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ABSTRACT
Urban land-use change is affected by urban planning and govern-
ment decision-making. Previous urban simulation methods focused
only on planning constraints that prevent urban growth from devel-
oping in specific regions. However, regional planning produces plan-
ning policies that drive urban development, such as traffic planning
and development zones, which have rarely been considered in pre-
vious studies. This study aims to design two mechanisms based on a
cellular automata-based future land-use simulation model to inte-
grate different planning drivers into simulations. The first update
mechanism considers the influence of traffic planning, while the
second mechanism can model the guiding effect of planning devel-
opment zones. The proposed mechanisms are applied to the Pearl
River Delta region, which is one of the fastest growing areas in China.
The first mechanism is validated using simulations from 2000–2013
and demonstrates that simulation accuracy is improved by the con-
sideration of traffic planning. In the simulation from 2013–2052, the
two mechanisms are implemented and yield more realistic urban
spatial patterns. The simulation outcomes can be employed to iden-
tify potential urban expansion inside the master plan. The proposed
methods can serve as a useful tool that assists planners in their
evaluation of urban evolvement under the impact of different plan-
ning policies.
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1. Introduction

Land use and land cover are essential geospatial features that play an important role in
many processes, such as sustainable development, environmental change and urban
planning (Yu et al. 2013, Pekel et al. 2016, Li et al. 2017, Wang et al. 2017, Huang et al.
2018). In recent years, rapid urbanization has generated diverse and sophisticated urban
land-use patterns at different scales (Li and Yeh 2001, Batty 2008, Liu et al. 2014,
Kamusoko and Gamba 2015, Pekel et al. 2016; He et al. 2017). Urban or regional land-
use distributions are not only determined by natural and socioeconomic drivers but are
also affected by government-specified polices that cannot be stereotyped and that
continuously change with additional urban development (Tian and Shen 2011, Lu
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et al. 2013). Therefore, simulating spatial changes in urban land use under the effect of
various planning policies is significant for making effective decisions in urban growth
management.

Urban growth modeling based on cellular automata (CA) has attracted considerable
attention in recent decades (Tian and Shen 2011, Lu et al. 2013). As a spatially explicit
discrete model, CA is extensively applied to the simulation of complex systems, such as
urban growthmodeling and geographical process simulation (Clarke andGaydos 1998, Sohl
and Sayler 2008, van Asselen and Verburg 2013). Multiple factors that affect urban devel-
opment, such as socioeconomic drivers (Yao et al. 2017a), climate and topography (Li et al.
2017) and regional-scale land-use demand (Verburg and Overmars 2009), are incorporated
into simulations to enable geo-CAs to more closely match the practical process of urban
growth. In addition, to mine the relationships between urban forms and these driving
factors, intelligent algorithms have often been applied to establish the transition rules for
CA models (Feng et al. 2011). Such algorithms include decision trees (Li et al. 2014), support
vector machines (SVMs) (Ke et al. 2017), random forests (RFs) (Kamusoko and Gamba 2015)
and neural networks (Li and Yeh 2002, Dai et al. 2005, Lin et al. 2011). Land-use change
simulations based on the CA model have yielded acceptable results in these studies, which
proves that these approaches are applicable to simulating complex urban systems.

Although CA models are very effective at simulating large-scale urban expansion,
urban growth under the effects of various factors in large areas can be very complex (Li
and Yeh 2001, Li and Liu 2006). To render the simulation of urban growth closer to real-
world outcomes, the CA model should not be restricted to considering socioeconomic
effects; at the same time, it should take into account important factors such as policy
and geographical constraints (Long et al. 2013), for example physical or legal character-
istics that prevent a cell from experiencing urban growth. These characteristics can be
regarded as constraints in CA models to simulate future urban forms while considering
comprehensive urban development (Tayyebi et al. 2011, Liang et al. 2018). Therefore, in
recent decades, additional research has considered the use of policy information for
calibration or to guide the simulation process of a CA model. For example, Guy et al.
(1997) proposed a constrained-CA model that integrates GIS and decision support tools
for urban planning, Li and Yeh (2000) simulated urban expansion in Dongguan under
the constraint of agricultural constraint scores, Yang et al. (2006) and Liu et al. (2010)
used crop protection land to suppress urban land development in Shenzhen and the
Pearl River Delta (PRD) and Liu et al. (2017a) simulated urban growth in China under the
influence of major function zones by multiplying the urban probability by the develop-
ment scores determined by experts. In addition, simulation research using agent-based
models (ABMs) has added agricultural land preservation policies and urban containment
policies to the planning agent to simulate urban growth under planning effects (Jjumba
and Dragićević 2012). Other studies that have combined the CA model and the urban
demand model also address policy goals on a macro scale, which enables these models
to compare alternative planning and policy scenarios in terms of their effects on future
land-use development (White and Engelen 2000, Barredo et al. 2003, He et al. 2006).

