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A B S T R A C T   

Accurate identification of urban land-use patterns is essential to rational optimization of urban structure. By 
combining the external physical characteristics of city parcels obtained from remote sensing images and the 
socioeconomic attributes revealed by social sensing data, land use can be better classified. However, most of the 
existing social sensing data have location bias and lack temporal resolution, which cannot accurately reflect the 
socioeconomic information of land use and leads to low classification accuracy. Based on the above problems, 
this study explores the deep semantic information of high-spatial and temporal resolution time-series electricity 
data to explore its relationship with socioeconomic attributes and construct a neural network (TR-CNN) that can 
fuse time-series electricity data and remote sensing images to identify urban land-use types. We selected Anyuan 
District in Pingxiang City, Jiangxi Province for a demonstration study, and the results show that the accuracy of 
the proposed model is 0.934, which is 4.3% and 6.7% higher than that of the ResNet18 model using only 
remotely sensed images and the LSTM-FCN model using only time-series electricity data. The results also show 
that the use of time-series electricity data can effectively identify residential and commercial areas, but it is 
difficult to identify public service facilities compared with remote sensing images. This study finds for the first 
time that the semantic features of electricity data can fully reflect socioeconomic attributes and can accurately 
perceive urban land-use patterns from both “top-down” and “bottom-up” recognition patterns by coupling 
remote sensing images and electricity data.   

1. Introduction 

Complex land-use types, including residential, commercial, and 
public facilities, have developed in cities with the urbanization process 
(Xia et al. 2020, Zhang et al. 2017). Land uses are closely related to 
human activities and can effectively reflect regional socioeconomic at
tributes (Jiang et al. 2015, Ye et al. 2021). Therefore, accurate percep
tion of urban land space structure and effective urban land-use 
classification is an important part of current urban spatial planning 
(Crooks et al. 2015, Han et al. 2020, Hersperger et al. 2018), which helps 
the government in decision-making and management. 

Remote sensing images are widely used in land-use classification 

given their ability to capture the physical attributes of cities such as 
shape and texture (Li et al. 2020, Rogan and Chen 2004, Zhang et al. 
2014). Previous studies have demonstrated that an object-oriented 
approach is an effective method for land-use classification from 
remote sensing images (Blaschke 2013, Li et al., 2014a, 2014b). How
ever, this method can only mine the shallow land cover information, 
ignoring the ground’s spatial distribution and semantic features. Deep 
learning offers the possibility to efficiently identify land-use studies with 
powerful visual representations of images (Kussul et al. 2017, Yuan et al. 
2020). For example, Liu and Shi (2020) used convolutional neural net
works (CNNs) for land-use classification based on remote sensing im
ages. This study verified that neural networks with deep architecture can 
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extract accurate image features to obtain better classification results. 
However, remote sensing images can only characterize the external 
physical attributes of cities from the top down and cannot distinguish 
some land-use types with similar features (Feng et al. 2021). It is 
necessary to combine multisource data to compensate for the shortage of 
remote sensing images for land-use classification. 

The emergence of social sensing data has brought new opportunities 
for land-use classification. With the development of information tech
nology, there are increasingly big data that record human activities, 
such as check-in data (Shen and Karimi 2016), POI data (Yao et al. 
2017), taxi data (Du et al., 2020a, 2020b), and cell phone signaling data 
(Zhang et al. 2021). Social sensing data can be used to extract socio
economic attributes of land use “from the bottom up” (Yang et al. 2019, 
Zhan et al. 2014). Given the strong relationship between land use and 
socioeconomic activities, some studies have used social sensing data for 
land-use classification (Yao et al. 2021). Among them, deep learning 
methods have been proven to effectively extract land-use features from 
social sensing data (Srivastava et al. 2020, Yao et al. 2018). For example, 
Huang et al. (2018a, 2018b) extracted spatiotemporal features such as 
the location and time of Twitter data based on latent Dirichlet allocation 
(LDA) and long short-term memory (LSTM) to classify land use, 
demonstrating the effectiveness of deep learning to extract features of 
temporal data. 

