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Detecting clusters over intercity transportation networks
using K-shortest paths and hierarchical clustering: a case
study of mainland China
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Jianjun Lv a,b and Yao Yao a,b

aSchool of Geography and Information Engineering, China University of Geosciences, Wuhan, Hubei, China;
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ABSTRACT
Intercity transportation infrastructures and services determine the
depth and breadth of the spatial interactions among cities within
an urban agglomeration, and have profound impacts on the spatial
structure of the urban agglomeration. To evaluate whether the pub-
lic intercity ground transportation infrastructures and services (i.e.
passenger trains and long-distance buses) can support the integra-
tion and development of urban agglomerations, we propose
a method for ‘transportation cluster’ detection (TCD), which has
three unique features: (1) the K-shortest paths are used to quantify
the proximity between cities, which is more in line with people’s
travel behaviors; (2) a dendrogram is obtained through hierarchical
clustering to reveal the structural hierarchies of transportation clus-
ters; and (3) the integration of geo-modularity and hierarchical clus-
tering assures high strength of division of transportation networks.
The proposed TCD method was applied to the network of passenger
trains, the network of long-distance buses, and the combined net-
work of both in mainland China, respectively. By comparing the
resultant transportation clusters with the urban agglomerations deli-
neated by the Chinese government, cities that have weak transporta-
tion connections with other cities within an urban agglomeration
were identified, and such findings could help devise transportation
planning to better support the integrated development of urban
agglomerations.
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1. Introduction

With the development and improvement of transportation infrastructures, the intercon-
nections and interactions between cities are growing stronger. The space and time
constraints, which separate geographical locations from each other, are gradually ceas-
ing. There is no doubt that our world has been ‘shrinking’ (Dudás 2013). The term
megalopolitan cluster area refers to a region comprising a considerable number of cities
clustered around the regional economic core of one or more super-large cities (Lang and
Knox 2009, He et al. 2013). Other terms such as megalopolis, megacity, conurbation,
metropolitan interlocking region, urban cluster, and urban agglomeration have also
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been used in literature to denote this large urban landscape phenomenon (Gottmann
1957, Freeman and Dickinson 1967, Yu et al. 2014, Fang and Yu 2017). Despite the
inconsistency in terminology, this type of extensive, multi-centered, and multi-city urban
landscape has been well recognized (Yu et al. 2014). In this paper, we use the term urban
agglomeration in order to emphasize the geographic agglomeration and linkages
between individual cities.

The agglomeration of cities is the result of economic agglomeration within a region.
Previous studies have suggested the organizational structures of urban agglomerations
largely depend on the hierarchical transportation and socioeconomic networks, which
enable and strengthen the coordinated developments of population, resources, envir-
onments, societies and economies of individual cities within a region (Fang and Yu
2017). Transportation plays a crucial role in shaping a region’s spatial structure and
affecting its accessibility (Downs and Horner 2012). As the skeleton of regional structure,
the flows of people, goods, finance, and information are the fundamental connections
between cities, and demand for necessary infrastructures and services of passenger and
cargo transportations (Démurger 2001). Therefore, as one of the key enabling and
driving factors for the development of urban agglomerations, transportation can be
seen as an important indicator to evaluate the development conditions for a region (Li
et al. 2016). Many studies on transportation systems focused on accessibility
(Straatemeier 2008, Wilbanks 2010, Zhang et al. 2018), improving land-use values
(Hurst 1970, Wagner 2010), promoting economic developments (Vickerman et al. 1999,
Kopits and Cropper 2005, Yamaguchi 2007), and optimizing spatial structures (Montis
et al. 2007, Downs and Horner 2012, Garcia-López 2012). However, one issue remains
less attended: whether or not the existing transportation infrastructures (e.g. railways
and highways) and services (e.g. passenger trains and long-distance buses) can support
the development of regional integration. Specifically, this paper focuses on the strengths
of transportation connections among the cities within urban agglomerations.

Many transportation networks (e.g. road networks, airline networks, and railway net-
works) are proved to have the properties of complex networks, such as small-world and
scale-free (Latora and Marchiori 2001, Guimera et al. 2005, Li and Cai 2007, Kotegawa
et al. 2014). The advancement of complex network theory has generated an increasing
body of literature on applications in transportation systems (Barrat et al. 2004, Montis
et al. 2007, Bagler 2008). One of the key characteristics of complex networks that many
studies have been focusing on is the community structure (also termed cluster struc-
ture), which is the division of network nodes into groups such that the connections
within groups are denser than the connections between groups (Girvan and Newman
2002, Newman and Girvan 2004, Newman 2006a). Detecting the clusters of cities over
transportation networks (referred to as transportation clusters in the rest of the text)
can help us discover the groups of cities that are tightly connected through transporta-
tion, which lay the foundation of the formation and development of urban agglomera-
tions. On the other hand, the boundary of an urban agglomeration can be determined
through varied methods. Taking China as an example, the government determines the
boundaries of urban agglomerations based on a set of city attributes such as population,
GDP, and administrative boundaries (Yao et al. 2016). Although most cities in an urban
agglomeration are strongly connected, weak intercity transportation connections still
exist, which impede the coordinated development of the region and should be
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strengthened. Therefore, the comparison between transportation clusters and urban
agglomerations determined by the government can be used to evaluate whether the
transportation networks are capable of supporting the integration of cities within urban
agglomerations. Particularly, when a transportation cluster is consistent with an urban
agglomeration, the transportation connections among the cities within the urban
agglomeration are strong enough to support the integrated development. On the
contrary, the inconsistent areas can be used to identify the weak connections where
transportation infrastructures and/or services must be strengthened.