Although planning policies have been investigated by many researchers, most studies
only consider institutions that maintain the states of cells that remain unchanged or that
slow the development of urban land (Al-Ahmadi et al. 2009) or planning goals on a
nonspatial scale (Huang et al. 2014). However, regional planning not only focuses on
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large-scale planning policies and specifies the regions in which construction is forbidden
but also delineates the areas in which development is encouraged, such as the planning
of development zones. The planning of traffic factors also guides the development
direction of urban expansion, for example the planning of high-speed railway stations
and subway stops. These planning drivers are commonly employed in regional planning
and have a potential effect on future urban development (Dai et al. 2013, Lu et al. 2013,
Sun 2016). They have received limited attention in previous studies (Clarke and Gaydos
1998, Li and Yeh 2000, 2002, Gong and Chen 2002, Liu et al. 2008, 2010, Liu and Liu
2008, Chen et al. 2014). Therefore, objectively modeling the effect of planning drivers on
future urban growth is important for planners and managers to make appropriate
decisions for future urban development.

This study aims to bridge this gap by proposing a method to integrate various planning
driving effects in urban growth simulation. In this paper, a CA-based future land-use
simulation (FLUS) model is employed to simulate urban growth in the PRD region in two
phases: from 2010 to 2013 and 2013 to 2052. Based on the FLUS model, two mechanisms
are proposed to tackle two major planning drivers in the simulation: the first mechanism is
based on an artificial neural network (ANN) model that is employed to address the
planning of traffic elements, and the second mechanism is based on randomly planted
seeds (Chen et al. 2016) and is applied to address the planning of development zones. In
this study, the master plan (Figure 4) in the PRD region is regarded as a planning
development zone because it is proposed to guide the rational development of the city
for long-term development and short-term construction (Gu et al. 2017). The two mechan-
isms are proposed to make the simulation models integrate more planning information
and become more adaptive for estimating future urban forms. The simulation results can
be used to evaluate the guiding effects of planning policies.

The remainder of this article is organized as follows. Section 2 provides the principles
of the two novel mechanisms to address the planning effects. Section 3 describes the
study region and lists the data in this study. Section 4 provides the experimental results
and analyzes the effect of considering the planning components and comparing the
simulation results with an urban area defined by master planning. The discussion and
conclusions are given in Sections 5 and 6.

2. Method

The FLUS model has been successfully applied to the simulation of complex land-use
and land-cover changes in China (Liu et al. 2017b) and on a global scale (Li et al. 2017)
for modeling the dynamics of land cover changes for various human-related and natural
environment driving forces. In this study, a modified version of the FLUS model is
addressed using an updated mechanism to incorporate traffic planning and a random
seeding mechanism to consider the planning of development zones.

2.1. FLUS model

The FLUS model is implemented by training an ANN model to obtain an urban prob-
ability-of-occurrence (PoO) surface and by using a spatial simulation process that is
based on a CA model (Figure 1). An ANN is used to define the relationships between

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 3



historical land use and the various driving factors. The PoO surfaces derived from the
ANN guide the placement of changes in land-use distribution. In the CA module, a self-
adaptive inertia coefficient is used to adjust the total probability of urban land according
to the total amount of urban area in the scenario. A roulette mechanism is designed to
model the competition between urban land and nonurban land in each cell, which will
make the FLUS model more capable of capturing the uncertainty and randomness of
urban development (Liu et al., 2017; Chen et al. 2014). The simulation process is divided
into several intervals, and the ‘bottom-up’ CA model and the ‘top-down’ urban demand
forecasting model tightly couple with each other during the studied time series. These
designs make the FLUS model more feasible for simulating complex and long-term land-
use changes (Liu et al., 2017).