Based on the external physical attributes of land-use units reflected 
by remote sensing images and the socioeconomic information reflected 
by social media data, some scholars have attempted to fuse the two to 
compensate for the lack of single data features (Cao et al. 2020, Su et al. 
2021, Zhang et al. 2019). For example, Liu et al. (2017) identified urban 
land-use types at the level of traffic analysis zones by fusing high- 
resolution remote sensing imagery and social media data based on 
probabilistic topic models and support vector machines (SVMs). The 
method considers both the physical and socioeconomic characteristics of 
cities, but the data feature extraction capability based on shallow ma
chine learning is limited and cannot fully exploit the nonlinear features 
in the data. He et al. (2021) proposed a CF-CNN dual-stream neural 
network to simultaneously process remote sensing images and Tencent 
real-time population density data to analyze urban mixed land use, 
demonstrating the use of deep learning techniques to mine multisource 
data features to more accurately analyze land use. However, traditional 
social perception data cannot accurately reflect the activity behavior of 
all regions and populations due to two limitations, location bias and 
nontime series (Guan et al. 2021). The errors caused by these limitations 
are difficult to be eliminated even by coupling remote sensing images. In 
addition, data fusion is challenging due to the differences in the scale, 
structure and quality of multisource data. Therefore, feature extraction 
methods and fusion strategies need to be developed for different data 
forms to better extract data features (Yin et al. 2021). 

Municipal service data, such as time-series water or electricity data 
provided to residents, have the advantages of high-spatial and temporal 
resolution, comprehensive coverage of population and socioeconomic 
activities, and long-time span compared to emerging big data where bias 
exists (Villar-Navascués and Pérez-Morales 2018). Among them, time- 
series water data have been shown to be applied in urban land-use 
studies by sensing socioeconomic attributes (Guan et al. 2021, Pan 
et al. 2020). Time-series electricity data, as municipal service data, 
include specific granularity and wide coverage, and they are higher 
temporal resolution than time-series water data (Chen et al. 2018). 
Therefore, time-series electricity data provide potential possibilities for 
analyzing land use at a fine scale. However, few studies have explored 
the correlation with land use by mining electricity temporal features 
through deep learning. 

In summary, previous studies have proven that remote sensing im
ages can reflect the external physical attributes of cities, and municipal 
service data can perceive the socioeconomic attributes of cities. How
ever, due to the lack of relevant data and models, few studies have 
attempted to mine the features of time-series electricity data and remote 

sensing images for urban land-use analysis simultaneously. Therefore, 
we proposed the following scientific question: can we identify urban 
land-use types by exploring the relationship between deep semantic 
information and socioeconomics in time-series electricity data and 
coupling remote sensing image data? In this study, ResNet18 and LSTM- 
FCN were introduced to construct a feature fusion neural network (TR- 
CNN). The main urban zone of Pingxiang City, Jiangxi Province, was 
selected as the study area. Remote sensing images and time-series 
electricity data were processed in TR-CNN to verify the validity of 
fusing the external physical attributes and the socioeconomic attributes 
for land-use classification. Finally, we analyzed the land-use distribution 
patterns of the study area revealed by the TR-CNN. 

The remainder of this paper is presented below. Section 2 describes 
the study area and data. Section 3 covers the methodologies to classify 
the land use pattern proposed in this study. Section 4 validates the 
proposed method and present the results of this study. In Section 5, we 
discuss the contributions the current limitations of this study. Finally, 
the study is concluded in Section 6. 

2. Study area and data 

Pingxiang City (Fig. 1 (A2)) is an essential region of the middle 
reaches of the Yangtze River Delta urban agglomeration in China and is 
the center of economic development in western Jiangxi Province (Fig. 1 
(A1)), with a resident population of 1,804,805 and a regional GDP of 
96.360 billion (Statistics Bureau of Pingxiang). Pingxiang City has 
formed complex and diverse land-use types due to the rapid growth of 
population and economy. The study area (Fig. 1 (A3)) is located in the 
central city of Anyuan, which is the political, economic, and cultural 
center of Pingxiang City. The study area has established perfect 
municipal infrastructure services, with an area of 24.25 km2. Remote 
sensing data and user time-series electricity data were used for land-use 
classification. The high-resolution remote sensing image in 2020 was 
downloaded from Google Earth, which contains three bands (red, green, 
blue) with a spatial resolution of 0.60 m. The remote sensing image was 
uniformly segmented into 96 × 96 pixel subsets for subsequent model 
input. 

In this study, user time-series electricity data were used to reveal the 
socioeconomic attributes of land use. There are two different power 
supply transformers, public transformers and dedicated transformers. 
Public transformers are commonly used to supply power to general 
residents and low-voltage nonresidents (e.g., small- and medium-sized 
commercial and service facilities), while dedicated transformers are 
used to meet high-demand users such as industrial users (Queiroz et al. 
2020). Limited by the data availability, only the public transformer 
electricity data provided by the State Grid Pingxiang Power Supply 
Company (Fig. 1(B)) are used in this study. Hence, the selected study 
area does not include the industrial area. The daily electricity data cover 
127 days from September 15, 2020, to February 8, 2021. Each electricity 
dataset contains information such as an address, customer number and 
name, type of electricity consumption, and daily electricity consump
tion. The user address information is converted to the user’s latitude and 
longitude information through Baidu API geocoding. 

