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A B S T R A C T

The significance of urban function recognition has stimulated the need for multi-source geospatial data fusion,
especially the fusion between remote sensing images and spatiotemporal big data. In previous studies, the
natural correspondence across multi-source geospatial data has often been ignored in the description of one
object, which would influence the performance of data fusion. Therefore, this study introduces the cross-cor-
relations mechanism to achieve the natural correspondence by taking remote sensing images, point of interest
(POI), and real-time social media users as an example. It proposes a new cross-correlations based functional
urban land use (CC-FLU) model to infer urban functions. The presented model extracts physical and human
semantic features from multi-source geospatial data, then maps them to their common subspaces to obtain their
cross-correlations respectively. These semantic features and their cross-correlations are integrated together to
classify urban functions. An experiment in Shenzhen, China was implemented to evaluate the performance of the
presented model at a fine scale. The results show that the proposed CC-FLU model achieved a better performance
than previous methods, yielding OA and Kappa values of 0.851 and 0.812, respectively. The results of the
presented approach outperform those of methods using one single source geospatial data. The results demon-
strate that the skilled information of each type of geospatial data is fully melted into the data fusion model, and
simultaneously achieves the natural correspondence across multi-source geospatial data. Moreover, this study
resolves the possible disadvantages of models using one single source data and fusion methods by sequentially
concatenating multi-source features. The results will benefit urban planners and urban policy-makers.

1. Introduction

Urbanization has inevitably continued to increase around the world;
in 2018, 55% of the global population resided in urban areas, and this
urbanization has greatly impacted humans' living environments and
urban land use (Hsieh, 2014; McDonald, Marcotullio, & G U Neralp,
2013; Sapena & Ruiz, 2018; United Nations Secretariat, 2018). As the
most populous country in the world, China has experienced un-
precedented urbanization in a very short period of time (Guan et al.,
2018). During this process, the spatial layout of urban functions has
become a vital issue that is intensively related to urban vitality, traffic,
and transportation (Abdullahi et al., 2015; Dovey & Pafka, 2017).

Hence, it is essential to effectively and efficiently collect functional
urban land use information.

High spatial resolution (HSR) remote sensing images are an im-
portant data source and tool for classifying urban land use, which can
provide the physical information of geographical objects, and are
widely used in object-based scene classification models (Forestier et al.,
2012; Shahriari & Bergevin, 2017). Some features, such as spectral and
textural features, have constituted the footstone of urban land use re-
cognition (Blaschke et al., 2014; Hu & Wang, 2013). However, these
basic features are mostly used to depict one land patch based on its
physical properties, thus making it difficult to distinguish objects with
the same physical attributes but different functional attributes in high-
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density cities (Cao et al., 2018; Liu et al., 2017; Ríos & Muñoz, 2017),
such as Shenzhen, London, and New York. For example, grid-layout
buildings with rectangular boundaries in industrial parks are classified
as working functions, which are different from residential buildings
with similar spectral and texture features in commercial areas. In fact,
functional urban land use is not only associated with physical feature
spaces but is also influenced by human feature spaces.

Fusing HSR images with new data sources is an alternative approach
to recognizing functional urban land use in high-density cities. With the
emergence of new urban data, e.g., point of interest (POI) data, smart
card data, taxi trajectory data, mobile phone data, social media data,
street view images, etc., many new approaches have been developed to
understand urban systems (Liu et al., 2015; Chen et al., 2017; Ríos &
Muñoz, 2017; Xu, Belyi, Bojic, & Ratti, 2018; Zhang et al., 2017; Zhong
et al., 2014). These urban data can reflect the temporal changes and
spatial patterns of human flows, material flows and information flows
(Liu et al., 2015), thus are widely used to carry out urban function
recognition; for example, Pei et al. (2014) uncovered the urban land use
using time-series mobile phone user data; Tu et al. (2017) coupled
mobile phone data and social media data to infer urban functions and
uncovered their hourly dynamics; Xing and Meng (2018) integrated the
landscape metrics and socioeconomic features extracted from crowd-
sourced data to recognize urban functions. Above studies suggest that
each type of geospatial data has its own merits, and a promising solu-
tion to functional urban land use recognition is to fuse them together.

However, each type of geospatial data also has its own demerits,
specifically that the information obtained from a single data source may
be sparse, uncertain and incomplete and have varying noise (Baltru,
Aitis, Ahuja, & Morency, 2019; Tu et al., 2018b; Wu et al., 2014; Wang
et al., 2015; Zhang, Xu, Tu, & Ratti, 2018). This has raised doubts about
whether the natural correspondence can be explicitly guaranteed if one
object is simultaneously depicted by multiple features from multi-
source geospatial data (Pereira et al., 2014; Rasiwasia et al., 2010;
Zheng, 2015). Here, the natural correspondence refers to the state that
the multiple descriptions of one object refined from multi-source data
can achieve the consistency, which makes sure that the information
provided by each data source can be fully utilized in the data fusion
process (Rasiwasia et al., 2010; Zheng, 2015). Compared with previous
studies without the consideration of the natural correspondence, it can
help to abstract the most important information across multiple feature
spaces and eliminate possible noises, and then improve the performance
of the models. The scenario involving remote sensing images and
human activity data is given as an example. Considering the ubiquitous
phenomenon of the same object with different spectrums occurring in
remote sensing data (Liu et al., 2017) and the influence of the emer-
gency events in human activity data (Zheng et al., 2016), the two ob-
tained information from them may not be accurate. In this case, the
natural correspondence demands for a state of consistency between
them, which can exclude the noises caused by their demerits and take
full use of their merits, and then increase the recognition accuracy.

However, most previous studies sequentially embedded the features
extracted from different sources in the same spatial units (Liu et al.,
2017; Tu et al., 2017) but often ignored the natural correspondence
across them. Thus, a following question is how to establish this corre-
spondence. One solution is to utilize the subspace learning method
which links multiple feature spaces to achieve the goal, such as cano-
nical correlation analysis (CCA) (Hardoon, Szedmak, & Shawe-Taylor,
2004; Rasiwasia et al., 2010; Zheng, 2015). CCA aims to refine the
original feature spaces into the intermediate isomorphic feature spaces,
then maximize the correlations across them (Baltru et al., 2019; Pereira
et al., 2014). In this way, the demerits of each geospatial data are de-
creased through their correlations and their own merits are fully uti-
lized through the combinations. Here, this study uses the cross-corre-
lations to depict this refining process due to its relationship with the
correlations across multi-feature spaces. Thus, a functional land use
recognition framework combining the cross-correlations (CC-FLU) is

established based on this proposed multi-source geospatial data fusion
model. In detail, physical features from HSR images and human fea-
tures from POIs and social media users are extracted separately. Then,
the semantics mined by the probabilistic topic model (PTM) and their
cross-correlations mined by CCA are integrated to unearth urban
functional land use through a random forest (RF) algorithm. In general,
this proposed CC-FLU model takes full use of the skilled information in
multiple feature spaces and resolves the possible issue of bias in a single
data source and the demerits of previous data fusion models through
cross-correlations. An experiment in Shenzhen, China illustrates the
advantages of our CC-FLU model.

