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H I G H L I G H T S  

• The distribution of human perceptions in urban area was obtained. 
• This study first focuses on the spatial homogeneity of human perceptions. 
• A method is proposed to discover the homogeneous geographic domain of human perceptions. 
• This study explored the role of urban function in shaping human perceptions.  
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A B S T R A C T   

Human perception of place refers to residents’ psychological feelings about urban areas. Many studies of human 
perceptions have focused on a specific geographic location. Whether the distribution of human perceptions in 
continuous city space shows specific characteristics and how to disclose these phenomena remains a direction 
worth exploring. Due to cities’ heterogeneity, quantitatively identifying the homogeneous perception regions at a 
fine scale within large urban regions is challenging. This study proposed a novel method to discover the ho-
mogeneous geographic domain of human perception using massive street view images. First, human perceptions 
of the urban visual environment were evaluated using street view images. Next, perception network models were 
constructed based on the road network and perception assessment results. Then, the Infomap community 
detection algorithm was used to identify homogeneous human perception communities. The qualitative and 
quantitative results verified our approach’s effectiveness for capturing human perceptions’ homogeneous 
geographic domain. Moreover, driving factor analysis was conducted to determine the urban function that may 
cause a community to be perceived differently based on point-of-interest (POI) data. In general, our method for 
combining human perceptions and the topology of urban roads could identify the homogeneous perception 
domain, which is valuable for urban structure studies and human perception assessment.   

1. Introduction 

Human perception of place refers to residents’ psychological feelings 
about an urban locale (Ordonez and Berg 2014, Tuan 2013). A city has 
specific functions and carries the psychological and emotional attach-
ment of urban residents to their living environment (Dubey et al. 2016, 

Goodchild 2011, Zhang et al. 2018a). Different places characterize 
different visual information, built environments, and urban function, 
affecting people’s sense of the urban environment (Goodchild 2011) and 
leads to varying psychological perception levels (Yao et al. 2019, Zhang 
et al. 2018a). Measuring the human perceptions of place can help re-
searchers understand the interaction between the built environment and 
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residents’ mental health (Wang et al. 2019b, Wang et al. 2019c, Wolch 
et al. 2014). Human perceptions can enrich the potential semantic in-
formation of urban places (Zhang et al. 2018a). Accurately gathering the 
distribution of human perceptions in urban space has essential signifi-
cance for urban planning and public health studies (Li et al., 2015b, 
Zhang et al. 2018a, Yao et al. 2019, Wang et al., 2019b). 

Human perception assessment of urban regions has been intensively 
studied during recent years. Traditional human perception research 
mainly uses low-throughput and data collection methods, such as time- 
consuming and labor-intensive questionnaires and interviews (Cresswell 
1992, Dadvand et al. 2016, Kabisch et al. 2015), which cannot be 
expanded to a large scale. With the rapid development of multi-source 
geo-spatial data (Liu et al. 2015), researchers could obtain a massive 
amount of publicly available geo-tagged images that could effectively 
reflect every corner of a city. As typical geo-tagged data, street view 
images have enabled us to observe, perceive, and understand our built 
environment. Moreover, what has been proven is that these data could 
accurately delineate our city’s physical environment and are more in 
line with the residents’ eye-level perceptions than other spa-
tial–temporal data, such as remote sensing images (Helbich et al. 2019). 
Therefore, street view images have aroused widespread concern in 
urban studies (Li et al. 2015a, Li et al. 2015b, Yin and Wang 2016, Li 
et al. 2017, Zhang et al. 2017, Zhang et al. 2018b, Gong et al. 2018, Tang 
and Long 2018). 

Regarding street view images as the proxy of urban places, some 
researchers have successfully assessed human perceptions hidden in 
these images’ visual elements using computer vision and machine 
learning technology (Yao et al. 2019, Zhang et al. 2018a). Salesses 
(2013) first proposed a comparative study of human perceptions 
through pairwise street view images. Dubey et al. (2016) expanded the 
research area and collected the volunteers’ perceptions to construct a 
street view perception dataset. Zhang et al. (2018a) proposed a 
perception measurement method for large-scale urban regions based on 
the MIT Place Pulse dataset (Ordonez and Berg 2014, Porzi et al. 2015, 
Naik et al. 2017, Zhang et al. 2018a). To solve the problem that people 
from different cities and cultural backgrounds may perceive the same 
urban environment differently, Yao et al. (2019) proposed the human-
–machine adversarial scoring framework. This framework has the ad-
vantages of having a low cost, high throughput, and low deviation in the 
process of assessing human perceptions using street view images. Be-
sides, it has been successfully used and achieved fruitful results in urban 
environments, public health, and other related fields (Wang et al. 2019a, 
Wang et al. 2019b). Research has mainly focused on six human 
perception types: wealthy, safety, lively, beautiful, boring, and 
depressing. 

Numerous studies have confirmed the urban environment’s impact 
reflected by the street view on urban residents’ health, both physically 
and mentally. For instance, street views of green and blue spaces posi-
tively affect geriatric depression (Helbich et al. 2019). The degree of 
visual openness of a street affects urban residents’ walkability and 
mental health (Wang et al. 2019c). Additionally, Wang et al. (2019a) 
and Wang et al. (2019b) reveal the quantitative impact of environmental 
perception on residents’ physical and mental health with the human-
–machine adversarial scoring method. The above studies all regard 
residential communities as the primary research unit. By creating a 
buffer around the community center, the corresponding indicators of the 
street scene sampling points within a community can be obtained, 
demonstrating that community quality is an essential factor affecting the 
residents’ physical and mental health. 