3. Methodology 

We construct a feature fusion neural network based on deep learning 
to identify urban land-use classes by coupling time-series electricity data 
with remote sensing images. The research process consists of three main 
parts (Fig. 2): (1) Data preprocessing. Data cleaning and enhancement 
were conducted for two datasets: time-series electricity data and remote 
sensing data. They are spatially matched in each sample. (2) Construct 
the feature fusion neural network (TR-CNN) to analyze the effectiveness 
of fusing time-series electricity data and remote sensing images features 
for urban land-use identification. (3) Identify land-use types of each grid 
parcel based on TR-CNN. In addition, to verify the effectiveness of the 
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proposed model, we conduct a comparative analysis with a single data 
model and conduct ablation experiments on the model. 

3.1. Data cleaning and enhancement 

Since there are more missing values in the original time-series elec
tricity data, data cleaning is necessary. In this study, the 80% rule is used 
to remove the user samples with more than 20% missing sequences in 
the electricity data, and the remaining sequence missing values are filled 
with the average value of the sequence (Bijlsma et al. 2006). 

The study area was divided into grid plots of the same size as the 
image blocks to facilitate the spatial matching of remotely sensed images 
with the electricity data. The electricity data used in this study is point 
data, but it represents the electricity consumption of an area (e.g., an 

office building). If the electricity point data is located within a block 
with a corresponding remotely sensed image, it is spatially correlated 
with the image block. In addition, we conducted the 20-m buffer of 
electricity point data in the grid plots. Because 20 m is usually regarded 
as the standard scale of buildings in the previous studies (Hossain 2021, 
Li et al., 2014a, 2014b). When the grid overlapped with the buffer, we 
averaged the electricity data of the overlapped portion with the elec
tricity data of the original grid. We used it as the electricity data value of 
that grid. The buffer analysis is also expected to solve the address offset 
problem converted by Baidu API. 

The original electricity data were labeled with some rough cate
gories, including urban residential, commercial, educational, non- 
residential, and non-industrial. However, some misclassifications in 
the original data make it difficult to determine the exact electricity 

Fig. 1. Overview of the study area. (A) Case study area: (A3) The central city of Anyuan District is located in (A2) Pingxiang city and (A1) Jiangxi Province. (B) 
Overall electricity data and some samples collected in the study area. Electricity data of the green land are manually set to 0.0001 (converging to 0) every day. 
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category of customers in the original labels. For example, several resi
dential areas were labeled as commercial electricity use. Therefore, the 
correction of labels is necessary. On the basis of labels in electricity data, 
we re-labeled the land-use pattern by combing remote sensing data and 
expert experience. The electricity consumption category of each user 
was reclassified into four categories: residential, commercial, public 
service facilities, and educational facilities (He et al., 2021, Huang et al., 
2018a, 2018b). The user electricity data used in this study are distrib
uted in built-up areas, which cannot be applied to analyze the socio
economic attributes in nonbuilt-up areas. However, the study area is 
located in a hilly area with extensive vegetation coverage. To ensure the 
integrity of the study area coverage as much as possible, we keep the 
green areas and assumed their electricity consumption to be 0.0001 
(converging to 0). Each sample label is settled before the model training. 
For each sample, green land is labeled by remote sensing data first, and 
other land-use types are labeled by the type of electricity consumption 
with the largest proportion. Finally, we check and correct each sample 
by combing remote sensing images and expert experience. 

After sample labeling, 80% of the samples are randomly selected as 
the training set, and the remaining 20% are selected as the test set. To 
enhance the generalization ability of the model while avoiding over
fitting, the obtained sample sets are subjected to data enhancement 
separately. Rotation, contrast stretching, and gamma transform are used 
for data enhancement of remote sensing images (Tasar et al. 2019). 
Meanwhile, this study used a weighted form of Dynamic Time Warping 
(DTW) Barycentric Averaging technique for data enhancement of time- 
series electricity data (Fawaz et al. 2018). The method first randomly 
selects a time series and assigns a weight of 0.5 to it. Then the two most 
similar time series are selected based on DTW and given 0.15 weight 

each, and the remaining time series are equally weighted by 0.2. Finally, 
the average of each timestamp of each time series is calculated based on 
the weights as the value of the new time series. To facilitate the corre
lation of different data in each land-use type sample, the number of 
remote sensing image samples and time-series electricity data sample 
enhancement in each land-use sample are kept consistent. Considering 
the limited original samples, we randomly match the enhanced time- 
series electricity data and remote sensing images in different cate
gories to expand the sample combinations. This allows the model to 
learn the rich combination of features in the same category as randomly 
as possible and improves the model generalization. 