The rest of this paper is organized as follows. The study area and
data sets in this study are described in Section 2. Section 3 provides an
explicit description of the framework of the presented CC-FLU model,
which consists of semantic feature construction, cross-correlation
learning, and functional urban land use recognition. The experimental
results and discussion are reported in Sections 4 and 5, respectively.
Finally, Section 6 concludes the study.

2. Study area and datasets

This study was conducted in Shenzhen, China, which is located to
the north of the Pearl River Delta. As the first special economic zone of
China, Shenzhen has experienced unprecedented urbanization in the
past forty years and has become one of the largest global metropolises,
with a population of more than 10 million people (United Nations
Secretariat, 2018). Monitoring the functional land use of this global city
is essential to achieving its sustainable development. Fig. 1(a) displays
the location and boundary of Shenzhen. To provide a fine-grained
urban functional map, rather than using cadastral plots or traffic ana-
lysis zones, we divided Shenzhen into 500-m grids according to the
previous studies (Guan & Rowe, 2016; Tu et al., 2018a), with a total
number of 8295 grids, defined as 8295 land patches, as shown in
Fig. 1(b).

High spatial resolution (HSR) remote sensing images, point of in-
terest (POI) data and real-time Tencent users (RTU) were utilized to
implement the presented CC-FLU model, which will be introduced in
Section 3.

• The HSR image in Fig. 1(a) was obtained using the pan-sharpening
fusion method based on the multispectral and panchromatic SPOT-5
images collected on 30 November 2013. This image has four spectral
images and 37,368× 19,440 pixels, with a spatial resolution of
2.5m per pixel (Tu et al., 2018a).

• A POI refers to a geographical point with a property label and the
position. The POI data used in this study is obtained from Baidu
map, the biggest map service provider in China, which has been
widely used in urban studies (Yao et al., 2016). For all the POI data
in 2016, several types with great benefits on functional urban land
use recognition were selected, with a total number of 156,303, in-
cluding residential communities, commercial sites, industrial facil-
ities, entertainment facilities, medical facilities, landscape sites, and
education facilities. Fig. 1(b) represents a kernel density raster map
of all of the POIs used here.

• The RTU is a raster dataset with a spatial resolution of 25m col-
lected in 2016 by Tencent, which is one of the largest internet
companies in the world. The RTU data measure the hourly numbers
of phone users who use Tencent applications, such as QQ and
WeChat. Fig. 1(c–h) show the RTU data obtained in 3 typical time
intervals on a workday and weekend.

There are significant differences in the spatial distributions of POIs
and RTUs among grids, which implies that these urban land patches
have different functions. Note that due to the limitations of data
availability, the time of HSR images is different from the other two
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datasets, which may have an effect on this study. But Shenzhen ex-
perienced a fast urban expansion from 1978 to 2010; after 2010, the
urbanization in Shenzhen stepped into a relatively stable stage (Fei &
Zhao, 2019). Thus, in the short interval from 2013 to 2016, features
extracted from the HSR image changed little, and do not significantly
affect the evaluation of the presented CC-FLU model.

3. Functional land use recognition through cross-correlations

The main goal of the CC-FLU model presented here is to combine
the semantic information extracted from multi-source geospatial data
and build their natural correspondence to classify functional urban land
use. Fig. 2 presents the framework of the CC-FLU model. This model
consists of three parts: semantic feature construction, cross-correlation
learning, and functional urban land use recognition. In the first part,
multi-type features are extracted into the bag-of-words (BOW) format
(Csurka et al., 2004); then the latent Dirichlet allocation (LDA) model
(Blei, Ng, & Jordan, 2003) is used to mine the semantic topics of each-
source geospatial data. In the second part, canonical correlation

analysis (CCA) and kernel CCA (KCCA) are utilized to determine the
linear and nonlinear cross-correlations (Hardoon et al., 2004) across
multi-semantic spaces, respectively. In the third part, the random forest
(RF) algorithm is employed to classify functional land use based on
semantic features and their cross-correlations.

3.1. Semantic feature construction via probability topic model

Feature construction plays a vital role in object-based recognition
(Lillywhite et al., 2013). Because the BOW model has received much
attention in object-based scene classification, probabilistic topic
models, especially LDA, have been widely applied in related studies
(Zhong, Zhu, & Zhang, 2015; Zhou, Zhou, & Hu, 2013). Here, the spatial
features extracted from multi-source geospatial data are generated into
BOW dictionaries, and they are then inputted to the LDA model to
unearth the hidden semantic topics of land patches.

Spatial features, including spectral features, texture features, and
scale-invariant-feature-transform (SIFT) features, are widely applied in
land use recognition (Wu, Zhang, & Zhang, 2016; Zhang & Du, 2015;

Fig. 1. Study area and the used datasets. (a) Study area and HSR image. (b) The kernel density of POIs. (c) RTU density at 09:00 on a workday. (d) RTU density at
15:00 on a workday. (e) RTU density at 22:00 on a workday. (f) RTU density at 09:00 on a weekend. (g) RTU density at 15:00 on a weekend. (h) RTU density at 22:00
on a weekend. RTU: real-time Tencent users.