In our previous study, we used a system dynamic (SD) model as the ‘top-down’ urban
demand forecasting module of the FLUS model (Liang et al. 2018). The SD model is able
to provide urban demands in multiple planning scenarios by considering both human
activities and natural ecological effects (Liu et al. 2017b). However, the structure of the
SD model for projecting future urban demands is complex and requires large amounts
of socioeconomic data to fit the relationship between various components and sub-
modules (Liang et al. 2018). There is only one urban development scenario in this study,
thus we can compare the simulation results with and without the proposed mechanisms
under the same scenario. The Markov chain model is thus used as the ‘top-down’ model
of the FLUS framework in this study. Markov chain is a method for projecting future
land-use demands by determining transition probability of change from one category
(e.g. nonurban land) to another category (e.g. urban land) from two periods of land-use

Figure 1. Basic structure of the modified FLUS model with the update mechanism and the random
seeding mechanism for simulating urban growth.
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data, which have been successfully employed by many simulation studies (Arsanjani
et al. 2011, Yang et al. 2014). Although the Markov chain can only generate one urban
development scenario, it is easier to use and only requires two periods of land-use data
for the requirements of this study.

2.2. Update mechanism based on an ANN model for traffic planning

ANNs are a family of machine learning methods that are commonly employed to
approximate the nonlinear and complex relationships between land-use patterns and
their driving variables (Li and Yeh 2002, Dai et al. 2005, Zhang et al. 2015). Through
iterations and feedback between the neurons of two different layers, an ANN can
generate a PoO surface for a land-use type on each pixel for CA simulation (Pijanowski
et al. 2005, He et al. 2018). Previous studies have proven that the ANN model is
superior to ordinary regression methods, such as logistic regression (LR) (Lin et al.
2011), and they have been successfully applied to the analysis and modeling of land-
use and land-cover changes (Dai et al. 2005). Therefore, this study constructs an
update mechanism based on an ANN to address the influence of planning drivers
into the PoO surface of the FLUS model. Figure 2 depicts a flowchart of the
mechanism.

First, sampled land-use map data and historical driving force data are employed to
train the ANN. The driving factors that will be updated are specified in this step (only
driving factors with future planning schemes can be updated). Second, in the network
prediction process, the historical driving forces in the specified layers are replaced with

Figure 2. Schematic framework of the updated mechanism based on an ANN to consider the
influence of traffic planning.
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data that include both historical and future driving forces. For example, the proximity to
future highway gates (including both the old highway gates and the newly planned
highway gates) replaces the proximity to old highway gates. Other unchanged driving
forces (e.g. DEM and slope) remain the same in this procedure. Finally, the model
exports the urban PoO surface under the driving influences of the planning compo-
nents. The design of this mechanism is based on the consideration that directly training
the neural network with the planning drivers is unreasonable because these planning
factors do not exist in the region, and the relationship between historic land use and
future driving forces is incorrect. Therefore, the mechanism trains with the old driving
forces and generates historical rules based on old data. However, planning drivers have
a potential influence on urban development (Tian and Shen 2011, Lu et al. 2013). Thus,
we choose to address this influence on the forecasting process of the ANN model by
updating the corresponding driving force data.

2.3. Random seeding mechanism for planning development zones

A random seeding mechanism is proposed to model the potential influence of planning
development zones (Figure 3) on urban growth. The seeding is carried out during the
simulation process of the FLUS model. A nonurban cell that is located in the planning
development zones is selected. If its PoO is greater than a random value within [0, 1], a
seed is planted in the cell, which is similar to the study proposed by Chen et al. (2016). A
planted seed will randomly increase the total probability of an urban area with the
following rule:

TPurban ¼ 1þ rð Þ � TPurban if 1þ rð Þ � TPurban � 1
1 if 1þ rð Þ � TPurban > 1

�

where TPurban denotes the total urban probability, and r is a random value between 0
and 1. This rule ensures that the TPurban can be improved but is still within [0, 1]. Thus,
the total urban probability in the planning development zones will be higher than the

Figure 3. Flowchart of the random seeding mechanism for considering the influence on the
planning development zone.
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previous total urban probability, but it remains subject to the ANN-based PoO of this
location because random seeds are likely to be planted in areas with a high urban PoO.
This mechanism does not enable an urban pixel to be directly planted in the priority
development area, but it provides a greater chance for these regions to develop
enclaves even without nearby urban pixels. This mechanism overcomes one of the
shortfalls of many traditional CA models – new urban land cannot be generated in a
potential development zone if urban pixels do not exist within the range of the
neighborhood in this region (Yang et al. 2006).