Due to the lack of appropriate methods, research on residents’ per-
ceptions has not yet been carried out at the community scale. Previous 
studies on human perceptions focused only on a specific geographical 
location (Dubey et al. 2016, Yao et al. 2019, Zhang et al. 2018a, Wang 
et al. 2019a, Wang et al. 2019b). Does the distribution of human per-
ceptions in continuous urban space exhibit specific characteristics (such 
as parcel-level aggregation or spatial variation)? How can these 

phenomena be quantitatively described? These are the foci of this study. 
Cities are complex systems, and urban road networks, as the city’s 

backbone, shape the city’s traffic, landscape, and functional structure 
(Hong and Yao 2019, Michael 2008, Wang et al. 2012). Road networks 
naturally divide successive urban spaces into disjointed communities 
(sub-regions) and shape a regional pattern. Typically, using a commu-
nity detection algorithm (e.g., Infomap algorithm (Rosvall and Berg-
strom 2008)), the hidden community structures that are internally well 
connected but externally less in an urban road network can be revealed. 
Most street views are distributed along urban roads (Cheng et al. 2017), 
reflecting the physical form and properties of a cities’ interior space 
(Zhang et al. 2018b, Gebru et al. 2017). The human perception infor-
mation of roads depicts the spatial similarity of subgroups of street 
networks in terms of perception. Naturally, it is worthwhile to combine 
road perception information with a community detection algorithm to 
facilitate understanding human perceptions’ spatial distribution. 

This study proposed the geographically homogeneous perception 
domain, which characterized the homogeneity and purity from the 
residents’ perception. In this study, the human–machine adversarial 
scoring framework was adopted to obtain the perception scores at the 
street view scale, and each road was assigned certain psychological 
awareness information. By combining the topology information of the 
urban road network with human perceptions, a graph network was 
constructed to identify human perceptions’ spatial distribution 
compared with the community detection results obtained using 
Euclidian distance. Finally, the impact of urban functions on the 
perception regions’ spatial distribution was revealed. A case study in 
Beijing confirmed the validity of the proposed method. 

2. Methodology 

The flow chart of the study is illustrated in Fig. 1. This study can be 
divided into four steps: 1) Assess each sampling point and road’s human 
perception scores using the human–machine adversarial framework 
with street view images; 2) Establish the directed perception graph 
models of the road network and the Euclidean distance network models 
with the average perception score and Euclidean length of each road as 
weights, respectively; 3) Detect the multilevel homogeneous perception 
communities in the network using the Infomap algorithm and quanti-
tatively analyze the spatial homogeneity from human perceptions at the 
community scale; and 4) Explore the relationship between the spatial 
distribution of human perceptions and urban functions at the commu-
nity scale. 

2.1. Measuring human perceptions of the built environment based on the 
human–machine adversarial framework 

We focus on six types of psychological perception among the resi-
dents: safety, lively, beautiful, wealthy, depressing, and boring, which 
are in line with previous studies (Dubey et al. 2016, Yao et al. 2019, 
Zhang et al. 2018a). Assessing both positive and negative perception 
types can help understand residents’ psychological feelings about the 
built environment. 

We take street view images as the proxy of urban places and physical 
settings. The human–machine adversarial scoring method (Yao et al. 
2019) is used to quantitatively describe the residents’ perceptions of the 
built environment reflected by street view images. This method bridges 
the gap between urban environment, visual scenery, and residential 
perceptions. It combines advanced computer vision and machine 
learning technology to provide an accurate, low-cost, and highly effi-
cient assessment of large-scale human perceptions. The primary process 
of the human–machine adversarial scoring method for perceiving the 
urban environment is shown in the first step of Fig. 1. 

(1) Semantic segmentation of street view images. The human-
–machine adversarial scoring method first extracted the visual elements 
closely related to perception, that is, using the fully convolutional 
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network (i.e., the FCN-8 s) (Long et al. 2015) to segment the street views 
into 151 ground objects (e.g., trees, roads, and buildings). The image 
segmentation results represent the physical setting and visual elements 
of a place. The MIT ADE20K website (http://groups.csail.mit.edu/visi 
on/datasets/ADE20K/) contains a complete description of all cate-
gories. We used an annotated image from the ADE20K scene parsing and 

segmentation database to train the FCN-8 s network (Zhou et al. 2016, 
Zhou et al. 2017). Each street view can be represented as a 151-dimen-
sional feature vector by counting each feature type’s pixel proportion. 

(2) Volunteer recruitment. After obtaining the image segmentations, 
this study developed a human–machine adversarial scoring system to 
collect the ground truth of people’s perceptions and measure each street 

Fig. 1. Workflow of discovering the homogeneous geographic domain of human perceptions from street view images.  
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view’s perception. The human–machine adversarial scoring system re-
quires that the volunteers should have an excellent knowledge of the 
urban environment to avoid perception assessment bias (Wang et al. 
2019b, Yao et al. 2019). Therefore, we recruit local volunteers aware of 
China’s regional socioeconomic background to score a dataset of street 
scenes from Chinese cities. Detailed information about volunteers can be 
found in section 4.1. 

(3) Human-machine adversarial scoring. The human–machine 
adversarial scoring system randomly displays a street view image from 
500 thousand street view photos of major Chinese cities (e.g., Beijing, 
Shenzhen, Guangzhou, Shanghai, Wuhan, and Hangzhou) for annota-
tion and receives the volunteer’s perception score. Each perception 
type’s score field is 0 to 100 points, representing the lowest and highest 
levels, respectively. When volunteers score>50 photos, the system 
automatically fits the proportions of 151 elements in the image seg-
mentation with the inputted rating scores using the random forest al-
gorithm (Breiman 2001, Fern A Ndez-Delgado et al. 2014) for automatic 
rating and shows the recommended scores for following new images. If 
more than one person scores the same image, the image’s final score will 
be set as the median value to avoid extreme scores. 

(4) Calibration of the automatic scoring system. In the following 
scoring process, the trained scoring model automatically recommends 
rating scores for new images and refers the images to volunteers who 
subsequently correct the system’s recommended scores. The human-
–machine adversarial scoring system tends to calibrate its parameters of 
the fitted model and provide more accurate perception scores. The 
calibration process stops when the volunteers’ scores and the recom-
mended scores match given a threshold (when random forest fitting 
accuracy is over 90% on average and the root-mean-square errors be-
tween the recommended scores and volunteers’ scores are<5 for the last 
scored 100 images). 