Fig. 2. Framework of the CC-FLU model.
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Zhong et al., 2015). Given an HSR image with l bands, the spatial
features are extracted within a moving window, in which the size of the
window is set as 25×25 pixels, with 15 overlapping pixels, based on
previous studies (Liu et al., 2017). Each spectral descriptor is defined as
the mean and standard deviation (std) of the spectral features in one
moving window (Lienou, Maitre, & Datcu, 2010), and it can be ex-
pressed as:

= …mean std mean stdspectral features { , , , , }.l l1 1

The gray-level co-occurrence matrix (GLCM) (Mohanaiah,
Sathyanarayana, & GuruKumar, 2013) is used to depict the texture
feature. Four Haralick's feature statistics of GLCM in a moving window
are selected to determine the texture descriptor, including contrast,
energy, correlation and homogeneity, and the texture descriptor can be
expressed as:

= …con ene cor hom con ene cor homtexture features { , , , , , , , , }.l l l l1 1 1 1

In terms of the SIFT descriptor, a 128-dimensional vector is ex-
tracted in each band, which is expressed as Sifti={sift1,…, sift128}. The
complete SIFT descriptor consists of the SIFT points in all bands and can
be expressed as:

= …SIFT Sift sift{ , , }.l1

In all of these spatial descriptors, the clustering method is necessary
to generate their visual words in BOW dictionaries. In this study, the K-
Means method is used to group these spatial descriptors into different
clustering numbers; then, Davies-Bouldin index (DBI) (Davies &
Bouldin, 1979) is used to score the clustering results based on their
various numbers. The lower the DBI value is, the better the clustering
result is. The clustering centers of the best clustering result are stored as
visual words in the BOW dictionary for their spectral, texture and SIFT
features.

The visual words for the POIs and RTU can be determined directly.
The POI visual words are equal to the categories of POIs. The RTU
words are defined as the users' density by hours, noting that the hours
on workdays and weekends should be counted separately due to the
different human patterns on workdays and weekends. Finally, five types
of visual words in BOW dictionaries are defined, including three types
of physical feature words, namely, spectral, texture and SIFT words,
and two types of human-related words, namely, POI and RTU words.

The LDA model has been successfully used to extract hidden se-
mantic topics. Assuming that all land patches are the documents of a
corpus, the functions in each land patch are regarded as a mixture of
latent abstract topics, and the visual words in the BOW dictionary are
defined as the words of a vocabulary. Then, the LDA model provides
explicit representations of documents through the mixture of latent
topics, and each topic is characterized by a distribution of words (Blei
et al., 2003). In each grid, we can obtain five different LDA descriptions
from the spectral, texture, SIFT, POI and RTU features. For each LDA
description, the documents are generated by counting the distribution
frequency of visual words, and they are input to the LDA model to
unearth the latent topics in each land patch. The details of using the
LDA model in land use applications have been discussed in previous
studies (Blei et al., 2003; Liu et al., 2017; Yuan, Zheng, & Xie, 2012;
Zhong et al., 2015). Finally, this procedure outputs five types of se-
mantic descriptions, including three types of physical feature semantics
(PFS), namely, spectral, texture and SIFT semantics, and two types of
human feature semantics (HFS), namely, POI and RTU semantics,
which correspond to five types of spatial features. Each type of LDA
description has its own feature space due to its various feature sources.

3.2. Cross-correlation learning via subspace learning methods

As one single data source has its own merits and demerits, the
purpose of multi-source geospatial data fusion is to emphasize the
merits of a single data source and decrease its demerits, and then

achieve the state of natural correspondence across multi-data sources.
One feasible method is to draw the cross-correlations across multiple
feature spaces into a data fusion model (Pereira et al., 2014; Rasiwasia
et al., 2010; Zheng, 2015). Here, the cross-correlations of the PFSs and
HFSs are combined with their semantics to recognize urban functional
land use, which constitutes the kernel of the presented CC-FLU model.

Assume that all land patches in the study area are expressed as
= …{ , , }1 | |D D DD , where each element iD represents the set of all de-

scriptions in the i-th land patch, and comprises more than one de-
scription. For simplicity, we consider the case in which one land patch
consists of two types of semantic descriptions, i.e., = X Y( , )i i iD , where
they are represented as vectors in the feature spaces XR and YR , re-
spectively. Because Xi and Yi co-occur to describe the same object but in
different feature spaces, one efficient solution to decreasing the influ-
ence of their own demerits is to map them into two intermediate iso-
morphic spaces respectively ( XU , YU ) by subspace learning (Rasiwasia
et al., 2010; Wei et al., 2017; Zheng, 2015). This process contains two
mappings:

→ →: , :X
X X

Y
Y YM R U M R U (1)

This solution demands a joint dimensionality reduction model that
takes effects on both two different feature spaces ( XR , YR ), meanwhile
builds the high correlations between the mapping isomorphic spaces
( XU , YU ), which can be satisfied by canonical correlation analysis
(CCA) (Hardoon et al., 2004). CCA is a subspace learning method,
which maps the two original feature spaces into two maximally-corre-
lated isomorphic spaces, and makes sure that the distance between the
two refined descriptions of one object can be minimized and that their
correlations can be maximized (Hardoon et al., 2004; Wei et al., 2017).
Then, the demerits or noises in each type of geospatial data can be
excluded to some extent.

Given two directions ∈x
Xw R and ∈y

Yw R , then CCA seeks the
directions along which they are maximally correlated,

′

′ ′≠ ≠
max

Σ
Σ Σ

x XY y

x XX x y YY y0, 0x y

w w

w w w ww w (2)

where ΣXX and ΣYY are the covariance matrices for the descriptions
…X X{ , , }1 | |D and …Y Y{ , , }1 | |D , respectively, and = ′Σ ΣXY XY is the cross-

covariance matrix between them. The first d canonical components
={ }x k k

d
, 1w and ={ }y k k

d
, 1w become the basis for mapping XR and YR on the

subspaces XU and YU , respectively (Pereira et al., 2014). For the two
original semantic descriptions in = X Y( , )i i iD , Xi in XR space is mapped
into the Px in XU space based on ={ }x k k

d
, 1w , and Yi in YR space is mapped

into the Py in yU space based on ={ }y k k
d

, 1w . Given a spaceU overlapped
by XU and yU , then Px and Py can be regarded as two coordinates in this
overlapped space (Rasiwasia et al., 2010), which represent the linear
cross-correlations.

Kernel canonical correlation analysis (KCCA) is a nonlinear exten-
sion of CCA that maximally correlates nonlinear projections and is re-
stricted to reproducing kernel Hilbert spaces with certain kernels
(Andrew et al., 2013; Pereira et al., 2014), with two nonlinear map-
pings into high-dimensional spaces:

→ →ϕ ϕ: , :X
X X

Y
Y YR F R F (3)

These two transformations ϕX and ϕY are implemented by two
kernel functions, i.e., (.,.)XK and (.,.)YK , and they are expressed as

= =X X ϕ X ϕ X Y Y ϕ Y ϕ Y( , ) ( ), ( ) , ( , ) ( ), ( ) ,X i j X i X j Y i j Y i Y jK K (4)

in the format of inner products respectively. In detail, KCCA seeks the
directions ∈fx

XF and ∈fy
YF , along which they are maximally

correlated in nonlinear common spaces:

′

≠ ≠

α α
V α V α

max
( , ) ( , )

,
α α

x X Y y

x X y Y0, 0x y

K K

K K (5)

where = − ′ + ′V α α α α α( , ) (1 ) 2K k K k K is a regularization
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parameter, ∈ [0, 1]k , and XK and YK are the kernel matrices of the
representations in X and Y, respectively. Then, fx and fy can be obtained
through the weight vectors αx and αy. The first d canonical components
{fx, k}k=1

d and {fy, k}k=1
d become the basis for mapping XR and YR on

the nonlinear subspaces XF and YF , respectively (Hardoon et al.,
2004; Pereira et al., 2014). The nonlinear cross-correlations can be
obtained with the same way as that is introduced in CCA.

