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ARTICLE

Classifying urban land use by integrating remote sensing
and social media data
Xiaoping Liu a, Jialv He a, Yao Yao a, Jinbao Zhang a, Haolin Liang b,
Huan Wang b and Ye Hong b

aSchool of Geography and Planning, Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun
Yat-sen University, Guangzhou, China; bSchool of Geography and Planning, Sun Yat-sen University,
Guangzhou, China

ABSTRACT
Urban land use information plays an important role in urban
management, government policy-making, and population activity
monitoring. However, the accurate classification of urban func-
tional zones is challenging due to the complexity of urban sys-
tems. Many studies have focused on urban land use classification
by considering features that are extracted from either high spatial
resolution (HSR) remote sensing images or social media data, but
few studies consider both features due to the lack of available
models. In our study, we propose a novel scene classification
framework to identify dominant urban land use type at the level
of traffic analysis zone by integrating probabilistic topic models
and support vector machine. A land use word dictionary inside the
framework was built by fusing natural–physical features from HSR
images and socioeconomic semantic features from multisource
social media data. In addition to comparing with manual interpre-
tation data, we designed several experiments to test the land use
classification accuracy of our proposed model with different com-
binations of previously acquired semantic features. The classifica-
tion results (overall accuracy = 0.865, Kappa = 0.828) demonstrate
the effectiveness of our strategy that blends features extracted
from multisource geospatial data as semantic features to train the
classification model. This method can be applied to help urban
planners analyze fine urban structures and monitor urban land use
changes, and additional data from multiple sources will be
blended into this proposed framework in the future.
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1. Introduction

Land use and land cover (LULC) information comprises essential geographical spatial
features for many fields, such as urban planning, government management, and sustain-
able development (Herold et al. 2003, Ellis and Pontius 2007, Arsanjani et al. 2013, Liu
et al. in press). China’s rapid economic and urban developments have generated diverse
and sophisticated urban functional zones which reflect in urban land use patterns
(Huang et al. 2013, Liu et al. 2014a, Long and Shen 2015, Zhang and Du 2015).
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However, urban land use patterns are affected not only by government policies but also
indoor lifestyles, which are continuously changing with urban development (Yuan et al.
2012). Therefore, the effective detection of urban land use patterns, which are significant
for formulating effective urban planning policies, has been a controversial issue in recent
studies.

High spatial resolution (HSR) remote sensing images enable computation-based
urban land use detection, where HSR image classification models have been extensively
applied to extract and analyze LULC in recent studies (Hu and Wang 2013, Huang et al.
2014, 2015, Wu et al. 2015, Zhang and Du 2015, Wen et al. 2016). Analyses of urban LULC
are primarily conducted with three types of spatial units; units of pixels and objects are
usually employed to evaluate land cover, whereas scenes are commonly used to identify
urban functional zones and accurate urban land use patterns (Liu et al. 2015a, Zhang
and Du 2015, Zhang et al. 2015b). Many studies applied object-oriented classification
(OOC) models to extract urban land use patterns using physical features (such as
spectral, shape, and texture features) of ground components (Blaschke 2010, Blaschke
et al. 2014, Dupuy et al. 2012, Hu and Wang 2013). However, OOC models often overlook
the spatial distribution and semantic features of ground components because they were
only designed to mine the low-level semantic land cover information of ground com-
ponents. Because of the difficulties in mining sufficient information, the above tradi-
tional classification models are also difficult to identify land use classification with typical
thematic features using traditional remote sensing classification models. The difficulty is
due to the issue of crossing the ‘Semantic Gap’ (Benz et al. 2004, Durand et al. 2007,
Tokarczyk et al. 2015).

In simple terms, low-level semantic features indicate ‘information’ that comes with
the data directly, while high-level semantic features refer to ‘knowledge’ specific for
each user and application (Bratasanu et al. 2011). The semantic gap refers to the