3.2. Urban land-use classification based on TR-CNN model 

The overall structure of the proposed TR-CNN model is shown in the 
red dashed box in Fig. 2, which consists of the ResNet18 network and the 
LSTM-FCN network. Specifically, considering the data heterogeneity, we 
select ResNet18 to extract features from high-resolution remote sensing 
images and LSTM-FCN to extract features from time-series electricity 
data. Both datasets were processed into 128-dimensional feature vectors 
and then further stitched into 256 dimensions. Finally, the feature vector 
with 256 dimensions was inputted to the fully connected layer and 
softmax classifier to obtain classification results. 

3.2.1. ResNet based feature extraction from remote sensing images 
In this study, to prevent overfitting due to model complexity, we 

choose ResNet18 based on the basic block to construct a high- 
dimensional feature extraction model for remote sensing images 
(Schaetti 2018). The ResNet network proposed by He et al. (2016) was 

Fig. 2. The workflow of urban land-use classification.  
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proven to be effective in alleviating the neural network gradient ex
plosion problem and has excellent performance on image classification. 
As shown in Fig. 3, the residual block, as the core of the ResNet network, 
can connect the output data of the previous layer to the input data of the 
latter layer by jumping multiple layers, thus passing the information to 
deeper layers of the neural network and extracting richer features of the 
remote sensing image data. 

Remote sensing images are first input to the 7 × 7 convolutional 
layer and the 3 × 3 maximum pooling layer. Then, the output image 
feature maps are transferred to each group of residual blocks and 
simplified into feature vectors by the global pooling layer. To facilitate 
the stitching of multisource data features, it is finally modified to 128 
dimensions through the fully connected layer as the final extracted 
remote sensing image features. 

3.2.2. LSTM-FCN-based feature extraction from time-series electricity data 
Since there are significant differences in data structure between 

time-series data and remote sensing images, the feature extraction 
methods should also be different. In this study, the LSTM-FCN proposed 
by Karim et al. (2018) is selected to extract the features of the time-series 
electricity data. It can better extract temporal information of human 
activities and is used for feature extraction of socioeconomic attributes. 
LSTM-FCN includes the FCN module and LSTM module, which perceive 
the same temporal data in two different views. In the FCN module, the 
time-series data are regarded as univariate time series with multiple 
time steps and input to three temporal convolution blocks for feature 
extraction, and then the feature vectors are obtained by a global average 
pooling layer. LSTM converts multilength univariate time data into 
multivariate time series with a single time step through the dimensional 
shuffle (DS) module. The DS module helps LSTM-FCN to extract features 
of the same timing data in two different formats. The LSTM structure 
includes input gates, forget gates, and output gates, through which the 
three gating states control the content of the time-series data trans
mission to retain important timing information. The data are input to the 
LSTM module and FCN module for training. Finally, the timing features 
extracted from the FCN and LSTM modules are stitched together and 
processed into a 128-dimensional feature vector through the fully con
nected layer for the next training step. 

Since LSTM has been shown to have good performance in processing 
long time step time-series data (Wang et al. 2020), this study converts 
the DS module from the LSTM to the FCN to ensure that LSTM can 
perform better by capturing the semantic association between long se
quences. With the DS module, the original electricity data (1 × 127) 
with 127 time steps in a single variable is converted into a multivariate 
array (127 × 1) with a single time step. Therefore, the LSTM extracts 
univariate time-series electricity features with multiple time steps in this 
study, while the FCN module is used to extract multivariate time-series 
electricity features with a single time step. 

3.2.3. Model comparison and accuracy assessment 
Two single models, ResNet18 and LSTM-FCN, are used to conduct 

the comparison experiments to verify the effectiveness of TR-CNN. To 
analyze whether multisource data fusion can effectively improve land- 
use classification accuracy, remote sensing images are input into 
ResNet18, and time-series electricity data are input into LSTM-FCN. In 
addition, we conduct ablation experiments to verify the necessity of 
each part of the model. For time-series feature extraction, we transform 
or discard the LSTM-FCN modules, including the movement of the DS 
module, and use only the LSTM or FCN modules in LSTM-FCN for 
training. For remote sensing image feature extraction, we replace 
ResNet18 with VGG16 or AlexNet to analyze the performance of 
ResNet18 in TR-CNN. 

