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A B S T R A C T

Accurately identifying building function is essential for urban management, urban renewal, and promoting 
sustainable city development. Previous studies on building function classification have primarily focused on 
extracting external physical characteristics from remote sensing imagery and socio-economic attributes from 
Points of Interest (POI) data. However, these studies often overlook the patterns of human mobility within 
buildings, making it challenging to identify building functions accurately. To address these issues, this study 
mines the latent features embedded in POI and human trajectory data, and constructs a deep learning model, 
which integrates POI category semantics and human mobility patterns to identify urban building functions. We 
evaluated the proposed model in the 23 districts of Tokyo, Japan. The results indicate that the proposed model is 
able to extract features obtained from diverse data sources to identify building functions, achieving a test ac
curacy of 90.27 % and a Kappa coefficient of 0.8858. The building function mapping results in Tokyo demon
strate that the proposed model can accurately classify building functions in megacities. This study finds that 
human mobility patterns within buildings significantly improve the identifying accuracy of residential and 
commercial buildings. The building function mapping results of this study can provide effective data support for 
urban planning in Tokyo.

1. Introduction

1.1. Background

Urban Buildings, as the fundamental units supporting urban func
tions, provide essential spaces and venues for residents' daily activities, 
such as living, working, studying, and leisure (Niu et al., 2017; Zhang 
et al., 2023). With the acceleration of urbanization and the rapid growth 
of urban populations, the number of buildings is continuously 

increasing, and the functional types of buildings are becoming more 
complex and diverse. The functional attributes of buildings, as core el
ements, are essential for understanding human activity intentions 
(Humtsoe, 2022; Yao et al., 2023), predicting urban traffic flow (Liu 
et al., 2022), and urban planning (Wang et al., 2020). In the context of 
dynamic urban management and renewal, accurate identification of 
building functions is crucial for optimizing urban resource allocation 
and formulating adaptive strategies. For example, unreasonable urban 
functional layout leads to increasingly serious problems such as traffic 
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congestion, energy waste and environmental pollution (Choi & Yoon, 
2023; Shen et al., 2021). However, the identification of urban building 
functions still relies on national land surveys and official census data, 
which require substantial human and financial resources. This is 
particularly challenging in megacities with a vast number of buildings.

Previous research attempts to break through this bottleneck through 
remote sensing image interpretation, mainly using methods such as 
morphological feature-based and texture analysis to conduct land use 
classification at the scale of kilometer grids or traffic analysis zones (Liu 
& Shi, 2020; Tong et al., 2020; Wang et al., 2023). Although the external 
shape and textural characteristics of buildings remain mostly constant, 
their function might alter as a result of human activity (Zhong et al., 
2014). For example, buildings with similar roof structures may have 
completely different functions, and functional changes may only be 
achieved through changes in indoor activities. This phenomenon of 
“physical-functional” decoupling leads to a theoretical ceiling for the 
classification accuracy that solely relies on remote sensing data (Feng 
et al., 2021; Zhang et al., 2018). Besides, this phenomenon is growing in 
rapidly evolving urban environments due to economic shifts, de
mographic changes, and the repurposing of existing buildings. For 
instance, an old factory might be converted into creative workshops, a 
residential building might house various small businesses. Thus, a 
research shift has occurred towards multi-source spatiotemporal data 
fusion methods, which integrate multimodal data to enable large-scale 
and fine-grained urban building function identification.

1.2. Related work

With the development of location-based services (LBS), a large 
amount of social sensing data with spatiotemporal attributes has been 
generated, such as social media check-in data, taxi trajectories, mobile 
signaling, points of interest, and street view images (Liu et al., 2015). 
The accessibility of this data allows for the identification of building 
functions by incorporating human mobility and socio-economic infor
mation (Cao et al., 2020). For instance, Zhong et al. (2014) classified the 
building functions by extracting interaction features between residents' 
trips and buildings from smart card data. Chen et al. (2020) identified 
building functions by calculating the text-similarity of POIs within 
buildings and the ratio of different types of POIs. Compared to remote 
sensing images, street view images and social media images can provide 
cross-sectional views and ground-level information about city spaces. 
Srivastava et al. (2018) used convolutional neural networks to perform 
multi-label classification on multi-view Google Street View images to 
infer building functions. Hoffmann et al. (2023) harnessed Google Street 
View and Flickr social media image data to construct a content-based 
automatic filtering pipeline and fine-tuned Convolutional Neural 
Network architectures, thereby achieving building function 
classification.

However, studies that categorize building functions relying on a 
single data source struggle with the problem of uneven data distribution. 
For example, POI data is unevenly distributed in cities, which is dense in 
commercial centers but sparse in residential areas and suburbs, making 
it challenging to classify buildings in these areas based on POI data. 
Similarly, street view data generally only covers buildings along major 
roads, which hampers the identification of building functions off these 
roads.