Table 1. Abbreviation list.
Abbreviation Full name

BoW Bag-of-words
CBD Central business district
GLCM Grey-level co-occurrence matrix
GPS Global positioning system
GSA Global sensitivity analysis
HSR High spatial resolution
LDA Latent Dirichlet Allocation
LDMM Linear Dirichlet Mixture Model
LULC Land use and land cover
NLP Natural language processing
OA Overall accuracy
OOC Object-oriented classification
OSM OpenStreetMap.org
pLSA Probabilistic latent semantic analysis
POI Point-of-interest
PTM Probabilistic topic model
RBF Radial basis function
RTUD Real-time Tencent user density
SAL Semantic allocation level
SIFT Scale invariant feature transform
STD Standard deviation
SVM Support vector machine
TAZ Traffic analysis zone
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disparity of features identified between these two levels. In the field of image under-
standing, low-level features extracted directly from the image data (Bratasanu et al.
2011), such as color and texture, only express the physical properties. As disparate
objects may have the same physical properties, and identical objects may possess
different attributes, image classification only with low-level features is most likely
inaccurate. Nevertheless, introducing the high-level semantic features (Bratasanu et al.
2011, Zhao et al. 2013, Zhong et al. 2015), which is the diverse attribute attached to the
objects given by the human operator in accordance with the usage and other informa-
tion, into image classification is likely to be more explicit classifications at higher
accuracy. For example, given a set of HSR images containing different scenes, the land
cover objects can be recognized based on the low-level feature description, e.g. build-
ings. However, attempts to capture high-level latent semantic concepts aim to seek
different functional types, such as residential, commercial, and industrial areas (Zhao
et al. 2013, Zhong et al. 2015).

To bridge the ‘Semantic Gap’ between LULC, recent studies have introduced the
concept of ‘scene classification’ into HSR image classification to label a scene with a
single category (Zhang and Du 2015). The majority of current studies apply the bag-of-
words (BoW) modeling approach and fuse physical features of ground scenes via
probabilistic topic models (PTMs) to improve the detection accuracy of urban land use
types with high-level semantic information (Yang and Newsam 2010, Sun et al. 2012,
Chen et al. 2013, Zhao et al. 2013, Tokarczyk et al. 2015, Zhang and Du 2015, Zhong et al.
2015, Wen et al. 2016). Zhang et al. (2015b) introduced the Linear Dirichlet Mixture
Model (LDMM), a strategy to fuse HSR images and road network data to detect the
percentage of land use in each land parcel (Liu et al. 2015a, Zhang and Du 2015, Zhang
et al. 2015b). However, extracting features from remote sensing images can only
represent the external natural–physical properties of ground components, whereas
regional land use types often have a strong correlation with indoor human socioeco-
nomic activities, which are difficult to extract from HSR images.

To solve this problem, recent studies have proposed the concepts of ‘social sensing’
and ‘urban computing’ (Zheng et al. 2014, Liu et al. 2015b). Multisource social media
data, such as global positioning system (GPS) trajectories of floating cars, mobile phone
signals, check-in data of social media, and point of interests (POIs), have been intro-
duced to monitor residential activities and urban land use dynamics. Many in-depth
discussions suggest that multi-social media data have great potential to reveal urban
land use patterns (Yuan et al. 2012, Jiang et al. 2015, Yao et al. 2016). Yuan et al. (2012)
proposed a POI-based semantic analysis model named DRoF to map urban functional
zones (Yuan et al. 2012). Yuan and Zheng (2015) introduced the Latent Dirichlet
Allocation (LDA) model, which combines GPS trajectories of floating cars (De Fabritiis
et al. 2008) and POI frequencies, to mine urban land use types with senior semantic
information, which can improve compared with HSR image-based methods (Yuan et al.
2015).

However, these methods utilize only one type of data rather than fusing geospatial
information from HSR images and social media data into the detection of land use types.
Regions with similar types of urban land use tend to have similar external natural–
physical properties and indoor human socioeconomic activity patterns (Yao et al. 2016).
For example, central business districts (CBDs) and residential zones with high-rise towers
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are difficult to distinguish from remote sensing images alone but have distinct indoor
human activities. On the other hand, bare fields and farmland, both with less human
activities, can be differentiated by identifying natural–physical properties from remote
sensing images. As previously summarized, our study aims to build a dominant urban
land use sensing framework by combining several machine learning and natural lan-
guage processing (NLP) models to fuse the geospatial latent semantic information
extracted from HSR images (remote sensing information) and multisource social media
data (social sensing information) as patterns to classify the urban land use and evaluate
the accuracies and reliabilities of classification models by manual interpretation. Our
model is applied to detect land use patterns in the Haizhu district in Guangzhou, which
is one of most developed cities in Southern China with a mixture of land use types. By
combining different kinds of features and comparing the corresponding classification
results, we obtained the optimal combination of features and land use classification
result.

2. Study area and data

The study area is located in the Haizhu district (Figure 1(a)) of Guangzhou in Guangdong
Province with a total area of 102 km2 and a permanent population of approximately
1,010,500. Guangzhou has been considered to be a political, cultural, and economic
center in South China. As one of the four central downtown districts in Guangzhou, the
urban structures of Haizhu district are very complex and contain a mixture of several
land use types, such as residential communities, shopping malls, clinical facilities, and
educational buildings.