At the end of the rating process, the human–machine adversarial 
scoring system can automatically generate the perception scores for any 
street view image. With the help of recruited local volunteers and 
carefully defined stopping criterion, we believe that the obtained eval-
uation scores could represent real perceptions. 

2.2. Constructing the human perception network models 

After simplifying and checking the OSM roads’ topology in the study 
area, we abstract the OSM road map into a directed graph (Hong and 
Yao 2019, Yao et al. 2018a). A directed graph G ≡ (V,E,W) is composed 
of vertexes (V), edges (E), and the weight of each edge (W). In this study, 
the starting point and ending points of a road and the intersection be-
tween road segments constitute the vertex V; the road segments con-
necting these points form the edge set E. The “one-way” field specifies 
each edge’s direction in the OSM road property description. In our urban 
perception network models, the weight W is calculated as: 

Wi,j = 100 −

∑n

k=1
scorek

ni

(1) 

Where Wi,j represents the weight of the type j perception of the i − th 
road segment; ni is the number of street view sampling points falling on 

the i − th road; and 
∑n

k=1
scorek

ni 
stands for the average perception score of 

the type j perception for the i − th road segment. 
Our work intends to discover and reveal regional homogeneous 

distribution patterns of human perceptions. We employ a network 
clustering method that considers the road network’s ability to shape the 
urban regionalization pattern from an urban network division perspec-
tive. The division of a network depends mainly on the spatial variable 
similarity and topological connectivity of the nodes. Spatial nodes with 
higher spatial variable similarity and connectivity will be more easily 
clustered into the same community (Hong and Yao 2019). Because we 
intend to cluster graph nodes that have similar perception conditions 
with their neighboring nodes, we use Equation (1) as a spatial similarity 

metric of homogenous perception. The higher the score of urban 
perception between road nodes (i.e., the stronger the perception), the 
smaller the value of formula (1), the easier the nodes are grouped into 
one category. 

Additionally, we carry out a comparison experiment with weight W 
set as the Euclidean length of each road segment (i.e., Euclidean distance 
network model, which implies closer things are related to each other, 
elaborated by Tobler’s first law of geography (Tobler 1970)). With the 
Euclidean distance as a spatial similarity metric of perceptions, dividing 
the Euclidean distance network can be seen as a natural urban region-
alization. Later, we show that the perception network models’ advan-
tage in finding homogeneous communities. 

2.3. Discovering the homogeneous geographic domains of human 
perception using the Infomap algorithm 

The Infomap algorithm is adopted to reveal the network’s hidden 
spatial structure (Rosvall and Bergstrom 2008), thereby identifying the 
perception communities’ spatial distribution. Infomap, regarded as one 
of the best performing nonoverlapping clustering models, can meticu-
lously identify a network’s hidden hierarchical structure by combining 
information theory with random walks (Lancichinetti and Fortunato, 
2009). Our network’s attributes depend entirely on the connectivity of 
the actual road network, which ensured that our network could meet 
and reflect the city’s functional structure. The Infomap does not require 
preset parameters so that the network’s nature and topology determine 
the result of the community discovery. We do not need to explicitly 
consider or specify any transport-related attributes such as centrality 
and multi-modality when modeling a network. With the constructed 
directed graph of the urban road network, we employ the Infomap al-
gorithm to divide the network into multiple levels and reveal the hier-
archical spatial patterns implied in the network. 

The Infomap algorithm classifies each node in the graph network 
into a specific community. The spatial coverage of each community can 
be determined by constructing Thiessen polygons. Relative percentage 
variance (RPV) is used to describe the homogeneity of residents’ per-
ceptions within a community. RPV is defined as the ratio of the mean of 
perception scores’ variance of the k − th level communities to the 
perception scores’ variance of all sampling points in the study area: 

RPVk =

∑n

i=0
vark,i/nk

var
× 100% (2) 

where nk is the number of communities in the k − th level and vark,i is 
the perception variance of the sample points within the i − th community 
at the k − th level. var is the perception scores’ variance at all sampling 
points in the study area. An RPV value greater than or equal to 1 in-
dicates that the method has not detected a more homogeneous com-
munity. A lower RPV suggests that a community has a more uniform and 
consistent human perception. 

We also define the average area AvgAreak and standard deviation 
AreaSDEk of all the communities in the kth level to describe the scale of 
the communities: 

AvgAreak =

∑n

i=0
areak,i

nk

(3)  

AreaSDEk =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=0

(
areak,i − AvgAreak

)2

nk

√

(4) 

Where areak,i is the area of the i − th community at the k − th level. 
Relatively low AvgArea and AreaSDE values represent a more refined 
community discovery result. By calculating RPV, AvgArea and AreaSDE 
in different community levels, we can quantitatively evaluate the hier-
archical community identification method’s effectiveness with the 
perception network models. 

Y. Yao et al.                                                                                                                                                                                                                                     
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2.4. Exploring the relationship between the spatial distribution of human 
perceptions and urban function 

This section first considers the spatial autocorrelation of average 
perception scores for each community (Li et al., 2010). This study uses 
two criteria to quantitatively reveal each community’s urban functional 
patterns: the point-of-interest (POI) density and mixing entropy (Hong 
and Yao 2019). The POI density Equation (5) reflects the urban func-
tions’ absolute density in a particular community (Li et al., 2011). In the 
i − th community, the ratio of the number of the j − th type of POI Counti,j 
and Areai of the i − th community is defined as the POI Densityi,j: 

Densityi,j =
Counti,j

Areai
(5) 

The POI mixing entropy Equation (6) is used to characterize the 
extent of mixed land use (Frank et al., 2004), revealing each particular 
community’s urban functional mixing degree. For community i, the 
mixing entropy Entropyi is defined as: 

Entropyi = −
∑n

j=1

(
pi,j × lnpi,j

)
(6) 

Where n represents the number of all the types of POIs in the study 
area (we excluded POIs belonging to the “other facilities”, so n = 7); and 
pi,j represents the proportion of the j − th type of POI in all POIs within 
community i. 

