
International Journal of Applied Earth Observation and Geoinformation 38 (2015) 164–174

Contents lists available at ScienceDirect

International Journal of Applied Earth Observation and
Geoinformation

journa l homepage: www.e lsev ier .com/ locate / jag

Deriving urban dynamic evolution rules from self-adaptive cellular
automata with multi-temporal remote sensing images

Yingqing Heb, Bin Aia,∗, Yao Yaoc, Fajun Zhongc

a School of Marine Sciences, Guangdong Key Laboratory for Urbanization and Geo-simulation, Guangdong Provincial Key Laboratory of Marine Resources
and Coastal Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
b Pearl River Hydraulic Research Institute, Guangzhou 510275, Guangdong, China
c School of Geography and Planning, Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou 510275,
Guangdong, China

a r t i c l e i n f o

Article history:
Received 9 September 2013
Accepted 22 December 2014
Available online 21 January 2015

Keywords:
Artificial immune system
Cellular automata
Urban dynamic simulation
Self-adaptive
Multi-temporal remote sensing images

a b s t r a c t

Cellular automata (CA) have proven to be very effective for simulating and predicting the spatio-temporal
evolution of complex geographical phenomena. Traditional methods generally pose problems in deter-
mining the structure and parameters of CA for a large, complex region or a long-term simulation. This
study presents a self-adaptive CA model integrated with an artificial immune system to discover dynamic
transition rules automatically. The model’s parameters are allowed to be self-modified with the applica-
tion of multi-temporal remote sensing images: that is, the CA can adapt itself to the changed and complex
environment. Therefore, urban dynamic evolution rules over time can be efficiently retrieved by using
this integrated model. The proposed AIS-based CA model was then used to simulate the rural-urban land
conversion of Guangzhou city, located in the core of China’s Pearl River Delta. The initial urban land was
directly classified from TM satellite image in the year 1990. Urban land in the years 1995, 2000, 2005, 2009
and 2012 was correspondingly used as the observed data to calibrate the model’s parameters. With the
quantitative index figure of merit (FoM) and pattern similarity, the comparison was further performed
between the AIS-based model and a Logistic CA model. The results indicate that the AIS-based CA model
can perform better and with higher precision in simulating urban evolution, and the simulated spatial
pattern is closer to the actual development situation.

© 2015 Elsevier B.V. All rights reserved.

Introduction

Many geographical phenomena contain both spatial and tem-
poral features, for example, urban growth, disease propagation,
fire diffusion, population migration, flood inundation, etc., hence,
their spatio-temporal dynamic development processes appear to
be more important than the finally resultant spatial patterns (Liu
et al., 2008). Additionally, spatial evolution patterns of regional
geography phenomena should be considered when simulating
and predicting the variation of global resources, environment and
atmosphere. However, conventional models generally pose the
problem of process analysis due to the lack of dynamic information,
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which cannot satisfy the growing requirements proposed for the
spatio-temporal simulation (Goodchild, 1992; Batty, 1993). As a
result, it is useful to introduce dynamic models integrated with
spatio-temporal information for simulating complex geograph-
ical systems. As a microscopic model following a “bottom-up”
approach, cellular automata (CA) have proven efficient for simu-
lating the dynamic evolution processes of complex geographical
systems, which can provide spatial information for global models
of resources, environment and atmosphere.

The theoretical framework for CA’s application in geosciences
was perhaps first introduced in detail by Couclelis (1985, 1988,
1989). A variety of experiments were accordingly conducted for
simulating urban evolution by using CA models. It has demon-
strated that CA can generate complex spatial patterns with only
simple conversion rules through the simulation of a virtual city
(Couclelis, 1985). Later, White and Engelen (1993) developed a
CA model to investigate the fractal properties of cities and urban
evolution. Clarke and Gaydos (1998) utilized CA models to sim-
ulate the evolution process of real cities, selecting San Francisco
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and Washington as the sample areas, and the model’s parameters
were further calibrated using historical digital maps. Li and Yeh
(2000) applied a constrained CA model to the urban sprawl simula-
tion of Dongguan city in China’s Guangdong Province. Most related
researches have assumed that the historical trend of urban growth
will continue into the future.

It has also shown that the simulation of a virtual city with a
CA model does not require detailed and realistic data, and the
model’s parameters accordingly do not require calibration (White
and Engelen, 1993). However, it is very essential to calibrate the
CA’s parameters and retrieve reasonable transition rules for the
urban evolution simulation of real cities. These rules are repre-
sented by the parameters which are associated with the spatial
variables involved in the simulation (Liu et al., 2008). Usually,
historic data are used to derive these parameters according to cal-
ibration procedures. Various approaches have been explored to
solve this problem, and most of the existing approaches assume
that transition rules are static. The same set of transition rules will
be applied to any location with the time variation, regardless of
the possible changes to the simulation environment. This is not in
agreement with the complexity of geographical phenomena.