3. Study area and datasets

3.1. Study area

The proposed model was applied to the simulation of urban agglomeration develop-
ment in the PRD in southern China (Figure 4). The area covers a total administrative
area of approximately 54,000 km2, with 7523 km2 in the city proper and a total
population of 57.15 million. This region includes four economically important cities
in Guangdong Province (Guangzhou, Shenzhen, Foshan and Dongguan). Since 1978,
China has witnessed a boom in the regional economy due to the economic reform
policy and experienced rapid urbanization. The PRD has become one of the most
developed regions in China with the highest per capita gross domestic product (Chen
et al. 2013, Yao et al. 2017b). By 2013, the economic output of the PRD was $768
billion, which accounted for 9.33% of China’s economy. This development has caused a

Figure 4. Study region of this research.
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range of land-use problems, such as the permanent loss of agricultural land and forest,
unreasonable urban sprawl (Yeh and Li 1999a) and related environmental issues (Yeh
and Li 1998). Thus, China needs to formulate a sustainable development strategy to
guide future urban growth and to propose appropriate policies to control encroach-
ment on agricultural land (Yeh and Li 1999b). To facilitate decision-making with regard
to the arrangement and planning of urban land-use distribution, an analysis of future
land-use patterns with different government policies is critical.

3.2. Data processing

To analyze how spatial planning drives urban growth in the PRD area, historical land-
use patterns from 2000, 2005, 2008, 2010 and 2013 and related physical, social and
economic data are considered in the simulation. Data with a pixel size of
100 m × 100 m are applied in the PRD to account for different urban planning
policies. Various driving forces that are considered include current driving factors
such as the physical conditions (e.g. slope) of a site for development and the proximity
to traffic networks/hubs (e.g. airports, highways, major roads, railway stations and
ports, as well as proximity to town centers). The traffic planning drivers or planning
constraints (e.g. primary farmland protection areas) are considered during the analysis
experiment. These numeric variables were normalized to [0, 1]. The data from this
study are listed in Table 1.

Table 1. List of data in this study and data sources.
Category Data Year Data resource

Land use Land-use data 2000–2013 CAS (http://www.resdc.cn)
Socioeconomic
data

Population 2010 http://www.geodoi.ac.cn/WebEn/Default.aspx
GDP 2010
Airports 2016 Baidu Map API (http://apistore.baidu.com/)
Town centers 2016

Terrain DEM 2010 GDEMDEM (http://www.gscloud.cn/)
Aspect 2010 Calculated from DEM
Slope 2010 Calculated from DEM

All levels of
road

National road 2015 PRD Master Plan (2014–2020)
Provincial road
Highway gates
Highway
High-speed railway
stations

Railway and high-speed
railway

Main road
Urban road network 2016 Open Street Map (http://www.openstreetmap.

org/)
Planning data Planning high-speed railway

stations
2013–2030 Traffic plan for Guangdong province (2000–

2013, 2013–2030)
Planning highway gates
Master planning in 2020 2020 PRD Master Plan (2014–2020)
Primary farmland
Basic ecological line

GDP: Gross domestic profit; PRD: Pearl River Delta.
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4. Model implementation and results

In this study, 15 spatial driving factors and land-use patterns were selected to calibrate
the ANN model for the PoO estimation for urban and nonurban land (see Table 1, with
the exception of planning data). The BP-ANN (back propagation-ANN) model in this
study is constructed of 15 neurons in the input layer (corresponding to 15 spatial driving
factors), 30 neurons in the hidden layers and 2 neurons in the output layer (correspond-
ing to urban and nonurban land). Two percent of the total pixels across the PRD region
were randomly selected as the training dataset. The sampling data are normalized to the
range of [0, 1] prior to training the network. The sigmoid function is selected as the
activation function of the output layers to normalize the probability values to the range
of [0, 1]. The learning rate and terminal condition of the ANN model are self-adaptive
during the training process. In the simulation module, we used the 3 × 3 Moore
neighborhood for the simulation. The neighborhood effect considered in this study is
similar to that of traditional CA models, which can be measured by calculating the
percentage of the urban cell in a 3 × 3 neighborhood (Liu et al. 2017b).

We divided the model implementation into two simulation periods: model calibration
and validation and scenario simulation. The model calibration and validation is applied
to the period from 2000–2013, and the scenario simulation is applied to the period from
2013–2052. In the model calibration and validation, the validity of incorporating the
effects of traffic planning with the proposed updated mechanism is assessed. A series of
experiments based on historical data (2000–2013) are arranged to test whether traffic
planning is capable of improving the simulation accuracy of the FLUS model.