Many approaches have been developed for finding communities over networks, and
most of them fall into two general categories based on the vertex connectivity. The first
category is based on graph partitioning. A typical example is the Girvan-Newman (GN)
algorithm, which repeatedly removes the edges of the maximum betweenness centrality
in the network (Girvan and Newman 2002). Another example is the Kernighan-Lin
algorithm which based on the minimum cut or normalized cut (Kernighan and Lin
1970). The other category is based on hierarchical clustering. Examples include the
fast modularity maximization algorithm that uses the modularity maximization as an
optimization condition (Clauset et al. 2004, Newman 2006b), and the structural cluster-
ing algorithm for networks (Xu et al. 2007). In addition, random walks in physics have
also been introduced in community detection. For example, the Markov cluster algo-
rithm (MCL) identifies network communities by adjusting the Markov chain and inflation
(van Dongen 2000). The Infomap algorithm uses random walks and information coding
to find communities in a network (Rosvall and Bergstrom 2007, 2008).

When dealing with geographic networks (e.g. transportation networks), not only the
topological structures, but also the geospatial characteristics of networks must be taken
into account. Considering the effect of geographical distance on connection strength,
Chen et al. (2015) introduced geographical distance into the calculation of modularity
(termed geo-modularity), and detected the community structure of the airline network in
China using the fast modularity maximization algorithm. Based on the Infomap algo-
rithm, Xu et al. (2017) identified 19 communities using the traffic travel data around the
Chinese New Year of 2017, and analyzed the population flows among communities.
Despite the good community division results, both of the above approaches cannot
represent the hierarchical structures of communities, which are critical for revealing the
pattern of connection strengths among cities. In a transportation network, the most
strongly connected cities form the cores of clusters, while those relatively less connected
cities may be either grouped into clusters as the fringe nodes or isolated from any
group. Therefore, a hierarchical structure can be found in a cluster, as the cities are
grouped into the cluster at various levels of connection strength. Such a hierarchy
provides information about how cities are incrementally integrated, and helps identify
the weakly connected cities within a cluster.

To delineate the hierarchical structures of clusters, hierarchical clustering methods
have been introduced in detecting clusters in a network. Zhou and Lipowsky (2004)
proposed the Netwalk algorithm, which uses random walking of particles over the
network to calculate the average distance between nodes, i.e. the average number of
steps for a particle to reach the target node for the first time from the source node. The
proximity index is defined based on the average distance between nodes, and
a hierarchical clustering algorithm is used to iteratively merge nodes into clusters
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based on the proximity index, starting from the most strongly connected nodes,
followed by less connected nodes. The iterative clustering stops when the modularity
stops increasing, and the final communities are obtained. Through such a clustering
process, a bottom-up tree is constructed to represent the hierarchical structures of
clusters based on the levels of connection strength. However, the Netwalk algorithm
has a major disadvantage when dealing with transportation networks. It assumes that
the walk of a particle is completely random, which is not how people and cargo travel
through a transportation network. In a large-scale transportation network, travel beha-
viors are far from completely random as most people prefer to choose the optimal route,
and a small proportion may choose other less optimal routes. In other words, the
proximity index between nodes in the Netwalk algorithm can hardly reflect the travel
behaviors in real-world transportation networks.

To solve the aforementioned problems, this paper proposes a transportation cluster
detection (TCD) approach combining K-shortest paths, hierarchical clustering and geo-
modularity, which aims to meet the following criteria: (1) the proximity of transportation
connection between cities must reflect people’s travel behaviors; (2) the hierarchy of
transportation clusters should be explicitly described to determine the densely con-
nected cities and weakly connected cities; and (3) the final result should achieve high
strength of division of a transportation network. The proposed TCD approach was
applied to the network of passenger trains, the network of long-distance buses, and
the combined network of both in mainland China, respectively. The resultant transpor-
tation clusters were analyzed to evaluate whether these ground transportation infra-
structures and services can support the integrated development of the urban
agglomerations in mainland China.