As for urban growth, it does not follow a fixed model for the
reason that spatial patterns and driving forces are dynamic at dif-
ferent stages. That is, not all the urban growth in different periods
follows the same historic evolution rule. It is also unreasonable to
use the same set of rules when a study area is large. Therefore,
it is difficult for conventional approaches with only static rules to
describe the probably varied relationships in the spatio-temporal
dimension. Some researchers have attempted to introduce aux-
iliary techniques for discovering dynamic transition rules of CA.
For instance, Clarke et al. (1997) once proposed a Monte Carlo
method to solve this problem. However, the Monte Carlo model
requires a long computation time, as the possible combinations
between many parameters are numerous, so this model is only suit-
able for simulating urban evolution of a medium or small region.
Also, Liu et al. (2014) first imposed the urban growth theory into
a CA model to retrieve different types of transition rules success-
fully, which can disclose the main patterns of urban growth and
reflect the actual evolution process. The transition rules still can-
not adequately describe the dynamic characters of urban growth,
especially for a long-term simulation. Techniques such as particle
swarm optimization, ant colony optimization, Markov model and
gravitational field model have been also applied to the solution of
such problems (Feng et al., 2011; Yang et al., 2012; Guan et al.,
2011; He et al., 2013). However, for large, complex regions or too
long a period of simulation, it is necessary to introduce artificial
intelligence methods to derive dynamic transition rules. That is,
the transition rules should be self-adaptive, capable of memorizing
and vary dynamically with the environment variation, from which
urban dynamic evolution rules can be discovered. Liu et al. (2008)
first attempted to combine the artificial intelligence techniques
with the CA model to retrieve adaptive transition rules, which were
generally applied in the urban evolution simulation to provide aux-
iliary information for decision-making. Other artificial intelligence
methods have been increasingly incorporated into urban CA mod-
els, including artificial neural networks (ANNs) (Li and Yeh, 2002),
kernel-based learning machines (Liu et al., 2007), genetic algorithm
(Li et al., 2008) and artificial immune system (AIS) (Liu et al., 2010),
among others.

Inspired by natural biological systems, AIS can be defined as
intelligent computation systems. Currently, AIS has been widely
applied to the problem solving such as pattern recognition (Carter,
2000), intelligent optimization (Chun et al., 1997; Liu et al., 2011),
machine learning (Timmis, 2000; Timmis and Neal, 2001), adaptive
control (Kumark and Neidhoefer, 1997), fault detection (Dasgupta
and Forrest, 1995), remote sensing classification (Zhong et al., 2006;

Zhong and Zhang, 2012), and land use allocation (Huang et al.,
2013). AIS usually mimic the form and function of biological anti-
bodies in learning and memorizing new information. It can recall
previously learned information and perform pattern recognition in
a highly decentralized fashion. Liu et al. (2010) first applied an AIS-
based CA model in the analysis of urban planning for a large area,
and the results indicate that it is promising for an AIS-based CA
model to solve complex geographical problems with the features
of self-adaptation, self-learning, and memorizing. In this study, an
urban CA model coupled with an artificial immune system (AIS)
was introduced to derive dynamic transition rules automatically.
The self-adaptive CA model was then applied to the urban growth
simulation of Guangzhou city, located in the core area of China’s
Pearl River Delta, from the year 1990–2012. The classical Logistic CA
was also implemented with the same set of data to make a compar-
ison. Preliminary results suggest the proposed model can perform
better than the Logistic CA when simulating the urban evolution of
the large region.

AIS-based geographical cellular automata

Basic principles of artificial immune system

The AIS algorithm is mainly based on the idea of biological
immune systems. Biological immune systems can be viewed as par-
allel, self-adaptive, self-learning, self-organizing and distributed
systems with the capability to control complex systems through
variation over time (Kim and Bentley, 1999). Inspired by theoretical
immunology and observed immune system functions, AIS emerged
as a computational intelligence technique for solving complex
problems (Tarakanov and Dasgupta, 2000). An AIS implements an
information memorizing and processing mechanism similar to that
of a biological immune system. It has been widely applied since the
late 1980s.

Generally, a biological immune system consists of cells,
molecules, and organs that aim to protect the biological body
against infection. The defence mechanism is based on the adaptive
immune responses, in which antibodies evolve to obtain stronger
capabilities of dealing with certain antigens (De Castro and Timmis,
2002; Liu et al., 2010). The basic algorithm of immune systems
can be regarded as clonal selection, which is commonly used for
describing the properties of an adaptive immune response to an
antigenic stimulus (De Casro and Von Zuben, 2000). The princi-
ple of clonal selection was first proposed by Jerne (1973), and it is
deemed that only those cells, that is, antibodies with high affinities
to certain antigens are selected to proliferate; otherwise, the cells
will be eliminated. These selected cells can easily recognize anti-
gens and are subject to an affinity maturation process. The process
of improving the affinity with the selected antigens is also called
the maturing process of antibodies.

Based on the clonal selection, an AIS imitates a biological sys-
tem by adapting a set of ‘antibodies’ through responding to a set of
known ‘antigens’, and then by using ‘mature antibodies’ to process
unknown ‘antigens’ (Liu et al., 2010). The known ‘antigens’ are usu-
ally used to build the training set, in which each ‘antigen’ contains
both the problem description and its state. The ‘antibodies’ form
a problem solver (e.g., a classifier) and their adaptations or evolu-
tions are essentially the training process. Therefore, the number of
‘antibodies’ can be much smaller than the number of known ‘anti-
gens’. Specifically in an urban CA model, ‘antigens’ are the cells to
be classified in the simulation and ‘antibodies’ are the classifiers
that will assign urban land to cells based on their features. Once
the ‘antibodies’ are ‘mature’, that is, the problem solver is trained,
they can be used to solve new problems represented by unknown
‘antigens’. So basically this is a way to derive generalized ‘rules’.
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Fig. 1. Discovery of self-adaptive transition rules with the AIS-based CA.

