviors (e.g. commuting) and low-frequency, sporadic activities
(Wang et al. 2015).

For periodic behaviors, MGIM achieves high accuracy and stability, as evidenced by
the low median error, and can effectively support macroscopic analyses of urban
population dynamics (Xu et al. 2025, Yao et al. 2023). For sporadic behaviors, despite
the greater prediction difficulty (Yang et al. 2025b), the model can still produce rea-
sonable inferences based on multi-factor spatio-temporal context. For instance, in
Figure 7, the only point with a notable deviation (T-id 33) corresponds to a sporadic
behavior, yet the predicted location remains within adjacent parcels to the true posi-
tion. Through its multi-factor masking mechanism, MGIM explicitly learns semantic cor-
relations among spatial, temporal, and event features, enabling robust reasoning even
for non-periodic behaviors. MGIM consistently learns high-generalization representa-
tions from noisy and heterogeneous spatio-temporal data, accurately reflecting the
inherent uncertainty of human behavior rather than merely reproducing periodic pat-
terns, thereby demonstrating the effectiveness of the model framework.

MGIM achieves deep representations of multi-source spatio-temporal data, provid-
ing a robust foundation for modeling spatio-temporal contexts. Its high-fidelity
reconstruction demonstrates the ability to capture intrinsic relationships among spa-
tio-temporal elements. Unlike task-specific models that optimize performance for a sin-
gle objective at the expense of input integrity (Hu et al. 2025), MGIM preserves and
reconstructs masked features with high accuracy through its decoder. This indicates
that the learned trajectory vectors are not merely compressed representations but
integrated embeddings that retain complex cross-dimensional dependencies, support-
ing higher-level reasoning beyond single-task prediction.

The dynamic contextual reasoning results further demonstrate MGIM’s contextual
adaptability. As shown in Figure 9, when the contextual input of the same land parcel
is modified, the model dynamically predicts corresponding variations in people flow,
with trends closely aligned with real-world patterns. This suggests that MGIM's reason-
ing extends beyond isolated elements, enabling it to evaluate how contextual changes
influence human activity patterns and other spatio-temporal components, thereby
supporting generalized context-aware modeling.

Finally, the task-adaptive attention mechanism provides insight into MGIM’s seman-
tic understanding. As illustrated in Figures 8, 10, 11, and 13, attention distributions
vary systematically across tasks: trajectory inference emphasizes critical spatial nodes,
people flow inference focuses on origin—destination structures, and event or time
inference highlights temporal boundaries. This task-dependent reallocation of atten-
tion demonstrates MGIM'’s ability to dynamically reinterpret spatio-temporal contexts
and identify the most relevant dependencies, reflecting its generalization capability
across diverse reasoning tasks.

The semantic understanding and dynamic reasoning capabilities demonstrated by
the MGIM framework hold significant potential for addressing real-world challenges
in geographic reasoning. These capabilities suggest that MGIM could serve as a
foundational approach to support more anticipatory and context-aware decision-
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making in urban management. For instance, the model’s dynamic contextual reason-
ing capability enables what-if scenario simulations (Kishita et al. 2020). By modifying
contextual inputs to simulate corresponding shifts in people flow patterns. This
could allow urban analysts to explore the potential impacts of hypothetical events,
such as the closure of major transport hubs or large public gatherings, and to iden-
tify high-risk areas in advance (Yazdani and Haghani, 2023). In addition, the model’s
robust performance in trajectory inference may help planners better evaluate how
new infrastructure developments, including metro stations, might influence human
mobility patterns (Tsunoda et al. 2020). While further validation and integration into
operational decision-support systems are still required, these findings highlight
MGIM’s potential as a step toward more fine-grained, adaptive, and predictive
approaches to urban governance.

Although the study has made notable progress, several limitations remain, and
future work can advance in the following directions. First, the current modeling of
parcel functionality, based on aggregated POI categories, could be enhanced with
more detailed representation schemes to enable finer-grained, interpretable quantita-
tive analysis. Second, the model’s generalization, currently limited by data availability
to a single region and basic event types, requires validation across more diverse geo-
graphic and event contexts. Employing transfer learning techniques for such valid-
ation would be crucial for establishing the model’s broader applicability and practical
value.

6. Conclusion

This paper introduced MGIM, demonstrating the effectiveness of a self-supervised
paradigm for geographic reasoning. By integrating a custom masking strategy with
multi-source data fusion, MGIM learns deep contextual relationships, achieving high
accuracy and reconstruction fidelity across diverse tasks. The model’s effectiveness was
validated through extensive experiments, where it achieved high accuracy on a diverse
suite of downstream tasks while maintaining high fidelity in feature reconstruction.
Another key capability of the MGIM is contextual adaptability, a feature that enables
the model to dynamically modify its inferences based on evolving spatio-temporal
conditions. The adaptive attention mechanism of MGIM further demonstrates its
strong capability to comprehend spatio-temporal contexts, exhibiting a semantic
understanding ability analogous to that of language models.

By adapting the masked-modeling paradigm to the heterogeneity of geospatial
data, MGIM provides a robust, domain-specific foundation model capable of capturing
complex spatio-temporal dependencies without relying on generic language models.
Beyond methodological contributions, the framework offers researchers and urban
managers a unified way to learn unified spatio-temporal representations that support
multiple downstream analyses, such as scenario-based exploration of human mobility
responses to urban events or infrastructure changes and trajectory-based assessment
of mobility impacts, without retraining separate models for each task. The successful
implementation confirms the feasibility of building powerful, context-aware geo-
graphic foundation models and establishes the proposed MGIM as a novel approach



24 (&) X ZHANG ET AL.

for future research in general-purpose GeoAl. Future work will focus on expanding the
model’s generalization capabilities across more diverse urban environments and
exploring its potential in fine-grained POl semantic analysis.
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