Random-forest-based regression analysis is conducted to investigate 
the nonlinear relationship between the spatial distribution of human 
perceptions and urban function. Each community’s average perception 
score is used as the dependent variable, and the density of different type 
POIs, mixing entropy, and road network density are regarded as 
explanatory variables. By analyzing the fitting accuracy and weight 
parameters, we can quantitatively explore the importance of different 
urban functions in human perceptions’ spatial distribution. 

3. Case study and data 

We select the urban areas within the fifth ring road in Beijing as our 

Fig. 2. Case study area: Beijing inner city. The blue lines represent the main road, and the base map is a high-resolution remote sensing image. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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study area. The fifth ring road area has the most outstanding economic, 
political, and cultural development of Beijing’s populated areas. It has 
commonly taken it as a study area in previous studies (Zhang et al. 
2018a, Wang et al. 2019b). As shown in Fig. 2, this study selects seven 
administrative units in Beijing as our research areas: Haidian district, 
Chaoyang district, Daxing district, Shijingshan district, Fengtai district, 
Dongcheng district, and Xicheng district. 

The road network data of the study area are acquired from the 
OpenStreetMap (OSM) website (http://www.openstreetmap.org), an 
open geographical database of the world (Zhou, 2018; Bahrehdar et al., 
2020). Studies have shown that the study area’s road location and to-
pological relationships are highly accurate (Yao et al. 2018a). After 
simplifying, merging, and checking the topology, 6,716 road vertexes 
and 8,784 road segments are extracted from the original OSM road data, 
shown in Figure 2. 

Tencent Map, one of the largest online map service providers in 
China, provides an application interface for capturing street view im-
ages. Based on the road data, we sample points 100 m apart along the 
roads mentioned above. For each sampling point, four horizontal street 
view images with angles of 0◦, 90◦, 180◦, and 270◦ are obtained. We 
collected a total of 128,592 street view images of 32,148 sampling 
points in the study area, as illustrated in Fig. 3. 

In this study, the POI is used to identify the community’s urban 
functions, further exploring the relationship between human percep-
tions and urban functional land use (Liu et al., 2017; Yao et al., 2018b). 
We collect a total of 1,052,852 POI in the study area from Gaode Map 
(https://www.amap.com/). According to the category code recorded in 
the POI, we reclassify the POI data into eight categories (each POI may 
belong to more than one category), as shown in Table 1. The POIs 
classified into ’Other facilities’ are included in the land use density 

analysis. Still, they are excluded from the study of mixed land use 
because they do not reflect a particular area’s functional characteristics. 

4. Results 

4.1. Human perception result based on the human–machine adversarial 
scoring framework 

Twenty local volunteers with balanced gender were invited to give 
scores to the human–machine adversarial scoring system. The volunteer 
whose ages ranged from 20 to 50 years old consist of college students 
and staff, and they are aware of the study area’s socioeconomic back-
ground. After each volunteer scored 1,000 – 2,000 images via the 
human–machine adversarial system, the recommended scores and vol-
unteers’ scores reached a high agreement. All street view images in the 
study area were fed into the system, and the human perception scores of 
the sampled images were obtained. 

Fig. 3. Tencent street view image data. Case study areas: (A) Tiananmen Square, (B) at an intersection, and (C) Jingshan Park.  

Table 1 
Types, abbreviations, counts, and proportions of the Gaode POIs after 
reclassification.  

Type Abbreviation Count Proportion 

Life services LS 430,943  0.409 
Other facilities OTH 319,785  0.304 
Office building/space OBS 128,771  0.122 
Medical/Education ME 64,058  0.061 
Entertainment ENT 38,877  0.037 
Government GOV 29,158  0.028 
Residential communities RC 26,779  0.025 
Financial service FS 18,819  0.018  
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The distribution of six types of human perception along the roads in 
the study area is shown in Fig. 4. In general, the downtown areas are 
more “wealthy”, “safety”, “lively” and “depressing” than the outer 
suburbs (e.g., the fourth ring and the fifth ring roads). High-level roads 
such as ring roads and highways are more “boring” and “beautiful” than 
short and low-level roads. This result is reasonable because central 
urban areas tend to be densely populated, with well-developed com-
mercial facilities and a lack of vegetation and natural scenery. We have 
given two sets of example street view images at the bottom of Fig. 4. The 
two on the left are from Zhongguancun (center of science and educa-
tion), and the two on the right are found in the suburbs. More trees can 
be found in the suburbs, but with low buildings, fewer vehicles and 
people, making them more “beautiful” and “boring”. Noteworthy, 
several areas outside the third ring road are regarded as “wealthy”, 
“safety” and “lively”, which is related to universities, parks, and high- 
grade residential areas, indicating that human perceptions may asso-
ciate with the actual functional area of the city. We further analyze the 
role of urban function in shaping the distribution of human perceptions 
in section 4.3. 

The frequency distribution histogram of six types of human percep-
tion scores for all sampling points in the study area is shown in Fig. 5. 
According to the mean and median values, the study area is relatively 
“wealthy”, “boring”, and “depressing” (Mean > 52 and Median > 52), 
with a low degree of “safety” and “beautiful” (Mean < 45 and Median <
45). The frequency distribution histograms of Wealthy, Safety, and 
Lively scores show skew distribution patterns. Their standard deviation 

(Stdev > 8.8) is significantly larger than others, which indicates that the 
three perceptions in the study area have a higher degree of heteroge-
neity. Perception of “boring” and “beautiful” show a normal distribution 
pattern with minor variances (Stdev < 7.7), indicating that our study 
area is “boring” and “beautiful” in general. 

4.2. Hierarchical community detection result of human perceptions 

The 6,716 road nodes and 8,784 road segments in the study area are 
classified into hierarchical community structures. PRV for the different 
community levels in the two types of networks is shown in Fig. 6. 