3.3. Functional urban land use recognition

The goal of this step is to combine the outputs of the first two parts
together to classify the functional land use. In the first part, two types of
semantic features, namely, PFS and HFS, are outputted respectively. In
previous studies, the PFS was widely used in scene classification models
to recognize land use based on remote sensing images; the HFS con-
stituted the basis of the model of using human activity semantics to
sense urban functions based on spatiotemporal big data; their combi-
nation formed another typical model that fuses PFS and HFS together.
These three models are vital parts of our CC-FLU model and are also
good examples with which to test our CC-FLU model. In the second
part, CCA and KCCA (Hardoon et al., 2004) are separately utilized to
output the linear and nonlinear cross-correlations across multiple se-
mantic feature spaces. Then, the semantic information and their cross-
correlations make up the presented CC-FLU model. In this way, the
aforementioned disadvantages of a single data source and previous data
fusion models can be improved.

In addition, one classifier is needed to implement the classification
task. The random forest (RF) algorithm is chosen due to its outstanding
performance, which performs better than other 178 classifiers, as de-
termined by performing a number of trials on 121 datasets (Fern A
Ndez-Delgado et al., 2014). The performance of the model is estimated
based on its overall accuracy (OA) and Kappa coefficient. Moreover, RF
has the ability to evaluate the importance of features (Deng & Runger,
2013), which is used to rank and select the features in this study.

4. Result

4.1. Experiment settings

The presented CC-FLU model was implemented using C++ on
Windows 7 (x64). Several open-source C/C++ libraries were em-
ployed to process multi-source geospatial data and carry out machine
learning methods, including GDAL (http://www.gdal.org/), OpenCV
(https://opencv.org/) and Shark (http://image.diku.dk/shark/). The
codes of LDA are from the widely used GibbsLDA++ model (http://
gibbslda.sourceforge.net/).

To examine the CC-FLU model, we designed nine different examples
to classify functional land use. The details of these nine examples are
shown in Fig. 3. In the first three examples (A, B and C), the semantic
features from the HSR images (PFS), POI and RTU (HFS), and their
combination are utilized to carry out functional land use classification
tasks. In the next two examples (D and E), the linear (LCC-PFS) and
nonlinear (KCC-PFS) cross-correlations for PFS are the inputs, and the
one that exhibits a better performance will be used in case H. Similarly,
F and G are executed with the linear (LCC-HFS) and nonlinear (KCC-
HFS) cross-correlations for HFS, respectively, and the better one will be
used in case H. Then, our CC-FLU model (I) is carried out through the
combination of case C and H. To avoid the possible influence of the
curse of dimensionality and abundant redundant features, the im-
portance of features is first ranked by the RF algorithm, and then the
top fifty features are selected as the input of I. In this way, the effects of
cross-correlations on the recognition task can be further showed.

During the implementation of these trials, 465 land patches were
randomly selected from 8295 land patches to label their functional land
use categories, including residential land (RES), industrial land (IND),
commercial land (COM), public management and service land (PUB),

green and forest land (GEN), and water body (WAT). In the labelling
process, remote sensing images, street view images, and urban planning
land data were simultaneously used to distinguish each grid's ground
truth via manual interpretation. Then, if one grid involves more than
two land use types, the land use covering the largest area is identified as
this grid's label. Importantly, mixed land use is a complicated and im-
portant issue in urban land use recognition (Zhang & Du, 2015), but the
gist of this paper is to introduce a geospatial data fusion model invol-
ving the natural correspondence across multiple data sources. Thus, a
simple method determining its actual land use with the largest area is
adopted here. To evaluate the accuracy of the results obtained in dif-
ferent examples (A to I), the RF algorithm was run 100 times. In each
run, all labeled samples were randomly divided into training and va-
lidation datasets, and the former occupied approximately 75% of all
labeled samples. Then, for each case (A to I), the average OA and Kappa
coefficient values were calculated; these are shown in Table 1. The
confusion matrix closest to the average OA is presented in Fig. 5, where
each number is normalized by its row and column simultaneously and
visualized using colour depth.

4.2. Urban functional land use recognition results

The trails from A to I can be divided into three hierarchies. The first
hierarchy (A to C) settles the solution using physical features, human
features and their combination. The second hierarchy (D to H) tests the
effects of the cross-correlations across multiple feature spaces on
functional land use recognition. The third hierarchy (I), namely, our
CC-FLU model, is a combination of the first and second hierarchies. The
accuracies of these three hierarchies are shown in Table 1, and our CC-
FLU model (I) obtains the highest OA and Kappa coefficient values (OA-
0.851, Kappa-0.812). In addition, the confusion matrix in Fig. 5(I)
shows that this CC-FLU model performs well in distinguishing each type

Fig. 3. Diagram of the feature designs in nine examples.

Table 1
Urban functional land use classification accuracy of different examples.

Id. Process PFS HFS OA Kappa

Spectral Texture SIFT POI RTU

A LDA √ √ √ 0.693 0.615
B LDA √ √ 0.649 0.557
C A+B √ √ √ √ √ 0.824 0.778
D CCA √ √ √ 0.711 0.638
E KCCA √ √ √ 0.675 0.593
F CCA √ √ 0.605 0.501
G KCCA √ √ 0.623 0.524
H D+G √ √ √ √ √ 0.817 0.773
I C+H √ √ √ √ √ 0.851 0.812
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of functional land use.
Fig. 4 presents the detailed results of our CC-FLU model. As shown

in the recognition map of Fig. 4(a), the geographical distribution of
land use in Shenzhen is variable and complicated. A great deal of GEN
land is distributed in the southeast, where are the natural-reserved area
and the tourist destination. The industrial land (IND), public manage-
ment and service land (PUB) and residential land (RES) occupy the
widest areas of the built-up environment of Shenzhen. As urban func-
tions hold great influences on the urban vitality, traffic and transpor-
tation (Abdullahi et al., 2015; Dovey & Pafka, 2017), this produced
functional urban land use map in high-density Asia cities will benefit
urban planning and management. For example, city planners would

evaluate the current urban land usage status and provide useful insights
into the policy-making for urban renewal.