In recent years, researchers have tried to improve building function 
classification by integrating multi-source spatiotemporal data. For 
example, Niu et al. (2017) inferred the functions of buildings in Tianhe 
District, Guangzhou, China, by integrating real-time location records 
from WeChat users, taxi trajectories, and POI data using a density-based 
method. Liu et al. (2018) realized the building function classification by 
designing a probabilistic model that utilizes taxi trajectories, social 
media data, remote sensing imagery, and POI data. Zhuo et al. (2019)
identified building functions by extracting spatiotemporal interaction 
features between different functional buildings based on taxi trajectory 

data and calculating the daily crowd density characteristics of buildings 
using Tencent Temporal Population data, employing an iterative clus
tering method. Deng et al. (2022) improve the accuracy of identifying 
building functions within residential areas by developing a hierarchical 
data mining model that integrates remote sensing imagery, street view 
images, and POI data. Nevertheless, the majority of these studies focus 
on extracting and calculating various indicator features from multi- 
source data, employing a conventional machine learning method to 
classify building function types. These methods often involve complex 
and cumbersome feature design steps, and their accuracy requires 
improvement.

The development of deep learning representation techniques has 
provided a technical foundation for deeply mining and representing 
socio-economic attributes and human mobility information in multi- 
source data (Moreira et al., 2019; Wei & Yu, 2024). In terms of POI 
data representation, Yao et al. (2017) pioneered the combination of POI 
data with the word2vec model, which embeds POIs into vector space to 
identify land use. Zhai et al. (2019) developed a Place2vec model to 
classify urban functional zones by analyzing the high-semantic infor
mation of POI data. Huang et al. (2022) used the word2vec model and 
manifold learning algorithm to extract spatial co-occurrence and cate
gory semantic information from POI data, conducting urban function 
classification for Xiamen Island.

For temporal data representation, early studies used methods like 
DTW to extract temporal features from time-series data (Chen et al., 
2017), while this method is complex to model and has limited feature 
extraction capabilities. Recently, time-series representation models such 
as LSTM, ConvLSTM, and TCN have been widely used in temporal data 
mining and representation because of their effectiveness in capturing 
time dependencies in time-series data (Hao et al., 2023; Ismail Fawaz 
et al., 2019; Shi et al., 2015). For instance, Yao et al. (2022) achieved 
urban land use classification at the scene scale by extracting temporal 
features from time-series electricity data based on the TCN model. 
Nonetheless, how to represent and integrate temporal series data at the 
building scale to construct a high-accuracy urban building function 
classification model remains a pressing issue.

1.3. Research gaps

In summary, two significant issues remain unresolved, as revealed by 
the reviewed literature. Firstly, previous studies have primarily focused 
on extracting the natural attributes from remote sensing imagery and the 
static socio-economic features from POI, neglecting the dynamic human 
mobility information within buildings. This oversight limits our 
comprehensive understanding of building functions. Secondly, although 
the fusion of multi-source spatiotemporal data has proven effective in 
identifying building functions, most existing research on building 
function classification based on such data relies heavily on manual 
feature engineering and traditional machine learning models. These 
approaches struggle to effectively extract and integrate the deep features 
and latent correlations within the multi-source spatiotemporal data in
side buildings, which limits the accuracy of building function 
classification.

1.4. Research questions

Based on the identified gaps in existing research, this study addresses 
the following key research questions: 

1) How can dynamic human mobility information within buildings be 
effectively captured and utilized to overcome the limitations of 
relying solely on static POI and remote sensing data for building 
function classification?

2) How to mine and integrate potential associations within POI data 
and crowd trajectories to improve the accuracy and generalization 
performance of building function classification models?
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These research questions directly address the two major limitations 
identified in existing literature: (1) the neglect of dynamic human 
mobility information within buildings, and (2) the inability of tradi
tional methods to effectively extract and integrate deep features from 
multi-source spatiotemporal data. By answering these questions, this 
study aims to advance both the methodology and practical applications 
of urban building function classification.

2. Study area and data

2.1. Study area

The study area of this study is the 23 districts of Tokyo, Japan, with a 
total area of 628 km2 and a population of approximately 9.71 million. 
The 23 districts are widely regarded as the core area of Tokyo, ac
counting for about 70 % of Tokyo Metropolis' total population. Char
acterized by flat terrain and densely packed with over 1 million 
buildings and service facilities, the 23 districts of Tokyo present a highly 

dense urban landscape. We chose Tokyo as the study area, aiming to 
investigate the spatial distribution of urban function in megacities. Fig. 1
depicts the distribution of buildings across these districts.

2.2. Datasets

2.2.1. Building footprint data
We collected a total of 911,332 building footprints within the study 

area from the OpenStreetMap. The original type tags from OSM were 
reclassified into six building type labels: residential, commercial, 
administrative, educational, public service, and industrial refer to Deng 
et al., 2022 and Zhang et al., 2023, as shown in Table 1. To ensure 
sufficient sample sizes for each category, we supplemented the label for 
categories with fewer samples, following the approach proposed by Liu 
et al. (2018). A total of 15,071 labeled building samples were obtained, 
representing 1.65 % of all buildings, distributed as follows: residential 
(1952, 12.95 %), commercial (4219, 28.00 %), administrative (1806, 
11.98 %), educational (2358, 15.65 %), public service (2719, 18.04 %), 

Fig. 1. The study area: Tokyo, Japan.
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and industrial (2017, 13.38 %).

