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ABSTRACT 
Effective modeling of spatio-temporal contexts to support geo
graphic reasoning is essential for advancing Geospatial Artificial 
Intelligence. Inspired by masked language models, this paper 
introduces the Masked Geographical Information Model (MGIM), a 
novel self-supervised framework for learning context-aware repre
sentations from multi-source spatio-temporal data. The frame
work’s core innovations include a parcel-scale method for multi- 
source data fusion and a custom self-supervised masking strategy 
for diverse geographic elements. This integrated modeling 
approach enables the model to capture complex spatio-temporal 
relationships and achieve consistently strong performance across 
diverse geographic reasoning tasks, such as trajectory inference, 
people flow inference, event identification, and land parcel func
tion analysis. MGIM accurately reasons from spatio-temporal con
texts and dynamically adjusts inferences according to contextual 
changes. The visualization of attention mechanisms further illus
trates MGIM’s capacity to construct contextually-aware representa
tions and task-specific attention patterns analogous to natural 
language processing models. This study presents a new paradigm 
for general-purpose spatio-temporal modeling in real-world geo
graphic scenarios, offering significant theoretical and practical 
value, and promising an effective solution for building a geo
graphic foundation model.
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1. Introduction

Cities represent complex and dynamic systems formed by interdependent interactions 
among human mobility, land structure, economic activity, and social processes (Wang 
and Biljecki, 2022). Gaining a deep understanding of these spatio-temporal 
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interdependencies and reasoning about their interactions are crucial for applications 
such as smart city management, urban planning, and emergency response (Cao et al. 
2025). For example, urban planners need to anticipate how new development projects 
may affect surrounding commercial vitality and residents’ travel behaviors, while emer
gency managers must identify potential risk areas and respond to unexpected inci
dents based on real-time population movement, traffic conditions, and event 
information. These reasoning tasks require models capable of integrated, context-sen
sitive reasoning to interpret the dynamic behavior of urban systems.

Geographic reasoning refers to the process of using available spatio-temporal infor
mation to determine what to believe or what actions to take in a specific geographic 
context (Hooghuis et al. 2014). This reasoning process is analogous to the human cog
nitive process of perceiving the environment, analyzing situations, and solving prob
lems (Ishikawa, 2013, Du et al. 2002), and it constitutes a fundamental basis for 
developing intelligent models capable of understanding and simulating complex geo
graphic systems.

In existing GeoAI approaches for geographic inference, mainstream research para
digms typically decompose complex urban environments into a series of independent 
prediction tasks. Although such models often achieve high accuracy on specific tasks, 
their task-specific nature overlooks the ubiquitous dynamic interdependencies among 
different geographic phenomena. This task-centric simplification of the real world con
strains the models’ holistic understanding of cities as complex systems, thereby limit
ing their generalization and applicability in dynamic real-world scenarios. In the 
context of contemporary GeoAI and large models, geographic reasoning increasingly 
emphasizes a cross-element, cross-task, and transferable general reasoning capability, 
which fundamentally relies on a holistic understanding of the intertwined relationships 
among multiple elements within complex spatio-temporal contexts, going beyond 
inference targeting individual geographic phenomena.

Moving beyond single-target prediction toward general geographic reasoning mod
els represents a crucial step for advancing GeoAI, as it enables the integration of mul
tiple spatial and temporal dependencies (Janowicz et al. 2025). At the core of such 
models is the ability to transcend single-phenomenon analysis and model multi-elem
ent spatio-temporal contexts (Zhao et al. 2023). This necessitates a novel framework 
that can autonomously learn complex intrinsic relationships from multi-source data. 
Such a framework must build generalizable, adaptable representations of spatio-tem
poral contexts for diverse reasoning tasks, providing a foundation for simulating real- 
world environments.

1.1. Spatio-temporal modeling in GeoAI: from single-task prediction to multi- 
source fusion

In recent years, artificial intelligence technologies, particularly deep learning, have 
been widely applied in GeoAI (Janowicz et al. 2020). Researchers have developed spe
cialized deep learning models for various geographic tasks, achieving notable results 
in trajectory prediction (Musleh et al. 2022), human and traffic flow forecasting (Ali 
et al. 2022), urban anomaly detection (Sharif et al. 2025), and urban functional zone 
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identification (Hu et al. 2023). However, these studies generally follow a paradigm that 
decomposes complex geographic problems into well-defined single-target supervised 
learning tasks. The limitation is that models are typically optimized for specific tasks. 
They struggle to capture the frequent interactions among geographic phenomena, 
and this constrains their holistic understanding of urban systems.

To overcome the limitations of single data sources, researchers have begun explor
ing the integration of multi-source heterogeneous data to enhance model perform
ance. For instance, in urban functional zone identification, incorporating economic 
factors (Tu et al. 2024), transportation elements (Kanyepe et al. 2021), and human 
activity data can significantly improve the accuracy of land-use classification. Similarly, 
in human mobility prediction, integrating geographic semantic information has been 
shown to enhance the precision of next-location forecasting (Yao et al. 2023). These 
studies collectively highlight the value of multi-source data fusion in GeoAI 
applications.

Nevertheless, most existing data fusion approaches mainly rely on feature concaten
ation or treat additional data as auxiliary variables to improve the prediction accuracy 
of a predefined target. This approach is essentially a prediction-oriented, unidirectional 
form of data fusion and does not explicitly model the intrinsic, bidirectional, and com
plex spatio-temporal dependencies among different geographic phenomena 
(Choudhury et al. 2024). In reality, the spatio-temporal context represents an inte
grated system of geographic processes in which human activities, land use, and eco
nomic dynamics interact and evolve together (Li et al. 2022). Therefore, new 
approaches are needed that go beyond single-target prediction frameworks, enabling 
models to learn and represent complex spatio-temporal contexts.

1.2. Insights from NLP: masked self-supervised learning and contextual 
understanding

In recent years, natural language processing (NLP) technologies, particularly large lan
guage models, have achieved revolutionary breakthroughs, demonstrating strong 
capabilities in understanding complex textual contexts. The success of NLP has largely 
been attributed to the masked self-supervised learning paradigm (Devlin et al. 2019). 
By randomly masking portions of text in massive corpora and training models to pre
dict the masked content based on context, these models can learn the semantic and 
syntactic relationships among words (Zhu et al. 2021).