The confusion matrix, test accuracy and Kappa coefficient are used as 
model evaluation metrics. The test accuracy and Kappa coefficient are 
calculated as: 

Test Accuracy =

∑n
i=1xii

N
(1)  

Kappa =

∑n
i=1xii/N −

∑n
i=1

(∑n
j=1xij

∑n
j=1xji

)
/N2

1 −
∑n

i=1

(∑n
j=1xij

∑n
j=1xji

)
/N2

(2)  

where xij is the elements of the i-th row and j -th column of the confusion 
matrix, xii is the correctly predicted samples, n is the number of cate
gories, and N is the number of test samples. 

4. Results 

4.1. Validation of the TR-CNN model 

In this study, 526 original samples were obtained after data pre
processing. After data enhancement, 4,544 samples were obtained, 
1,424 were residential areas, 1,288 were commercial areas, 288 were 
educational facilities, 1,160 were green areas, and 384 were public 
service facilities. All experiments were run under the PyTorch frame
work with Python 3.6 and accelerated with a GTX 1070 6G GPU. The 
learning rate, number of iterations, and batch size of all models were set 
to 0.0001, 100, and 16, and the network was trained with the Adam 
optimizer and cross-loss function to optimize the objectives. To prove 
the model validity and reliability, 20% of the training set data were 
randomly selected as validation data. And this process repeated 10 
times. Validation results showed that the model has strong reliability 
with small error fluctuations (test set error < ±0.05). We select the 
model hyperparameter set with the highest accuracy and fine-tune it on 
all training sets to obtain the final model parameters for further 
experiments. 

Fig. 4 represents the changes of loss and precision for the three 
models over 100 iterations. The training accuracy of LSTM-FCN and 
ResNet18 gradually reaches 0.943 and 0.958 after about 60 iterations, 

Fig. 3. Residual block types. (A) basic block for ResNet-18/34. (B) bottleneck block for ResNet-50/101/152.  
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while the training accuracy of TR-CNN approaches 1.0 after about 30 
iterations. In addition, we choose cross-entropy as the loss function, and 
the results show that the training loss and test loss curves show an 
oscillating trend in the early stage and gradually decrease with model 
optimization, and both converge after 50 iterations. There is no obvious 
overfitting phenomenon during the training process. Table 1 shows the 
training results of the three models, and the TR-CNN model obtained the 
optimal performance with a test accuracy of 0.934 and a Kappa of 0.912. 
The test accuracy and Kappa of ResNet18 for extracting remote sensing 
image features were 0.895 and 0.859, respectively, and the test accuracy 
and Kappa of LSTM-FCN for extracting temporal electricity features 
were 0.875 and 0.831, respectively. 

From the confusion matrix in Fig. 5, it can be seen that all three 
models achieved high classification accuracy, but the performance 
varied for different land-use types. Using the time-series electricity data, 
LSTM-FCN accurately identified four land-use categories: residential 
areas, commercial zones, educational facilities, and green land. All of 
their accuracies reached more than 80%. In particular, the classification 
accuracy for residential and green areas reached 97% and 100%, 
respectively. This result is reasonable because residential areas have a 
relatively regular electricity consumption pattern, and the electricity 
consumption curve of green land is smooth and easy to identify since 
they are set artificially by the experiment. However, public service fa
cilities were poorly identified by LSTM-FCN, with an accuracy of only 
48%. This may be because public service facilities contain several 
different categories with large variances in electricity consumption. It is 
not easy to extract the time-series pattern from hospitals, police stations, 
and neighborhood councils that have large differences effectively. 

The results show that ResNet18 effectively identified residential 
areas, educational facilities, and green areas from remote sensing im
ages, and the accuracy of green areas was 100%. In contrast, the 
recognition accuracy in commercial and public service facilities was 
lower, only 74% and 66%, respectively. ResNet18 accurately extracted 
the image features of green areas and educational facilities, but it was 
difficult to recognize commercial areas compared to LSTM-FCN, which 
may be due to the existence of complex and confusing building struc
tures in commercial areas. 

Compared with those two models, which only use a single data 
source, the TR-CNN model proposed in this study performs excellently in 
urban land-use identification. Fusing remote sensing images with elec
tricity data significantly improved the identification accuracy of resi
dential areas, commercial areas, and educational facilities, all of which 
are up to 90%. However, it is worth noting that for public service fa
cilities containing several categories, electricity consumption also varied 
greatly, so the accuracy was relatively low even after data fusion. 