2.2.2. Point of interest
In order to train high-quality POI embedding vectors, we obtained 

POI data for all major cities in Japan from the “Telepoint Pack DB” 
provided by ZENRIN DataCom Co., Ltd. The dataset includes 39 primary 
categories and 731 secondary categories, totaling 5.6 million entries. 
Due to the presence of substantial redundant information and inappro
priate categories for building function classification in the POI dataset, 
this study consolidated specific categories. For example, industrial types 
like “paper”, “manufacturing” and “petroleum coal” were grouped into 
the industrial category, while road-related categories were omitted. The 
final POI was reclassified into 25 categories: catering, shopping services, 
hotel services, commerce, leisure and entertainment, real estate, tourism 
and sightseeing, mining, aquaculture, agriculture and forestry, steel, 
professional technical services, finance and insurance, nonferrous 
metals, metal products, petroleum and coal products, educational ser
vices, culture and media, lifestyle services, sports facilities, communi
cation and information services, medical welfare, government and 
public institutions, transportation and logistics, vehicle - related, and 
others, totaling 4.9 million entries.

2.2.3. Trajectory data
Human trajectory data was used in this study to obtain human 

mobility time series in buildings. The trajectory data utilized in this 
study is big human GPS trajectory data provided by Blogwatcher Inc. 
(Fan et al., 2019; Jin et al., 2023; Zhiwen et al., 2023). We collected 

mobile device location data within the study area from August 15 to 
August 21, 2022. The original GPS data exceeds 200 million records, 
completely covering Tokyo. Since its users cover 80 million of Japan's 
total population of 126 million, this estimate can achieve very high 
statistical accuracy. This study conducted 30-minute interval statistics 
and 5-meter resolution interpolation resampling on the mobile device 
location data within buildings, generating the time-series population 
raster data in the 23 districts of Tokyo. Then using “extract by mask” 
tool, the vector data of buildings is superimposed and analyzed with the 
obtained multi-band time series raster data of people flow, and the time 
series of people flow in buildings is extracted. Fig. 2 is a visualization of 
the human mobility flow time series for different building types.

3. Methodology

Fig. 3 shows the framework of STAF-Net, which consists of three 
main parts. The POI category semantic feature extraction module em
ploys a semantic preservation algorithm and a Set2Set aggregation 
function to extract semantic features of POI categories within buildings. 
The time series feature extraction module utilizes the TimesNet model to 
capture the temporal change characteristics of human mobility flow in 
buildings. In the adaptive fusion module, a multi-head attention mech
anism fully integrates these features, and a SoftMax function classifies 
the building functions.

3.1. Semantics-preserved-based feature extraction from POI data

The POI category semantic extraction module is designed to derive 
category semantic feature from POI data, which consists of two main 
components: POI category encoder and POI aggregation function. Spe
cifically, the POI encoder is trained on POI data using a semantic- 
preserving POI embedding method to generate a dictionary of cate
gory embedding vectors for each POI category. For all POI data within a 
building, the corresponding POI embedding vectors are obtained based 
on this dictionary. Finally, the POI embedding vectors within the 
building are aggregated using the POI aggregation function to derive the 
feature vector that represents the POI semantic of the building.

Table 1 
The mapping of building function types to OSM platform tags.

Buildings type label Building type tags from OpenStreetMap

Residential (Res.) Residential, Apartments, House, etc.
Commercial (Com.) Retail, Supermarket, Cafe, Office, Hotel, Company, etc.
Administrative (Adm.) Government, Fire Station, Police Station, etc.
Education (Edu.) School, Kindergarten, College, University, etc.
Public service (Pub.) Temple, Library, Museum, Sports Center, Hospital, etc.
Industrial (Ind.) Industrial, Warehouse, Factory, etc.

Fig. 2. The human mobility flow time series over a week for six types of building samples.
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3.1.1. POI category encoder
This study employs the semantics preserved algorithm proposed by 

Huang et al. (2022) to embed the POI data. As shown in Fig. 4, the POI 
Category Encoder mainly consists of two components, which are utilized 

to extract the spatial co-occurrence and hierarchical structure informa
tion of POIs. Firstly, POI data from all over Japan is used to create a 
network of points of interest using the Delaunay triangulation. Each 
point of interest is represented as a vertex in the network, and the edges 

Fig. 3. The framework of the proposed model.

Fig. 4. The workflow of POI embedding based on the semantic preserved algorithm.
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connecting two points of interest are considered edges. A random walk 
algorithm is used to traverse several times from each node to generate 
several POI sequences. In this study, each node is assigned three random 
walk paths, each with a length of 5. The skip-gram model was used to 
train the POI sequences (Mikolov et al., 2013).

Secondly, the manifold learning algorithm is used to capture cate
gory hierarchy information, which is based on the hypothesis that if two 
secondary POI categories are part of the same primary category, their 
embeddings (i.e., their embeddings in a vector space) should be close to 
each other. In order to obtain more detailed POI semantic information, 
this study employs secondary categories to embed every POI. Addi
tionally, the negative sampling loss function was used to minimize the 
training loss, as shown in Eq. (1). Through this process, we can train a 
POI encoder that comprehensively learns POI space co-occurrence and 
hierarchical semantics. Consequently, POIs in the building can generate 
their corresponding embeddings through the POI encoder. 

L co− occurrence =
∑P

t=1

∑

− w≤j≤w
−

(

log
(
σ
(
eT

t et+j
) )

−
∑Q

i=1
log
(
σ
(
eT

t en
) )
)

(1) 

where P denotes POI categories from the sequences obtained through 
random walks, w is the context window size, et and et+j denote the vector 
embedding of the center word at position t and the context word at 
position t+ j, σ is the sigmoid function, eN is the vector embedding of 
n-th negative sampling word, Q is the number of negative sampling 
words for each center word.