Figure 1(b) displays a high spatial resolution (HSR) Worldview-2 image of Haizhu
district in 2014 with a grid size of 34,263 × 14,382 and a spatial resolution of 0.5 m.
Based on the road net data provided by OpenStreetMap, HSR image and official urban
planning data, we divided the image into 593 land patches, similar to traffic analysis
zones (TAZs) (Long and Thill 2015). Figure 1(a) displays the classification results of the
dominant land use types in the study area via manual interpretation, which contains
public management services land (M), industrial land (I), green land (G), commercial land
(C), residential land (R), park land, (P) and urban villages (U).

Social media data, including OpenStreetMap (OSM) road networks (http://www.open
streepmap.org), Gaode POIs, and real-time Tencent user density (RTUD) (http://heat.qq.
com), are used to complement HSR-image extracted features and enrich additional
information for land use identification in the study area. POIs in our study are provided
by Gaode Map Services (http://lbs.amap.com/), which is one of the most popular and
largest web map service providers in China. We obtained POIs from approximately
123,915 records with 432 categories in the study area via Gaode Map APIs (Figure 1
(c)), including business establishments, commercial sites, educational facilities (kinder-
gartens, primary schools, and middle schools), residential communities, clinical facilities,
and scenic locations. RTUD, which is a new dataset applicable to t semantic classification
(Li et al. 2015), contains the hourly numbers of smartphone users who use Tencent
applications, such as Tencent Mobile App QQ (a messenger-like software), WeChat (a
mobile chat software), Soso Maps (a web mapping service and navigation software), and
other mobile applications that provide LBS services. Figure 2 shows the RTUD time-series
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Figure 1. Case Study area: Haizhu district, Guangzhou, Guangdong Province. (a) Urban land use data
obtained from manual interpretation within the unit of the traffic analysis zone (TAZ) level; (b) High
spatial resolution (HSR) remote sensing image provided by Worldview-2 satellite in the study area;
the black lines in the front represent roads downloaded from OpenStreetMap (OSM); (c) Spatial
distribution density of Gaode point of interest (POIs).

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 5



data by calculating the average of workday and rest day data, respectively, at a spatial
resolution of 25 m. Previous studies indicated that mean filtering is an effective social
media data preprocessing method to reduce the data size and computational demands
without much information loss (Liu et al. 2015b, Chen et al. 2017).

3. Methodology

The flowchart of the proposed model is illustrated in Figure 3. The purpose of our
study is to classify dominant urban land use types by fusing multisource features

Figure 2. Time-series dataset of real-time Tencent user density (RTUD) in study area. (a) 9:00, (b)
17:00 and (c) 22:00 on a workday, (d) 9:00, (e) 17:00, and (f) 22:00 on a rest day.

Figure 3. Flowchart of the proposed model for classifying urban land use by fusing multisource
geospatial data (including HSR image and multisource social media data) via sematic models.

6 X. LIU ET AL.



from HSR remote sensing images and social media data. In this study, we applied the
following four steps to identify the urban land use type in each traffic analysis zone
(TAZ). First, we extracted features from the remote sensing images using window
scanning. The extracted features were characterized by spectral, texture, and spatial
envelope characters and simultaneously extract rotation invariant features using the
scale invariant feature transform (SIFT). Second, we applied the k-means clustering
method to classify the features extracted in the previous step and RTUD data into
several classes, and subjectively define the types of POIs. We obtained a large
amount of visual words, which were labels clustered by k-means algorithm and
considered as mid-level features in order to distinguish them from the low-level
raw features and high-level semantic vocabulary features (Liu et al. 2009, Vedaldi and
Fulkerson 2010), and constructed a multisource dictionary of BoW. Third, we deli-
neated the TAZs in the study area based on the open-sourced OSM road network
data and counted the feature words extracted from the HSR images and social media
data in each TAZ. By using PTMs, we mined the latent semantic features based on
the frequencies of feature words into high-dimensional semantic vectors. Finally, we
applied a multi-class support vector machine (SVM) model. We trained the SVM
model with selected land use data verified on the ground to classify urban land
use types, and estimated the performance of classification across different combina-
tions of semantic features.

The models described below were implemented by our research team using C++ on
Windows 8.1(×64), linking with several open-source libraries, including CGAL (http://
www.cgal.org), GDAL (http://www.gdal.org/), OpenCV (http://opencv.org/), and LIBSVM
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/). The source codes of the LDA-based topic
model are available at Princeton University (http://www.cs.princeton.edu/~blei/topicmo
deling.html).