The AvgArea and AreaSDE of the different community levels for the 
two types of networks are shown in Fig. 7. 

Fig. 6 compares the perception homogeneity of communities ob-
tained by two network models (i.e., traditional Euclidean distance 
network model and perception network model, respectively). As shown 
in Fig. 6, the identified communities’ perception homogeneity increases 
with increasing community level. Compared with the traditional 
Euclidean distance network model, the perception network model is 
better at identifying homogeneous communities at a fine scale, as shown 
from the lower RPV value from the beginning of level 2. The difference 
in RPV is the largest in the third level communities, with the RPV of the 
perception network model 9.86%-20.21% lower than that of the 
Euclidean distance network model. 

Fig. 7 compares the spatial size of areas (i.e., AvgArea and AreaSDE) 
identified by two network models. At the same level, the community 

Fig. 4. The distribution of six types of human perception along the roads: (A) wealthy, (B) safety, (C) lively, (D) beautiful, (E) boring and (F) depressing.  
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sizes determined by the Euclidean distance network model are larger 
than those determined by the perception network model. These results 
could verify the effectiveness of the perception network model to 

identify homogeneous communities at fine-grained scales. The division 
of a network depends mainly on the spatial location and spatial topo-
logical relationship of the nodes. Spatial nodes with more substantial 

Fig. 5. The frequency distribution histogram of six types of human perception scores in the study area.  

Fig. 6. The RPV of the wealthy, safety, lively, beautiful, boring and depressing perceptions at different community levels. The green line represents the result based 
on the Euclidean distance network models, and the red line is the result based on the perception network models. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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spatial variable similarity and connection will be more easily clustered 
into the same community. Our results indicate that the hierarchical 
community discovery results based on the perception network models 
can identify homogeneous human perception domains at a fine scale 
while maintaining the street network’s spatial topology. 

The previous study has proved Infomap’s ability to reveal urban 
space’s partition at different scales (Hong and Yao 2019). Typically, the 
top level expresses the connection between the city center and the sur-
rounding area; the second level reflects the spatial relationships within 
the core downtown area; the third level results can identify an area’s 
single urban function. Hence, we choose the third level community 
detection result for exploring the relationship between the distribution 
of human perceptions and urban functions. We calculate the mean score 

of six human perceptions in the third level community, representing the 
community’s human perception. The spatial distribution of the human 
perception communities based on the perception network models and 
the traditional Euclidean distance network models in the third level 
community is shown in Figs. 8 and 9. 

We mark the corresponding positions in Fig. 8(A) and Fig.9(A) for 
comparing the outputs of the two models. The areas numbered 1 to 5 are 
the city’s science and education, economy, transportation, recreation, 
and residential areas in Beijing. We could find that the identified com-
munities align well with the actual functional area of the city. For 
example, results of both network models show area 2 a “wealthy” re-
gion. Area 5, which is a desolate residential area that lacks commercial 
facilities, is identified as an area of less “wealthy”. Moreover, the 

Fig. 7. (A) The AvgArea of identified communities at different levels. (B) The AreaSDE of identified communities at different levels.  

Fig. 8. Community discovery results based on the perception network models, where (A) shows the perception of wealthy, (B) shows the perception of safety, (C) 
shows the perception of lively, (D) shows the perception of beautiful, (E) shows the perception of boring and (F) shows the perception of depressing. Some identified 
areas are also shown in (A): (1) Zhongguancun, (2) financial center named Guomao, (3) Beijing west railway station, (4) Houhai park, and (5) Liangma bridge 
residential area. 
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resulting land parcels of the perception network also exhibit a more 
detailed spatial structure and reflect human perception’s spatial 
heterogeneity. 

4.3. The relationship between the spatial distribution of human 
perceptions and urban function 

Based on the mean scores in the third level community, the Moran’s I 
index value and Z-values are calculated, as shown in Table 2. The results 
indicate that all types of human perceptions show a positive spatial 
correlation in space, and they exhibit different degrees of spatial ag-
gregation. In particular, three types of urban perception types, namely, 
wealthy, safety, and lively, are strongly clustered and are mainly 
concentrated in the center of the city, which is in line with the human 
perception distribution shown in Fig. 4. 

We construct a nonlinear random forest regression model to explore 
the different perception types’ driving factors from urban function. The 
POI density (i.e., FS, ME, ENT, GOV, RC, LS, OBS), the POI mixing en-
tropy (i.e., Entropy), and the density of the road network (i.e., Roads) 
are treated as the explanatory variables. The human perception scores of 
the corresponding communities are treated as the dependent variables. 

The model-fitting results are shown in Table 3. All the perception types 
achieve good model fitting results for the training dataset (R2 > 0.80, 
Pearson R > 0.90). Moreover, all the perception types except “beautiful” 
and “boring” demonstrate high generalization ability based on the test 
dataset (R2 > 0.50, Pearson R > 0.70). 

The weights of the different explanatory variables in the model 
fitting procedure are shown in Table 4. We could find that different 
urban functions have distinct impacts on each type of human perception. 
In general, entertainment, medical and educational services, govern-
ment departments, life services, and residential communities are the 
most critical factors affecting human perceptions in the study area. The 
density of the road networks and office space is less critical in shaping 
human perceptions’ spatial patterns. For example, entertainment facil-
ities are the most important for “depressing”, probably because enter-
tainment facilities help relieve stress. It also suggests that the 
environment’s human perception can be made more friendly by opti-
mizing the types and improving the mixing degree of urban functions. 

5. Discussion 

This study proposed a novel methodology for detecting the homo-
geneous geographical domain of human perceptions based on street 
view images and OSM road networks. We used the proposed method to 
obtain the irregular geographic environment at a fine-scale in large 
urban areas. Urban residents have strong homogenous perceptions of the 
obtained sub-regions about the regional physical settings and the visual 
information, thereby providing a unique perspective for observing the 
residents’ perceptions of the urban environment. The qualitative and 
quantitative analysis of homogenous perception community detection 
results verified the feasibility of our method. 