The masked self-supervised learning paradigm provides valuable insights for devel
oping geospatial models with spatio-temporal contextual understanding. Prior studies 
have demonstrated structural and semantic similarities between geospatial data and 
natural language text (Huang et al. 2025). For instance, urban regions can be concep
tualized as documents, different land-use types as topics, and the spatial distribution 
of points of interest as word sequences within a document (Yao et al. 2017). Individual 
mobility trajectories can be regarded as sequences of spatio-temporal tokens (Musleh 
et al. 2022). These studies support the feasibility of drawing analogies between geo
spatial structures and linguistic constructs, opening new avenues for developing mod
els capable of understanding complex spatio-temporal contexts.
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1.3. Existing attempts and limitations of geospatial masked models

Inspired by advances in NLP, some studies have begun exploring the application of 
masked self-supervised learning to geospatial modeling. For example, Zhang et al. 
(2025) proposed a masked learning framework for region-focused learning in traffic 
flow prediction, while Yang et al.(2025a) introduced a masked reconstruction approach 
for the completion of DEM data. The UniST model (Yuan et al. 2024) also employs a 
mask-based spatio-temporal contextual modeling mechanism, demonstrating general
ization across multiple urban spatio-temporal prediction tasks. These studies suggest 
that self-supervised learning is an effective approach to enhancing the reasoning capa
bilities of geospatial models. However, their task objectives are primarily focused on 
single numerical regression tasks, limiting applicability to broader geographic reason
ing tasks, such as functional zone identification or event inference. Moreover, they typ
ically rely on irregular grids that may fragment geographic entities and adopt masking 
strategies along a single dimension, overlooking the intrinsic relationships among mul
tiple attributes present in real-world scenarios.

Although GeoAI has made preliminary progress in multi-source data fusion and 
self-supervised learning, there remains an urgent need for a general spatio-temporal 
contextual model that can overcome existing limitations. Current studies exhibit short
comings in the semantic representation of spatial units, task generalization, and multi- 
dimensional masking strategies. These limitations constrain the models’ capacity for 
comprehensive understanding and reasoning within complex geographic systems. The 
proposed MGIM framework aims to fill this gap. The main contributions of this work 
are as follows:

1. A novel framework for general geographic reasoning: We design and implement 
MGIM, a new self-supervised framework that operationalizes the masked-modeling 
paradigm for GeoAI. Its core innovations are a parcel-scale fusion method that 
aligns diverse, multi-source spatio-temporal data and a custom multi-element 
masking strategy specifically designed to capture the complex interdependencies 
among these geographic elements.

2. Validation of generalization across diverse tasks: We validate the effectiveness and 
high generalization of MGIM. A single pre-trained MGIM achieves strong perform
ance across multiple geographic reasoning tasks, including trajectory location, 
people flow, urban event, and land parcel function inference.

3. Evidence of spatio-temporal contextual understanding: We provide evidence that 
MGIM moves beyond simple pattern fitting to acquire a functional understanding 
of spatio-temporal contexts. Through task-adaptive attention analysis and dynamic 
reasoning experiments, we show that the model can learn the functional implica
tions of context on geographic processes, suggesting a semantic reasoning cap
ability analogous to that of language models.

2. Study area and data

This study focuses on the 23 special wards of Tokyo, Japan, a region spanning 
approximately 627.5 km2 with a population of around 9.7 million. As the political, 
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economic, and cultural center of Japan and a quintessential global metropolis, the 23 
wards of Tokyo are characterized by a vast scale, functional complexity, and high 
population density. These attributes make the area a representative study case of 
large-scale urban development, ideal for investigating spatial distribution patterns and 
the functional evolution of major urban centers.

The following datasets support our analysis. The POI data is derived from the 
Telepoint Pack DB (Yellow Pages), which provides multiple attributes including the POI 
name, telephone number, address, postal code, category and other information. As 
shown in Table S1, several key attributes are selected for display. The POIs are catego
rized into 25 types, such as education, shopping, food service, among others. Within 
the study area, a total of 407,020 POIs are included, and their spatial distribution is 
illustrated in Figure 1a.

The fundamental spatial unit for analysis is the land parcel, which was generated 
by segmenting the area based on the OpenStreetMap (OSM) road network. After 
removing parcels that did not contain any POIs, a total of 22,455 parcels were retained 
for the study. The distribution of parcel areas after division is shown in Figure 1b, with 
a median value of 6,036 m2.

The trajectory data were obtained from the ‘Konzatsu-Tokei (R)’ dataset, consisting 
of mobile device location information for 1,271,557 users within the study area 
throughout May 2024 (Li et al. 2025). To focus on macroscopic movements between 
land parcels and protect individual privacy, the trajectory data were preprocessed. 
Duplicate and abnormal points were first removed, and then each trajectory point was 
matched to its corresponding parcel. For consecutive points falling within the same 
parcel, only the entry and exit records were retained. This procedure simplifies intra- 
parcel activities, eliminates positioning errors and redundancies (Lin et al. 2025), and 
extracts key inter-parcel travel chains to support the analysis of spatial interactions at 
the city scale.

By spatially matching the trajectory data with the land parcel data, the hourly peo
ple flow dynamics for each parcel throughout May were calculated. As depicted in 
Figure 1c, the hourly people flow data exhibit a pronounced long-tail distribution, 
indicating that a small minority of parcels accommodate most of the human activity.

3. Methodology

In Figure 2, the Masked Geographic Information Model (MGIM) proposed in this 
study comprises five key modules: (1) Spatio-temporal Alignment of Multi-source 
Data: At the parcel scale, multi-source spatio-temporal data are aligned to construct 
trajectory point sequences that integrate diverse information sources. (2) Spatio-tem
poral Masking Strategy: A variety of masking methods are designed to target the 
multi-source information associated with each trajectory point, thereby generating 
diverse self-supervised learning tasks. (3) Spatio-temporal Element Encoding: The 
input spatio-temporal elements are uniformly encoded to obtain their corresponding 
embedding representations. (4) Feature Fusion and Trajectory Reconstruction: The 
encoded features are fused, and a Transformer architecture is employed to infer the 
masked information, thereby capturing complex spatio-temporal contextual 
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relationships. (5) Multi-source Information Decoding: Multiple decoders are utilized 
to reconstruct the various types of spatio-temporal information from the recon
structed trajectory vectors.

3.1. Multi-source spatio-temporal data alignment

To align the multi-source, heterogeneous data, this study employs land parcels as the 
fundamental spatial units for analysis. This parcel-based approach is chosen over tradi
tional grid-based partitioning to avoid the arbitrary splitting of real-world geographic 
features.

Figure 1. (a) The Study Area: Tokyo’s 23 Special Wards and the Density of POI Distribution at the 
Parcel Scale. (b) Statistical Distribution of Land Parcel Areas. (c) Distribution of Parcel-Level People 
Flow in the Study Area.
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As illustrated in Figure 3, to construct structured inputs for embedding and rela
tionship modeling, we first align the multi-source spatio-temporal data. A raw trajec
tory sequence is consequently transformed into an augmented trajectory sequence.