The remainder of this paper is organized as follows. The next section describes the
study area and dataset. The third section presents the proposed methodological frame-
work of TCD, followed by a report and discussion of the analytical results. Conclusions
are given in the last section.

2. Study area and datasets

The study area includes all prefecture-level cities in mainland China (Hong Kong, Macao
and Taiwan are excluded in this study). With continuous construction and development,
the transportation networks in mainland China have reached a considerable scale. By the
end of 2017, the total mileage of China’s ground transportation networks had reached
4.90 × 106 km, including 1.27 × 105 km of railways and 4.77 × 106 km of highways
(National Statistics Bureau of China 2017). The rapid development of transportation
plays a guiding role in the spatial organization of urban agglomerations. By
5 February 2018, the State Council of China had approved eight national urban agglom-
erations: Triangle of Central China (TCC), Harbin-Changchun (HCC), Chengdu-Chongqing
(CC), Yangtze River Delta (YRD), Central Plains (CP), Beibu Gulf (BBG), Guanzhong Plain
(GZP) and Central Inner Mongolia (CIM). In addition, there are five national urban
agglomerations to be approved, namely, Pearl River Delta (PRD), Beijing-Tianjin-Hebei
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(BTH), Liaozhongnan (LZN), Shandong Peninsula (SDP), and West side of the Straits
(WSS). The basic geographic data, such as prefecture boundaries and centers, were
collected from the National Geomatics Center of China (http://ngcc.sbsm.gov.cn). All
urban agglomerations are shown in Figure 1.

This study focuses on the ground transportation networks, including passenger trains
and long-distance buses. All transportation data were collected during June 1 to 30,
2017. Specifically, the dataset of passenger trains in mainland China was collected from
China’s official train booking website (http://www.12306.cn), including 6,764 train lines
(3,280 high-speed train lines and 3,484 low-speed train lines) and 2,919 railway stations.
The dataset of long-distance passenger buses was collected from Ctrip (http://www.
ctrip.com), one of the biggest travel booking websites in China, including 67,508 bus
lines and 1,007 bus stations.

3. Methodology

A transportation cluster detection (TCD) approach combining K-shortest paths, hierarch-
ical clustering, and geo-modularity is proposed in this study (Figure 2). The proximity
index is calculated based on the K-shortest paths, which is used to quantify the strength
of the connection between a pair of nodes. A hierarchical clustering algorithm is used to
iteratively merge nodes into clusters according to the proximity index. In the process of
clustering, the maximum of geo-modularity is used as an optimization condition to
determine the final transportation clusters. The rest of this section describes the details
of the process.

Figure 1. Thirteen urban agglomerations in mainland China designated by the Chinese government.
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3.1. Build graph

From an original transportation dataset, a network must be constructed, consisting of
nodes representing prefecture-level cities and weighted edges representing direct
transportation connections between cities. For cities that have more than one station,
the stations were merged as one node. Note that an edge between two nodes (cities)
exists only if there is at least one transportation line directly connecting these two cities
without any stop in between. In other words, two cities can be linked only if they are
consecutive stops of one or more train/bus lines.

The passenger train network (denoted as T-Network) was constructed from the
original dataset that includes both high-speed trains (denoted as HS) and low-speed
trains (denoted as LS). For each type, the weight (w) of the edge between two cities is
proportional to the number of train lines (m) connecting these two cities, and inversely
proportional to the n-th power of the average traveling time of those trains (t). That is,
the more commutes and the shorter the traveling time, the stronger is the connection
between two cities. The total weight (WT) between two cities is the sum of the weight of
high-speed trains (WHS) and the weight of low-speed trains (WLS).

WHS ¼ mHS=tnHS (1)

WLS ¼ mLS=tnLS (2)

Figure 2. Flowchart of transportation cluster detection.
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WT ¼ WHS þWLS (3)

The traveling time (t) is used as the ‘distance’ between two cities, and the power (n)
serves as the distance friction coefficient as in the gravity model. A large value of n leads
to a strong distance decay effect (Liu et al. 2014). In this study, referring to Chen et al.’s
study (2015), n in Equations (1) and (2) was set to be 2.

As the result, the T-Network includes 323 nodes and 999 weighted edges. Through
the similar process, the bus network (B-Network) was constructed, including 356 nodes
and 8,777 weighted edges.