3.1.2. Set2Set
The number of POI within different buildings varies, necessitating 

the aggregation of POI vectors to facilitate subsequent feature fusion and 
model training. Unlike common average pooling or max pooling 
methods, this study adopted Set2Set to aggregate the collection of POI 
vectors within buildings. Set2Set is a neural network for processing 
graph data, which is based on the sequence-to-sequence framework and 
is designed specifically for processing set-type data. The core idea of 
Set2Set is to transform the set of nodes into a fixed-size vector repre
sentation, which can capture the order and structure information in the 
set of nodes (Vinyals et al., 2016). This method excels in handling the 
complex relationships and patterns among set data, thereby mitigating 
the potential information loss. Specifically, it utilizes LSTM and atten
tion mechanisms to capture the optimal hidden sequence within a set of 
entities. In this study, POIs within a building generate embeddings, Ep1 ,

Ep2 …Epn according to the POI Encoder. These embeddings were then 
aggregated by the Set2Set model to obtain the feature vector Pb, which 
represents the semantic category of the POIs within the building. 

Pb = set2set
(
Ep1 , Ep2 …Epn

)
(2) 

where n denotes the number of POI within a building, Ep1 ,Ep2 …Epn 

denote the POI embeddings, Pb represents the embeddings aggregated 
by Set2Set.

3.2. TimesNet-based feature extraction from human mobility time series 
data

Observing the sample data in Fig. 2, it is evident that the variation in 
human mobility flow around the building exhibits a distinct periodic 
pattern. Hence, capturing the periodic fluctuations in the human 
mobility flow time series is a crucial aspect of this module. Conventional 
time series models, which rely on a one-dimensional time axis, are 
limited to identifying changes between adjacent time points. However, 
TimesNet demonstrates its unique advantage by extending the 1D time 
series into 2D space, effectively extracting the periodic changes in the 
time series data. Currently, it holds a leading position in the field of time 
series classification.

TimesNet is composed of multiple TimesBlocks stacked and con

nected via residuals (He et al., 2016). In Times Block, there are three 
primary steps involved. Firstly, a 1D time series is transformed into a 2D 
space. Convolutional neural networks then extract features related to 
both intra-period and inter-period variations from these 2D time series 
images simultaneously. Finally, the extracted features undergo a 
dimension transformation and weighted summation. Specifically, for 
each time series X1D of input length N, a Fast Fourier Transform is 
applied to transformed it from the time space to the frequency space. In 
the frequency domain, the amplitudes are used to extract the top k 
significant periodic features. Subsequently, based on the number of 
periods, the time series is divided and folded to produce k two- 
dimension time series images. 

f1,…, fk = Topk(Amp(fft(X1D) ) ) (3) 

p1,…, pk = ⌈
N
f1

⌉,…, ⌈
N
fk

⌉ (4) 

where, 
{
f1,…, fk

}
represents the k components with the highest ampli

tude intensity in the frequency domain after transformation and {p1,…,

pk} are their corresponding periods.
The two-dimensional time series images obtained exhibit two- 

dimensional locality because each column and row correspond respec
tively to adjacent moments and periods, where neighboring moments 
and periods often contain similar temporal changes. This characteristic 
allows for the extraction of feature information through convolutional 
kernels (Wu et al., 2023). Therefore, this study uses the Inception model 
to extract features from the constructed two-dimensional time series 
images. Subsequently, after dimension adjustment of the k temporal 
feature maps obtained from the feature extraction, they are weighted 
and summed according to the intensity of their corresponding fre
quencies to produce the final output vector Et.

Before using the TimesNet model to extract features from the human 
mobility flow time series of each building, it is necessary to compute the 
initial embeddings of the time series, which is represented as 
Bt={t1, t2,…, ts}, where s is the steps of the time series. Initially, the data 
undergoes processing through a value embedding layer and a positional 
embedding layer to compute the value embedding vector Ev and the 
positional embedding vector Ep. These obtained embedding vectors are 
then summed to produce the initialized temporal vector Et. Where Ev, Ep, 
Et ∈ Rn×D, D is the dimensionality output by the embedding layers. 
Subsequently, this initial vector is input into TimesNet for feature 
extraction, resulting in the final feature vector Tb This process can be 
expressed as follows: 

Ev = ValueEmbed(Bt) (5) 

Ep = PositionEmbed(Bt) (6) 

Tb = TimesNet(Et) (7) 

3.3. Adaptive fusion module

In this study, an adaptive feature fusion module was developed to 
integrate features from multisource data using multi-head attention. 
Attention mechanisms can adaptively allocate weights between two 
parts of feature vectors during model training, enhancing model classi
fication performance. This method is widely used in feature fusion 
research involving multi-source data (Li et al., 2022). The module in
cludes a normalization layer, a multi-head attention layer, and an acti
vation function. Within this module, the POI semantic feature vector Pb 
and the human mobility temporal feature vector Tb, extracted earlier, 
are first adjusted to a uniform dimension through a fully connected 
layer. Then, a multi-head attention layer adaptively learns the weights 
of different features. Finally, the fused feature vector is classified for 
building functions using the softmax function. 
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Pb
atten = MutiheadAttention(Pb)⨀Pb (8) 

Tb
atten = MutiheadAttention(Tb)⨀Tb (9) 

Efinal =
( [

layerNormal
(
Pb

atten
)
, layerNormal

(
Tb

atten
) ] )

(10) 

where Pb
atten and Tb

atten represent the building POI category semantic 
vector and the building human mobility pattern vector, respectively, 
both of which have been processed through multi-head attention cal
culations. Efinal denotes the vector that results from the layer normali
zation and concatenation of the vectors. This structured approach 
ensures that the model effectively integrates and utilizes the distinct 
characteristics of each data source, enhancing the overall predictive 
accuracy and relevance of the output.