Several typical regions were selected for error analysis of the three 
models (Fig. 6). Areas without significant electricity consumption pat
terns were difficult to recognize by the LSTM-FCN model. However, 
since they have obvious physical features, such as regular building 
structures (Fig. 6A) and basketball courts (Fig. 6B), remote sensing im
ages can be used to avoid incorrect classification using time-series 
electricity data. In contrast, some areas without significant shapes or 
textures were hard to recognize by remote sensing images. Electricity 
patterns can be extracted and help to recognize their land use. For 
example, Fig. 6(C) shows a commercial area located near the political 
center of the study area, which was influenced by the construction plan, 
making it similar to residential buildings. Fig. 6(D) shows a public 
square in a community circle, which is similar to a commercial shopping 
center from the remote sensing image. Fig. 6(E) shows a large farmers’ 
market, which has typical commercial electricity characteristics, but the 
image characteristics are similar to those of an urban village. As the 
image features of these three parcels were easily confused with other 
classes, their electricity consumption curves are obvious, and the correct 
classification results were obtained by fusing the time-series electricity 

Fig. 4. Accuracy and loss values for the training and test sets of the three models.  

Table 1 
Performance of our approach with comparative models.  

Model Input Data Test Accuracy Kappa 

LSTM-FCN Electricity data  0.875  0.831 
ResNet18 HSR  0.895  0.859 
TR-CNN Electricity data + HSR  0.934  0.912  
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features. 
However, complex scenarios cannot be correctly predicted even by 

fusing multiple source features. Fig. 6(F) shows the city museum, which 
is similar to the commercial building from the remote sensing image and 
had no obvious electricity consumption pattern, and the correct classi
fication result could not be obtained even after feature fusion. In sum
mary, our results show that features can be compensated between 
multiple sources of data to achieve more accurate land-use classification 
results than a single data source. 

4.2. Ablation study 

For the two temporal feature extraction modules and image feature 
extraction included in TR-CNN, this study performed an ablation anal
ysis to verify the effectiveness and necessity of each module. The results 
of the ablation experiments are shown in Table 2. To analyze the effect 
of the location of the dimensional shuffle (DS) module on the perfor
mance of the LSTM-FCN model, we adjusted the DS component to the 
front of the LSTM, i.e., the LSTM treats the time-series data as multi
variate time series and the FCN treats the time-series data as univariate 
time series, forming Model 2, which has a decreased model perfor
mance. This implies that the performance improvement of the DS 
module for FCN was greater than that of LSTM, and the further ablation 
experiments all put the DS module in front of FCN by default. In addi
tion, to verify the LSTM-FCN time-series feature extraction capability, 
we only used LSTM (Model 3) or FCN (Model 4) for electricity data 
classification, and this approach also degraded the model performance. 

We replaced ResNet18 with VGG16 and AlexNet to form Model 5 and 
Model 6, respectively. ResNet18 used in TR-CNN obtained the optimal 
performance by virtue of the excellent feature recognition ability of 
residual blocks. We found that although the performance of the fusion 
model using VGG16 or AlexNet was slightly lower, its accuracy was also 
significantly higher than that using single time-series electricity data or 
remote sensing images. This implies that from the perspective of model 
feature extraction, the use of multisource data fusion is superior to the 
method using only single data. The results demonstrate that each 
module of TR-CNN is a necessary component to obtain optimal land-use 
classification results. 

4.3. Land-use patterns analysis 

The land-use mapping in the study area was performed using the 
proposed TR-CNN model, and the results are shown in Fig. 7. The study 
area was staggered with residential and commercial-oriented distribu
tion, and educational facilities and public services were relatively 
balanced across the area to facilitate residents’ access to various ser
vices. We analyzed the socioeconomic attributes of the study area ac
cording to the proportion of each land-use type. The commercial and 
residential dominated areas occupied 48.7% and 26.9% of the study 

area, respectively, consistent with the phenomenon that most urban 
residential and commercial areas were mainly concentrated in the main 
city. Green areas dominated by ecological parks and forests were mainly 
distributed in the southeastern part of the study area, occupying 15.2% 
of the study area. This phenomenon was reasonable, as the residents’ 
demand for the ecological environment gradually increased with the 
quality of life improvement, and in addition, Pingxiang City, as a typical 
southern Chinese region, has high natural vegetation coverage. Public 
service facilities and educational facilities have scattered distributions, 
accounting for 5% and 4.2%, respectively. Such facilities are influenced 
by residents’ travel and have a close spatial relationship with residential 
areas. 

The ratio of different land uses obtained from our results was 
generally consistent with the Chinese urban planning technical stan
dards (Long et al. 2020). The only difference was that the proportion of 
commercial zones calculated in this study is higher than residential area. 
The study area was located in the economic center of Pingxiang City 
with a large amount of commercial land. In addition, with the devel
opment of the social economy and transportation, residents gradually 
move to the suburbs to seek a more comfortable living environment, 
thus leading to a decrease in residential areas in urban centers. The 
above analysis shows that the proposed TR-CNN model can effectively 
identify urban land-use types, and the mapping result can deepen our 
understanding of the distribution of urban land functions. 