Fig. 4(b) provides the importance evaluation of features used in the
CC-FLU model. The result shows that the top three important features
are all obtained from the cross-correlations, and this share in the top ten
features is 60%. Then, as the ranking moves backward, the share of
features extracted from PFS and HFS is increasing, and achieves the
highest in the top fifty features with 70%. This demonstrates the great
effects of introducing the natural correspondence on functional urban
land use recognition.

Fig. 4(c) shows some details of the comparison of partial land use
models in this study around the Shenzhen government, which is one of

Fig. 4. Recognition results of the CC-FLU model. (a) Shenzhen functional land use map obtained by the CC-FLU model. The small brown area in the southeast corner
is the absent area due to missing data. (b) The importance evaluation of the top-fifty features used in the CC-FLU model. (c) The details of results comparison by
several different models. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the most prosperous areas of Shenzhen. In the upper circle, the actual
land use property is PUB land, which comprises an art museum and a
memorial garden in a leisure park. However, two different land use
properties were obtained through these models. In case A, using PFS,
this circle was recognized as GEN land, mostly due to its similar phy-
sical features as green and forest land. In case B, using HFS, this circle
was classified as PUB land based on the judgment of place semantics
and human behavior. In the fusion models that contain HFS (C, H, I),
we obtained the right result and thus illustrated the advantages of
multi-source data fusion. The point is that each geospatial data type has
its unique features, and correctly choosing and fusing the fitting data
would greatly benefit the accomplishment for certain recognition task.

In the lower circle of Fig. 4(c), the actual land use property is COM
land, gathering several commercial and financial buildings, and a
shopping park. However, through the recognition result obtained from
C, this area is classified as a PUB land, and a few clues can be obtained
from the confusion matrix of Fig. 5(C), which suggests that case C fails
in the recognition of COM land. In case H/I when the cross-correlations
across several feature spaces are utilized to distinguish this area, a right

type is obtained, and the confusion matrices in Fig. 5(H/I) also prove
that these two cases hold a good discernment capacity in the COM land.
In this way, the state among multi-source geospatial data achieves the
natural correspondence through the cross-correlations, which can help
to extract some more efficient information comparing with previous
models in functional urban land use recognition. The produced func-
tional land use map is important for city planners to evaluate current
urban development and provide advices for urban running.

4.3. The performance of multi-source data fusion

The differences among cases A (PFS), B (HFS) and C (PFS, PHS)
shown in Table 1 suggest the performance of multi-source data fusion
with different data groups in the first hierarchy. The comparison of OA
and Kappa coefficient values reveals that C performs much better than
A and B and that A is slightly better than B because human semantic
features are spare at water area.

However, more details can be found in the confusion matrices
shown in Fig. 5 (A, B, C). Comparing A with B reveals that A is

Fig. 5. Confusion matrices of different examples (A to I).
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excellent in distinguishing the land of PUB, GEN and WAT land but
performs poorly on RES, IND and COM land, where the landscape is
spatially complex but supports daily human activities. It can be ex-
plained that the features in case A are all physical feature semantics,
which allow it to depict the physical properties of land patches well but
cannot acquire abundant socioeconomic features. In contrast, B per-
forms well in the recognition of RES and IND land but is not skilled in
distinguishing WAT land where there are very few POIs and RTU. Also,
POI data provide the rough land use attributes of certain areas, and RTU
data reflect the temporal variations in human activity. Both of them are
related to socioeconomic issues and human mobility. Therefore, they
allow B to recognize RES and IND land well but cause it to have diffi-
culty in recognizing land patches with physical land use properties,
where there are fewer human activities.

Case C represents an effective solution to combine physical feature
semantics and human activity semantics. In Table 1, C yields high OA
(0.824) and Kappa (0.778) values, and it also exhibits a very good
discernment capacity in the recognition of RES, IND, PUB, GEN and
WAT land in Fig. 5(C). In this combination, case C almost combines the
advantages of A and B and performs relatively well but exhibits
shortcomings in the recognition of COM land.

4.4. The performance of cross-correlations

The second and third hierarchies refer to the framework of using
cross-correlations to recognize functional urban land use. The second
hierarchy is designed to first test the recognition performance of the
cross-correlations on functional urban land use, and compare the dif-
ference of linear and nonlinear cross-correlations, and then exhibit the
advantages of the cross-correlations in urban land use recognition.
Following the above two hierarchies, a selected combination of the best
performed semantics group in the first hierarchy and the best per-
formed cross-correlations group in the second hierarchy, is employed in
the third hierarchy to recognize functional urban land use.

In the inner comparison of the second hierarchy in Table 1, we find
that the linear cross-correlations perform well in PFS, while the non-
linear cross-correlations perform well in HFS. Essentially, even though
the spectral, texture and SIFT semantics are from different feature
spaces, they are all extracted from the same HSR image, which endows
PFS with a better correspondence using linear rather than nonlinear
cross-correlations on this recognition task, especially in the recognition
of COM land. However, for two HFSs, it has been implied that nonlinear
projections exist between the place properties (POI) and population
density (RTU) in geographical space (Yao et al., 2017). The corre-
spondence provided by the nonlinear cross-correlations holds a better
discernment capacity on functional urban land use recognition than the
linear. Thus, a combination of two cross-correlations groups with the

better discernment capacity in PFS (case D) and HFS (case G) produces
case H, and yields a better performed result than D and G (OA-0.817,
Kappa-0.773).

When comparing the first and second hierarchies through the OA
values, Kappa values and confusion matrices in Table 1 and Fig. 5, we
find that both the semantic information and the cross-correlations
provide extra clues with which to recognize functional land use that the
other does not provide. First, the comparison of A and D shows that D
holds a higher accuracy than A, revealing that the cross-correlations got
from the PFS endows the classifier with a better discernment ability in
the land use recognition, especially in the COM land. Second, in the
comparison of B and G, B attains a higher accuracy, revealing that B
provides more information with which to recognize functional land use
than G. Third, in the comparison of C and H, C is the one with better OA
and Kappa values. However, if we examine the confusion matrices, we
can find that this result does not reflect the absolute superiority of C
relative to H. Compared to C, H shows a balanced discernment capacity
for every functional land use type, which C does not have.