Artificial immune system and geographical cellular automata

When an AIS is used to solve actual geography problems, it is
necessary to correlate problem descriptions with the theory of the
immune system, define mathematical representations of immune
elements, and design corresponding algorithms. It can be taken
as a typical recycling process, including antigen definition, initial
antibody generation, affinity calculation, clonal selection, antibody
mutation and antibody updating. This process will be used to cal-
culate the evolution probability of an urban CA model.

Considering the key processing of AIS, the main procedure of
the AIS-based CA model can be correspondingly described as Fig. 1.
First, the initial antigen library is generated with the remotely
sensed imageries collected at the times of t1 and t2, respectively.
The antigen library can be repeatedly updated when additional
remotely sensed imageries are available for retrieving the possible
change in urban evolution. Then new antigens will be automati-
cally recognized when the simulation environment is varied. The
updated process can reflect the self-adaptive and self-learning
capability of the AIS-based CA to a certain degree. Detailed pro-
cedures of AIS-based CA are provided in the following sections.

Definition of the antigen in geographical cellular automata
As for an AIS-based CA model, the first step is to establish a

reasonable antigen library, which will be used to replace explicit
transition functions or rules derived from traditional CA. In an AIS-
based CA model, each antigen is of course represented as a vector
consisting of two parts: attributes (problem description) and the
state conversion (solution). The attributes are composed of land
use type and proximity variables such as distance to road, dis-
tance to city center, distance to railway, etc. An antigen can then
be represented as follows:

Ag = (a1(D), a2(D), . . ., aN(D); S) (1)

where a1(D), a2(D), . . ., aN(D) are a series of variables correspond-
ing to the antigen Ag, including proximity distances and land use
type. S is a Boolean variable that uses 1 to represent the state of
being urbanized and 0 for otherwise. To make the attributes com-
parable, all the variables are normalized within the range of 0–1.

Antibody initialization and affinity calculation
As mentioned before, attributes of an antibody can be commonly

initialized with a series of random numbers:

Ab = (a1(R), a2(R), . . ., aN(R); S) (2)

where a1(R), a2(R), . . ., aN(R) represent the features of an antibody
Ab corresponding to spatial variables and proximity variables. Each
attribute in Eq. (2) is initially set to be a random number ranging
from 0 to 1.

In an artificial immune system, the affinity is used to represent
the binding degree between an antibody and an antigen. Any anti-
body with higher affinity to an antigen is more likely to be selected,
retained and cloned. The affinity between an antibody and an anti-
gen can be calculated using the following equations:

Af(Ag, Ab) = 1
1 + d(Ag, Ab)

(3)

d(Ag, Ab) =
√

N
�

n=1
(an(D) − an(R))2 (4)

where Af(Ag, Ab) is described as affinity between the antigen Ag
and the antibody Ab varying from 0 to 1, and d(Ag,Ab) represents
their similarity. In this study, the similarity is calculated using a
Euclidean distance, expressed as Eq. (4).

Clonal selection and mutation
Antibodies with higher affinity to antigens are selected to con-

stitute an antibody library. The cloning probability of an antibody
mainly depends on its affinity and concentration. The concentra-
tion of the antibody g(Lg) can be calculated using the following
equations:

Lg =
H
�

h=1
Ch (5)

Ch =
{

1, Afgh ≥ T

0, Afgh < T
(6)

where Afgh is defined as the affinity between the antibody g and
the antigen h, T is set as the threshold value for affinity. Then the
cloning rate of the antibody g can be represented as follows:

Pg = a × Afg

Lg
(7)

where Pg is described as the cloning rate, Afg refers to the affin-
ity of the antibody g, and a is a constant. For each antibody, the
higher its affinity, the higher cloning probability it will have. Mean-
while, antibodies with lower concentration will have higher cloning
probability, while antibodies with higher concentration will have
lower cloning probability. This cloning mechanism not only pro-
tects antibodies with higher quality, but also facilitates antibodies
with lower concentration development.
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After the cloning process, the antibodies are mutated to increase
their diversity. The mutation degree for an antibody is inversely
proportional to its affinity, that is, the higher the affinity is, the
lower the mutation degree will be. The mutation process can be rep-
resented and realized in multiple forms. In this study, the mutation
of an antibody is to be performed using the following equation:

Abv = Ab − (1 − e−d(Ag,Ab))(Ab − Ag) (8)

where Abv refers to the mutation antibody. As is shown in Eq.
(8), an antibody with higher affinity will have a lower mutation
rate. After mutation, some antibodies show increased affinity while
other antibodies show decreased affinity. Those with the latter will
tend to be eliminated. As a result, the affinity of any antibody would
be gradually increased and an antibody would mature through the
process of clonal selection and mutation.

Affinity attenuation
Meanwhile, new available urban land data would be regarded

as new antigens and supplemented into the antigen library. In this
study, new urban land data will be generated with available remote
sensing images. Then, corresponding new antibodies will be auto-
matically derived from AIS to recognize these new antigens. The
affinity of old antibodies will gradually decrease over time. When
affinity attenuation reaches to the given threshold value, old anti-
bodies would be possibly eliminated. Affinity attenuation is defined
as follows:

Aft+1 = ˇ × Aft (9)

where Aft and Aft+1 are the affinity of an antibody at time t and
t + 1, respectively, and ˇ represents the attenuation coefficient to
control the increasing rate to affinity, which is significant to the
simulation of dynamic systems. Depending on the adjustment of
the affinity for the dynamic CA model, new antibodies will be effi-
ciently protected in one way while old antibodies will be restrained
and even eliminated in the other way. All the old antibodies would
be totally eliminated in terms of the attenuation mechanism with
increasing time. Therefore, the antibody library would not result in
data explosion, owing to gradual increasing in the set of antibodies
over time. And this can also adapt the evolution mechanism to the
changed environment and retrieve the dynamic evolution rules of
urban growth.