5. Discussion 

5.1. Effectiveness of TR-CNN model 

Due to the lack of relevant data and models, few studies have 
explored the relationship between time-series electricity data and so
cioeconomic attributes and used it for urban land-use analysis. To solve 
this problem, the structural differences between remote sensing images 
and time-series electricity data were considered in this study, and a deep 
learning-based TR-CNN model for land-use classification was developed 
by fusing the features from these two datasets. The results show that 
compared with ResNet18 (Test accuracy: 0.895, Kappa: 0.859) using 
remote sensing images and LSTM-FCN (Test accuracy: 0.875, Kappa: 
0.831) using time-series electricity data, the TR-CNN model proposed in 
this study obtained optimal performance (Test accuracy: 0.934, Kappa: 
0.912). 

We verified the necessity of each module of TR-CNN by ablation 
analysis. By inputting temporal electricity data into the LSTM-FCN 
model, we found that multivariate time series with a single time step 
can significantly improve the FCN performance, while LSTM is more 
suitable for extracting sequence features with multiple time steps. This 
method reveals the mode of FCN and LSTM perceiving time-series data 
and provides a reference for future research. In the remote sensing image 
feature analysis, it was shown that the performance of VGG16 was only 

Fig. 5. Confusion matrix for the three models. Types of land use: Res = residential districts, Com = commercial zones, Edu = educational facilities, Gre = green land, 
and Pub = public services. 
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approximately 1% lower than that of the more advanced ResNet18. Due 
to the rapid development of artificial intelligence in recent years, deep 
learning models in image recognition have gradually entered a stable 
period (Marcus 2018). The performance improvement of the approach 

by changing the model structure is smaller compared to data fusion. This 
suggests that future research could focus on extracting richer features 
from multisource data to improve accuracy. 

Our results show that the TR-CNN model significantly improves the 

Fig. 6. Error analysis of the land-use classification results. The ground truth of examples. (A) Kangyuan community. (B) Dengan primary school. (C) Office building. 
(D) Lvyin square. (E) Farmer’s market. (F) Pingxiang museum. The red font indicates that the model predicts correctly, while black indicates incorrectly. 
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classification accuracy for residential, commercial, and educational fa
cilities. This may be because these three land-use types show high 
consistency in intra-class electricity usage patterns or texture features. 
However, due to the existence of different building structures and 
electricity consumption for different functions of public service facil
ities, the recognition accuracy using single remote sensing images or 
time-series electricity data was relatively low. In this case, feature fusion 
complicated the distribution of categories over the feature space, thus 
expanding the range of model misclassification, resulting in failure to 
improve the accuracy of public service facility recognition (Ghamisi 
et al., 2017). Overall, the results show that the integration of the so
cioeconomic attributes revealed by electricity data and the external 
physical attributes revealed by remote sensing images can reflect both 
“bottom-up” and “top-down” characteristics, eliminating the one- 
sidedness of a single data source and thus effectively improving the 
accuracy of urban land-use classification. 

5.2. Time-series electricity consumption reflecting urban land-use patterns 

Our results show that the semantic features of time-series electricity 
data mined based on deep learning can effectively reflect the socio- 
economic attributes of different land-use categories, especially the 
areas with high human socio-economic activities. Although the testing 
accuracy of the LSTM-FCN model based on electricity data is slightly 

lower than the overall accuracy of the ResNet18 model based on remote 
sensing images, the electricity data can better identify residential and 
commercial areas. It is difficult to distinguish between commercial and 
residential areas using remote sensing images because of the similarity 
of the top features of buildings (e.g., office buildings and high-rise res
idential buildings) (Du et al., 2020a, 2020b). However, there are dif
ferences in electricity consumption and trends between these two land- 
use types. As shown in Fig. 1(B), the electricity consumption in most 
residential areas shows a trend of smooth in the first period and a sudden 
increase in the later period, related to the use of heating equipment in 
winter, etc. (Billimoria et al., 2021). The difference in electricity con
sumption allows the model to accurately extract the semantic features of 
different land use categories in the electricity data, more accurately 
identifying residential and commercial areas and compensating for their 
limitations of being easily confused on remote sensing images. 