However, the effect of a planning development zone on simulation accuracy cannot be
validated in this study because our study region – the new PRD region – was delineated by
the Pearl River Delta Region Planning of Guangdong Province in 2014. Thus, a correspond-
ing planning development zone for the validation period from 2000 to 2013 does not exist
in the study region. Nevertheless, it is widely accepted that planning constraints can
improve the simulation accuracy because they specify the areas that are not available for
urban expansion, even though they may have a higher probability of increasing urban
density (Li and Liu 2006, Yang et al. 2006). Similar to the effects of planning constraints, the
planning development zone is very likely to improve the simulation accuracy because it
defines the area where urban development is encouraged, even though it may have a
relatively low PoO for urban areas, especially areas where the government’s policies have a
significant effect on urban development (Huang et al. 2017).

4.1. Model calibration and validation

4.1.1. Simulation from 2000 to 2013
This paper analyzes the influence of two traffic planning points on urban growth simulation
in the PRD: planning high-speed railway stations and highway gates in the period from 2000
to 2013. We execute the first updated mechanism by adding the two planning traffic
components to the ANN prediction process. Four types of influences of the two traffic
planning components, separately or in combination, on the outputs of the ANN prediction
(the PoO surfaces for urban land) are analyzed in this section. The generated urban PoO
surfaces (PoOs) are displayed in Figure 5. Under the influence of the planning components,
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we note that the probability distribution in spatial terms shows clear differences across the
study area and that these differences will affect the simulation process of the CA model.

Based on the PoOs, we simulate urban growth from 2003 to 2013 under the influence
of different traffic planning components. To enhance the simulation, actual land-use
demands in 2005, 2008, 2010 and 2013 are employed to provide ‘top-down’ effects from
the regional scale for the ‘top-down’ CA model during the simulation period, an
approach that has been proven beneficial for improving simulation accuracy (Liu et al.
2017b). The historical land-use patterns in 2005, 2008, 2010 and 2013 are employed to
validate the simulation results for the corresponding years.

Figure 6 shows the actual and simulated urban accuracies under the influence of
different traffic planning policies in 2013. These simulated patterns are similar to the
actual land-use patterns. Although the total distribution characteristics of the four
simulated urban land-use patterns are similar, different planning policies yield different
simulation accuracies.

Figure 5. Urban probability-of-occurrence surfaces (PoOs) under the influence of the two planning
traffic components separately or in combination. (I) PoO without the influence of planning policy; (II)
PoO under the influence of high-speed railway station planning; (III) PoO under the influence of
highway gate planning; (IV) PoO under the influence of high-speed railway station and highway gate
planning.
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4.1.2 Accuracy evaluation
The simulation results were validated using the ‘figure of merit’ (FoM) (Pontius et al.
2008) indicator to reflect cell-level agreement and pattern-level similarity. The FoM is
calculated as follows:

F ¼ B= Aþ Bþ C þ Dð Þ
where A is the area of error due to observed change predicted as persistence, B is the
area corrected due to observed change predicted as change, C is the area of error due to
the observed change predicted as change in the wrong category and D is the area of
error due to observed persistence predicted as change. The FoM index is superior to the
common kappa coefficient for assessing the accuracy of simulated changes (Pontius
et al. 2004, 2008).

Figure 7 shows the FoM value used in each time period to test the influence of
different planning policies on each simulation stage. All FoM values comprise the mean
from 10 simulations. By comparison, the simulation results that only consider the
planning of high-speed railway stations yield a higher FoM value each year than the
FoM value obtained by the simulation pattern without considering any planning com-
ponents (Figure 7(a)). The simulation under the influence of planned highway gates also
obtained better accuracy each year (Figure 7(b)).

These experiments reveal that higher accuracy can be achieved by separately incor-
porating traffic planning elements into the proposed mechanism. To examine the effect
of traffic planning, we test the simulation accuracy under the combined effect of
planning highway gates and high-speed railway stations (Figure 7(c)). The combined
effect of the two planning factors increases the simulation accuracy; the improvement is
stronger than the effect of planning highway gates but is weaker than the effect of

Figure 6. Simulated urbanization under the influence of the two traffic plans separately or in
combination. (I) Simulated urban land without planning policy; (II) simulated urban land under
the influence of high-speed railway station planning; (III) simulated urban land under the influence
of highway gate planning; (IV) simulated urban land under the influence of high-speed railway
station and highway gate planning.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 11



planning high-speed railway stations. This demonstrates that the combined effect of
various traffic planning points can also help improve the simulation, but only addressing
the most appropriate planning traffic point is most likely to achieve better accuracy.