3.1. Spatial feature extraction

HSR images contain abundant spectral and spatial information. Among all feature
descriptors, the spectral and texture features of HSR images are able to reflect the
inner components and tonal variation of ground components. The SIFT feature descrip-
tors can handle the stretch, rotation, and changes in visual angle of pattern recognition
for ground components, which has been extensively applied in image analysis (Kupfer
et al. 2013, 2015, Yan et al. 2016). The patterns that are extracted from HSR images in
this paper are similar to the patterns in the semantic allocation level (SAL)-based PTM
model of Zhong et al. (2015), as follows.

To reduce the computational complexity during the extraction of spectral features
from HSR images, we adopt a window and gap with a certain size and extract the
mean and standard deviation (STD) of each band for each HSR image. Thus, the
spectral feature of the center of the i-th window loci xi; yið Þ, can be expressed as
spei ¼ mean1; std1;mean2; std2; . . . ;meanB; stdBf gi, where B denotes the band count.
We can continue with some evenly spaced spectral feature vectors.

The grey-level co-occurrence matrix (GLCM) effectively describes the patterns of
images and textures (Hua et al. 2006, Mohanaiah et al. 2013). Similar to spectral features,
we compress the grey level of the images to eight images and extract four GLCM-based
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Haralick’s feature statistics, including correlation, ASM, energy, contrast, and homoge-
neity within each window with a certain size (Sebastian et al. 2012, Zhong et al. 2015).
Assuming B as the band count, the texture feature of the i-th window loci xi; yið Þ can be
described as:

texi ¼ cor1; asm1; ene1; con1; hom1; . . . ; corB; asmB; eneB; conB; homBf gi:

In this study, we introduce two methods (SIFT and GIST) to describe the images’ local
features. The first method is to calculate the SIFT feature in each window. A previous
study has indicated that when a 128-dimensional vector is adopted to represent the SIFT
feature, it can achieve the best optimized registration performance (Zhong et al. 2015).
To reduce the computation cost, we obtain the first component of the HSR image and
then adopt a window-scanning method to extract the SIFT feature vectors, where the
SIFT features of the center of the i-th window are sifi ¼ sif1; sif2; . . . ; sif128f gi. When
describing an entire scene, we usually employ partial patterns instead of global patterns.
Due to the complexity and uncertainty of HSR images, this method will not only be
costly in computation and storage but also cause misclassification in the cases in which
two scenes are identical but have different spatial distributions of inner ground compo-
nents. To solve this problem, we bring in the spatial envelope features called GIST
introduced by Olivia et al. (2001), whose effectiveness for describing scenes of images
at the macro level has been proven in recent studies (Oliva and Torralba 2001, 2006,
Tung and Little 2015, Acharya et al. 2016).

The SIFT descriptor was originally designed for recognizing the same object appear-
ing under different conditions, and has a strong discriminative power. The ‘GIST’ is an
abstract representation of the scene that spontaneously activates memory representa-
tions of scene categories, and has achieved high accuracy in recognizing natural scene
categories, e.g. mountain and coast (Oliva and Torralba 2001, 2006). GIST has been
considered as a common spatial envelope feature descriptor that can adequately
describe five different spatial envelope scenes, including degree of naturalness, open-
ness, roughness, expansion, and ruggedness (Oliva and Torralba 2001, 2006). In our
study, we segment each window into 4� 4 blocks and calculate the GIST features of
each band. Similar to the SIFT, the central GIST features of the i-th window are:

gisi ¼ gis1;1; gis1;2; . . . ; gis1;18; . . . ; gisB;1; gisB;2; . . . ; gisB;18
� �

i;

where B represents the band count.
Although remote sensing data can adequately represent the physical attributes of ground

components, it cannot illustrate the socioeconomic properties caused by human activities.
Social media data may supplement information on human activities. Previous studies indicate
that the distribution of POIs can be effectively applied to illustrate the functions of land parcels
(Rodrigues et al. 2012, Bakillah et al. 2014, Jiang et al. 2015, Long and Liu 2015, Yao et al. 2016).
Here, we introduce POI categories as one type of virtual words that reflect the socioeconomic
properties. The patterns of human activities can then be obtained by filtered-RTUD time series
(Chen et al. 2017, Yao et al. 2017), whose value and variation are important. The characteristics
of urban residents’ activities are closely related to the surrounding environments and urban
functional areas. Thus, the time series of RTUD can represent the functional patterns of certain
areas. Therefore, we describe the RTUD pattern of each window as
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rtui ¼ rtuw;0; . . . ; rtuw;23; . . . ; rtur;0; . . . ; rtur;23
� �

i, where j is the j-th window in the study area,

w and r represent the timing curves during workdays and rest days, respectively.