We define the augmented trajectory sequence as S ¼ p1, p2, � � � , pnh i; where n is 
the sequence length. Each pn in this sequence is an augmented trajectory point, repre
senting a multi-dimensional feature representation of the contextual information asso
ciated with the original point, generated by aligning it to its corresponding land 
parcel. This augmented trajectory point pn is defined as: pn ¼ En, Tn, Ln, Dn, Pnð Þ; where 
the components are defined as follows:

� En denotes the urban event information associated with the trajectory point. In this 
study, urban events are simplified as a binary variable distinguishing between 
workdays and holidays.

� Tn represents the discrete timestamp of the trajectory point.
� Ln corresponds to the coordinates of the matched parcel center.
� Dn refers to the population density within matched parcel during the time Tn:

� Pn denotes the set of POIs within the matched parcel.

The pn is designed to encode not only time (Tn) and location (Ln), but also the 
event context (En), population density (Dn), and functional attributes (Pn). The aug
mented trajectory sequence S serves as the input for our subsequent models.

3.2. Masking strategy for multiple spatio-temporal elements

The model is based on a masked self-supervised learning approach, analogous to that 
of Masked Language Models (MLMs). However, a fundamental challenge arises from 

Figure 2. Framework of MGIM.
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the data’s structure: while MLMs mask individual tokens in a sequence, each trajectory 
point in this work comprises a set of heterogeneous spatio-temporal attributes. 
Consequently, a naive strategy of masking an entire trajectory point as a single unit 
would impede the model’s ability to learn the complex interdependencies among 
these intra-point attributes (Choudhury et al. 2024). To overcome this limitation, this 
paper proposes a set of fine-grained masking strategies.

Three masking strategies are used: (1) Single Element Spatio-temporal Masking: The 
POI, urban event, people flow, time, and location information associated with a trajec
tory point are each masked independently. This allows for an examination of how the 
absence of a single element impacts the model’s predictive capabilities. (2) Full 
Element Spatio-temporal Masking: All spatio-temporal attributes contained within a 
trajectory point are masked together as a single unit. This simulates the scenario of a 
completely missing trajectory point and enhances the model’s ability to recover and 
predict missing points. (3) Random Masking: Within a sequence of trajectory points, 
either single-element masking or full-element masking is randomly applied. This strat
egy improves the model’s robustness against complex patterns of missing data. The 
masking process is mathematically expressed as:

Mask Sð Þ ¼ 1 − Mð Þ � SþM� −1ð Þ (1) 

Figure 3. Spatio-temporal alignment of multi-source data at the parcel scale.
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m is a binary mask indicator where a value of 1 signifies a masked element and 0 an 
unmasked element. The masked elements are subsequently replaced with a special 
value whereas unmasked elements retain their original information.

3.3. Multi-Spatio-temporal element encoding

An appropriate encoding and embedding methodology is crucial for enhancing a 
deep learning model’s ability to perceive the heterogeneity and spatio-temporal 
dependencies inherent in multi-source data. This is required for the subsequent 
phases of mask-based feature selection and interaction modeling. In this study, distinct 
encoding methods are employed for different types of spatio-temporal elements, 
which are detailed in the following four subsections. After encoding, each of the fea
tures is processed by its respective linear layer to be projected into a common dimen
sionality, after which they undergo feature fusion.

3.3.1. Parcel functional attribute encoding
The Semantic2Vec method (Huang et al. 2022) is used to vectorize POI categories, 
thereby obtaining an embedding vector representation for each category. To create a 
parcel-level representation, the embedding vectors of all POIs located within the 
boundaries of a given parcel are aggregated by summation. The resulting vector is 
then L2-normalized to generate the final functional attribute encoding for that parcel. 
The specific calculation method is:

Vpoi ¼

Pn
i¼1 ei

j
Pn

i¼1 eijj
�
� (4) 

ei represents the embedding vector of the i-th POI within the parcel, n is the total 
number of POIs in the parcel, and Vpoi is the normalized functional attribute vector for 
the parcel.

3.3.2. Urban event and temporal encoding
The cyclical nature of hourly information is captured using sine and cosine functions, 
which map discrete hours into a continuous vector space. The temporal encoding vec
tor Vtime is mathematically expressed as:

Vtime ¼ ½sin
2p·hour

24

� �

, cos
2p·hour

24

� �

� (5) 
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hour denotes the hour of the day (ranging from 0 to 23) for the current trajec
tory point’s timestamp. This cyclic encoding preserves temporal continuity and pre
vents discontinuities caused by treating time as a scalar variable. Concurrently, to 
differentiate between holidays and workdays, an event flag vector Vevent is defined as 
follows:

Vevent ¼
1 if event 6¼ holiday
2 if event ¼ holiday

�

(6) 

By multiplying the temporal encoding vector with the event flag vector, a joint 
encoding result is obtained. This result is then passed through a linear transformation 
function f �ð Þ to compute the temporal embedding for the event:

E ¼ f Vtime � Veventð Þ (7) 

The output of this encoding module, E is a fixed-dimension feature representation. 
This encoding captures temporal periodicity and increases model sensitivity to urban 
events, thereby providing a robust feature foundation for subsequent multi-source 
fusion and prediction tasks.

3.3.3. People flow encoding
To characterize people flow patterns, this study constructs a time-series sequence 
ðd1, d2 . . . d24Þ based on the people flow data for the parcel associated with the cur
rent trajectory point over the preceding 24 hours. Here, dt represents the number of 
people in the parcel during the t-th hour. The LSTM is used to model temporal pat
terns in people flow. This produces Vdensity; an encoding vector representing the par
cel’s people flow feature. Its mathematical expression is as:

Vdensity ¼ LSTM d1, d2 . . . d24ð Þ (8) 

The LSTM effectively captures the dynamic evolutionary patterns of people flow, 
generating stable time series embedding representations (Yu et al. 2019). The Vdensity 

provides information about human mobility for the MGIM.

3.3.4. Location information encoding
To ensure numerical stability and capture fine-grained spatial variations, land parcel 
locations are represented using projected offsets rather than raw coordinates. All tra
jectory points are projected onto the UTM Zone 54 N system (EPSG:32654), which is 
appropriate for Tokyo. To minimize issues related to numerical precision, coordinates 
are stored as offsets relative to the southwest corner of the study area’s bounding 
box:

Vpos ¼ ðXi − Xmin,  Yi − YminÞ (9) 

Xi,  Yið Þ represents the planar coordinates of a trajectory point i in the projected 
coordinate system. ðXmin,  YminÞ represents the coordinates of the southwest corner of 
the study area’s bounding box. Vpos is the resulting relative positional encoding for 
the trajectory point.
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3.4. Feature fusion module

The feature fusion module is designed to integrate complementary information from 
multi-source data and mitigate the limitations of single-feature representations. 
Feature aggregation is first performed through channel-wise concatenation, followed 
by convolutional layers and activation functions that learn adaptive feature weights. 
These weights modulate the fused representation, enhancing the model’s expressive 
capacity and generalization. A residual connection is incorporated to preserve original 
information and prevent feature degradation. The module architecture is illustrated in 
Figure 4.