Compared to Huang et al. (2018a, 2018b), which used social media 
data for land-use classification, the time-series electricity data used in 
this study and the time-series electricity data used by Guan et al. (2021) 
have the advantages of full group coverage and long time span, avoiding 
the shortcomings of emerging big data in terms of biased scale and 
inability to reflect long-term land use. In addition, compared to some 
social sensing data that can only be available in limited large cities, 
municipal service data used in this study are the basic data in most re
gions. Thus, the framework and model proposed in this study provide a 
new opportunity for land-use classification in small and medium-sized 
cities worldwide. 

5.3. Urban land-use patterns in China’s typical developing city 

Pingxiang is a typical fast-growing city in China, and understanding 
its land-use pattern can provide the guide for the development of other 
cities. We found that the study area has a clear mixed commercial and 
residential pattern, indicating its growing urbanization process. The 
central area is the most prosperous area of Pingxiang City, with the 
largest commercial pedestrian street. In recent years, Pingxiang City has 
undergone a rapid urban urbanization, and its northern part has grad
ually formed an economic center. The green areas are in the form of 

Table 2 
Results of the ablation study. The components that are replaced are shaded, and 
test accuracy and Kappa are used as the model evaluation criteria.  

No Time-series 
electricity data 

HSR Test 
accuracy 

Kappa 

1 (Proposed in this 
study) 

LSTM-FCN ResNet18  0.934  0.912 

2 LSTM(DS)-FCN ResNet18  0.920  0.893 
3 LSTM ResNet18  0.914  0.885 
4 FCN ResNet18  0.902  0.870 
5 LSTM-FCN VGG16  0.921  0.898 
6 LSTM-FCN AlexNet  0.907  0.876  

Fig. 7. Spatial distribution of the land-use patterns in the study area. (A) Land-use distribution results. (B) Proportion of each category.  
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regional aggregation, mainly distributed in the southeast and close to 
Anyuan National Forest Park. Educational facilities and public services 
are scattered to facilitate residents’ access to public services, which is in 
line with the “15-minute community living area” planning and con
struction introduced by most Chinese cities (Weng et al. 2019). The 
results are similar to the actual situation, proving that TR-CNN can fully 
exploit the “user behavior-socioeconomic” relationship and “image 
features-physical properties” relationship with its excellent multisource 
feature extraction capability, which can be regarded as a reference 
method to identify land-use patterns for most rapidly growing cities. 

5.4. Limitations and future works 

There are still shortcomings in this study. First, a uniform grid was 
selected as the study scale in our study. However, the geographic scale 
may introduce uncertainty into land-use categories, and the classifica
tion results obtained at different scales may differ (Wang et al. 2019). 
Future studies may conduct a scale sensitivity analysis of land-use 
classification at multiple scales, including different grid sizes, traffic 
analysis zones, and administrative boundaries. Second, the behavioral 
characteristics of users on weekdays, weekends, and holidays should be 
different (Chen et al. 2017). However, our study did not distinguish 
them and used time-series electricity data for all days to extract the 
users’ consumption patterns. How to further segment the time-series 
electricity data for analysis to improve the richness of the dataset be
comes the focus of future studies. Thirdly, time-series electricity data 
cannot extract features for some non-built-up categories, such as bare 
land (Helber et al. 2019). Future research could consider additional 
auxiliary data to address more complex scenarios. Fourth, this study 
only used more common methods such as mean filling for data pre
processing. Future studies can introduce more advanced methods to deal 
with missing values and thus improve experimental precision. 

In addition, two existing efficient models were selected for fusion in 
this study to verify the effectiveness of time-series electricity data and 
remote sensing images in identifying urban land use. The innovation of 
the model is not the primary purpose of this study. The use of deep 
learning techniques based on multi-source data (or multimodal) has 
become an essential approach to studying urban land use (Srivastava 
et al. 2019, Yin et al. 2021). Future research will focus on feature fusion 
strategies to optimize the models to achieve higher land use classifica
tion accuracy. 

6. Conclusion 

This study confirms that multisource data fusion can effectively 
identify urban land-use patterns through a deep learning-based feature 
fusion network (TR-CNN). Since high-resolution remote sensing images 
can identify only the external physical attributes of cities, this study was 
the first attempt to mine urban socioeconomic attributes from time- 
series electricity data through a deep learning model. The TR-CNN 
model was proposed to identify urban land-use categories by fusing 
remote sensing images with time-series electricity data. The method was 
validated in Pingxiang City, and results obtained high test accuracy 
(0.934) and Kappa value (0.912). The model can fuse “bottom-up” and 
“top-down” features by coupling socioeconomic attributes with external 
physical attributes of the city to identify urban land use. It is effective for 
urban land-use analysis and can accurately reveal the activity intensity 
in urban buildings. Our study provides an important reference for 
microscale urban land-use classification and socioeconomic 
identification. 
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