3.4. Baseline models

In our experiments, three representative baseline models were cho
sen to compare with our model. The word2vec and LSTM models utilize 
POI features and temporal features for classification, respectively, while 
the Random Forest model directly uses both types of feature vectors for 
building function classification. This study uses test accuracy and kappa 
coefficient to evaluate the classification results of the models.

Word2Vec: Yao et al. (2017) first utilized this model to represent 
POI data and applied it to land use classification. This method treats 
each POI as a word, using a greedy algorithm to acquire the shortest 
paths among POIs within TAZs, considering them as sentences to create 
a corpus of POIs for all TAZs. Then, the POI corpus is trained by the 
word2vec algorithm proposed by (Mikolov et al., 2013) to obtain POI 
embeddings for each POI category. Finally, the POI embeddings are 
input into multilayer perceptron (MLP) for building function 
classification.

LSTM: LSTM (Long-Short-Term Memory Network) is a deep learning 
model commonly used to process sequence data (Hochreiter & 
Schmidhuber, 1997). It enhances the network's memory capability by 
introducing memory cells and gate mechanisms, which effectively cap
ture the long-term dependencies in sequence. Besides, it is well-regarded 
for its generalization capabilities and ability to avoid overfitting and is 
widely used in time series data modeling (Hua et al., 2019).

Random Forest: It is a supervised learning algorithm designed to 
enhance the accuracy and robustness of classification or regression tasks 
(Breiman, 2001). An essential feature of random forest is that it can 
reduce the overfitting of decision trees due to overfitting data, thus 
improving the performance of the model (Biau, 2012).

3.5. Experiments setup

This study conducted a comparative analysis of the STAF-Net against 
a range of baseline models to evaluate and analyze its performance. The 
dataset mentioned in Section 2 was randomly divided into training data 
and test data, following an 8:2 ratio. All experiments utilized the 
PyTorch framework in Python 3.8, leveraging the acceleration capa
bilities of an NVIDIA GeForce 4090 24G GPU. To optimize the objec
tives, the model was trained using the Adam optimizer alongside the 
Cross-Entropy loss function (Ho & Wookey, 2020; Kingma & Ba, 
2017). We also incorporated a learning rate decay strategy and an early 
stopping mechanism during the model training process to prevent 
overfitting.

To assess the performance of the models' classification outcomes, this 
study employs Test Accuracy and the Kappa Coefficient as evaluation 
metrics. The formulas for computing these metrics are provided below: 

Test Accuracy =

∑n
i=1xii

N
(11) 

Kappa =

∑n
i=1xii

/
N −

∑n
i=1

(∑n
j=1xij

∑n
j=1xji

)/
N2

1 −
∑n

i=1

(∑n
j=1xij

∑n
j=1xji

)/
N2

(12) 

where xij is the elements of the i-th row and j-th column of the confusion 
matrix, xii is the correctly predicted samples, n is the number of cate
gories, and N is the number of test samples.

4. Results

4.1. Model accuracy evaluation and model comparison

This study performed comparative experiments utilizing both indi
vidual data sources and pairs of combined data sources to evaluate the 
effectiveness and reliability of the STAF-Net. We also selected three 
baseline models for comparative analysis. For each baseline, we adjusted 
the corresponding hyperparameters and conducted the experiments ten 
times, taking the average as the final accuracy of the model. Table 2
shows the evaluation results of STAF-Net and baselines on the test data.

As shown in Table 2, experiments 2, 4, 5, and 6 demonstrate com
parisons between models based on single data. When using only tra
jectory data, the model achieved higher test accuracy compared to the 
model using POI data. TimesNet demonstrated superior performance 
over LSTM in trajectory data analysis, achieving an 11.29 % higher test 
accuracy. Similarly, the Semantic-based model substantially out
performed Word2vec in POI data processing. The performance gap be
tween temporal modeling approaches was particularly notable, with 
TimesNet's multi-periodic design showing clear advantages over con
ventional LSTM in capturing trajectory patterns. For POI data modeling, 
semantic-enhanced methods proved more effective than vectorization- 
based approaches.

Experiments 1 and 3 reflect comparisons between models utilizing 
two types of data. The results indicate that methods based on two types 
of data show significant improvements compared to methods using only 
one type of data. When these two types of data are utilized, the proposed 
model achieves an test accuracy of 90.27 % and a Kappa coefficient of 
0.8858, with an test accuracy improvement of 7.2 % compared to the 
Random Forest model. These findings indicate that employing multi
source data can produce more precise building function classification 
results compared to using single data sources. Additionally, the pro
posed model in this study, based on deep learning, is superior in 
extracting complex data features compared to traditional machine 
learning models, significantly enhancing the effectiveness of building 
function classification.