3.5. Loss functions definition

A multi-task loss function is designed to jointly optimize diverse objectives, including 
trajectory vector completion and multiple decoding tasks, arising from our multi-spa
tio-temporal masking strategy. The trajectory vector reconstruction loss Lmgm primarily 
updates the model modules responsible for completing missing information, including 
the feature encoding, feature fusion, and Transformer modules. It is mathematically 
defined as the Euclidean distance between the predicted and ground-truth trajectory 
vectors:

Lmgm ¼
1
N

X
|Ptrajv − Ltrajv |2 (10) 

The Ptrajv represents the model’s output for the reconstructed trajectory vector. The 
Ltrajv is the ground-truth trajectory vector. N is the total number of samples.

To further optimize the inference performance for different types of information, 
this study applies several decoding loss functions, each targeting its corresponding 
encoding module. For temporal information prediction, the decoder loss uses the 
Mean Absolute Percentage Error (MAPE), which is defined as:

Ltime ¼

P
Mape Ptime, Ltimeð Þ

N
(11) 

Ptime is the predicted time value and Ltime is the ground-truth time value.

Figure 4. Feature fusion module.
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The loss for the location information decoding module is measured by the distance 
between the predicted and ground-truth locations:

Lloc ¼

P ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Px − lxð Þ
2
þ Py − ly
� �2

q

N
(12) 

Px; Py are the predicted location coordinates output by the model, while lx , ly are the 
ground-truth location coordinates.

Given the prominent long-tail distribution of people flow data, using Mean Squared 
Error (MSE) can cause the model to be dominated by a small number of high-value 
samples, thereby degrading generalization performance. Therefore, we employ the 
Huber loss. The Huber loss function provides the fine-grained optimization of a 
squared loss for small errors while using a linear loss for large errors to reduce the 
impact of high-value outliers. This approach improves the model’s robustness to data 
imbalance, and is defined as follows:

Lpeo ¼

1

2 Ppeo − Lpeoð Þ
2 if Ppeo − Lpeo

�
�

�
� � d

d· Ppeo − Lpeo

�
�

�
� −

d

2

� �

if jPpeo − Lpeoj > d

8
>>><

>>>:

(13) 

Ppeo represents the predicted people flow value. Lpeo is the actual observed people 
flow value. d is a hyperparameter used to control the robustness of the loss function.

The urban event decoding module involves a classic classification task. Therefore, 
this study uses the Cross-Entropy Loss function to classify the event types:

Levent ¼

P
CrossEntropy Pevent , Leventð Þ

N
(14) 

Pevent is predicted probability distribution over the event classes. Levent is the ground- 
truth class label.

The land parcel functional attribute decoding module focuses on learning continu
ous semantic representations rather than discrete classes. Therefore, this study 
employs the Cosine Similarity Loss to measure the consistency between the predicted 
and ground-truth functional attribute vectors:

Lfunc ¼ 1 −
P

CosineSim Pfunc, Lfuncð Þ

N
(15) 

where Pfunc denotes the predicted functional attribute vector, and Lfunc represents the 
ground-truth vector.

3.6. Experimental setup and evaluation strategy

To evaluate the effectiveness of the MGIM framework, we randomly partitioned the 
trajectory sequences into training and testing sets at a 9:1 ratio. To prevent data leak
age, we ensured that all trajectories belonging to a single user were restricted to only 
one of the sets. For the model configuration, a pre-training masking probability of 0.2 
was selected. The empirical justification for this choice is detailed in Appendix B. 
Furthermore, to qualitatively demonstrate the model’s performance across diverse 
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tasks, we extracted a representative three-day trajectory sequence from the test set 
for case studies and visualization. This sample covers both weekdays and holidays and 
includes distinct residential and outdoor activities, providing a robust basis for inter
pretative analysis. Detailed data for this sample is available in Table S2.

To evaluate the model’s performance across diverse geographic reasoning tasks, we 
employ a suite of task-specific metrics. For numerical regression tasks, including trajec
tory vector reconstruction, location inference (m), and time inference (h), we measure 
performance using the Euclidean distance or Mean Absolute Error to quantify physical 
deviations. For people flow inference, both Mean Absolute Percentage Error (MAPE) 
and Root Mean Square Error (RMSE) are reported to account for the data’s long-tail 
distribution. And for semantic tasks, we use classification accuracy (%) for urban events 
and cosine similarity for land parcel functions.

4. Results

The results are organized in two main parts. Section 4.1 provides a quantitative evalu
ation of model performance, analyzing the pre-training convergence and the impact 
of varying masking ratios on inference tasks. Section 4.2 presents case studies and 
visualization, utilizing representative trajectory sequences to illustrate specific inference 
outcomes and attention patterns.

4.1. Model training and quantitative performance evaluation

4.1.1. Pre-training results under the Random masking strategy
Figure 5 illustrates the pre-training convergence using a random masking strategy. As 
training progresses, the loss curves for all six tasks consistently decrease and trend 
towards convergence. These results indicate the model’s convergence and stability.

Figure 5. Pre-training convergence curves for all tasks under the random masking strategy. The 
plots show training loss versus test error/accuracy for trajectory vector reconstruction and the five 
spatio-temporal element inference tasks.
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Table 1 presents the model’s final loss values and performance metrics on the test 
set after pre-training. The model demonstrates robust performance across all objec
tives, achieving low inference errors in continuous spatio-temporal tasks while main
taining high fidelity in semantic inference tasks. The results validate the effectiveness 
of the proposed method and the MGIM’s multi-task inference capability.

4.1.2. Evaluation of model performance for inference tasks
Based on the pre-trained model, we conducted few-shot fine-tuning tests across five 
inference tasks. Compared to the pre-training baseline, the fine-tuned model exhibited 
consistent performance improvements across all metrics. As presented in Figure 6 and 
Table 2, the model demonstrated robust performance at a 0.2 masking probability, 
achieving high accuracy in semantic tasks and low error in numerical spatio-temporal 
inferences. Notably, the significant disparity between the mean and median location 
inference errors suggests that the overall metric is disproportionately skewed by a 
small number of high-error outliers, a phenomenon further examined in the discussion 
section.