Also, a combined network (C-Network) of B-Network and T-Network was constructed.
The weight WC of an edge is calculated as:

WC ¼
WT þ μWB Both train lines and long� distance bus lines between two cities

WT Only train lines between two cities
μWB Only long� distance buslines between two cities
0 No lines between two cities

8>><
>>:

(4)

where WT and WB are the weights of edges in T-Network and B-Network, respectively.
A ratio (μ) is be used to represent the relative importance between train lines and bus
lines when combining their weights. Such a ratio may vary across city-pairs, as the
relative importance between trains and buses may vary for different pairs of cities. In
this study, due to the limitation of data, it is arduous to obtain the ratios for all city-
pairs in mainland China. Therefore, the edge weights of the combined network were
computed using a universal ratio. According to the reports from the National Bureau of
Statistics of China in 2015, 2016, and 2017, the ratio between the number of passen-
gers over long-distance buses and that over trains is about 5.12, which was used to
combine the weights of B-Network and T-Network (i.e. μ ¼ 5:12 for the whole study
area). As the result, the C-Network includes 356 nodes and 8,913 edges (Figure 3).

3.2. Calculate K-shortest paths

Before detecting the clusters over a transportation network, the proximity index must be
derived to represent the strength of transportation connection between any pair of
nodes (i.e. cities) in the network (possibly connected by chains of edges). In order to
derive the proximity index that reflects people’s travel behaviors, TCD uses the
K-shortest paths (KSP). The purpose of the K-shortest paths is to find multiple alternative
paths with various costs (ordered ascendingly) between the source and the destination
in a network to satisfy the user’s selection of different paths to the greatest extent
(Eppstein 1994, Aljazzar and Leue 2011).

As the example shown in Figure 4, there are three routes from A to B (i.e. A-B, A-C-B,
and A-D-E-B), and the traveling cost (time, distance, or payment) is 4, 5, and 6, respec-
tively. Most people would choose route AB to save cost, but there are also a small
number of people who would take a detour and choose route ACB or ADEB for special
reasons. That is to say, for the choice of traveling route between any pair of cities, the
optimal route usually has the greatest probability while the sub-optimal routes have
smaller probabilities. Therefore, when quantifying the proximity of two cities, we must
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consider not only the optimal route, but also other routes. KSP can provide such
a collection of alternative routes with various connection strengths. Many algorithms
have been developed to solve the KSP problem, and more detailed information can be
found in the review paper by Brander and Sinclair (1996).

TCD uses the YEN algorithm (Yen 1971) to generate the KSP for all pairs of nodes in
a transportation network. Supposing there are N nodes and M edges in the network, the
computational complexity of calculating K shortest paths between a pair of nodes
is O KN Mþ NlogNð Þð Þ(Eppstein 1994). The YEN algorithm assumes that there are

Figure 3. The combined ground transportation network (C-network) (For display clarity, the edges
with a weight less than 0.15 are not shown).

Figure 4. K-shortest paths from A to B (K = 3). The value on an edge indicates the cost between the
two linked nodes.
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K paths with different lengths between a pair of nodes, sorted by length from small to
large. The k-th shortest path is dk, which contains a series of edges, and the total length
is lk. The core idea of the YEN algorithm is to use the shortest paths of d1, d2, …, dk-1
ðl1 � l2 � . . . � lk�1Þ that have been obtained to generate dk. The YEN algorithm can
be broken down into two parts: determining the shortest path d1, and then determining
all other k-1 shortest paths. The Dijkstra’s algorithm is used to determine d1 in this study
(Dijkstra 1959). To find dk, the algorithm assumes that d1 to dk-1 have already been
found. Taking find d2 as an example, suppose d1 is composed of nodes (n1, n2, … ni…nj).
Next, the edge between ni and ni+1 (1 � i<j) are sequentially removed, and the deviation
path di2 between n1 and nj is calculated again by Dijkstra’s algorithm. Then a deviation
path sets S is formed, which contains j-2 deviation paths. Finally, the path with the
smallest length in S is selected as d2. By repeating the above steps, other paths (k > 2)
can also be determined.

It should be noted that in TCD, the ‘length’ of an edge (l) is the reciprocal of the
weight W (i.e. l ¼ 1

W ). That is to say, the larger is the weight of an edge (i.e. the stronger
is the connection between the two linked nodes), the shorter is the ‘length’ of the edge.

3.3. Hierarchical clustering

Once the KSP between all pairs of nodes in the transportation network are determined,
the proximity indices between these pairs are calculated and a hierarchical clustering
process is applied to incrementally group nodes into clusters.

As mentioned above, when quantifying the proximity between a pair of nodes (cities),
it is necessary to take people’s travel behaviors into account. Therefore, the proximity
index Φ between node i and node j is defined as a weighted combination of K shortest
paths lkð Þ, and the weight of the k-th shortest path ωk decreases as k increases. The lower
is the proximity index, the stronger is the transportation connection between a pair of
nodes.

Φ i; jð Þ ¼
XK
k¼ 1

ωklk (5)

where K is the number of paths generated by KSP. The value of K and the values of ωk

must be set carefully, such that the following hierarchical clustering can generate a good
division of the nodes in a network. Please see section 4.1 for an example.