Using AIS to discover transition rules of CA
Features of an antigen can be directly derived from spatial data

and remotely sensed imageries to create an antigen library. The
initial antibodies are generated with the values of random num-
bers. These antibodies are inclined to be ‘matured’ by means of
clonal selection and mutation. This can be taken as the training
stage in many other machine-learning methods. The mature anti-
bodies are matched with some antigens, which can identify the
antigens’ structure through memorization. These antibodies can
then be used to recognize the queried cells composed of various
variables, such as spatial distance and land use type. The affinity
between an antibody and the queried cells can be calculated using
Eq. (3), and the antibodies with best affinity are used to determine
the class (state) of the cells. Following the conventional method, i.e.,
elitist selection, the cell is assigned with the majority class (state) of
its k best antibodies. However, this method can yield only a Boolean
value – converted or not. As urban evolution cannot be exactly fore-
casted, it would be necessary to introduce fuzzy concepts into the
recognition of urban growth. So the conversion probability is used
to produce more plausible simulation results. In other words, a
roulette wheel algorithm (Lipowski and Lipowska, 2012) is used
to calculate the probability of urban growth in the following way:

Pdev(ij) =

k

�
u=1

Af(Abu, xt ) × ı(f (Abu), 1)

k

�
u=1

Af(Abu, xt ) × ı(f (Abu), 1) +
k

�
u=1

Af(Abu, xt ) × ı(f (Abu), 0)

(10)

ı(f (Abu), 1)

{
= 1, iff (Abu) = 1

= 0, iff (Abu) = 0
(11)

ı(f (Abu), 0)

{
= 1, iff (Abu) = 0

= 0, iff (Abu) = 1
(12)

where Af(Abu, xt) denotes the affinity between the antibody Abu

and the queried cell xt , the contribution of an antibody is deter-
mined by its affinity to the queried cell, and f(Abu) is the class (state)
of the antibody Abu.

The final conversion probability is mainly determined by the
growth probability, neighborhood state and other constraint fac-
tors. This can be described as follows:

Pt(ij) = A × Pdev(ij) × con(suit(ij)) × �t−1(ij) (13)

Fig. 2. Location and administrative districts of the study area Guangzhou city.
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Fig. 3. Urban evolution process of Guangzhou city during the period 1990–2012.

where A is defined as an adjusting factor, con(suit(ij)) refers to
the combined constrain ranging from 0 to 1, and �t−1(ij) is the
percentage of urbanized cells in a 3 × 3 neighborhood window:

�t−1(ij) =
�

3×3
N(urban(ij))

3 × 3 − 1
(14)

Implementation and results

The AIS-based CA model was then applied to the urban evolution
simulation of Guangzhou city (longitudes 112◦57′–114◦03′E, lati-
tudes 22◦26′–23◦56′N), a fast-growing region located in the core
area of China’s Pearl River Delta shown as Fig. 2. This city includes
the following eleven districts, with a total area of 7434 square kilo-
meters and a total population of 1292.68 million in 2013: Tianhe,
Yuexiu, Liwan, Haizhu, Baiyun, Nansha, Huangpu, Panyu, Huadu,
Zengcheng and Conghua. It is expected that the AIS-based CA model
can provide a better understanding of the historical urban dynamics
and aid urban planners in exploring future development alterna-
tives for Guangzhou city.

Actual urban land was directly derived from the classification of
Thematic Mapper satellite images (TM 122-44) in the years 1990,
1995, 2000, 2005, 2009 and 2012 with the pixel size of 30 m × 30 m.

The land use types include natural water, fishpond, forest, farmland,
built-up area, and bare land. The classification was implemented
using the technique of object-based classification (Definiens Devel-
oper 7.0, 2003). The land use types of fishpond, farmland, and bare
land were aggregated as ‘non-urban’ types, while natural water was
reclassified as ‘restricted area’ since no growth was allowed during
simulation. In addition, the land use type of forest was also consid-
ered as a ‘restricted area’ because most of the forests are located
on mountains and protected by the planning bureau of Guangzhou
city. Then the actual evolution process of Guangzhou in the period
1990–2012 was obtained, as shown in Fig. 3. The actual land use
data reveals a quite rapid urbanization process in Guangzhou city
during the period 1990–2012. In this period, the amount of new
urbanized area is about 1121.32 km2, accounting for 86.19% of the
total built-up area in the year 2012. Further, the urbanization rate
and spatial urbanization distribution show great differences among
all the simulation periods.

Initialization and correction of the AIS-based CA model

To constitute the antigen library, partial urban areas derived
from the reclassification maps of the years 1990 and 1995 were
selected as initial antigens using the sampling function of remote
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sensing software ERDAS 8.7. As the initial antigen library is very
significant to the formation of an AIS-based model, a total of 20%
of sample points (including both urban and non-urban cells) were
randomly selected from the classification images for building the
training set, and spatial coordinates of those sample points were
also retrieved. Then a series of spatial variables related to urban
growth were chosen to assign the attributes for these antigens. Spa-
tial variables mainly include land use type, topographic data and
proximate indices (e.g., distance to roads, distance to city centers,
distance to railways, distance to expressways, distance to district
centers, distance to state highways, distance to provincial high-
ways, etc.). All these spatial variables were prepared using a raster
database with a 30-m resolution. And the corresponding training
set required for the CA model and the initial antigen library were
generated by using the sample function in ArcGIS. During the com-
putation process, it was also necessary to set some parameters for
AIS algorithm, so a and � in Eqs. (7) and (9) were assigned to be
2 and 0.9, respectively, in this study based on the testing experi-
ments, which were used to control the rate of clonal selection and
attenuation coefficient. Thereafter, initial antibodies would be gen-
erated randomly with the TM data collected in the years 1990 and
1995 using AIS, and its affinity would be inclined to mature grad-
ually after cloning and mutation. Mature antibodies were applied
to the identification of the urban evolution, and growth probability
was obtained according to Eq. (13).