This study first proposed the concept of the human perception ho-
mogeneity domain in the urban area. Also, we extended the research 

Fig. 9. Community discovery results based on Euclidean distance network models, where (A) shows the perception of wealthy, (B) shows the perception of safety, (C) 
shows the perception of lively, (D) shows the perception of beautiful, (E) shows the perception of boring and (F) shows the perception of depressing. Some identified 
areas are also shown in (A): (1) Zhongguancun, (2) financial center named Guomao, (3) Beijing west railway station, (4) Houhai park, and (5) Liangma bridge 
residential area. 

Table 2 
Moran’s I index and z-value of different types of urban perception at the com-
munity level.   

Moran’s I Z-value 

Wealthy  0.34  26.90 
Safety  0.24  7.31 
Lively  0.25  21.49 
Beautiful  0.05  4.70 
Boring  0.05  5.13 
Depressing  0.17  13.18  
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scale of human perception of the urban environment from geographical 
point to geographical polygon unit. Previous studies on human per-
ceptions focused only on a specific geographical location (Dubey et al. 
2016, Yao et al. 2019, Zhang et al. 2018a). Through the street view 
images and establishing a model, a location’s visual environment and 
the residents’ psychological perception could be linked. However, they 
cannot provide an answer to the residents’ perception of a continuous 
geographical area. Taking a qualitative and quantitative measurement 
of the regionalization of homogeneous perception at a fine-scale is still a 
problem that urgently needs to be solved. 

This study used the human–machine adversarial scoring method to 
assess the city-scale human perception of the urban environment in a 
cost-efficient and accurate way based on massive street view images. 
Considering the road network’s ability to shape a city’s regional pattern, 
we employed the community detection algorithm to reveal the hidden 
spatial distribution of homogenous perception domain from established 
perception network models. In this study, these homogenous perception 
polygons with clear geographical boundaries indicate that the residents’ 
psychological perceptions have a heterogeneous spatial distribution. 
The obtained communities are internally topologically well-connected 
but externally less so. The residents’ perceptions of the same commun-
ity’s urban environment have a relatively high homogeneity level (lower 
RPV value). Therefore, the detected geographic perception area can be 
used as a basic unit in other urban planning and public health studies. 

Few studies focused on homogeneous perception regions, and we still 
lack an indicator to measure the degree of homogeneity. Here, we pro-
posed the RPV value as such an indicator. Still, questions like what RPV 
could be considered highly homogeneous and selecting the appropriate 
level of communities should be further explored according to actual 
research and application needs. For example, communities ranked in the 
top 10% RPV could be taken as high-perception homogeneous. We 
consider it as a noteworthy direction and could be further explored in 
subsequent studies. 

At a community scale, we investigated the relationship between the 
spatial distribution of human perception and urban function based on 
POIs. We found that different urban functions may cause a community to 
be perceived differently. The result quantitatively identified the impact 
of urban functions on human perceptions of the urban environment, 
demonstrating that cities have specific functions and carry the psycho-
logical and emotional attachment of urban residents to their living 
environment (Dubey et al. 2016, Goodchild 2011, Zhang et al. 2018a). 

Several limitations of this study also deserve to be paid more 

attention to in future works. First, this study used the human–machine 
adversarial scoring framework, which only considered the urban envi-
ronment’s visual factors to obtain the residents’ psychological percep-
tions. However, human perceptions result from the interaction of 
environment, economy, culture, psychology, and other factors. There-
fore, future studies need to introduce more socioeconomic factors as 
input. Second, when exploring the relationship between the spatial 
distribution of human perceptions and urban function, other spatial data 
(such as vehicle trajectory and mobile phone) combined with POIs can 
better assist in identifying urban functions. Third, for urban areas where 
street view coverage is low, combining images from multiple sources, 
such as social media images and freely available Mapillary images, could 
assess urban regionalization of homogenous human perceptions more 
accurately. Fourth, our research only recruited twenty volunteers. In 
future research, the scoring system can be developed into a web service. 
Crowd-sourced scoring methods (for example, the MIT Place Pulse data 
collection platform, as mentioned above) can be used to evaluate street- 
view perception. Last, this study quantifies the urban perception as 
scores, with no obvious criteria to further distinguish different scores, 
such as “not beautiful”, “generally beautiful”, “relatively beautiful”, and 
“very beautiful”, etc. Future studies would try to design appropriate 
evaluation metrics for human perception assessment based on street 
view images. 

6. Conclusion 

Human perceptions have great significance in urban planning and 
public health. However, taking a quantitative measurement of the 
regionalization of homogeneous perception at a fine-scale is chal-
lenging. In this study, we proposed the concept of the human perception 
homogeneity domain in cities. This study employed the Infomap method 
to reveal human perception’s spatial distribution by combining the road 
network’s topological structure with the residents’ psychological per-
ceptions. The qualitative and quantitative results verified our 
approach’s great potential for capturing the homogeneous geographical 
domain of human perceptions, both in terms of fineness and high ho-
mogeneous. The random forest models’ fitted weight between human 
perceptions and urban function indicated that different urban functions 
play distinct roles in shaping urban perception. 

Our work is a constructive attempt to explore the urban region’s 
human perception by combining geo-spatial data with the urban resi-
dents’ psychological perception. This study first focuses on the spatial 

Table 3 
Fitting accuracy of the human perceptions based on the POI indices of urban function and OSM road density according to the RF model.   

Training dataset Testing dataset 
Perception RMSE MAE R2 Pearson R RMSE MAE R2 Pearson R 

Wealthy  2.210  1.784  0.904  0.957  3.700  2.972  0.657  0.810 
Safety  1.117  0.873  0.949  0.979  2.734  2.082  0.765  0.884 
Lively  1.981  1.548  0.893  0.965  3.568  2.745  0.654  0.810 
Beautiful  1.560  1.192  0.875  0.968  3.249  2.495  0.344  0.594 
Boring  1.250  0.973  0.830  0.938  1.974  1.597  0.490  0.710 
Depressing  1.397  1.053  0.926  0.972  3.282  3.282  0.583  0.776  

Table 4 
The RF’s fitted weights between the human perceptions and the POI density and OSM road density. Values are given for the financial services (FS), medical/education 
services (ME), entertainment (ENT), government departments (GOV), residence communities (RC), life services (LS), office building/space (OBS), the POI mixing 
entropy (Entropy), and the road density (Roads).  