For a network with N nodes, the nodes are initially divided into N clusters, each
containing a single node, and the proximity index between all pairs of clusters are
calculated. In TCD, a hierarchical clustering process is used to iteratively merge clusters
of nodes, and the proximity index between cluster α and β is updated as follows:

Φ α; βð Þ ¼ 1
nα;β

X
i;jð Þ:i2α;j�βΦ i; jð Þ (6)

where nα;β is the number of node pairs between cluster α and β, Φ i; jð Þ is given by
Equation (5). At each iteration, the hierarchical clustering merges the pair of clusters with
the minimum proximity index into a single cluster, and then updates the proximity
indices between this new cluster and all remaining clusters. Finally, a dendrogram (i.e.
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a cluster tree) is formed to represent the bottom-up hierarchy of clusters of nodes. The
hierarchical clustering approach used in TCD is the same as the full-order constrained
average linkage clustering (Full-Order-ALK) method proposed by Guo (2008), and the
computational complexity is O N2logNð Þ with N nodes in the network. As the example
shown in Figure 5, cluster α contains node 1 and 2, cluster β contains node 3 and 4, and
cluster γ contains node 5. When cluster α and β are merged into α + β, the proximity
index between cluster α +β and γ is calculated as follows:

Φ αþβ;γð Þ ¼
Φ 1;5ð ÞþΦ 2;5ð ÞþΦ 3;5ð ÞþΦ 4;5ð Þ

4
(7)

3.4. Transportation cluster detection

The modularity has been used in many studies to evaluate the division result of
communities (clusters). As a quantitative index, the modularity computes the difference
between the number of edges within communities and the expected number. A good
partition of a network should result in a significantly greater number of edges within
communities than expected. The mathematical expression of modularity is as follows
(Newman and Girvan 2004):

Q ¼
X

i
eii � a2i
� �

(8)

where eii is the fraction of edges in the network that connect nodes in the same community
i, and ai is the fraction of edges that are attached to the nodes in community i.

A large body of literature has been generated on the evaluation of community
detection using modularity (Gustafsson et al. 2006, Newman 2006a, Schwarz et al.
2008, Dinh and Thai 2013). Many geographic networks are spatially constrained, in
which the nodes and edges are embedded in space (Barthélemy 2011). To quantify
the effect of distance on the strength of the connection between nodes, Chen et al.
(2015) proposed the geo-modularity (Qgeo), which adds a weight of distance and con-
nection frequency to edges when calculating modularity.

Figure 5. An example of cluster merging and proximity index updating.

10 H. YUE ET AL.



Qgeo ¼
X

i
egeoii � ageoi

� �2h i
¼

X
i

P
u;v2iwuv

2Wsum
�

P
u2iwuv

2Wsum

� �2
" #

(9)

wherewuv is theweight of the edge between nodes u and v, and is given by Equation (1),Wsum

is the sum of edge weights in the network.
In TCD, geo-modularity is used to evaluate the quality of transportation cluster

detection, and as the optimization condition of hierarchical clustering. In the hierarchical
clustering process (step 3, Section 3.3), the Qgeo of each cluster is calculated at each
iteration. Taking cluster C1 and cluster C2 as an example, if Qgeo

merge > Qgeo
c1 þ Qgeo

c2 , then C1
and C2 are merged. Otherwise, the cluster C1 and cluster C2 are marked as ‘stop points’.
After the cluster dendrogram has been constructed, each branch of this dendrogram is
backtracked from the top level, until a cluster with a ‘stop-point’ mark is encountered.
This cluster is then considered to represent an elementary module of the network. As
a result of this backtrack process, the network is partitioned into a set of mutually
exclusive elementary modules α1, α2…αn, such that the total geo-modularity
Qgeo ¼ P

αi
Qgeo
αi achieves its global maximum value. The integration of Qgeo in the

hierarchical clustering helps generate clusters with high strength of division.
Taking a simple transportation network G as an example (Figure 6), which contains 6

nodes and 7 weighted edges.
The transportation cluster detection process is as follows:

(1) The 6 nodes are initialized into 6 clusters, then the proximity index between each
pair of clusters (K = 2, ω1 = 0.95, and ω2 = 0.05), and the geo-modularity of each
cluster is calculated.

(2) The two clusters with the smallest proximity index are merged into a new cluster.
In the example, cluster 1 and 2 are merged into a new cluster, cluster 7.

(3) The proximity indices between cluster 7 and all other clusters are updated.
(4) Steps (2) and (3) are repeated until all nodes are merged. The order in which

nodes are merged is (1, 2), (3, 7), (4, 5), (6, 9), (8, 10). Finally, a dendrogram is
formed, as shown in Figure 7.

(5) In step (2), only merging clusters 8 and 10 will result in the value of the merged
geo-modularity being less than the value before the merge. That is, Qgeo

merge<Q
geo
8 þ

Qgeo
10 (0.0 < 0.209 +0.209). Therefore, clusters 8 and 10 are marked as ‘stop points’.