On the other hand, multi-temporal historical data were used
to calibrate the CA model for deriving dynamic transition rules.
Based on the evolution probability initialized with the historical
data in the years 1990 and 1995, the antigen library was gradually
updated to reflect the possible change with new temporal TM
images respectively collected in the years 1995, 2000, 2005, 2009
and 2012. New antigens were accordingly derived from those
images, also based on the classification, and corresponding new
antibodies were automatically generated to recognize those new
antigens. Transition rules for urban growth were derived from the
corresponding antibody library during the simulation period. In this
way, the antibody library would be updated dynamically, reflecting
the self-adaptive and self-learning capabilities of an AIS-based CA
model. With the increasing antibodies in the antibody library, the
system would accumulate more and more experiences and knowl-
edge on urban evolution. In addition, the AIS-based CA is capable of
memorizing and identifying antigen structure, so when the same
antigen resurfaces, the antibody would react in a more violent
manner.

Results of the AIS-based CA model

The urban evolution probability of Guangzhou city was derived
with the AIS-based CA in the periods 1990–1995, 1995–2000,
2000–2005, 2005–2009 and 2009–2012. It illustrated that the sim-
ulation model for Guangzhou city is heterogeneous at different
stages of urban growth. Additionally, urban evolution generally
shows the dynamic pattern at different stages. For example, the
urban land consumption shows dissimilar patterns in different
periods. It has proven that static transition rules cannot adequately
explain this. However, the AIS-based CA model can be used to
extract self-adaptive transition rules owing to the self-adaptive,
self-learning and memorizing capabilities. With the application of
the AIS-based CA model, it also illustrated that urban land con-
sumption in the study area varied dynamically during the period of
1995–2012 (Fig. 4). Urban land consumption showed relative equal
between the periods 1990–1995 and 1995–2000 and showed an
increasing trend in the two periods 2000–2005 and 2005–2009,
but showed a slight decreasing trend in the period 2009–2012.
This conforms to the actual urban land consumption conditions.
The self-adaptive transition rules thus can better reveal the het-
erogeneity of urban growth patterns in different periods and better
reveal the dynamic changes of urban land consumption at differ-
ent stages, from which the dynamic urban evolution rules can be
efficiently discovered.

With the dynamic transition rules obtained above, the urban
expansion of Guangzhou city in the period 1990–2012 was then
simulated. At the first stage, the initial urban land was acquired
from classification of the TM image in the year 1990. Because CA
are stochastic models with uncertainties, the AIS-based CA was run
about 100 times for the period 1990–1995 to validate its simula-
tion accuracies. The urban land in the years 2000, 2005, 2009, and
2012 was then simulated with 200 iterations, 300 iterations, 400
iterations and 500 iterations, respectively. Fig. 5 shows the simu-
lation results. The same training set was also used and a similar
procedure was also implemented for the Logistic CA. Fig. 6 shows
the corresponding simulation results for the comparison analysis.

Model validation

A city can be viewed as a complex system for the interference of
numerous uncertain factors. It is difficult to simulate its dynamic
evolution accurately, and only the spatial pattern close to realis-
tic urban growth can be achieved with the simulation techniques.

Fig. 4. Urban land consumption of Guangzhou city during different periods.
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Fig. 5. Simulation results of Guangzhou city during the period 1990–2012 with the AIS-based CA.

From the visual comparison between Figs. 3 and 5, it shows that the
overall spatial patterns of different periods derived from the AIS-CA
model are closer to the actual situations than those derived from
the Logistic CA. When a CA model is applied to the evolution simula-
tion of a real city, it is necessary to validate the conformity between
the simulation results and the actual situations. The performance
of the AIS-based CA model was further evaluated quantitatively in
this study from two aspects: cell-level agreement (point to point
analysis) and pattern-level similarity (landscape aspect).

For cell-level aspect, the indicator of ‘figure of merit’ (FoM)
(Pontius et al., 2007) has been commonly used by many researchers.
The indicator of ‘FoM’ is actually a ratio, where the numerator is
the number of instances that are observed developed and correctly
simulated as developed, while the denominator is the total num-
ber of instances excluding persistently non-changed instances. It is
calculated using the following equation (Pontius et al., 2008):

F = B

(A + B + C + D)
× 100% (15)

where F is the ‘FoM’, A represents the error due to observed devel-
oped and simulated as persistence, B is the agreement due to
observed developed and simulated as developed, C is defined as
the error due to observed developed and simulated as incorrect

gaining category, and D is the error due to observed persistence
and simulated as developed. As the CA models only simulate the
change of states from non-urban to urban, the value of C should
be equal to 0 (Chen et al., 2014). A higher value of ‘FoM’ indi-
cates a higher cell-level agreement. The observed development
patterns were overlaid with the respective results of the AIS-based
CA and the Logistic-based CA to identify four groups of cells (i.e.,
persistent non-change, observed non-change simulated change,
observed change simulated non-change, and observed change sim-
ulated change) for calculating ‘FoM’. Figs. 7 and 8 show the overlay
pattern of each simulation period. Table 1 lists the comparison
results.