3.2. Building multisource BoW dictionary

Assuming the existence of a certain area R in a city, whose multisource features can be
described as f i; j; k 2 Rð Þ ¼ spei2R; texi2R; sifi2R; gisi2R; POIj2R; rtuk2R

� �
, where i, j, and k

indicate the window center, the POIs, and the raster center of RTUD data in the R
area, respectively. Note that f i; j; k 2 Rð Þ is a multidimensional vector. We used the
k-means method to cluster and converted each feature into a certain virtual word in
the BoW dictionary. Thus, feature words in area R can be described as a document
DocR ¼ wordspe;wordtex;wordsif ;wordgis;wordPOI;wordrtu

� �
R, where wordPOI is the set of

inner POI categories, on which basis we can apply topic models to recognize and classify
multisource documents.

A large amount of feature data is needed to be extracted in a large study area, which
causes low efficiency during the clustering processes. When the number of features
exceeds 500,000, we selected a random subset of 500,000 data points to conduct a
preliminary clustering via k-means clustering and iterated to optimize the result by
silhouette estimation (Rousseeuw 1987, Yuan et al. 2012, Da Cruz Nassif and Hruschka
2013). Based on the cluster centers obtained via the preliminary clustering process, the
Euclidean distance was calculated to estimate the similarity between each center and
other unlabeled semantic feature vectors; the unlabeled features were classified into the
closest feature.

3.3. Semantic classification via PTMs and SVM

As illustrated in Figure 4, PTMs, including the probabilistic latent semantic analysis
(pLSA) and LDA models, are designed to evaluate generated virtual words and mine

Figure 4. Probabilistic graphical models of (a) pLSA and (b) LDA. The nodes W, Z, D represent virtual
words, topics, and document (or image), respectively, whereas α indicates the Dirichlet Allocation of
topics in the LDA model.
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latent semantic features of documents (Blei 2012). PTMs have been extensively
applied in the fields of NLP; moreover, it has achieved acceptable results in the
scene classification of HSR images in recent years (Huang et al. 2015, Liu et al. 2015b,
Tokarczyk et al. 2015, Zhong et al. 2015, Wen et al. 2016).

pLSA takes advantage of the relationships among document, topics and words, and
decomposes the probability p wj; dj

� �
of the word wj, which appears in a paper with the

combination of BoW and the probability and total probability formulas (Bosch et al.
2006).

p wj; dj
� � ¼

Xk¼1

K

pðwj zkÞpðzj
�� ��dkÞ: (1)

In Equation (1), p wjjz1
� �

; . . . ; p wjjzk
� �

; . . . ; p wjjzK
� �

;wj 2 W
� �

demonstrates the base
vectors in the latent semantic space, and pðzkjdiÞ represents the topic distribution,
which can be considered as the semantic features of given documents. Thus, we apply
the vector set p z1jdið Þ; . . . ; p zkjdið Þ; . . . ; p zK jdið Þ; di 2 Df g to denote a document. The
pLSA model has the problem of overfitting because each document that it represents
is only the numerical form of the discrete probability of a certain topic. It is not able to
mine the semantic feature outside the training datasets. To solve these problems, a
new LDA-based pLSA model assumes that the semantic perplexity parameters are
subject to the Dirichlet Allocation (Ramage et al. 2009). For certain documents with K
given topics, each vector θi ¼ θi;1; . . . ; θi;k; . . . ; θi;K

� �
within the vector group θ ¼

θ1; . . . ; θi; . . . ; θMf g obeys the Dirichlet Allocation with the parameters of
α ¼ α1; . . . ; αi; . . . ; αMf g. The definition of a probability function for original latent
semantic distribution by the LDA is the key to fix the disadvantage of the pLSA (Lu
et al. 2011).

Based on the OSM road network data, we segmented the study area into several
TAZs. Considering each TAZ as a land patch, we counted the distribution frequency of
visual words from all feature classes and input the results into the PTMs model to
calculate the high-dimensional latent semantic features. Then, the SVM, which has
been proven to have high efficiency in classifying the high-dimensional feature in
previous studies (Lilleberg et al. 2015, Zhang et al. 2015b), was applied to our proposed
model to identify the urban land use types in the TAZs. Because the SVM is a binary
classifier, we adopt a multi-classifiers-combined method to train and classify the latent
semantic features in each TAZ. The final classification results were given by the class that
most frequently appeared in each TAZ.