Finally, two clusters are generated. One of them contains nodes 1, 2, and 3, and
the other contains nodes 4, 5, and 6 (Figure 8).

Figure 6. A simple schematic diagram of network G (The value on an edge represents the weight of
the edge, and the greater the weight, the stronger is the connection between the nodes).
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4. Results

The algorithms in TCD, including YEN algorithm, hierarchical clustering, and the calcula-
tions of proximity index and geo-modularity, were implemented using Python. The TCD
was then applied on the T-Network, B-Network and C-Network, respectively, and the
resultant transportation clusters were analyzed. Particularly, the transportation clusters
of C-Network were compared with the urban agglomerations delineated by the Chinese
government to evaluate whether the ground transportation infrastructures and services
can support the integrated developments of these urban agglomerations.

4.1. Hierarchical structures of clusters

As mentioned before, for the K-shortest paths and proximity index between a pair of
nodes, the value of K (i.e. the number of alternative paths) and the values of ωk (i.e. the

Figure 7. A dendrogram showing the cluster structure of G (The value between two branches
represents the proximity index of the two clusters).

Figure 8. The TCD results of G (The value next to the node represents the value of the geo-
modularity of each cluster).
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weights for combining the ‘lengths’ of paths) must be set carefully to achieve a good
division of the nodes. In our experiments, for each transportation network, a series of
trials were conducted with various values of K (from 1 to 3, step = 1) and ωk (from 0.00
to 1.00, step = 0.01), and the setting that generated the maximum geo-modularity was
chosen.

For the T-Network, when K = 1, and ω1 = 1.0, Qgeo reached a high value. Based on the
weighted combination of KSP, the proximity index Φ between any two cities was
calculated. Through the hierarchical clustering, a dendrogram was generated which
showed the hierarchical cluster structure of the T-Network (Figure 9). At each proximity
level, cities were grouped into multiple clusters. Small clusters were incrementally
integrated into larger clusters as the inter-cluster proximity index increased.

In order to observe the trend of the merger of cities with the increase of proximity
index, the number of clusters and the corresponding proximity index were fitted into
a curve, which was found to conform to the power law distribution (Figure 10). When
the inter-cluster proximity index is less than 10, the curve drops quickly, and most of the
cities are grouped into the railway transportation clusters within this range. However,
a small number of cities do not enter any cluster until the inter-cluster proximity index is
greater than 30, such as Aksu, Bazhong, Yining, Holingola, Alxa League, Daxinganling,
Hotan, Shigatse, and Qitaihe. It indicates that these cities have relatively weak railway
transportation connections with other cities.

To further explore the hierarchical structure of T-Network clusters, we selected some
inflection points in the curve in Figure 10. The values of the inter-cluster proximity index at
these points are 0.11, 0.60, 2.04, 10.80 and 30.77, corresponding to the number of clusters
being 290, 200, 150, 80 and 40, respectively (Figure 10). Taking three typical urban agglom-
erations in mainland China as examples: Yangtze River Delta (YRD), Pearl River Delta (PRD),
and Beijing-Tianjin-Hebei (BTH), the results are shown in Figure 11. In the YRD region, three
small clusters formed at the beginning of clustering, each containing a small number of cities
that are most tightly connected through passenger trains (e.g. Shanghai, Nanjing and

Figure 9. Transportation cluster structure of T-Network (only part of the dendrogram is showed for clarity).
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Hangzhou). These clusters can be seen as the railway cores in YRD. As the inter-cluster
proximity index increased, these core clusters were merged together, and other cities (fringe
cities) were also gradually merged into a big regional cluster. The southern cities entered the
regional cluster before northern cities, indicating the railway connections between the

Figure 10. The curve between the minimum inter-cluster proximity index and the number of
T-Network clusters.

Figure 11. The clustering process of T-Network.
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southern cities and the cores are stronger than those of the northern cities. In PRD,
Guangzhou and Shenzhen formed the core transportation cluster. With the increase of the
inter-cluster proximity index, the northern cities were merged into the regional cluster,
followedby the southwestern cities. In BTH, Beijing and Tianjin formed the core transportation
cluster. With the increase of the inter-cluster proximity index, the southern cities weremerged
into the regional cluster, and the northern cities entered the regional cluster later on.

The same method was applied to the B-Network. When K = 2, ω1 = 0.80, and ω2 =
0.20, the Qgeo reached a high value. Using YRD, PRD, and BTH as examples, the
hierarchical structures of transportation clusters over the B-Network are shown in
Figure 12. In YRD, three core clusters formed in the beginning, and grew in parallel
before they were merged together. Two cities in the south, Taizhou and Jinhua, formed
their own cluster in the middle of clustering, and did not enter the big regional cluster
until the inter-cluster proximity index increased to 0.54. In the PRD region, cities are
strongly connected through long-distance buses, and formed a big regional cluster in
the early stage of clustering. BTH has a single core cluster centered in Beijing, which
gradually merged other cities throughout the clustering and grew into a big regional
cluster. Compared with the T-Network, the cities within these three regions are more
strongly connected over the B-Network, indicated by the fact that the regional clusters
over the B-Network formed earlier than those over the T-Network.