According to the quantitative accuracy evaluation by using this
index for land use development evaluation, the values are basically
within the range of about 1.00–25.00% (Pontius et al., 2008). From
Table 1, it can be found that the ‘FoM’ shows the value of 22.20%

Table 1
Comparison of ‘FoM’ between the AIS-CA and the Logistic CA.

1995 2000 2005 2009 2012

AIS-CA 0.287725 0.222157 0.286999 0.26029 0.247653
Logistic CA 0.222011 0.173942 0.226134 0.221867 0.179603
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Fig. 6. Simulation results of Guangzhou city during the period 1990–2012 with the Logistic CA.

(1995), 17.39% (2000), 22.61% (2005), 22.19% (2009) and 17.96%
(2012), respectively, with a mean value of 20.47% for the simu-
lation results of the Logistic CA. For the results of the AIS-based
CA, the ‘FoM’ shows the value of 28.77% (1995), 22.22% (2000),
28.70% (2005), 26.03% (2009) and 24.77% (2012), respectively, with
a mean value of 26.10% (5.63% higher than that of the Logistic
CA).

In addition, the spatial pattern simulated by using the AIS-CA
model was also compared to determine whether it was con-
sistent with the actual condition. Measures such as landscape
metrics have been adopted to validate simulation models in the
view of aggregate pattern similarity (Sui and Zeng, 2001; Parker
and Meretsky, 2004; Liu et al., 2010). Four landscape metrics
selected to delineate the development patterns from different
aspects (Dietzel et al., 2005; Seto and Fragkias, 2005) are as fol-
lows: (1) number of urban patches (NP) and largest-patch index
(LPI), which are usually used to measure the patch size; (2) mean
Euclidean nearest-neighbor distance (ENN), which measures the
distribution of patches; (3) mean perimeter-area ratio (PARA),
which can reflect the shape complexity of the patches. The land-
scape metrics were calculated using FRAGSTATS 4.1 (University of
Massachusetts, Amherst) (McGarigal et al., 2012). Then the pattern-
level similarity was estimated through the comparison between
the simulated and observed landscape metrics for different mod-

els, which was calculated using the following equations (Chen et al.,
2014):

al = 1 − 1
8 �

i
�li (16)

�li =
{

|li,s − li,o|/li,o × 100%, l = NP, ENN, PARA

|li,s − li,o|, l = LPI
(17)

where li,s and li,o are the values of the ith landscape metrics
derived from the simulated pattern and the observed pattern,
respectively; li is the normalized difference of the ith pair of
simulated and observed landscape metrics. The li for LPI is cal-
culated as the absolute differences because the original units of
LPI are already percentages. Similarities of the AIS-based CA and
the Logistic CA for different simulation periods are all listed in
Table 2.

As shown in Table 2, the pattern-level similarities of the AIS-
based CA vary from 78.92% to 86.59%, with a mean value of 83.02%
to actual growth patterns, while those of the Logistic CA basically
have the values within the range of 50.43–61.96%. The mean value
of those is only 56.96%. For these two models, the simulated ENN
shows the largest disagreement. However, the Logistic CA also has
very large errors in the simulated NP and PARA. These results indi-
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Fig. 7. Successes and errors distribution of the simulations during the period 1995–2012 produced by the AIS-based CA.

Table 2
Comparison of pattern-level similarity between the AIS-CA and the Logistic CA.

Year Dataset NP LPI PARA ENN Similarity (%)

1995 Observed data 1867 89.82 560.22 297.48
AIS-based CA 1351 88.86 582.23 385.02 80.31
Logistic CA 4630 89.12 1157.0 109.33 51.56

2000 Observed 2038 74.66 540.68 284.21
AIS-based CA 1442 74.13 574.88 372.56 85.10
Logistic CA 2054 76.95 1113.97 113.34 50.43

2005 Observed 2077 71.90 563.29 293.384
AIS-based CA 1551 72.48 552.09 357.92 86.59
Logistic CA 4516 71.76 1154.74 92.99 61.96

2009 Observed 2787 68.12 580.67 242.47
AIS-based CA 1591 68.46 588.67 360.18 84.19
Logistic CA 5004 68.73 1170.28 86.84 61.79

2012 Observed 3285 64.28 664.58 213.77
AIS-based CA 2350 65.28 630.73 288.13 78.92
Logistic CA 8437 64.72 1119.33 90.20 59.05
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Fig. 8. Successes and errors distribution of the simulations during the period 1995–2012 produced by the Logistic CA.

cate that the AIS-based CA has better performance of replicating
actual growth patterns than the Logistic CA.

Conclusions

It is not only theoretically significant but also of extensive appli-
cation value to simulate complex geographical processes, which
cannot be well revealed with conventional equation models. How-
ever, CA following the bottom-up approach can effectively simulate
the evolution process of complex systems. The core of CA is to define
proper transition rules for reflecting the urban evolution mech-
anism. The static transition rules discovered with traditional CA
models generally pose problems in revealing the complexity, self-
organization and dynamic features of geographical processes over
time.