In this study, we select 50% of the training samples in each class, whose features are
randomly combined and input into a multi-class SVM classifier. The other 50% of the
data is used as testing data. The SVM classifier is implemented by the LIBSVM package
(Chang and Lin 2012). In the training process, we use 25% of the training dataset as the
validation dataset and use Kappa to assess the model calibration. Two sensitive para-
meters of the SVM with the radial basis function (RBF) kernel, penalty C factor, and the
kernel parameters NU, need to be tuned. We set C 2 2�10; 210½ � and NU 2 0; 1½ � and
search the optimum parameters by a grid-search method, in which the optimization
objective is to maximize Kappa (Li and Guo 2014).

10 X. LIU ET AL.



4. Results

4.1. Scene classification via different feature combinations

Table 2 shows different feature combination methods and their average accuracies, and
Figure 6 shows the confusion matrix of the classification results (Figure 5) of each
combination that is closest to the average accuracy. To ensure the reliability and stability
of the classification results, we repeated the classification process for each group 100
times and calculated the average classification accuracy.

As demonstrated in Table 2 and Figure 5, PTM-based semantic features from HSR images
or social media data can be used to distinguish the functional type of land parcels. The
semantic features generated by the LDA model are slightly higher than the semantic

Figure 5. LDA-based land use classification results via different combinations of semantic features.
(a) Spectral, texture, and SIFT, (b) Spectral, texture, SIFT, and GIST, (c) POI, (d) RTUD, (e) POI and
RTUD, and (f) Spectral, texture, SIFT, GIST, POI, and RTUD.

Table 2. Scene classification results via different combinations of semantic features.
Semantic features pLSA LDA

Exp. Spectral Texture SIFT GIST POI RTUD OA Kappa OA Kappa

A √ √ √ 0.622 0.531 0.663 0.565
B √ √ √ √ 0.662 0.575 0.685 0.591
C √ 0.715 0.640 0.721 0.650
D √ 0.708 0.628 0.729 0.657
E √ √ 0.754 0.688 0.759 0.697
F √ √ √ √ √ √ 0.843 0.800 0.865 0.828
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features generated by the pLSA model regarding the accuracy of the SVM classification.
Existing studies have indicated that the LDA works better than the pLSA when measuring
the perplexity of predicting new documents (Lu et al. 2011). Our study area is located in
downtown of Guangzhou, where highly mixed land use patches serve as theme-mixed
documents in NLP, which would cause the LDA model to yield better classification result.
This study thus applies an extra binary divisive procedure to optimize the sensitive hyper-
parameter α of the LDAmodel, and the effect of the relevant parameters on the accuracy of
the classification results will be discussed in the following section.

Conventional HSR-images-based scene classification methods (Huang and Zhang
2013, Zhang et al. 2015b, Zhong et al. 2015), which only consider spectral, texture,
and SIFT features, can only attain poor classification accuracies in complicated urban
land use classification. Applying GIST features to describe scenes at the macro level
cannot improve the precision of classification because the use of natural–physical
semantic features extracted from remote sensing images is challenging to differentiate
highly mixed land use patches. As shown in Figures 6(a,b), 7(a,b), and Table 3, when only
applying texture features, commercial land (#1 and #5 in Figure 5(a,b)) is easily mixed
with residential land, industrial land and urban village since commercial land is often
distributed extensively in remote sensing images and exhibits a complex spatial pattern.
Therefore, natural–physical features that are extracted from remote sensing images are
incapable of reflecting the inner properties and structures of urban functional areas.

Figures 6(c,d), 7(c,d) show semantic features extracted from social media data, such as
POIs and RTUD, which are highly correlated urban land use types with human activities,

Figure 6. Confusion matrix of scene classification results via pLSA. Feature combination: (a) Spectral,
texture, and SIFT, (b) Spectral, texture, SIFT. and GIST, (c) POI, (d) RTUD, (e) POI and RTUD, and (f)
Spectral, texture, SIFT, GIST, POI, and RTUD.
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including commercial land and residential land. The classification accuracy of these two
types of data is visibly improved; the total accuracy and Kappa increase 9.95% and
16.58%, respectively. Compared with the POIs, the RTUD can effectively distinguish
between the residential area and an urban village, which can explain that time-series
population density is more capable of reflecting the ground truth land use type from
within a city area. The POI-based semantic features distinguished the urban village
better than the RTUD, which explained that the distribution of POIs have a greater
advantage in urban village identification by comparing with the indoor routines of
people. As demonstrated in Figure 5(c,d), urban areas with sparse human activities,
such as green land and park land, can be adequately identified by RTUD-based semantic
features. Therefore, POIs and RTUD-based semantic features are combined for classifica-
tion. This model obtains better results compared to the independent application of each
type of features (Group C and Group D), where the overall accuracy (OA) and Kappa
increases 0.03–0.05 and 0.04–0.05, respectively.