Therefore, a better solution is to combine semantic information and
their cross-correlations together and then select the best important
features, which represents our CC-FLU model (I). I obtains the highest
accuracy based on its OA (0.851) and Kappa (0.812) values, and the
confusion matrix shown in Fig. 5(I) demonstrates that the CC-FLU
model distinguishes every type of functional land use well. These results
prove the superiority of the CC-FLU model over the first two hierarchies
through the combination of their best important features. In general,
this CC-FLU model represents a new feature selection pattern of multi-
source geospatial data fusion model with the involvement of the natural
correspondence, and obtains a better performed recognition result.

4.5. Parameter sensitivity analysis

Several parameters of the CC-FLU model may influence the dis-
crimination accuracy, such as the numbers of spectral, GLCM and SIFT
visual words and the numbers of LDA topics for the five used features.
In the process of generating BOW, identifying the visual words and their
counts is of great importance (Hardoon et al., 2004; Zhong et al., 2015).
Unlike the POI and RTU data, whose words and word counts are fixed
due to their data type, we utilize the K-Means method to cluster the
spectral, GLCM and SIFT features, and the DBI is used to score the
clustering results with various numbers. In Fig. 6(a), the DBIs decrease
as the clustering numbers increase, but the speed of decrease tends to
slow down and even stabilize. According to the previous study (Csurka
et al., 2004), the clustering number of 300 is pinpointed as the word
number where the tendency of DBI scores begins to become gentler. In
terms of the texture (GLCM) and spectral features in Fig. 6(b), the DBIs
achieve better scores when the clustering numbers are 4 and 3,

Fig. 6. DBI of K-means results for different features in different clustering numbers: (a) SIFT: the red circle represents the clustering number of 300; (b) GLCM and
Spectral: the red circles represent the clustering numbers with the lowest DBI, namely, 4 and 3. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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respectively.
The identification of LDA topic numbers represents another difficult

question. We solve this problem by comparing the RF classification
accuracy results of different LDA topic numbers, and the training and
validation datasets are the same as those discussed in Section 4.1. As
shown in Fig. 7(a), the shapes of the two dotted lines representing the
OAs of the POI and RTU semantic features fluctuate as the LDA topic
numbers increase, but the overall trends are both peak-shaped. The OAs
achieve their peaks when the LDA topic numbers are 15 and 20 for POIs
and RTU, respectively. In terms of the features extracted from HSR
images of Fig. 7(b), the overall trends of OAs using GLCM and spectral
semantic features both fall as the topic numbers increase, and the
highest values occur at the points of 52 and 22, respectively. For the
SIFT semantic features, the OA values increase with some fluctuation as
the LDA topic numbers increase, and they reach their highest value
when the topic number is 195. Specifically, because the best topic
number of SIFT is far greater than the best topic numbers of spectral
and texture features, we fuse the spectral and texture semantic features
together to calculate their cross-correlations with SIFT semantic fea-
tures in our CC-FLU model.

5. Discussion

Multi-source geospatial data fusion is an important issue in func-
tional urban land use recognition. On the basis of scene classification,
this study proposed a functional land use recognition model (CC-FLU)
integrating the semantic information from multi-source geospatial data
and their cross-correlations. This CC-FLU model represents a new at-
tempt to make full use of the information in multi-source geospatial
data and hidden in their common subspaces. Our experiments verified
that the CC-FLU model achieved a better performance, with OA and
Kappa values of 0.851 and 0.812, respectively, than those in previous
studies, such as scene classification methods using probabilistic topic
models and HSR images (Zhong et al., 2015), urban function sensing
models using spatiotemporal big data (Tu et al., 2018a). However, some
issues need to be discussed further.

The first concerns the selection of multi-source geospatial data. In
this study, three types of geospatial data were used, including data
representing physical features (HSR image), static POI labels, and dy-
namic social media users, and two types of semantics were generated,
including physical feature semantics and human feature semantics.
However, this model does not have limitations associated with its data
sources. Other features or geospatial datasets that can reveal the
functions of land patches can also be used, such as nighttime light data
(Ma et al., 2015), mobile phone records (Pei et al., 2014; Tu et al.,
2017), and taxi trajectories (Yuan et al., 2012). They can be abstracted
as other semantics and input into our model, perhaps in the format of

place semantics or spatiotemporal interactive semantics.
The second concerns the scale problem of multi-source geospatial

data fusion. The scale issues of geography significantly affect geo-
graphical phenomena and processes (Li & Cai, 2005). Due to the pur-
pose of this study focusing on the test of the CC-FLU model, a fine-scale
grid division of 500m is directly utilized. However, the scale differ-
ences between data sources in multi-source geospatial data fusion have
an impact. For example, one POI refers to a point with a rough land use
property and coordinate (Yuan et al., 2012), while the actual cover of a
POI is a region or perhaps a building, courtyard or community. Its ac-
tual cover is not equal in different POI types, and its corresponding area
in the HSR image is variant. In further studies, the geographical scale
matching of different data sources should be developed to obtain more
precise recognition results.

The third issue is how to identify the natural correspondence across
multiple feature spaces obtained from multi-source geospatial data.
This study proposed a solution of the combination of cross-correlations
across multi-semantic feature spaces through the projection on their
intermediate isomorphic subspaces (Pereira et al., 2014). Here, the
extraction of cross-correlations involves two feature spaces. If three or
more feature spaces are available, the method of canonical correlations
can handle the problem by generalization (Tenenhaus & Tenenhaus,
2011). In addition, deep learning has recently been a popular tool with
which to recognize land use (Marmanis et al., 2016; Zhang, Zhang, &
Du, 2016), but determining how to integrate multi-source geospatial
data into deep learning must be explored in further studies of urban
functions.

6. Conclusion

Land use classification mainly relies on remote sensing images.
Recently, the emergence of spatiotemporal big data has transited land
function recognition in the physical dimension to those in the socio-
economic or human activity dimension (Xin and Meng, 2018), thus
making it an inevitable trend to fuse multi-source geospatial data effi-
ciently and effectively. To solve the possible biased problem of one
single data source, this study proposed the CC-FLU model to recognize
functional urban land use through the natural correspondence across
multi-source data. The experiment in Shenzhen demonstrates that the
presented approach works well, yielding OA and Kappa values of 0.851
and 0.812, respectively. This produced functional urban land use map
in high-density Asia cities enables urban planners to be aware of urban
development and provide useful insights on the policy-making for
urban renewal in the future.