4.1.3. Analysis of the validation
It is worth noting that when the combined effect of highway gates and railway
stations is considered, the accuracy is lower than when only railway stations are
considered. The reason for this result is likely to be the spatial heterogeneity and
complexity of the PRD region. Batty et al. (1999) noted that cities are complex
nonlinear systems involving spatial and sectoral interactions that cannot be easily
modeled with the functionalities of current GIS software. In addition, the PRD region
is a more complex system that includes nine cities with different development bases,
development policies and development orientation. Therefore, under such complex
nonlinear systems, the combined effect of multiple planning policies will probably
result in some uncertainty regarding land-use change. It is possible that considering
more planning factors will not significantly increase the simulation accuracy and may
even produce worse results than considering fewer planning factors. A previous study
also proved that simulation accuracy can be improved by considering fewer driving
factors (Wang et al. 2016). However, the simulation accuracy of considering one or
two planning factors is higher than without considering any planning driver, which
indicates that our update mechanism is effective.

Figure 7. Simulated accuracy (FoM) comparison between simulated urban land without planning
policies and (a) simulated urban land under the influence of high-speed railway station planning, (b)
simulated urban land under the influence of highway gate planning and (c) simulated urban land
under the influence of high-speed railway station and highway gate planning.
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The comparison results suggest the importance of traffic planning in the simulation
of future urban growth. Traffic planning points, such as high-speed railway stations or
highway gates, are beneficial for improving the simulation accuracy. The simulation that
only considers the planning of high-speed railway stations obtains the highest simula-
tion accuracy and exhibits the best increasing trend (Figure 7(a)). The results also
indicate that the driving effect of high-speed railway stations on urban development
is stronger than the driving effect of highway gates in the PRD region from 2000 to
2013.

However, due to the lack of independent future spatial patterns of land use, it is
difficult to calibrate and validate large-scale land-use models in a simulation of the
future period (van Asselen and Verburg 2013). However, an evaluation of the simulation
can be carried out by (1) conducting a scenario analysis in order to assess the applic-
ability of the model or (2) testing the model performance against available datasets
(Alcamo et al. 2011). Therefore, the scenario analysis of the simulation will be provided in
Section 4.2, and the simulation results will be compared with master plan data in Section
4.3. Although these comparisons cannot be regarded as a full validation, they will
provide an indication that the proposed methodology can successfully allocate land-
use changes representing regional trends (Alcamo et al. 2011).

4.2. Scenario simulation

In the future simulation, the amount of future urban land use is first determined by a
Markov chain, which has been successfully employed by many simulation studies
(Arsanjani et al. 2011, Yang et al. 2014). The Markov model in this study is implemented
to simulate the urban demand from 2013 to 2052 based on the analysis of the urban
growth during the 2010–2013 period. The predicted urban areas in 2019 (8830.12 km2),
2031 (10,150.9 km2), 2040 (11,433.08 km2) and 2052 (13,084.55 km2) are selected to
check the influence of planning policy on future urban development at different stages.

According to the comparison analysis, only considering the planning of high-speed
railway stations in the PRD region is most likely to obtain the best simulation results.
Therefore, this study only considers the planning of high-speed railway stations to
project future scenarios. In addition, the priority development zones provided by the
master plan in 2020 are addressed in the simulation process of the FLUS model. To
better demonstrate the effect of considering planning drivers, we compare and analyze
the simulation results with and without planning drivers in this section.

4.2.1. Addressing the potential effect of traffic planning on the urban PoO
In the process of spatial simulation, the urban PoO is calculated by a well-trained ANN
model based on a land-use map and a set of driving factors in 2013. The PoO without
any planning policy and the PoO under the influence of planning high-speed railway
stations are depicted in Figure 8(I,II).

Under the effect of planning high-speed railway stations (Figure 8(II)), the urban PoO
is more dispersed (Figure 8(I)) and spreads across most of the PRD region. The planning
of high-speed railway stations tends to increase the urban PoO. For example, at the
Nansha New Area, which is located south of Guangzhou, the urban PoO with the
influence of the planning component (Figure 8(a2)) is significantly higher than the
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urban PoO without the influence of a planning policy (Figure 8(a1)), and these results
can help simulate the southern development strategy specified by the Guangzhou
government. Similarly, the effect of the planned station (Kaiping station) improves the
total urban PoO of this region; however, the area near the planned station exhibits
minimal signs of growth (Figure 8(b2)). This finding indicates that the influence of the
planning policy measured by this method is nonlinear and spatially heterogeneous. This
characteristic can also be observed by comparing panels c1 and c2 in Figure 8. This
region is located at the edge of the PRD region and is far from the core area. Although a
high-speed railway station (North Boluo station) is planned, the urban PoO does not
exhibit significant changes around it. The analysis reveals that the proposed method can
reflect the spatial heterogeneity and complexity of the planning effects.