In Group F of the feature combination test, we input all semantic features into an
SVM to classify the land use type and obtain the best classification results, where OA and
Kappa exceed 0.80. From the experiment results, we discover that areas with sparse
human activities (such as green land and park land) and areas with complex land use
types (such as commercial land and residential land) can be distinguished. For example,
as shown in Figure 5 #2, a public management services land parcel has been inaccu-
rately classified as land for park (Figure 5(b) #2) and land for residential use (Figure 5(e)
#2) when only remote sensing or social media-based semantic features are considered.

Figure 7. Confusion matrix of scene classification results via LDA. Feature combination: (a) Spectral,
texture, and SIFT, (b) Spectral, texture, SIFT, and GIST, (c) POI, (d) RTUD, (e) POI and RTUD, and (f)
Spectral, texture, SIFT, GIST, POI, and RTUD.
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However, the land parcel can be correctly identified (Figure 5(f) #2) by fusing two
proposed main features. The optimum classification results can be obtained by fusing
the natural–physical properties of the HSR images and the socioeconomic properties of
the social media data in each TAZ in the proposed model.

4.2. Parameters sensitivity analysis

In this section, we evaluate the correlation between the classification accuracies and
three key parameters of our proposed models, including the size of the sample win-
dows, the number of clustering categories that form the BoW, and the number of topics
used in PTMs. The size factor of the sample window that is used to extract the natural–
physical properties of the ground components on HSR images has been adequately
discussed in the previous studies (Zhao et al. 2013, Zhang and Du 2015, Zhong et al.
2015). According to the conclusion of Zhong (2015), we segmented the HSR images into
a set of overlapping image patches of 25� 25 pixels to determine the spectral, texture,
SIFT, and GIST features. Each pair of adjacent patches was set to overlap by 15 pixels to
preserve a sufficient amount of spatial information (Zhong et al. 2015).

Several previous studies have indicated that the number of visual words and initial
topics have a substantial impact on the classification accuracies of PTM-based scene
classification; however, the way to obtain the optimum topics remains an unsolved
problem (Ramage et al. 2009, Lu et al. 2011, Zhong et al. 2015). Figure 8 and Figure 9
display the relationship between the number of k-means clusters, the number of PTM
topics, and the classification accuracy. Both the pLSA and LDA models are able to
achieve relatively preferable performances within a certain window area. Figure 8
demonstrates that a decrease in the number of k-means clusters causes the accuracy
of the classification results of PTM-based scene classification to stabilize and hardly
fluctuate. With a fixed K value, therefore, the levels of accuracy of pLSA and LDA
exhibit an initial distinct deviation and finally cause an increase in the number of
initial topics (Figure 9). The accuracy of the LDA-based scene classification results
exhibits strong fluctuation because the optimal results of the Dirichlet Topic
Allocation Parameter α are uncertain (Figure 10). The method for obtaining the
optimal number of initial topics and α remains unresolved in the field of

Figure 8. Accuracy assessment (y-axis) of scene classification results using different clustering
numbers of k-means (x-axis), whereas topic numbers of PTMs are set to 100 and Dirichlet Topic
Allocation Parameter α of LDA is set to 0.8. (a) pLSA and (b) LDA.
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multisource-spatial data-fused scene classification. By the above sensitivity analysis of
proposed model parameters, we have chosen the clustering number of k-means, and
the initial topic number of PTMs of 500 and 240, respectively.

5. Discussion

Improving urban LULC classification accuracy has been an important issue in recent
literature about HSR remote sensing and social media data analysis. However, few
studies have effectively fused various features extracted from multisource geospatial
data (Hu et al. 2016) on the semantic level. This study proposed an effective framework
for classifying urban land use by fusing semantic features extracted from HSR images
and social media data, such as Gaode point of interest (POIs) and RTUD.