For the C-Network, when K = 2 and ω1 = 0.99, and ω2 = 0.01, Qgeo reached a high
value. The clustering process of the cities in YRD, PRD and BTH are shown in Figure 13. In
YRD, two core clusters centered in Shanghai and Nanjing, and three small clusters
formed in the early stage of clustering. They gradually merged together into one
regional cluster. The northern and southern cities (e.g. Yancheng and Jinhua) entered
the regional cluster in the late stage of clustering. In PRD, three core clusters formed in

Figure 12. The clustering process of B-Network.
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the beginning, centered in Guangzhou, Zhuhai, and Zhaoqing, and quickly merged into
a single regional cluster. The southwestern part (i.e. Yangjiang) entered the regional
cluster in the late stage of clustering. In BTH, two core clusters formed in the beginning,
centered in Beijing and Shijiazhuang, and then merged together. Other cities entered
the regional cluster, northeastern ones earlier than western ones.

4.2. Division of transportation clusters

According to step 4 of the method (Section 3.4), with the maximum value of Qgeo as the
stopping condition for hierarchical clustering, the final transportation clusters over the
transportation networks were determined. We compared our method with Netwalk
(Zhou and Lipowsky 2004), Infomap (Rosvall and Bergstrom 2007, 2008) and
G-N algorithm (Girvan and Newman 2002). The results showed that the proposed
approach generated higher Qgeo than other algorithms for all three networks (Table 1),
indicating TCD is capable of generating strong divisions of transportation networks.

This section focuses on the clusters over the C-Network, as the C-Network includes
both passenger train lines and long-distance bus lines. As shown in Figure 14, a total of
31 clusters over the C-Network were detected in mainland China.

It can be observed that the average proximity indices of cities in the clusters on the
east side of the Huhuanyong Line (also known as the ‘Heihe-Tengchong Line’) are all less
than 3, and those on the west side are all greater than 3, indicating that the transporta-
tion connections in the western China are far weaker than those in the eastern China.
There are two continuous regions containing several isolated cities that do not belong
to any cluster in western and northern China, because of their extremely sparse trans-
portation links with other cities. The Hu Line was first proposed by Huanyong Hu in 1935

Figure 13. The clustering process of C-Network.
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to describe the significant difference of population distribution in China (Hu 1935), and
has also been widely used to describe the division of urbanization and economic
development in China. Our analysis reveals that the ground transportation infrastruc-
tures and services in the western China are also greatly weaker than those in the east,
which should be closely related with the less amount and density of population, slower
urbanization and economic development, and more complex topographic conditions in
the west.

To evaluate whether the transportation infrastructures and services can support the
integrated developments of urban agglomerations, we overlaid the resultant transporta-
tion clusters with the urban agglomerations delineated by the Chinese government
(Figure 15). The following phenomena can be observed:

Table 1. Qgeo by different approaches.
Qgeo

Algorithm T-Network B-Network C-Network

Netwalk 0.7660 0.7884 0.7882
Infomap 0.7523 0.7300 0.7756
G-N algorithm 0.6131 0.1473 0.1592
TCD 0.7805(K =1) 0.7917(K =2) 0.8025(K =2)

Figure 14. Transportation clusters over C-Network (the numbers in the clusters are the average
proximity index of cities in the cluster, and small clusters were not labeled for clarity; the slashed
area are isolated cities that do not belong to any cluster, only a few isolated cities were marked for
clarity).
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(1) The transportation clusters in the PRD, BTH, CIM, CC and LZN urban agglomera-
tions expand to the surrounding cities. In addition, the BTH and SDP urban
agglomerations are merged into one large transportation cluster, same as LZN
and most cities within HCC. This indicates that the cities within these regions are
strongly connected through ground transportations. The transportation integra-
tions have gone beyond the inter-city level and reached the inter-agglomeration
level.

(2) There are some isolated cities that do not belong to any cluster in the HCC, GZP,
CP, YRD, TCC and WSS urban agglomerations. As discussed above, this indicates
that those cities have weaker transportation connections with other cities in their
corresponding regions. The cities in the eastern, western and southern parts of
BBG form three transportation clusters, which indicates that the transportation
connections between the eastern and western parts, the southern and northern
parts of BBG are still weak.