In this study, a self-adaptive geographical CA based on AIS was
proposed. In the model, the antigen library is dynamically updated
with the consideration of additional temporal data as new antigens,
and the self-adaptive and self-learning AIS system is capable of gen-
erating corresponding antibodies to recognize new antigens. The
new antibodies will be also provided for the antibody library to help
calibrate model parameters. In this way, self-adaptive transition
rules and dynamic urban evolution patterns can be derived in a time

sequence. Furthermore, with the self-adaptive, self-learning and
memorizing capabilities, the AIS-based CA model can accumulate
sufficient experience with the variation of the external environ-
ment, and the transition rules can be correspondingly adjusted. It
can be found that the model will be gradually calibrated with a
series of spatial data, and dynamic transition rules can be auto-
matically extracted to reveal the self-adaptive features of complex
systems. Therefore, it is apparently advantageous in simulating
complex geographical scenarios.

The self-adaptive AIS-based CA model was further applied to the
urban growth simulation of Guangzhou city. With the TM satel-
lite images collected in different years as the main observation
data, sample points were randomly selected to constitute the initial
antigen library. Then dynamic transition rules were automatically
discovered with the self-adaptive AIS-based CA model. This was
correspondingly used to simulate the urban evolution in the years
1995, 2000, 2005, 2009 and 2012 for the study area. The model was
further validated with the established quantitative index ‘FoM’ and
the pattern-level similarity. Compared with the conventional Logis-
tic CA model, it shows that the cell level precision and pattern level
similarity for the AIS-based CA model are both obviously higher,
and the spatial pattern derived from the model is closer to actual
urban growth situations. The AIS-based CA model is apparently
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suitable for simulating similar complex geographical phenomena
such as hydrological process or landslide process due to the self-
adaptive feature.

Acknowledgments

The authors would like to thank the editor, associate edi-
tor and anonymous reviewers for their helpful comments and
suggestions. This work was supported by the National Natural Sci-
ence Foundation of China under grant 41301418, and the China
973 Fundamental Research and Development Project under grant
2011CB707103.

References

Batty, M., 1993. Using Geographical Information Systems in Urban Planning and
Policy Making. Geographical Information Systems: Spatial Modeling and Policy
Evaluation. Springer-Verlag, Berlin, pp. 51–69.

Carter, J.H., 2000. The immune system as a model for pattern recognition and
classification. J. Am. Med. Inform. Assoc. 7 (1), 28–41.

Chen, Y.M., Li, X., Liu, X.P., et al., 2014. Modeling urban land-use dynamics in a fast
developing city using the modified logistic cellular automaton with a
patch-based simulation strategy. Int. J. Geogr. Inform. Sci. 28 (2), 234–255.

Chun, J.S., Kim, M.K., Jung, H.K., et al., 1997. Shape optimization of electromagnetic
devices using immune algorithm. IEEE Trans. Magn. 33 (2), 1876–1879.

Clarke, K.C., Gaydos, L.J., 1998. Loose-coupling a cellular automata model and GIS:
long-term urban growth prediction for San Francisco and
Washington/Baltimore. Int. J. Geogr. Inform. Sci. 12 (7), 699–714.

Clarke, K.C., Hoppen, S., Gaydos, L., 1997. A self-modifying cellular automaton
model of historical urbanization in the San Francisco Bay area. Environ. Plan. B:
Plan. Des. 24, 247–261.

Couclelis, H., 1985. Cellular worlds: a framework for modeling micro–macro
dynamics. Environ. Plan. A 17, 585–596.

Couclelis, H., 1989. Macrostructure and microbehavior in a metropolitan area.
Environ. Plan. B 16, 141–154.

Couclelis, H., 1988. Of mice and men: what rodent populations can teach us about
complex spatial dynamics. Environ. Plan. A 20, 99–109.

Dasgupta, D., Forrest, S., 1995. Tool breakage detection in milling operations using
a negative-selection algorithm. In: Technical Report CS95-5. Department of
Computer Science, University of New Mexico.

Dietzel, C., Oguz, H., Hemphil, J.J., et al., 2005. Diffusion and coalescence of the
Houston metropolitan area: evidence supporting a new urban theory. Environ.
Plan. B: Plan Des. 32 (2), 231–246.

De Casro, L.N., Von Zuben, F.J., 2000. Clonal selection algorithm with engineering
applications. In: Proceedings: GECCO’00, LasVegas, Nevada, USA, pp. 36–37.

De Castro, L.N., Timmis, J., 2002. Artificial Immune Systems: A New Computational
Intelligence Approach. Springer, London.

Feng, Y., Liu, Y., Tong, X., et al., 2011. Modeling dynamic urban growth using
cellular automata and particle swarm optimization rules. Landsc. Urban Plan.
102 (3), 188–196.

Goodchild, M.F., 1992. Integrating GIS and spatial data analysis: problems and
possibilities. Int. J. Geogr. Inform. Syst. 6 (5), 327–334.

Guan, D.J., Li, H.F., Inohae, T., et al., 2011. Modeling urban land use change by the
integration of cellular automaton and Markov model. Ecol. Model. 222 (20),
3761–3772.

He, C., Zhao, Y., Tian, J., et al., 2013. Modeling the urban landscape dynamics in a
megalopolitan cluster area by incorporating a gravitational field model with
cellular automata. Landsc. Urban Plan. 113, 78–89.

Huang, K., Liu, X., Li, X., et al., 2013. An improved artificial immune system for
seeking the Pareto front of land-use allocation problem in large areas. Int. J.
Geogr. Inform. Sci. 27 (5), 922–946.