4.2.2. Addressing the effect of the planning development zone on spatial
simulation
In the future simulation from 2013 to 2052, the parameters of the FLUS model that were
used to simulate urban growth are the same as the parameters of the validation stage.
The basic ecological line policy and the primary farmland policy are considered in the

Figure 8. Urban probability-of-occurrence surface for future simulation, (I) PoO without any influ-
ence of planning policy; (II) PoO under the effect of high-speed railway station planning.
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future simulation as the planning constraints. Two scenarios are used for the future
simulation. The first baseline scenario (Scenario I) is based on the PoO surfaces without
any traffic planning. The second planning scenario (Scenario II) is based on the PoO
surfaces under the potential influence of planned high-speed railway stations. Scenario I
considers only the planning constraints. Scenario II considers not only the planning
constraints but also the planning development zone (Figure 4) and traffic planning
(Figure 8(II)). The simulation results in 2019, 2031, 2040 and 2052 are shown in Figure 9.

The comparison between Scenario I and Scenario II indicates that the spatial pattern
differences between the two scenarios increase over time. The urban form of Scenario II
(a2, c2) is more compact than the urban form of Scenario I (a1, c1), especially the regions
of medium and small cities and towns around metropolitan areas (from the comparison
between b1 and e1 and between b2 and e2). Because the planning development region
attracts more newly developed urban land, the urban development in East Huizhou
(Scenario II, d2) is not as fast as the urban development in Scenario I (d1) without any
planning impacts. Additional details regarding the differences between the two scenar-
ios are shown in Figure 10.

As depicted in Figure 10(a1,a2), consideration of the planning policies significantly
changes the urban form and the development trajectory of the future simulation. Without
considering that the planning development zone will produce centralized urban growth in
the original urban areas, this phenomenon can be adequately suppressed by considering
the planning development zone in the simulation. In the simulation of Scenario II, the area
inside the planning development zone is developed at an earlier stage (refer to the
simulated urban area from 2013 to 2019 in Figure 10(b1,b2)), which approaches the actual
urban growth process, especially in the area in which urban development is significantly
impacted by the local government. Under the scenario with the effects of planning
policies, more urban growth in the Nansha development zone occurs in the period from
2019 to 2031 (Figure 10(c2)), which is in accordance with the southward development
strategy of Guangzhou (http://www.gzlpc.gov.cn/hdjl/zjyj/201802/t20180224_1543000.
html). Therefore, the consideration of planning polices not only helps the simulation
model trace the real urban development trajectory, but it also improves the model’s
ability to identify future development hot spots and project complex urban growth
patterns, such as enclave-growth and leap-growth.

4.3. Evaluating the simulated urban area with the master plan

The simulation results are compared with the master plan data to evaluate the urban
growth trend projected by the proposed method and to validate the guiding effect of the
planning development zone and traffic planning on urban development. The master plan
data are determined by the Guangdong Provincial Government in the Pearl River Delta
Region Planning Project from 2014 to 2020. The development of future urban land along
the master plan is assessed in this section. Figure 11 shows a comparison of the master
plan with the simulated urban land with and without the influence of planning drivers.

The differences between the master plan and the simulated pattern without the plan-
ning policy (Figure 11(a1,b1,c1)) in the simulation period are significant. Conversely, under
the influence of planning drivers, urban development is similar to themaster plan (Figure 11
(a2,b2,c2)) from 2013 to 2031. However, from 2031 to 2052, the amount of simulated urban
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land exceeds the urban area determined by the 2020 master plan, which produces future
urban patterns in the master planning area (Figure 11(a2,c2)). Although the master plan
strongly guides the development of urban land, some regions inside the master planning

Figure 9. Simulated urban land use from 2013 to 2052. (I) Simulated urban land use without any
planning policy; (II) simulated urban land use under the effect of high-speed railway station
planning and development zone planning.
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area cannot develop into urban areas. Even if the consideration of traffic planning helps the
PoO surface (Figure 8(II)) to expand across most of the PRD region, the urban PoO in this
region remains too low to plant random urban seeds (Figure 11(a2,b2)). The simulation
results under the influence of planning policies show that the urban expansion determined
by master planning in 2020 is significantly larger than the simulated urban expansion
projected by the FLUS model in the same year. The simulated urban expansion will
approach the urban amount and urban form in approximately 2030. This comparison
demonstrates that the urban growth simulated by the proposed methods can provide
useful information about possible future changes.