(3) In this study, the Wuhan metropolitan area (WMA), the Changsha-Zhuzhou-
Xiangtan city group (CZT), and the Poyang Lake city group (PL) were considered
as a single urban agglomeration. The Chinese government has merged these
three urban agglomerations into a large national urban agglomeration, called the
Triangle of Central China (TCC). As shown in Figure 16, three transportation
clusters were detected within TCC. The northern cluster covers WMA, while the
southern cluster covers CZT and PL. This indicates that the transportation

Figure 15. The overlay of the transportation clusters over C-Network and the urban agglomerations
in mainland China.

18 H. YUE ET AL.



connections between the southern and northern parts of TCC are still weak and
cannot support the integrated development of the whole agglomeration.

In general, each of the 13 urban agglomerations designated by the Chinese govern-
ment has at least one transportation cluster, and the core cities of each urban agglom-
eration are strongly connected as expected. However, weak connections were found
within some urban agglomerations, especially indicated by the isolated cities. To sup-
port the integrated developments of those urban agglomerations, it is recommended
that the transportation infrastructures (e.g. railways and highways) and services (e.g.
passenger train lines and long-distance bus lines) between the isolated cities and other
cities should be improved. Taking WSS as an example, in order to connect isolated cities
and to integrate multiple dispersed small transportation clusters into one large trans-
portation cluster, new transportation infrastructures and/or services along the northeast-
southwest direction should be added.

In addition, the average proximity indices in HCC, LZN, CC, and CIM are much larger
than those of other urban agglomerations, indicating relatively weaker transportation
connections within these urban agglomerations. Therefore, transportation improve-
ments are also recommended in these regions to enhance the convenience and effi-
ciency of intercity flows, which is conducive to the integration and development of
urban agglomerations.

Figure 16. The three transportation clusters covering the TCC urban agglomeration(the gray dotted line
represents the border of TCC; and the black solid lines represent the borders of WMA, CZT and PL).
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5. Conclusion

The clusters of cities over transportation networks (i.e. transportation clusters) can be
detected based on the strengths of transportation connections between cities, and can
be used to evaluate whether the existing transportation infrastructures and services can
support the integrated development of regions. This study proposes a novel approach
for transportation cluster detection (TCD). The main contributions are as follows: (1) the
K-shortest paths are used to quantify the proximity (i.e. connection strength) between
cities, which is more in line with people’s travel behaviors; (2) a dendrogram is obtained
through the hierarchical clustering to reveal the structural hierarchies of transportation
clusters; and (3) the integration of geo-modularity and hierarchical clustering assures
high strength of division of a transportation network.

The proposed TCD approach was applied to the network of passenger trains
(T-Network), the network of long-distance buses (B-Network), and the combined network
of both (C-Network) in mainland China. The results showed that TCD outperformed some
existing approaches for community detection over networks, by achieving the highest
geo-modularity in all three transportation networks.

Taking the YRD, PRD, and BTH urban agglomerations as examples, we explored the
bottom-up clustering process of cities and the hierarchical structures of these transpor-
tation clusters. The core cities and fringe cities of the clusters were explicitly identified
according to the proximity levels, at which the cities were merged into the regional
clusters.

The final resultant transportation clusters of the C-Network were further analyzed.
A significant difference in the average proximity index was found between the clusters
on the east side and the clusters on the west side of the Hu Line, indicating the imbalance
of ground transportation distribution in mainland China. Several isolated cities that failed
to be merged into any cluster were found because of their extremely sparse transportation
connections with other cities. By overlaying the transportation clusters with the urban
agglomerations delineated by the Chinese government, well connected and integrated
agglomerations were identified, while some agglomerations were split into multiple trans-
portation clusters and/or isolated cities. Those weakly connected regions require the
strengthening of transportation infrastructures and services in order to improve the
integration of the cities and support the collaborative developments.

The limitations of this study and our future work are as follows:

(1) This study evaluated the public ground transportation infrastructures and services
for urban agglomerations, but did not consider the actual flows between cities.
Therefore, our future work aims to integrate various flow data (e.g. human flow,
cargo flow, financial flow, and information flow) into the cluster detection to
analyze the socioeconomic connections between cities.

(2) Due to the limitation of data, a universal ratio (i.e. μ ¼ 5:12) was used in this study to
combine the weights of B-Network and T-Network for the edge weights in C-network,
which can hardly reflect the variance of the relative importance between railway and
bus transportations. Data of passenger flows via trains/buses can provide the key
basis for determining the specific ratio for each pair of cities.
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(3) As discussed in Section 3, the computational complexity of the YEN algorithm to
generate K short paths between a pair of nodes is O KN Mþ NlogNð Þð Þ, and there
are (N(N-1)/2) pairs of nodes in a network. The computational performance of TCD
mainly depends on the computational complexity of the KSP algorithm in the
network. A KSP algorithm with higher performance (either through the optimiza-
tion of the algorithm itself or through the parallel implementation) can greatly
improve TCD’s capability of dealing with large networks.
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