Jerne, N.K., 1973. The immune system. Sci. Am. 229 (1), 52–60.
Kim, J., Bentley, P., 1999. The artificial immune model for network intrusion

detection. In: Proceedings of the 7th European Conference on Intelligent
Techniques and Soft Computing, Aachen, Germany.

Kumark, K., Neidhoefer, J., 1997. Immunized neurocontrol. Exp. Syst. Appl. 13 (3),
201–214.

Li, X., Yeh, A.G.O., 2000. Modelling sustainable urban development by the
integration of constrained cellular automata and GIS. Int. J. Geogr. Inform. Sci.
14 (2), 131–152.

Li, X., Yeh, A.G.O., 2002. Neural-network-based cellular automata for simulating
multiple land use changes using GIS. Int. J. Geogr. Inform. Sci. 16, 323–343.

Li, X., Yang, Q.S., Liu, X.P., 2008. Genetic algorithms for determining the parameters
of cellular automata in urban simulation. Science in China (Series D) 50 (12),
1857–1866.

Lipowski, A., Lipowska, D., 2012. Roulette-wheel selection via stochastic
acceptance. Phys. A: Stat. Mech. Appl. 391 (6), 2193–2196.

Liu, X.P., et al., 2007. Simulating complex urban development using kernel-based
non-linear cellular automata. Ecol. Model. 211, 169–181.

Liu, X.P., Li, X., Liu, L., et al., 2008. A bottom-up approach to discover transition
rules of cellular automata using ant intelligence. Int. J. Geogr. Inform. Sci. 22
(11–12), 1247–1269.

Liu, X.P., Li, X., Shi, X., et al., 2010. Simulating land use dynamics under planning
policies by integrating artificial immune systems with cellular automata. Int. J.
Geogr. Inform. Sci. 24 (5), 783–802.

Liu, X., Ma, L., Li, X., et al., 2014. Simulating urban growth by integrating landscape
expansion index (LEI) and cellular automata. Int. J. Geogr. Inform. Sci. 28 (1),
148–163.

Liu, X., Li, X., Tan, Z., et al., 2011. Zoning farmland protection under spatial
constraints by integrating remote sensing, GIS and artificial immune systems.
Int. J. Geogr. Inform. Sci. 25 (11), 1829–1848.

McGarigal, K., et al. (2012). FRAGSTATS v4: spatial pattern analysis program for
categorical and continuous maps. Computer software program produced by
the authors at the University of Massachusetts, Amherst. http://www.
umass.edu/landeco/research/fragstats/fragstats.html. (accessed 02.02.13.).

Parker, D., Meretsky, V., 2004. Measuring pattern outcomes in an agent-based
model of edge effect externalities using spatial metrics. Agric. Ecosyst. Environ.
101 (2–3), 233–250.

Pontius, R., et al., 2007. Accuracy assessment for a simulation model of Amazonian
deforestation. Ann. Assoc. Am. Geogr. 97 (4), 677–695.

Pontius, R., et al., 2008. Comparing the input, output, and validation maps for
several models of land change. Ann. Region. Sci. 42 (1), 11–37.

Seto, K., Fragkias, M., 2005. Quantifying spatiotemporal patterns of urban land-use
change in four cities of China with time series landscape metrics. Landsc. Ecol.
20 (7), 871–888.

Sui, D., Zeng, H., 2001. Modeling the dynamics of landscape structure in Asia’s
emerging desakota regions: a case study in Shenzhen. Landsc. Urban Plan. 53
(1–4), 37–52.

Tarakanov, A., Dasgupta, D., 2000. A formal model of an artificial immune system.
BioSystems 55 (1), 151–158.

Timmis, J., 2000. On Parameter Adjustment of Immune Inspired Machine Learning
Algorithm AINE. University Kent, Canterbury.

Timmis, J., Neal, M.A., 2001. Resource limited artificial immune system for data
analysis. Knowl. Based Syst. 14 (3–4), 121–130.

White, R., Engelen, G., 1993. Cellular automata and fractal urban form: a cellular
modelling approach to the evolution of urban land-use patterns. Environ. Plan.
A 25, 1175–1199.

Yang, X., Zheng, X.Q., Lv, L.N., 2012. A spatiotemporal model of land use change
based on ant colony optimization: Markov chain and cellular automata. Ecol.
Model. 233, 11–19.

Zhong, Y., Zhang, L., Huang, B., et al., 2006. An unsupervised artificial immune
classifier for multi-/hyperspectral remote sensing imagery. IEEE Trans. Geosci.
Rem. Sens. 44 (2), 420–431.

Zhong, Y., Zhang, L., 2012. An adaptive artificial immune network for supervised
classification of multi-/hyperspectral remote sensing imagery. IEEE Trans.
Geosci. Rem. Sens. 50 (3), 894–909.

http://www.umass.edu/landeco/research/fragstats/fragstats.html
http://www.umass.edu/landeco/research/fragstats/fragstats.html

	Deriving urban dynamic evolution rules from self-adaptive cellular automata with multi-temporal remote sensing images
	Introduction
	AIS-based geographical cellular automata
	Basic principles of artificial immune system
	Artificial immune system and geographical cellular automata
	Definition of the antigen in geographical cellular automata
	Antibody initialization and affinity calculation
	Clonal selection and mutation
	Affinity attenuation
	Using AIS to discover transition rules of CA


	Implementation and results
	Initialization and correction of the AIS-based CA model
	Results of the AIS-based CA model

	Model validation
	Conclusions
	Acknowledgments
	References