Perceptions FS ME ENT GOV RC LS OBS Entropy Roads 

Wealthy  0.146  0.139  0.121  0.074  0.136  0.168  0.088  0.063  0.067 
Safety  0.087  0.097  0.111  0.181  0.172  0.097  0.065  0.110  0.047 
Lively  0.183  0.111  0.098  0.150  0.117  0.144  0.065  0.082  0.053 
Beautiful  0.102  0.086  0.115  0.109  0.074  0.235  0.086  0.111  0.085 
Boring  0.087  0.100  0.112  0.168  0.150  0.136  0.081  0.085  0.088 
Depressing  0.084  0.123  0.220  0.090  0.138  0.111  0.069  0.106  0.063  
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homogeneity of human perceptions at the land parcel scale. We also 
provide a unique perspective for understanding urban spatial hetero-
geneity and helps researchers understand the underlying urban struc-
ture and reveal urban function impacts. With the improvement of 
acquisition technology leading to the increase of street view coverage, 
the proposed method can explore the differences in the distribution of 
homogeneous perception areas between different cities. We believe that 
the study of human perception’s spatial distribution will bring new 
inspiration to urban planning and public health studies. 

Funding 

This work was supported by the National Key R&D Program of China 
[2019YFB2102903]; National Natural Science Foundation of China 
[41801306, 41671408, 41901332]; Fundamental Research Founds for 
National University, China University of Geosciences(Wuhan) 
[CUG190606]; Open Fund of State Laboratory of Information Engi-
neering in Surveying, Mapping and Remote Sensing, Wuhan University 
[18S01]; the Natural Science Foundation of Hubei Province 
[2017CFA041]. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

Bahrehdar, A. R., et al. (2020). Streets of London: Using Flickr and OpenStreetMap to 
build an interactive image of the city. Computers, Environment and Urban Systems, 84, 
Article 101524. 

Breiman, L. (2001). Random Forests. MACHINE LEARNING, 45(1), 5–32. 
Cheng, L., et al. (2017). Use of Tencent Street View Imagery for Visual Perception of 

Streets. ISPRS International Journal of Geo-Information, 6(9), 265. 
Cresswell, T. (1992). In place-out of place: geography, ideology, and transgression. U of 

Minnesota Press.  
Dadvand, P., et al. (2016). Green spaces and General Health: Roles of mental health 

status, social support, and physical activity. Environment International, 91, 161–167. 
Dubey, A., et al. (2016). Deep Learning the City: Quantifying Urban Perception at a Global 

Scale (pp. 196–212). Cham: Springer International Publishing. 
Ndez-Delgado, F. A., M.,, et al. (2014). Do we need hundreds of classifiers to solve real 

world classification problems. The Journal of Machine Learning Research, 15(1), 
3133–3181. 

Frank, L. D., Andresen, M. A., & Schmid, T. L. (2004). Obesity relationships with 
community design, physical activity, and time spent in cars. American Journal of 
Preventive Medicine, 27(2), 87–96. 

Gebru, T., et al. (2017). Using deep learning and Google Street View to estimate the 
demographic makeup of neighborhoods across the US. Proceedings of the National 
Academy of Sciences, 114(50), 13108–13113. 

Gong, F., et al. (2018). Mapping sky, tree, and building view factors of street canyons in a 
high-density urban environment. Building and Environment, 134, 155–167. 

Goodchild, M. F. (2011). Formalizing Place in Geographic Information Systems. In 
Communities, Neighborhoods, and Health: Expanding the Boundaries of Place (pp. 
21–33). Springer.  

Helbich, M., et al. (2019). Using deep learning to examine street view green and blue 
spaces and their associations with geriatric depression in Beijing, China. Environment 
International, 126, 107–117. 

Hong, Y., & Yao, Y. (2019). Hierarchical community detection and functional area 
identification with OSM roads and complex graph theory. International Journal of 
Geographical Information Science, 33(8), 1569–1587. 

Kabisch, N., Qureshi, S., & Haase, D. (2015). Human–environment interactions in urban 
green spaces — A systematic review of contemporary issues and prospects for future 
research. Environment Impact Assessment Review, 50(50), 25–34. 

Lancichinetti, A., & Fortunato, S. (2009). Community detection algorithms: A 
comparative analysis. Physical. Review. E, 80(5), Article 056117. 

Li, H., Calder, C. A., & Cressie, N. (2010). Beyond Moran’s I: Testing for Spatial 
Dependence Based on the Spatial Autoregressive Model. Geographical Analysis, 39(4), 
357–375. 

Li, Q., et al. (2011). Dynamic accessibility mapping using floating car data: A network- 
constrained density estimation approach. Journal of Transport Geography, 19(3), 
379–393. 

Li, X., et al. (2015a). Assessing street-level urban greenery using Google Street View and 
a modified green view index. Urban Forestry & Urban Greening, 14(3), 675–685. 

Li, X., et al. (2015b). Who lives in greener neighborhoods? The distribution of street 
greenery and its association with residents’ socioeconomic conditions in Hartford, 
Connecticut, USA. Urban Forestry & Urban Greening, 14(4), 751–759. 

Li, X., et al. (2017). Building block level urban land-use information retrieval based on 
Google Street View images. GIScience & Remote Sensing, 54(6), 819–835. 

Liu, X., et al. (2017). Classifying urban land use by integrating remote sensing and social 
media data. International Journal of Geographical Information Science, 31(8), 
1675–1696. 

Liu, Y., et al. (2015). Social Sensing: A New Approach to Understanding Our 
Socioeconomic Environments. Annals of the Association of American Geographers, 105 
(3), 512–530. 