Figure 6 illustrates a consistent performance degradation across all tasks as the 
masking probability increases. Inference errors for location (a), time (d), and people 
flow (c) reach their minimum at a masking probability of 0.2–0.3 before rising sharply. 
In the case of urban events (b) and parcel functions (e), accuracies peak within the 

Table 1. Final loss and performance of the pre-trained model.
Task type Train loss Performance

Trajectory vector reconstruction (Lmgm) 7.11 7.15
People flow 85.79 MAPE: 0.48 

RMSE: 30.4 people
Trajectory point location 415.21 Mean:575.38 m
Time 1.79 3.55 h
Urban event 0.03 96.98%
Function of land parcel 0.04 0.94

Figure 6. Model performance on spatio-temporal inference tasks and the corresponding change in 
trajectory vector reconstruction loss across different masking probabilities. The x-axis represents the 
masking probability.
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0.1–0.25 range and subsequently follow a fluctuating downward trend. These results 
show that MGIM retains robust reasoning capabilities until the context becomes exces
sively sparse. The model maintains notable resilience in tasks (b) and (e), demonstrat
ing the ability to infer semantic information even under high masking ratios.

The relative importance of each spatio-temporal element is determined by compar
ing their impact on trajectory vector reconstruction loss under various masking pro
portions. Figure 6f highlights the hierarchy of influence among elements. Location 
information has the most significant impact, followed by time, urban events, and par
cel functional attributes. In contrast, people flow exerts a less significant influence, 
although its associated loss consistently increases with the masking probability.

4.2. Case studies and visualization across different tasks

To further demonstrate the model’s performance across different tasks, we randomly 
selected a real trajectory sequence of a user from the preprocessed test set for case study 
and visualization. The selected trajectory spans three days and contains a total of 44 tra
jectory points, covering both weekdays and a holiday. It includes clearly identifiable resi
dential locations and outdoor activities, making it representative and suitable for 
interpretative analysis. All results presented below are based on this sample. Detailed 
information about the trajectory sequence can be found in the appendix Table S2.

4.2.1. Inference result for trajectory location
With the masking probability set to 0.2, the model was tasked with inferring the 
masked locations. Figure 7 shows that 87.5% of the masked points were correctly 
restored to their original parcels. Only a single point (T-id 33) exhibited a minor devi
ation, landing adjacent to its true parcel. The result demonstrates that the proposed 
model can accurately infer masked trajectory locations.

Visualizing the Transformer’s attention scores (Figure 8) reveals that when recon
structing a trajectory vector, the model does not just focus on the current point but 
also considers information from other key points in the sequence. In this location 
inference example, the model paid significant attention to trajectory points with IDs 8, 
13, 19, 24, and 28. An analysis based on the raw data shows that points 8, 13, 30, and 
28 are in areas with sparse crowds, indicating the model can identify features in an 
individual’s trajectory that deviate from mainstream patterns. At the same time, the 
point (ID 24) with the highest attention score is in a subway station area, which sug
gests the model is highly sensitive to important geographical locations in a person’s 
daily travel.

Table 2. Results across multiple geographic inference tasks at 0.2 
masking probability.
Inference tasks Performance

People flow MAPE: 0.336 
RMSE: 26.05 people

Trajectory point location Mean: 504.15 m 
Median: 284.44 m

Time 2.31h
Urban event 97.00%
Function of parcel 0.95
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4.2.2. Inference result for parcel people flow
The model’s performance on people flow inference (Figure 9) was evaluated on the 
same sample. For masked parcels, the inferred values align closely with the ground- 

Figure 7. Visualization of Trajectory Location Inference Result. Blue markers represent true trajec
tory points, while red markers represent the model’s inferred results after the true values were 
masked. The ground-truth trajectory data is detailed in Appendix Table S2.

Figure 8. Attention scores in the trajectory point location inference task. The horizontal and verti
cal axes represent trajectory point IDs. See Appendix Table S2 for trajectory point details.
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truth data, demonstrating the model’s proficiency in people flow imputation. For 
unmasked parcels, the reconstructed values showed high fidelity to the original data. 
This result suggests that the model’s information encoding and feature fusion compo
nents effectively capture and preserve the dynamics of people flow.

To further assess the model’s understanding of urban event contexts, the input 
urban event type attribute was altered to observe the impact on people flow infer
ences. The model’s inferences correctly reflected real-world patterns: changing a holi
day to a weekday increased the predicted people flow for relevant parcels (e.g. ID 
3025 from 532 to 578), while the reverse change decreased flow for locations typically 
quieter on holidays (e.g. IDs 3031, 3037, 3004). Additionally, for parcels with historically 
stable people flow regardless of event type (e.g. ID 3100), the predicted value differed 
from the observation by only one person.

The attention scores for people flow inference reveal the model’s reasoning process 
(Figure 10). Similar to the location inference task, the model looks beyond the current 
point, allocating high attention scores to areas of significant human activity, such as 
train stations. Concurrently, the model also focuses on infrequent visit areas for the 
user (e.g. trajectory point ID 13), which reflects its ability to capture unique individual 
behavioral patterns. A key difference from the location completion task is the model’s 
added focus on trajectory point ID 32 which the source data identifies as the user’s 
residence. Since residential areas are often key origin/destination points and exhibit 
regular temporal patterns, this focus highlights MGIM’s ability to model the spatio- 
temporal dependencies of core behavioral nodes.

4.2.3. Inference result for urban events
The urban event inference task was conducted on the same test sample, with the 
results presented in Table 3. The model achieved 100% accuracy under two distinct 

Figure 9. Inference results for parcel people flow: (a) People flow of the parcel visited at each spe
cific time point of the trajectory. (b) Historical people flow values for masked parcels, showing pat
terns for both holidays and weekdays.
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masking probabilities: 0.2 and 1.0. This accuracy, particularly under complete urban 
event information masking, demonstrates that urban events can be reliably inferred 
from other available spatio-temporal information, such as trajectory location and par
cel people flow.

Observing the attention scores reveals a key difference in this task. In contrast to 
other tasks that prioritize spatial information, this task demonstrates the model’s 
heightened sensitivity to temporal dynamics. As illustrated in Figure 11, the model 
focuses most on trajectory point IDs 19–22. The original data confirms that these 
points are located precisely at the transition between a holiday and a weekday. This 
targeted attention suggests that the model has learned to identify critical turning 
points within urban events.

4.2.4. Inference result for time information
In the time information inference task, the model’s output demonstrates a high degree 
of accuracy. As shown in Figure 12, the decoded values for unmasked time points 

Figure 10. Attention scores in the parcel people flow inference task.

Table 3. Inference results for urban events.
Sample Trajectory points during holidays Trajectory points during workday

Ground truth id: 0-18 id: 19-43
Inference results at 20% masking probability id: 0-18 id: 19-43
Inference results at 100% masking probability id: 0-18 id: 19-43
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Figure 11. Attention scores in the urban event inference task.