4.2. Ablation study

To confirm the effectiveness of each component in our model, 
ablation experiments were conducted in this study. Table 3 shows the 
ablation study results, illustrating each component's impact on our 
model's performance. The TimesNet-based model utilizes trajectory 
data, while the Semantic-based model exclusively uses POI data. Both 
the STAF-Net (without AFM) and STAF-Net models incorporate both 
types of data. The difference is that the STAF-Net (without AFM) model 

Table 2 
Evaluation result of the proposed model and baselines.

No Model Data source Test accuracy (%) Kappa

POI Trajectory

1 STAF-Net √ √ 90.27 0.8858
2 TimesNet √ 85.05 0.8244
3 Random Forest √ √ 83.07 0.7921
4 Semantic-based √ 79.67 0.7644
5 LSTM √ 73.76 0.6799
6 Word2Vec √ 58.21 0.4877
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does not employ the adaptive fusion module for feature integration. The 
results indicate that STAF-Net achieves the best performance, followed 
by the STAF-Net (without AFM), the TimesNet-based model with tra
jectory data only, and the Semantic-based with POI data only. This in
dicates that the adaptive fusion module, POI semantic features, and 
human mobility pattern features all play a beneficial role in enhancing 
classification accuracies.

Specifically, when our model does not include the adaptive fusion 
module, the accuracy drops to 86.29 %, and the Kappa coefficient de
creases to 0.8394. It confirms that the AFM plays an essential role in our 
model, effectively enhancing the accuracy of predictions. In comparison, 
the TimesNet-based model, which only inputs trajectory data, obtains an 
test accuracy of 85.05 % and a Kappa coefficient of 0.8244. When only 
using POI data, the accuracy drop s to 79.67 %, and the Kappa 

coefficient is 0.7644. This suggests that human mobility information 
from trajectory data is more effective for identifying building functions. 
Additionally, utilizing multisource data fusion outperforms methods 
that rely solely on a single data source.

In order to further analyze the degree of contribution of models in 
identifying different building functions, this study examines the confu
sion matrix of different models. The results, as shown in Fig. 5, indicate 
that show that STAF-Net significantly enhanced the accuracy of identi
fying different building types after data fusion. Specifically, the classi
fication of industrial types showed the best performance, achieving an 
accuracy of 97.4 %. The classification results for educational and public 
service types were also excellent, reaching 96.5 % and 94.1 %, respec
tively. The classification accuracies for these three types of buildings 
were all above 90 %. Additionally, the classification results for admin
istrative types and commercial types were also good, with accuracies of 
89.6 % and 86.5 %, respectively. In contrast, the type with the poorest 
classification results was residential buildings, with an accuracy of 78.8 
%.

A comparison of the confusion matrices for various models reveals 
that data fusion improved the classification accuracy for all six building 
types to differing extents. The most significant improvement was seen in 
residential types, where the accuracy increased from 50.2 % (Semanti
c_based) to 78.8 % (STAF-Net). Moreover, incorporating the human 

Table 3 
The ablation experiment results.

Model Input data Test accuracy (%) Kappa

STAF-Net POI + Trajectory 90.27 0.8858
STAF-Net (without AFM) POI + Trajectory 86.29 0.8394
TimesNet-based Trajectory 85.05 0.8244
Semantic-based POI 79.67 0.7644

Fig. 5. Confusion matrix for the four models.
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mobility flow time series led to the most significant improvement in 
classification accuracy. The classification results for commercial and 
public service types also showed significant improvements, with accu
racies increasing from 71.3 % and 86.4 % to 86.5 % and 94.1 %, 
respectively. Overall, the proposed model effectively enhanced the 
classification results for different building function types after data 
fusion, particularly for residential, commercial, and public service types.

4.3. Urban building function mapping results

In this study, the STAF-Net was applied to realize large-scale function 
classification mapping of buildings in 23 districts of Tokyo, over 93 
thousand buildings were identified, as shown in Fig. 6. The results 
indicate that residential buildings are primarily concentrated on the 
western side of the 23 districts, particularly in Suginami and Nakano 
districts. Commercial areas are mainly located on the east side of Tokyo 
Station, spanning from Otemachi to Nihonbashi and Ginza areas, which 
serve as Tokyo's central business district where commercial activities are 
highly concentrated. Administrative buildings are predominantly found 
in the Kasumigaseki area of Chiyoda Ward and the western part of 
Shinjuku Station area. Both areas are critical political centers of Tokyo 
and Japan, hosting numerous government institutions and organiza
tions. Educational buildings are mainly concentrated around point D, 
near the University of Tokyo in Bunkyo District, which is a renowned 
educational district of Tokyo. Additionally, point E, located near Shi
buya Park, has a dense distribution of public service buildings due to the 
concentration of sports venues and tourist attractions. Point F in Koto 
District is characterized by industrial parks and logistics centers. The 
spatial distribution of residential and commercial buildings in the 23 
districts of Tokyo highlights a clear separation of workplaces and resi
dential areas.

To further understand the distribution of building functions in the 23 
districts of Tokyo, this study conducted statistical analyses based on the 
number and area of buildings, as shown in Fig. 7. Based on the count of 
buildings, residential and commercial service types account for the 
majority in the 23 districts. Commercial business buildings come next. 
Public service buildings rank third, followed by education and research 
buildings, industrial buildings, and administrative buildings. When 
analyzed by area, residential and commercial service buildings still 
dominate. By comparing these two sets of data, we found that from the 
quantity ratio to the area ratio, only the land occupation of residential 
buildings decreased, while the proportion of other types increased. 
Notably, the proportion of industrial types increased the most, followed 
by commercial services. This is because residential buildings in Tokyo 
are predominantly single - family homes, occupying smaller land plots. 
In contrast, industrial buildings include factories and large logistics 
warehouses, and commercial buildings include various shopping centers 
and office buildings, all covering relatively large areas.