This study combines several different semantic features obtained from PTMs and
input them into SVM classifiers; the results indicated that both HSR images and social
media data can classify the urban land use type with high accuracy. Our finding agrees

Figure 9. Accuracy assessment (y-axis) of scene classification results using different initial topic
numbers of PTMs (x-axis), whereas clustering numbers of k-means are set to 500 and Dirichlet
Topic Allocation Parameter α of LDA are set to 0.8. (a) pLSA and (b) LDA.

Figure 10. Accuracy assessment (y-axis) of scene classification results using different Dirichlet Topic
Allocation Parameter α of LDA (x-axis), whereas topic numbers of PTMs are set to 100 and clustering
numbers of k-means are set to 100.
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with previous studies (Wu et al. 2009, Toole et al. 2012, Hu et al. 2016) that the HSR
images are advantageous for identifying natural components over a rural area, whereas
the use of social media data is better for a metropolitan area with a high population
density. After combining all features into the SVM classifier, the results achieved the
highest accuracy (OA = 0.865, Kappa = 0.828), which indicates that our model can
effectively fuse natural–physical and socioeconomic information from HSR images and
social media data for a high-resolution classification of urban land use.

In the future study, on the one hand, we expect to introduce more open social media
sources (such as mobile data and floating car trajectories); on the other hand, based on
global sensitivity analysis (GSA), the suitability of the classification of different types of
land use with data from different data sources will be evaluated(Gao et al. 2016). In
addition, we used a large amount of remote sensing image samples and multiple types
of open social media data to build training datasets and perform a sensitivity analysis of
different categories and accuracies. Such work will help us to establish a framework for
sensing urban land use patterns at different levels.

TAZ was adopted as the basic unit in numerous studies involving urban land use
division, scene classification, and urban functional zone classification (Li et al. 2009, Long
et al. 2012, Yuan et al. 2012, Zhang and Du 2015, Zhang et al. 2015b, Yao et al. 2016),
where studies in urban area of China’s large cities were not uncommon. Their results
indicated that using TAZ to identify urban land use patterns is reasonable and effective.
However, mixed land use in urban areas does exist in reality, and even a single building
contains different functions (Chen et al. 2017). Facing this issue, multisource geospatial
data, including social media data and HSR images, may provide a new tool for quantify-
ing the mixture of land use and distinguish between real land use situations and urban
planning in the future. Hence, more fine-grained land use pattern should be identified to
substitute TAZ in future studies.

The purpose of this study is to explore the integration of multisource spatial data in
the framework of semantic model, thus effectively analyzing the dominant land use type
of each study unit (TAZ). However, urban land use patterns are complicated and
heterogeneous, especially in China’s megacities. For example, many multifunctional
land uses are mixed with living and commercial functions in our study area, which
increases the difficulty of land use identification by manual interpretation or training
sample selection. Although we have already obtained a relatively high accuracy for the
hard classification of land use, the results are based on the accurate and manual
interpretation of data. Therefore, the problem of mixed land use should be considered
in future studies based on open social media data in the future work.

6. Conclusions

Rapid urban development leads to diversification and complication of land use types
within cities (Ellis and Pontius 2007, Arsanjani et al. 2013, Hayashi and Roy 2013). As it is
necessary for urban planners and government decision-makers to take into account the
status of land use, timely and sufficient urban land use information will undoubtedly
promote the sustainable development of cities (Liu et al. 2014b). However, the complex-
ities and fusion of urban land use patterns create great challenges to accurate and
effective mapping of urban land use (Li et al. 2014, Pei et al. 2014). This study established
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a framework to classify dominant urban land use types at the level of the TAZ unit by
fusing multisource semantic features that were extracted from HSR remote sensing
images and multisource social media data. First, from HSR images and open social
media data (including POIs and RTUD), we extracted various features and established
k-means-based BoW and a dictionary of all feature categories. In second next step, PTMs
that contain pLSA and LDA were introduced to extract multisource semantic informa-
tion. Last, we fused different types of semantic features and input into a multi-class SVM
classifier over Haizhu district, Guangzhou. The results indicated that the proposed model
can effectively fuse natural–physical and socioeconomic semantic features that are
extracted from HSR images and multisource social media data, respectively, to obtain
the highest urban land use classification accuracy (OA = 0.865, Kappa = 0.828). We may
continue our study to develop a fusing model using the following three aspects: first,
discover the potential of various open social media data for detecting urban land use;
second, improve the accuracy of detecting patterns of fusing urban land use with the
proposed model; and last, discuss the feasibility of deep learning in which spatial
information extracted from urban land use mapping is applied.
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