Figure 12. Inference results for time information.
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closely align with the ground-truth values. For the masked time points, the inferred 
results also exhibit minimal deviation from the ground-truth.

The attention score results reveal a unique focus for the time information inference 
task. In addition to the current trajectory point, the model assigns high attention 
weights to the first point in the sequence and to points located at day transitions 
(such as points 19–22 and 32 in this case, which mark the beginning of the second 
and third days). The result indicates that when performing temporal inference, the 
model references trajectory points that have distinct temporal stage characteristics, 
reflecting how the model leverages the sequence’s temporal structure (Figure 13).

5. Discussion

To address the challenges of spatio-temporal contextual understanding in geographic 
reasoning, this study introduces the Masked Geo-Information Model (MGIM), inspired 
by the masked self-supervised learning paradigm in natural language processing. 
Experimental results demonstrate that MGIM exhibits stable training dynamics, 
well-converged loss functions, and strong performance across multiple geographic rea
soning tasks, validating the effectiveness of the proposed framework. However, the 
contribution of MGIM extends beyond serving as a superior general learning frame
work compared to single-task models. More importantly, the findings of this study 

Figure 13. Attention scores in the time information inference task.
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reveal a possibility: that a model can move beyond mere pattern fitting to develop a 
deeper semantic understanding of spatio-temporal contexts.

This semantic understanding is most clearly reflected in the analogy between MGIM 
and language models. As illustrated in Figure 14, natural language understanding 
requires identifying relevant contextual components in response to different queries 
to produce appropriate answers (Warschauer and Healey, 1998, Karanikolas et al. 
2023). MGIM constructs spatio-temporal contexts from multi-source data. It further 
exhibits task-specific attention patterns that vary with the inference objective. This 
ability to flexibly adapt its internal representations according to task requirements pro
vides evidence that the model goes beyond static feature perception toward a seman
tic understanding of geographic processes.

The effectiveness of MGIM across multiple geographic reasoning tasks provides a 
foundation for analyzing the model’s spatio-temporal contextual understanding. As 
shown in Figure 6f, location information contributes most to trajectory vector recon
struction, highlighting the role of spatial position as a core anchor in geographic rea
soning (Mai et al. 2022). Therefore, we focus on the location inference task to further 
examine MGIM’s performance. The observation that the mean error exceeds the 

Figure 14. The process of contextual understanding of natural language texts across different 
scenarios.
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median error indicates that prediction deviations are primarily caused by a few highly 
fluctuating, non-regular scenarios, reflecting the dual nature of human mobility: high- 
frequency periodic behaviors (e.g. commuting) and low-frequency, sporadic activities 
(Wang et al. 2015).

For periodic behaviors, MGIM achieves high accuracy and stability, as evidenced by 
the low median error, and can effectively support macroscopic analyses of urban 
population dynamics (Xu et al. 2025, Yao et al. 2023). For sporadic behaviors, despite 
the greater prediction difficulty (Yang et al. 2025b), the model can still produce rea
sonable inferences based on multi-factor spatio-temporal context. For instance, in 
Figure 7, the only point with a notable deviation (T-id 33) corresponds to a sporadic 
behavior, yet the predicted location remains within adjacent parcels to the true posi
tion. Through its multi-factor masking mechanism, MGIM explicitly learns semantic cor
relations among spatial, temporal, and event features, enabling robust reasoning even 
for non-periodic behaviors. MGIM consistently learns high-generalization representa
tions from noisy and heterogeneous spatio-temporal data, accurately reflecting the 
inherent uncertainty of human behavior rather than merely reproducing periodic pat
terns, thereby demonstrating the effectiveness of the model framework.

MGIM achieves deep representations of multi-source spatio-temporal data, provid
ing a robust foundation for modeling spatio-temporal contexts. Its high-fidelity 
reconstruction demonstrates the ability to capture intrinsic relationships among spa
tio-temporal elements. Unlike task-specific models that optimize performance for a sin
gle objective at the expense of input integrity (Hu et al. 2025), MGIM preserves and 
reconstructs masked features with high accuracy through its decoder. This indicates 
that the learned trajectory vectors are not merely compressed representations but 
integrated embeddings that retain complex cross-dimensional dependencies, support
ing higher-level reasoning beyond single-task prediction.

The dynamic contextual reasoning results further demonstrate MGIM’s contextual 
adaptability. As shown in Figure 9, when the contextual input of the same land parcel 
is modified, the model dynamically predicts corresponding variations in people flow, 
with trends closely aligned with real-world patterns. This suggests that MGIM’s reason
ing extends beyond isolated elements, enabling it to evaluate how contextual changes 
influence human activity patterns and other spatio-temporal components, thereby 
supporting generalized context-aware modeling.

Finally, the task-adaptive attention mechanism provides insight into MGIM’s seman
tic understanding. As illustrated in Figures 8, 10, 11, and 13, attention distributions 
vary systematically across tasks: trajectory inference emphasizes critical spatial nodes, 
people flow inference focuses on origin–destination structures, and event or time 
inference highlights temporal boundaries. This task-dependent reallocation of atten
tion demonstrates MGIM’s ability to dynamically reinterpret spatio-temporal contexts 
and identify the most relevant dependencies, reflecting its generalization capability 
across diverse reasoning tasks.

The semantic understanding and dynamic reasoning capabilities demonstrated by 
the MGIM framework hold significant potential for addressing real-world challenges 
in geographic reasoning. These capabilities suggest that MGIM could serve as a 
foundational approach to support more anticipatory and context-aware decision- 
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making in urban management. For instance, the model’s dynamic contextual reason
ing capability enables what-if scenario simulations (Kishita et al. 2020). By modifying 
contextual inputs to simulate corresponding shifts in people flow patterns. This 
could allow urban analysts to explore the potential impacts of hypothetical events, 
such as the closure of major transport hubs or large public gatherings, and to iden
tify high-risk areas in advance (Yazdani and Haghani, 2023). In addition, the model’s 
robust performance in trajectory inference may help planners better evaluate how 
new infrastructure developments, including metro stations, might influence human 
mobility patterns (Tsunoda et al. 2020). While further validation and integration into 
operational decision-support systems are still required, these findings highlight 
MGIM’s potential as a step toward more fine-grained, adaptive, and predictive 
approaches to urban governance.

Although the study has made notable progress, several limitations remain, and 
future work can advance in the following directions. First, the current modeling of 
parcel functionality, based on aggregated POI categories, could be enhanced with 
more detailed representation schemes to enable finer-grained, interpretable quantita
tive analysis. Second, the model’s generalization, currently limited by data availability 
to a single region and basic event types, requires validation across more diverse geo
graphic and event contexts. Employing transfer learning techniques for such valid
ation would be crucial for establishing the model’s broader applicability and practical 
value.