The main contributions of this study are two-fold. First, the natural
correspondence across multi-source geospatial data is achieved through
the cross-correlations extracted respectively from physical feature

Fig. 7. RF classification accuracies for single features with different LDA topic numbers. (a) POIs and RTU: when the topic numbers are 15 and 20, these two features,
respectively, yield their highest OA values. (b) SIFT, GLCM and spectral: when the topic numbers are 195, 52 and 22, these three features, respectively, yield their
highest OA values.
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semantics and human feature semantics, which is a new approach to
fusing multi-source geospatial data. Second, based on the proposed
natural correspondence, a general framework is designed to more ac-
curately recognize functional urban land use combining the semantics
across multiple feature spaces and their cross-correlations, which can
be further developed to integrate other urban data.

In general, this study presents a new way to combining multi-source
geospatial data to recognize functional urban land use. In future work,
more models referring to multi-source geospatial data fusion will take
the natural correspondence into account, and the feasibility and ad-
vantages of this approach will be tested in more applications.

Acknowledgments

This work was jointly supported by the National Natural Science
Foundation of China (#71961137003), and the Basic Research Program
of Shenzhen Science and Technology Innovation Committee (No. JCJY
201803053125113883, No. JCYJ20170412105839889). We would like
to thanks Prof. Christopher Pettit and two anonymous reviewers for
their constructive comments.

References

Abdullahi, S., et al. (2015). GIS-based modeling for the spatial measurement and eva-
luation of mixed land use development for a compact city. Mapping Sciences and
Remote Sensing, 52(1), 18–39.

Andrew, G., et al. (2013). Deep canonical correlation analysis. International conference on
machine learning (pp. 1247–1255). .

Baltru, V. S., Aitis, T., Ahuja, C., & Morency, L. (2019). Multimodal machine learning: A
survey and taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence,
41(2), 423–443.

Blaschke, T., et al. (2014). Geographic object-based image analysis–towards a new
paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 180–191.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of
Machine Learning Research, 3(1), 993–1022.

Cao, R., Zhu, J., Tu, W., Li, Q., Cao, J., Liu, B., ... Qiu, G. (2018). Integrating aerial and
street view images for urban land use classification. Remote Sensing, 10, 1553.

Chen, Y., et al. (2017). Delineating urban functional areas with building-level social
media data: A dynamic time warping (DTW) distance based k-medoids method.
Landscape and Urban Planning, 160, 48–60.

Csurka, G., et al. (2004). Visual categorization with bags of keypoints. Workshop on statistical
learning in computer vision, ECCV. Prague. 1–22.

Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 1(2), 224–227.

Deng, H., & Runger, G. (2013). Gene selection with guided regularized random forest.
Pattern Recognition, 46(12), 3483–3489.

Dovey, K., & Pafka, E. (2017). What is functional mix? An assemblage approach. Planning
Theory & Practice, 18(2), 249–267.

Fei, W., & Zhao, S. (2019). Urban land expansion in China's six megacities from 1978 to
2015. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv. 2019.02.
008.

Fern A Ndez-Delgado, M., et al. (2014). Do we need hundreds of classifiers to solve real
world classification problems. Journal of Machine Learning Research, 15(1),
3133–3181.

Forestier, G., et al. (2012). Knowledge-based region labeling for remote sensing image
interpretation. Computers, Environment and Urban Systems, 36(5), 470–480.

Guan, C., & Rowe, P. G. (2016). The concept of urban intensity and China's townization
policy: Cases from Zhejiang Province. Cities, 55, 22–41.

Guan, X., et al. (2018). Assessment on the urbanization strategy in China: Achievements,
challenges and reflections. Habitat International, 71, 97–109.

Hardoon, D. R., Szedmak, S., & Shawe-Taylor, J. (2004). Canonical correlation analysis:
An overview with application to learning methods. Neural Computation, 16(12),
2639–2664.

Hsieh, S. C. (2014). Analyzing urbanization data using rural-urban interaction model and
logistic growth model. Computers, Environment and Urban Systems, 45(4), 89–100.

Hu, S., & Wang, L. (2013). Automated urban land-use classification with remote sensing.
International Journal of Remote Sensing, 34(3), 790–803.

Li, S., & Cai, Y. (2005). Some scaling issues of geography. Geographical Research, 24(1),
11–18.

Lienou, M., Maitre, H., & Datcu, M. (2010). Semantic annotation of satellite images using
latent Dirichlet allocation. IEEE Geoscience and Remote Sensing Letters, 7(1), 28–32.

Lillywhite, K., et al. (2013). A feature construction method for general object recognition.
Pattern Recognition, 46(12), 3300–3314.

Liu, X., et al. (2017). Classifying urban land use by integrating remote sensing and social
media data. International Journal of Geographical Information Science, 31(8),
1675–1696.

Liu, Y., et al. (2015). Social sensing: A new approach to understanding our socioeconomic
environments. Annals of the Association of American Geographers, 105(3), 512–530.

Ma, T., et al. (2015). Night-time light derived estimation of spatio-temporal character-
istics of urbanization dynamics using DMSP/OLS satellite data. Remote Sensing of
Environment, 158, 453–464.

Marmanis, D., et al. (2016). Deep learning earth observation classification using
ImageNet pretrained networks. IEEE Geoscience and Remote Sensing Letters, 13(1),
105–109.

McDonald, R. I., Marcotullio, P. J., & G U Neralp, B. (2013). Urbanization and global
trends in biodiversity and ecosystem services. Urbanization, Biodiversity and Ecosystem
Services: Challenges and Opportunities (pp. 31–52). Springer.

Mohanaiah, P., Sathyanarayana, P., & GuruKumar, L. (2013). Image texture feature ex-
traction using GLCM approach. International Journal of Scientific and Research
Publications, 3(5), 1.

Pei, T., et al. (2014). A new insight into land use classification based on aggregated
mobile phone data. International Journal of Geographical Information Science, 28(9),
1988–2007.

Pereira, J. C., et al. (2014). On the role of correlation and abstraction in cross-modal
multimedia retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence,
36(3), 521–535.

Rasiwasia, N., et al. (2010). A new approach to cross-modal multimedia retrieval.
ACM251–260.

Ríos, S. A., & Muñoz, R. (2017). Land use detection with cell phone data using topic
models: Case Santiago, Chile. Computers, Environment and Urban Systems, 61, 39–48.

Sapena, M., & Ruiz, L.Á. (2018). Analysis of land use/land cover spatio-temporal metrics
and population dynamics for urban growth characterization. Computers, Environment
and Urban Systems. https://doi.org/10.1016/j.compenvurbsys.2018.08.001.