Whether looking at the results of the number of different types of 
buildings or the proportion of area, it is evident that residential and 
commercial buildings in 23 districts of Tokyo occupy a dominant posi
tion. This phenomenon not only highlights the high population density 
of the 23 districts but also reflects their significant status as an inter
national financial city. The concurrent development of commercial and 
residential buildings not only meets the daily living needs of residents 
but also provides a solid foundation for the prosperity of commercial 
activities, driving economic and cultural development and progress in 
the 23 districts of Tokyo.

4.4. Urban functional structure mode in Tokyo's 23 districts

To understand the core function of each district in the 23 districts of 
Tokyo, this study analyzed the proportion of different types of buildings 
based on their occupied area, with results displayed in Fig. 8.

In Suginami and Nakano districts, residential buildings occupy over 
65 % of the building area, significantly higher than other areas, making 

them true residential districts. Chiyoda and Chuo districts have over 40 
% of their area occupied by commercial buildings, indicating a signifi
cant concentration of commercial activities, positioning them as the 
commercial centers of the 23 districts. Chiyoda, being the administrative 
center of the 23 districts, has more than 9 % of its area occupied by 
administrative buildings, which is much higher than other areas. Bun
kyo District leads in educational buildings, occupying 17.8 % of its area, 
which corresponds with its reputation as a famous school district in 
Tokyo and the district with the highest number of universities in Japan. 
Shibuya District has the highest proportion of public service buildings 
due to its many tourist attractions and recreational facilities, making it a 
popular destination for young people. Koto and Edogawa districts have 
higher proportions of industrial areas, 17.6 % and 12.4 %, respectively, 
because these districts are located near the numerous ports along Tokyo 
Bay, accommodating many logistics warehouses and factories.

5. Discussion

5.1. Effectiveness of the proposed model

In contrast to previous research, this study marks a significant 
breakthrough. Due to the fine granularity of building scales and the 
difficulties in extracting effective features from multi-source data, 
limited research has explored the relationships between human trajec
tory data and POI data for urban building function classification. To 
solve this problem, we delved into the structural differences between 
POI and human trajectory and introduced a deep learning model, STAF- 
Net. This model is capable of effectively extracting both the static POI 
semantics and the dynamic human mobility patterns within buildings. 
For the first time, we achieved large-scale building function mapping in 
the highly dense 23 wards of Tokyo, and the STAF-Net outperforms all 
existing models, boasting a test accuracy of 90.27 % and a Kappa of 
0.8858. The building function mapping results from Tokyo show that 
our model can adapt to the accurate classification of massive building 
functions in megacities.

Based on the classification result of a single building, it can be 
observed that STAF-Net demonstrates a high accuracy in identifying 
buildings associated with industrial, educational, and public service 
categories. However, the classification accuracy for residential and 
commercial buildings is relatively lower despite having sufficient 
training samples. This discrepancy could stem from insufficient resi
dential POI data and the presence of commercial POIs within residential 
areas, causing biases in model recognition. In summary, the results 
suggest that the human mobility patterns revealed by human trajectory 
data, along with the category semantics provided by POI data, can 
capture both the static and dynamic characteristics of buildings. This 
dual data source method addresses the shortcomings of using a single 
data source, thereby improving the precision of building function 
classification.

The necessity of each module in STAF-Net was verified through 
ablation analysis. Compared to the LSTM model, TimesNet more accu
rately captures both long and short-period patterns in human mobility 
flow, leading to higher classification accuracy. In the analysis of POI 
semantic features, semantic preservation-based POI embedding model 
significantly outperformed the earlier word2vec model, proving more 
effective for identifying building functions. Additionally, ablation 
analysis of the data sources revealed that different data sources have 
varying impacts on building function classification. POI data strongly 
indicate educational and administrative buildings, whereas human 
mobility flow time series significantly influence the classification of 
residential and commercial buildings. Altering the model structure 
yields minimal performance gains compared to data fusion. Therefore, 
future research should focus on extracting comprehensive features from 
multi-source data to enhance accuracy.
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Fig. 6. Building function classification results in 23 districts of Tokyo.
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5.2. Human trajectory data reflecting urban building function

The time-series data of human mobility exhibits significant differ
ences among various types of buildings, offering important clues for 
distinguishing building categories. As illustrated in Fig. 2, pedestrian 
traffic in residential buildings shows a pattern of high activity during the 
day and low activity at night, reflecting the regularity of residents' daily 
lives. In contrast, commercial buildings display an opposite trend, with 
dense foot traffic during working hours and sparse traffic outside these 
hours. This contrast not only reveals the fundamental differences in 

building usage but also provides valuable information for urban plan
ning and management. Educational buildings exhibit unique short-term 
and long-term cyclical patterns, with three peaks occurring in the 
morning, midday, and evening, and a noticeable difference in trends 
between weekdays and weekends. This phenomenon reflects the rhythm 
of students' academic lives and suggests the temporal distribution 
characteristics of educational resource utilization. Public service build
ings experience relatively lower pedestrian traffic on weekdays 
compared to weekends, highlighting the public's habits and needs 
related to the use of such facilities. For instance, venues like libraries and 

Fig. 7. Functional ratio of buildings in the 23 districts of Tokyo. (a) Number ratio (b) Area ratio.