6. Conclusion

This paper introduced MGIM, demonstrating the effectiveness of a self-supervised 
paradigm for geographic reasoning. By integrating a custom masking strategy with 
multi-source data fusion, MGIM learns deep contextual relationships, achieving high 
accuracy and reconstruction fidelity across diverse tasks. The model’s effectiveness was 
validated through extensive experiments, where it achieved high accuracy on a diverse 
suite of downstream tasks while maintaining high fidelity in feature reconstruction. 
Another key capability of the MGIM is contextual adaptability, a feature that enables 
the model to dynamically modify its inferences based on evolving spatio-temporal 
conditions. The adaptive attention mechanism of MGIM further demonstrates its 
strong capability to comprehend spatio-temporal contexts, exhibiting a semantic 
understanding ability analogous to that of language models.

By adapting the masked-modeling paradigm to the heterogeneity of geospatial 
data, MGIM provides a robust, domain-specific foundation model capable of capturing 
complex spatio-temporal dependencies without relying on generic language models. 
Beyond methodological contributions, the framework offers researchers and urban 
managers a unified way to learn unified spatio-temporal representations that support 
multiple downstream analyses, such as scenario-based exploration of human mobility 
responses to urban events or infrastructure changes and trajectory-based assessment 
of mobility impacts, without retraining separate models for each task. The successful 
implementation confirms the feasibility of building powerful, context-aware geo
graphic foundation models and establishes the proposed MGIM as a novel approach 

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 23



for future research in general-purpose GeoAI. Future work will focus on expanding the 
model’s generalization capabilities across more diverse urban environments and 
exploring its potential in fine-grained POI semantic analysis.

Acknowledgements

The authors would like to thank the editor and the anonymous reviewers for their constructive 
comments and insightful suggestions, which have significantly improved the quality of this 
work.

During writing this paper, the authors used Google Gemini 3 to assist with language polish
ing and grammar checking. This tool was employed to enhance the stylistic flow and clarity of 
the text. Following the use of this tool, the authors manually reviewed, edited, and verified all 
AI-suggested modifications to ensure they accurately reflect the research findings and intended 
meaning. The authors accept full responsibility for the content and integrity of the final pub
lished work.

Disclosure statement

The authors declare that they have no known competing financial interests or personal relation
ships that could have appeared to influence the work reported in this paper.

Funding

This work was supported by the National Natural Science Foundation of China (42471491, 
42171466), the National Key Research and Development Program of China (2023YFB3906803). 
This work was partly supported by the Project Grant from the Co-creation Center for Disaster 
Resilience, IRIDeS, Tohoku University (ID: 2-QR001).

Notes on contributors

Xiang Zhang is a graduate student at China University of Geosciences (Wuhan), China. His 
research interests include GeoAI and human mobility.

Yao Yao is a Professor at China University of Geosciences (Wuhan) and Hitotsubashi University. 
His research interests include spatiotemporal big data mining, social geographic computing, and 
urban geographic information systems.

Chenglong Yu is a graduate student at China University of Geosciences (Wuhan), China and an 
intern student at LocationMind Institute, LocationMind Inc., Japan. His research interests include 
GeoAI and Large Language Model.

Zhihui Hu is a graduate student at China University of Geosciences (Wuhan), China. His research 
interests are geospatial big data mining and geospatial foundation modelling.

Geyuan Zhu is a graduate student at China University of Geosciences (Wuhan), China and an 
intern student at LocationMind Institute, LocationMind Inc., Japan. His research interests are 
intelligent agriculture, and large language model.

Mariko Shibasaki is a Consultant at LocationMind Institute, LocationMind Inc., Japan. She has 
received the master degree from the Graduate School of Frontier Sciences, the University of 
Tokyo. Her interest is application geospatial foundation models to sustainable and inclusive 
development involved with human society and the natural environment.

24 X. ZHANG ET AL.



Liangyang Dai is a graduate student at China University of Geosciences (Wuhan). His research 
interests are geospatial big data mining and health geography.

Yanduo Guo is an undergraduate student at China University of Geosciences(Wuhan), China and 
an intern student at LocationMind Institute, LocationMind Inc., Japan. His research interests 
include GeoAI and retrieval-augmented large language models.

Qingfeng Guan is a Professor at China University of Geosciences (Wuhan). His research interests 
include high-performance spatial intelligence computation and urban computing.

Ryosuke Shibasaki is a Project Professor at the School of Interdisciplinary Information Studies at 
the University of Tokyo, Japan. His research interests cover mobile big data analysis, satellite/ 
aerial imagery and sensor data analysis, including automated mapping with deep learning, 
human behavior modeling/simulation, and data assimilation of discrete moving objects.

Data and codes availability statement

The code and data supporting the reproducibility of this study are available at https://doi.org/ 
10.6084/m9.figshare.29364092. We have released the full implementation of our proposed 
model, along with related test datasets, including parcel-level human mobility data, parcel func
tion representations, and processed trajectory data packages. A detailed user guide is also pro
vided to facilitate the reproduction of the experiments described in the paper. Due to concerns 
regarding personal privacy and commercial sensitivity, the original trajectory data cannot be 
made publicly available. Researchers interested in accessing the complete dataset may apply for 
purchase and use through https://www.blogwatcher.co.jp/terms.

References

Ali, A., Zhu, Y., and Zakarya, M., 2022. Exploiting dynamic spatio-temporal graph convolutional 
neural networks for citywide traffic flows prediction. Neural Networks: The Official Journal of 
the International Neural Network Society, 145, 233–247.

Cao, X., et al., 2025. U-RNN high-resolution spatio-temporal nowcasting of urban flooding. 
Journal of Hydrology, 659, 133117.

Choudhury, S., et al., 2024. Towards a trajectory-powered foundation model of mobility. 
Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Spatial Big Data and AI 
for Industrial Applications, 1–4.

Devlin, J., et al., 2019. Bert: Pre-training of deep bidirectional transformers for language under
standing. Proceedings of the 2019 Conference of the North American Chapter of the 
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long 
and Short Papers), 4171–4186.

Du, Y.-Y., et al., 2002. Theoretic and application research of geo-case based reasoning. Acta 
Geographica Sinica, 57, 151–158.

Hooghuis, F., et al., 2014. The adoption of thinking through geography strategies and their 
impact on teaching geographical reasoning in Dutch secondary schools. International 
Research in Geographical and Environmental Education, 23 (3), 242–258.

Hu, D., et al., 2025. An information-theoretic multi-task representation learning framework for 
natural language understanding. Proceedings of the AAAI Conference on Artificial Intelligence, 
39 (16), 17276–17286.

Hu, J., et al., 2023. Recognizing mixed urban functions from human activities using representa
tion learning methods. International Journal of Digital Earth, 16 (1), 289–307.