Figure 10. Development trajectories of simulated urban land use from 2013 to 2052 in the three
regions in PRD. Panels (a1), (b1) and (c1) show the development trajectory without considering any
planning policies; panels (a2), (b2) and (c2) show the development trajectory under the influence of
the two planning policies.
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5. Discussion

An important novelty of the methods presented in this article is the consideration of
various planning driving factors such as traffic planning and planning development
zones. The two proposed mechanisms can be integrated with the FLUS model in this
study and with the probability-based traditional CA models (Li and Yeh 2001, Batty 2008,
Kamusoko and Gamba 2015). For example, the update mechanism can be addressed in
other supervised intelligent algorithms such as RF or SVM algorithms so that the
modified RF-CA (Kamusoko and Gamba 2015) or SVM-CA (Ke et al. 2017) will be able
to consider traffic planning in the simulation. Moreover, the random seeding mechanism
can be easily addressed in the transition rules of the probability-based CA model by
removing the roulette selection in the mechanism.

In a similar way, the proposed update mechanism can also be applied to probability-
based ABMs, such as in the studies by Arsanjani et al. (2013) and Tan et al. (2015), which

Figure 11. Comparing the simulation results with the master plan. Panels (a1), (b1) and (c1) show
the comparison between the master plan and the simulation results without considering any
planning policies; panels (a2), (b2) and (c2) display the comparison between the master plan and
the simulation results under the influence of two planning policies.
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calculated the probability of development by using multi-criteria analysis and LR. The
random seeding mechanism has the advantage that it does not directly plant urban cells
in the study region but only changes the urban probability; the random seeding
mechanism can also be transferred to probability-based ABMs, although the spatial
processes of ABMs are usually more complex than those of CA models (Li et al. 2013).

This work is part of a series of urban growth studies using FLUS models. In the first
study (Liu et al. 2017b), we proposed the FLUS for multi-type land-use change simula-
tion. This study is the second part, in which we have proposed two mechanisms based
on the FLUS model to integrate a set of planning driving effects in urban growth
simulation. The validity of the modified FLUS model has been verified through contrast
experimentation in this study. In the third study (Liang et al. 2018), the modified FLUS
model proposed in this study is used to delineate the urban growth boundary, a useful
planning policy for managing urban sprawl (Tayyebi et al. 2011), by coupling with a
novel morphological method based on erosion and dilation. We believe that the FLUS
series models can be effective tools for assisting urban planning and decision-making.

6. Conclusion

Planning policies are important factors that influence urban development. How urban
growth is impacted by planning policies needs to be understood to better simulate the
urban dynamics. In this paper, we present an approach that integrates the effects of
various planning policies based on a CA-based land system change model – the FLUS
model. To address the planning effects in the simulation in a more objective manner, we
modified the original FLUS model by designing an updated mechanism and a random
seeding mechanism for considering traffic planning points and planning development
zones, respectively.

The proposed model was applied to simulate urban growth in the PRD region from
2000 to 2013 and from 2013 to 2052. We find that a higher simulation accuracy can be
achieved by addressing traffic planning in the simulation. The consideration of high-
speed railway station planning generates the highest accuracy and improves the per-
formance of the FLUS model by approximately 5% in 2013 (Figure 7(a)). These results
demonstrate the need to consider traffic planning in the simulation. Moreover, the
simulation results for the future period from 2013 to 2052 indicate that the proposed
methods can be effectively used to identify potential urban expansion inside the master
plan. The spatial heterogeneity and complexity of the planning effects and a more
diverse urban growth pattern can also be explicitly reflected by coupling the proposed
mechanisms in the simulation.

In summary, this study explains how to incorporate planning policies into a land-
use simulation model. The proposed methods improve the ability of the CA model to
identify future development hot spots and to perform simulations that resemble real
urban growth trajectories. The simulation results can be employed to evaluate the
driving effect of a planning development zone and traffic planning. In short, the
proposed mechanisms can help CA models to better simulate complex dynamic
urban spatial and temporal changes and accurately predict and explain the develop-
ment of cities, and these results should provide a valuable reference for future urban
planners.
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