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic 
segmentation. In In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition (pp. 3431–3440). 

Michael, B. (2008). The size, scale, and shape of cities. Science, 319(5864), 769–771. 
Naik, N., et al. (2017). Computer vision uncovers predictors of physical urban change. 

Proceedings of the National Academy of Sciences, 114(29), 7571–7576. 
Ordonez, V., & Berg, T. L. (2014). Learning High-Level Judgments of Urban Perception. 

In European conference on computer vision (pp. 494–510). Cham: Springer.  
Porzi, L., et al., 2015. Predicting and understanding urban perception with convolutional 

neural networks. 139–148. 
Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks 

reveal community structure. Proceedings of The National Academy of Sciences of The 
United States of America, 105(4), 1118–1123. 

Salesses, P. A. S. K. (2013). The Collaborative Image of The City: Mapping the Inequality 
of Urban Perception. PLoS One, 8(7), 1–12. 

Tang, J., & Long, Y. (2018). Measuring visual quality of street space and its temporal 
variation: Methodology and its application in the Hutong area in Beijing. Landscape 
and Urban Planning, 191, Article 103436. 

Tuan, Y. F. (2013). Landscapes of fear. University of Minnesota Press.  
Wang, P., et al. (2012). Understanding road usage patterns in urban areas. Scientific 

Reports, 2(12), 1001. 
Wang, R., et al. (2019a). The linkage between the perception of neighbourhood and 

physical activity in Guangzhou, China: Using street view imagery with deep learning 
techniques. International Journal of Health Geographics, 18(1), 18. 

Wang, R., et al. (2019b). Perceptions of built environment and health outcomes for older 
Chinese in Beijing: A big data approach with street view images and deep learning 
technique. Computers, Environment and Urban Systems, 78, Article 101386. 

Wang, R., et al. (2019c). The relationship between visual enclosure for neighbourhood 
street walkability and elders’ mental health in China: Using street view images. 
Journal of Transport & Health, 13, 90–102. 

Wolch, J. R., Byrne, J., & Newell, J. P. (2014). Urban green space, public health, and 
environmental justice: The challenge of making cities’ just green enough’. Landscape 
and Urban Planning, 125, 234–244. 

Yao, Y., et al. (2018a). Estimating the effects of “community opening” policy on 
alleviating traffic congestion in large Chinese cities by integrating ant colony 
optimization and complex network analyses. Computers, Environment and Urban 
Systems, 70, 163–174. 

Yao, Y., et al. (2018b). Mapping fine-scale urban housing prices by fusing remotely 
sensed imagery and social media data. Transactions in GIS, 22(2), 561–581. 

Yao, Y., et al. (2019). A human-machine adversarial scoring framework for urban 
perception assessment using street-view images. International Journal of Geographical 
Information Science, 33(12), 2363–2384. 

Yin, L., & Wang, Z. (2016). Measuring visual enclosure for street walkability: Using 
machine learning algorithms and Google Street View imagery. Applied Geography, 
76, 147–153. 

Zhang, F., et al. (2018a). Measuring human perceptions of a large-scale urban region 
using machine learning. Landscape and Urban Planning, 180, 148–160. 

Zhang, F., et al. (2018b). Representing place locales using scene elements. Computers 
Environment & Urban Systems, 71, 153–164. 

Zhang, W., et al. (2017). Parcel-based urban land use classification in megacity using 
airborne LiDAR, high resolution orthoimagery, and Google Street View. Computers, 
Environment and Urban Systems, 64, 215–228. 

Zhou, B., et al. (2016). Semantic Understanding of Scenes Through the ADE20K Dataset. 
International Journal of Computer Vision, 127(3), 302–321. 

Zhou, B., et al. (2017). Scene parsing through ADE20K dataset. In In: Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition (pp. 633–641). 

Zhou, Q. (2018). Exploring the relationship between density and completeness of urban 
building data in OpenStreetMap for quality estimation. International Journal of 
Geographical Information Science, 32(2), 257–281. 

Y. Yao et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S0169-2046(21)00088-8/h0005
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0005
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0005
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0010
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0015
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0015
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0020
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0020
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0025
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0025
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0030
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0030
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0035
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0035
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0035
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0040
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0040
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0040
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0045
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0045
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0045
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0050
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0050
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0060
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0060
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0060
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0065
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0065
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0065
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0070
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0070
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0070
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0075
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0075
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0075
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0080
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0080
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0085
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0085
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0085
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0090
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0090
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0090
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0095
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0095
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0100
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0100
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0100
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0105
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0105
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0110
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0110
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0110
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0115
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0115
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0115
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0120
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0120
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0120
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0125
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0130
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0130
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0135
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0135
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0145
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0145
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0145
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0150
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0150
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0155
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0155
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0155
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0160
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0170
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0170
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0175
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0175
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0175
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0180
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0180
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0180
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0185
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0185
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0185
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0190
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0190
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0190
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0195
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0195
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0195
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0195
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0200
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0200
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0205
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0205
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0205
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0210
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0210
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0210
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0215
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0215
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0220
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0220
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0225
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0225
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0225
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0230
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0230
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0235
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0235
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0240
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0240
http://refhub.elsevier.com/S0169-2046(21)00088-8/h0240

	Discovering the homogeneous geographic domain of human perceptions from street view images
	1 Introduction
	2 Methodology
	2.1 Measuring human perceptions of the built environment based on the human–machine adversarial framework
	2.2 Constructing the human perception network models
	2.3 Discovering the homogeneous geographic domains of human perception using the Infomap algorithm
	2.4 Exploring the relationship between the spatial distribution of human perceptions and urban function

	3 Case study and data
	4 Results
	4.1 Human perception result based on the human–machine adversarial scoring framework
	4.2 Hierarchical community detection result of human perceptions
	4.3 The relationship between the spatial distribution of human perceptions and urban function

	5 Discussion
	6 Conclusion
	Funding
	Declaration of Competing Interest
	References