Huang, F., et al., 2025. SPOK: Tokenizing geographic space for enhanced spatial reasoning in 
GeoAI. International Journal of Geographical Information Science, 39 (12), 2768–2808.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 25



Huang, W., et al., 2022. Estimating urban functional distributions with semantics preserved POI 
embedding. International Journal of Geographical Information Science, 36 (10), 1905–1930.

Ishikawa, T., 2013. Geospatial thinking and spatial ability: An empirical examination of know
ledge and reasoning in geographical science. The Professional Geographer, 65 (4), 636–646.

Janowicz, K., et al., 2020. GeoAI: Spatially explicit artificial intelligence techniques for geographic 
knowledge discovery and beyond. International Journal of Geographical Information Science, 
34 (4), 625–636.

Janowicz, K., et al., 2025. GeoFM: How will geo-foundation models reshape spatial data science 
and GeoAI? International Journal of Geographical Information Science, 39 (9), 1849–1865.

Kanyepe, J., Tukuta, M., and Chirisa, I., 2021. Urban land-use and traffic congestion: Mapping the 
interaction. Journal of Contemporary Urban Affairs, 5 (1), 77–84.

Karanikolas, N., et al., 2023. Large language models versus natural language understanding and 
generation. Proceedings of the 27th Pan-Hellenic Conference on Progress in Computing and 
Informatics, 278–290.

Kishita, Y., et al., 2020. Scenario structuring methodology for computer-aided scenario design: 
An application to envisioning sustainable futures. Technological Forecasting and Social Change, 
160, 120207.

Li, K., et al., 2022. Uniformer: Unified transformer for efficient spatio-temporal representation 
learning. arXiv Preprint arXiv:2201.04676.

Li, P., et al., 2025. GeoAvatar: A big mobile phone positioning data-driven method for individual
ized pseudo personal mobility data generation. Computers, Environment and Urban Systems, 
119, 102252.

Lin, L., et al., 2025. Robust and Efficient Human Mobility Data Processing through the Lens of 
Topological Persistence. In Proceedings of the 33rd ACM International Conference on Advances 
in Geographic Information Systems, SIGSPATIAL ‘25. Association for Computing Machinery, New 
York, NY, USA, pp. 696–705.

Mai, G.C., et al., 2022. A review of location encoding for GeoAI: Methods and applications. 
International Journal of Geographical Information Science, 36 (4), 639–673.

Musleh, M., Mokbel, M.F., and Abbar, S., 2022. Let’s speak trajectories. Proceedings of the 30th 
International Conference on Advances in Geographic Information Systems, 1–4.

Sharif, M.H., Jiao, L., and Omlin, C.W., 2025. Deep crowd anomaly detection: State-of-the-art, 
challenges, and future research directions. Artificial Intelligence Review, 58 (5), 139.

Tsunoda, K., Hata, T., and Obana, K., 2020. Predicting people flow for supporting facility manage
ment. Proceedings of the 4th International Conference on Software and E-Business, 57–63.

Tu, W., et al., 2024. Spatial cooperative simulation of land use–population–economy in the 
Greater Bay Area, China. International Journal of Geographical Information Science, 38 (2), 381– 
406.

Wang, J., and Biljecki, F., 2022. Unsupervised machine learning in urban studies: A systematic 
review of applications. Cities, 129, 103925.

Wang, Y., et al., 2015. Regularity and conformity: Location prediction using heterogeneous 
mobility data. Proceedings of the 21st ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining, 1275–1284.

Warschauer, M., and Healey, D., 1998. Computers and language learning: An overview. Language 
Teaching, 31 (2), 57–71.

Xu, F., et al., 2025. Using human mobility data to quantify experienced urban inequalities. 
Nature Human Behaviour, 9 (4), 654–664.

Yang, J., et al., 2025a. GeomorPM: A geomorphic pretrained model integrating convolution and 
transformer architectures based on DEM data. International Journal of Geographical 
Information Science, 39 (2), 422–451.

Yang, X., et al., 2025b. Causalmob: Causal human mobility prediction with LLMs-derived human 
intentions toward public events. Proceedings of the 31st ACM SIGKDD Conference on 
Knowledge Discovery and Data Mining, 1773–1784.

26 X. ZHANG ET AL.



Yao, Y., et al., 2017. Sensing spatial distribution of urban land use by integrating points-of-inter
est and Google Word2Vec model. International Journal of Geographical Information Science, 31 
(4), 825–848.

Yao, Y., et al., 2023. Predicting mobile users’ next location using the semantically enriched geo- 
embedding model and the multilayer attention mechanism. Computers, Environment and 
Urban Systems, 104, 102009.

Yazdani, M., and Haghani, M., 2023. Elderly people evacuation planning in response to extreme 
flood events using optimisation-based decision-making systems: A case study in western 
Sydney, Australia. Knowledge-Based Systems, 274, 110629.

Yu, Y., et al., 2019. A review of recurrent neural networks: LSTM cells and network architectures. 
Neural Computation, 31 (7), 1235–1270.

Yuan, Y., et al., 2024. Unist: A prompt-empowered universal model for urban spatio-temporal 
prediction. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data 
Mining, 4095–4106.

Zhang, Y., et al., 2025. Focus on hard areas of reconstruction: A fine-grained urban flow infer
ence framework. Transactions in GIS, 29 (3), e70039.

Zhao, Y., et al., 2023. Generative causal interpretation model for spatio-temporal representation 
learning. Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data 
Mining, 3537–3548.

Zhu, Q., et al., 2021. When does further pre-training MLM help? An empirical study on task-ori
ented dialog pre-training. Proceedings of the Second Workshop on Insights from Negative 
Results in NLP, 54–61.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 27


	MGIM: a masked modeling framework for land parcel-level Geo-Inference
	Abstract
	Introduction
	Spatio-temporal modeling in GeoAI: from single-task prediction to multi-source fusion
	Insights from NLP: masked self-supervised learning and contextual understanding
	Existing attempts and limitations of geospatial masked models

	Study area and data
	Methodology
	Multi-source spatio-temporal data alignment
	Masking strategy for multiple spatio-temporal elements
	Multi-Spatio-temporal element encoding
	Parcel functional attribute encoding
	Urban event and temporal encoding
	People flow encoding
	Location information encoding

	Feature fusion module
	Loss functions definition
	Experimental setup and evaluation strategy

	Results
	Model training and quantitative performance evaluation
	Pre-training results under the Random masking strategy
	Evaluation of model performance for inference tasks

	Case studies and visualization across different tasks
	Inference result for trajectory location
	Inference result for parcel people flow
	Inference result for urban events
	Inference result for time information


	Discussion
	Conclusion
	Acknowledgements
	Disclosure statement
	Funding
	References