Shahriari, M., & Bergevin, R. (2017). Land-use scene classification: A comparative study
on bag of visual word framework. Multimedia Tools and Applications, 76(21), 1–17.

Tenenhaus, A., & Tenenhaus, M. (2011). Regularized generalized canonical correlation
analysis. Psychometrika, 76(2), 257.

Tu, W., et al. (2017). Coupling mobile phone and social media data: A new approach to
understanding urban functions and diurnal patterns. International Journal of
Geographical Information Science, 31(12), 2331–2358.

Tu, W., et al. (2018a). Portraying urban functional zones by coupling remote sensing
imagery and human sensing data. Remote Sensing, 10(1), 141.

Tu, W., et al. (2018b). Spatial variations in urban public ridership derived from GPS
trajectories and smart card data. Journal of Transport Geography, 69, 45–57.

United NationsWorld urbanization prospects, the 2018 revision. Population division,
Department of Economic and Social AffairsUnited Nations Secretariat.

Wang, W., et al. (2015). On deep multi-view representation learning. International con-
ference on machine learning (pp. 1083–1092). .

Wei, Y., et al. (2017). Cross-modal retrieval with CNN visual features: A new baseline.
IEEE Transactions on Cybernetics, 47(2), 449–460.

Wu, C., Zhang, L., & Zhang, L. (2016). A scene change detection framework for multi-
temporal very high resolution remote sensing images. Signal Processing, 124,
184–197.

Wu, X., et al. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data
Engineering, 26(1), 97–107.

Xing, H., & Meng, Y. (2018). Integrating landscape metrics and socioeconomic features
for urban functional region classification. Computers, Environment and Urban Systems.
https://doi.org/10.1016/j.compenvurbsys.2018.06.005.

Xu, Y., Belyi, A., Bojic, I., & Ratti, C. (2018). Human mobility and socioeconomic status:
Analysis of Singapore and Boston. Computers, Environment and Urban Systems, 72,
51–67.

Yao, Y., et al. (2016). Sensing spatial distribution of urban land use by integrating points-
of-interest and Google Word2Vec model. International Journal of Geographical
Information Science, 31(4), 825–848.

Yao, Y., et al. (2017). Mapping fine-scale population distributions at the building level by
integrating multisource geospatial big data. International Journal of Geographical
Information Science, 31(6), 1220–1244.

Yuan, J., Zheng, Y., & Xie, X. (2012). Discovering regions of different functions in a city
using human mobility and POIs. Proceedings of the 18th ACM SIGKDD conference on
knowledge discovery and data mining (pp. 186–194). .

Zhang, L., Zhang, L., & Du, B. (2016). Deep learning for remote sensing data: A technical
tutorial on the state of the art. IEEE Geoscience and Remote Sensing Magazine, 4(2),
22–40.

Zhang, W., et al. (2017). Parcel-based urban land use classification in megacity using
airborne LiDAR, high resolution orthoimagery, and Google Street View. Computers,
Environment and Urban Systems, 64, 215–228.

Zhang, X., & Du, S. (2015). A linear Dirichlet mixture model for decomposing scenes:
Application to analyzing urban functional zonings. Remote Sensing of Environment,
169, 37–49.

Zhang, X., Xu, Y., Tu, W., & Ratti, C. (2018). Do different datasets tell the same story
about urban mobility — A comparative study of public transit and taxi usage. Journal
of Transport Geography, 70, 78–90.

Zheng, X., et al. (2016). Crowdsourcing based description of urban emergency events
using social media big data. IEEE Transactions on Cloud Computing, 99, 1.

Zheng, Y. (2015). Methodologies for cross-domain data fusion: An overview. IEEE
Transactions on Big Data, 1(1), 16–34.

Zhong, C., et al. (2014). Inferring building functions from a probabilistic model using
public transportation data. Computers, Environment and Urban Systems, 48, 124–137.

Zhong, Y., Zhu, Q., & Zhang, L. (2015). Scene classification based on the multifeature
fusion probabilistic topic model for high spatial resolution remote sensing imagery.
IEEE Geoscience and Remote Sensing, 53(11), 6207–6222.

Zhou, L., Zhou, Z., & Hu, D. (2013). Scene classification using a multi-resolution bag-of-
features model. Pattern Recognition, 46(1), 424–433.

Y. Zhang, et al. Computers, Environment and Urban Systems 78 (2019) 101374

11

http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0005
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0005
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0005
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0010
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0010
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0015
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0015
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0015
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0020
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0020
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0025
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0025
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0030
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0030
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0035
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0035
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0035
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0040
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0040
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0045
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0045
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0050
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0050
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0055
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0055
https://doi.org/10.1016/j.scitotenv. 2019.02.008
https://doi.org/10.1016/j.scitotenv. 2019.02.008
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0065
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0065
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0065
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0070
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0070
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0075
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0075
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0080
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0080
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0085
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0085
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0085
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0090
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0090
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0095
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0095
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0100
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0100
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0105
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0105
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0110
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0110
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0115
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0115
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0115
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0120
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0120
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0125
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0125
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0125
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0130
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0130
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0130
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0135
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0135
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0135
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0140
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0140
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0140
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0145
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0145
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0145
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0150
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0150
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0150
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0155
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0155
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0160
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0160
https://doi.org/10.1016/j.compenvurbsys.2018.08.001
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0170
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0170
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0175
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0175
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0180
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0180
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0180
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0185
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0185
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0190
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0190
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0195
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0195
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0200
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0200
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0205
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0205
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0210
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0210
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0210
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0215
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0215
https://doi.org/10.1016/j.compenvurbsys.2018.06.005
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0225
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0225
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0225
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0230
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0230
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0230
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0235
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0235
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0235
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0240
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0240
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0240
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0245
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0245
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0245
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0250
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0250
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0250
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0255
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0255
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0255
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0260
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0260
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0260
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0265
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0265
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0270
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0270
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0275
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0275
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0280
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0280
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0280
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0285
http://refhub.elsevier.com/S0198-9715(18)30483-6/rf0285

	Functional urban land use recognition integrating multi-source geospatial data and cross-correlations
	Introduction
	Study area and datasets
	Functional land use recognition through cross-correlations
	Semantic feature construction via probability topic model
	Cross-correlation learning via subspace learning methods
	Functional urban land use recognition

	Result
	Experiment settings
	Urban functional land use recognition results
	The performance of multi-source data fusion
	The performance of cross-correlations
	Parameter sensitivity analysis

	Discussion
	Conclusion
	Acknowledgments
	References