Fig. 8. Proportion of six types of building areas in 23 districts of Tokyo.

Z. Hu et al.                                                                                                                                                                                                                                       Cities 169 (2026) 106557 

11 



gyms typically attract more visitors on weekends, reflecting people's 
tendency to engage in self-improvement or leisure activities during their 
free time. Moreover, these variations in patterns provide a basis for 
assessing the service efficiency and social benefits of public facilities.

5.3. Policy discussion

The approach proposed in this study offers transformative potential 
for urban planning. The STAF-Net model enables planning departments 
to accurately identify building functions at unprecedented scale and 
speed - a capability particularly valuable for Tokyo's complex urban 
fabric. The city-scale building function mapping result reveals the 
spatial structure characteristics of urban functions. The functions of 
urban buildings in Tokyo's 23 wards exhibit a clear separation pattern 
between occupation and residence: residential buildings are primarily 
concentrated in the outer ring districts of Suginami and Nakano, while 
commercial facilities are densely located in the central area from Ote
machi to Ginza. Industrial buildings are predominantly situated in the 
port areas along the eastern coast. This phenomenon is mainly attributed 
to urban planning strategies that concentrate business districts in the 
city center to foster economic development, coupled with high housing 
prices and land costs that drive residential areas outward. Although the 
separation of work and residence benefits finance and manufacturing 
sectors (Lucas & Rossi-Hansberg, 2002), it also leads to long commutes, 
traffic congestion, and increased environmental burdens (Van Acker & 
Witlox, 2011; Zhao et al., 2011).

Based on these insights, our research can guide targeted planning 
interventions and inform urban renewal strategies. For areas with 
concentrated residential buildings, like Suginami and Nakano, our fine- 
grained mapping can identify specific communities lacking essential 
services. Planners can then use this information to conduct micro-level 
planning, such as strategically adding community parks and small- 
scale commercial complexes to meet residents' daily leisure and shop
ping needs. This approach improves the residents' quality of life and 
reduces their reliance on long-distance travel to central commercial 
areas. Similarly, in highly commercialized areas like the districts around 
Tokyo Station and Ginza, our model can highlight a lack of residential 
and public service buildings. This can prompt planners to consider 
adopting mixed-use development strategies, which is a core concept in 
urban renewal, by encouraging the integration of residential units, 
cultural facilities, and diverse services to promote a more balanced and 
vibrant urban life throughout the day and week.

5.4. Limitations and future works

Several limitations of this should be mentioned. Firstly, in some re
gions, privacy laws and regulations may impose strict controls on the use 
of location data, which may affect the effectiveness of our proposed 
approach (e.g., reducing the classification accuracy of commercial and 
industrial types of buildings). Secondly, due to the challenges in 
acquiring building data labels, this study only classified six types of 
buildings. Further research should aim to refine classification labels to 
develop models capable of handling more detailed and diverse building 
functions. Recent research highlights the importance of interpretability 
in deep learning models. Consequently, future studies could focus on 
understanding the model's interpretability by examining how various 
data types specifically influence classification outcomes. This would 
contribute to increasing the model's transparency and credibility. In 
addition, exploring the relationship between geo-context features and 
building functions to improve the generalization of the model is another 
valuable research direction.

6. Conclusion

This study proposed a promising building function classification 
model (STAF-Net), which makes use of the semantic categories of POIs 

and human mobility patterns. Specifically, POIs and human mobility 
flow time series in each building are represented as vector embeddings 
that contain information about POI semantics and human mobility, 
respectively. The embeddings of the POIs and human mobility flow time 
series within a building are then fused to generate building embeddings 
using the multi-attention mechanism, which is aware of the different 
importance of the POIs and human mobility time series in a building. 
Finally, the building embedding is applied to identify building functions. 
The results in 23 districts of Tokyo show that the proposed model 
significantly outperforms the baseline, achieving a classification accu
racy of 90.27 % and a Kappa coefficient of 0.8858.

The ablation experiment indicated that human trajectory data has 
advantages in classifying building functions by extracting the human 
mobility patterns within buildings. In this study, identifying residential 
and commercial buildings using human mobility data proved to be 
relatively straightforward. On the other hand, it turned out that using 
POI data made it easier to identify educational and administrative 
buildings. It is proved that data fusion can effectively improve the per
formance of building functional classification. Additionally, this study 
reveals significant correlations between human mobility patterns and 
urban building functions. Distinct temporal human mobility flows are 
exhibited by different types of buildings, providing the model with rich 
information on human activities that aid in identifying building 
functions.

This study offers a promising model for identifying the function of 
numerous buildings in megacities. Additionally, this study precisely 
identified the building functions in the 23 districts of Tokyo, Japan, 
which is valuable for the urban planning department in enhancing urban 
planning and promoting urban renewal. In the future, we will apply our 
approach to other cities in the world and aim to improve the model to 
identify more fine-grained or mixed types of buildings. Furthermore, we 
will introduce geo-contextual environmental features (e.g., distance 
from roads and distribution of buildings) to enhance the model's 
generalization performance in local areas.
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