
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tgrs20

GIScience & Remote Sensing

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tgrs20

Urban region representation learning with human
trajectories: a multi-view approach incorporating
transition, spatial, and temporal perspectives

Yu Zhang, Weiming Huang, Yao Yao, Song Gao, Lizhen Cui & Zhongmin Yan

To cite this article: Yu Zhang, Weiming Huang, Yao Yao, Song Gao, Lizhen Cui & Zhongmin Yan
(2024) Urban region representation learning with human trajectories: a multi-view approach
incorporating transition, spatial, and temporal perspectives, GIScience & Remote Sensing, 61:1,
2387392, DOI: 10.1080/15481603.2024.2387392

To link to this article:  https://doi.org/10.1080/15481603.2024.2387392

© 2024 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 04 Sep 2024.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tgrs20
https://www.tandfonline.com/journals/tgrs20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/15481603.2024.2387392
https://doi.org/10.1080/15481603.2024.2387392
https://www.tandfonline.com/action/authorSubmission?journalCode=tgrs20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tgrs20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/15481603.2024.2387392?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/15481603.2024.2387392?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/15481603.2024.2387392&domain=pdf&date_stamp=04 Sep 2024
http://crossmark.crossref.org/dialog/?doi=10.1080/15481603.2024.2387392&domain=pdf&date_stamp=04 Sep 2024


Urban region representation learning with human trajectories: a multi-view 
approach incorporating transition, spatial, and temporal perspectives
Yu Zhang a,b*, Weiming Huang c*, Yao Yao d,e, Song Gao f, Lizhen Cui a,b and Zhongmin Yan a,b

aSchool of Software, Shandong University, Jinan, China; bC-FAIR, Shandong University, Jinan, China; cSchool of Computer Science and 
Engineering, Nanyang Technological University, Singapore, Singapore; dSchool of Geography and Information Engineering, China University 
of Geosciences, Wuhan, China; eCenter for Spatial Information Science, The University of Tokyo, Chiba, Japan; fGeospatial Data Science Lab, 
Department of Geography, University of Wisconsin-Madison, Madison, WI, USA

ABSTRACT
Mining latent information from human trajectories for understanding our cities has been persistent 
endeavors in urban studies and spatial information science. Many previous studies relied on 
manually crafted features and followed a supervised learning pipeline for a particular task, e.g. 
land use classification. However, such methods often overlook some types of latent information 
and the commonalities between varying urban sensing tasks, making the features engineered for 
one specific task sometimes not useful in other tasks. To tackle the limitations, we propose a multi- 
view trajectory embedding (MTE) approach to learn the features of urban regions (region repre
sentations) in an unsupervised manner, which does not rely on a specific task and thus can be 
generalized to varying urban sensing tasks. Specifically, MTE incorporates three salient information 
views carried by human trajectories, i.e. transition, spatial, and temporal views. We utilize skip-gram 
to model human transition patterns exhibited from massive amounts of human trajectories, where 
long-range dependency is meaningful. Subsequently, we leverage unsupervised graph represen
tation learning to model spatial adjacency and temporal pattern similarities, where short-range 
dependency is favorable. We perform extensive experiments on three downstream tasks, i.e. land 
use classification, population density estimation, and house price prediction. The results indicate 
that MTE considerably outperforms a series of competitive baselines in all three tasks, and different 
information views have varying levels of effectiveness in particular downstream tasks, e.g. the 
temporal view is more effective than the spatial view in land use classification, while it is the 
opposite in house price prediction.
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1. Introduction

Mining latent information from human trajectories for 
understanding our cities has been persistent endea
vors in the communities of urban studies and spatial 
information science (Mazimpaka and Timpf 2016). The 
spatiotemporal structures and regularities exhibited 
in human trajectories have tight linkages to many 
socioeconomic aspects of urban spaces (Barbosa 
et al. 2018). For example, the collective mobility pat
terns and interactions between different urban 
regions are indicative of the spatial distribution of 
urban functions (Wang et al. 2023; Yuan, Zheng, and 
Xie 2012). Therefore, various data mining techniques 
have been developed or tailored to mining trajectory 
data for a variety of applications in urban planning 
and management, e.g. land use classification or clus
tering (e.g. Liu et al. 2012; Zhang et al. 2021; Li, Huang, 

et al. 2024), population estimation (e.g. Chen et al.  
2018; Douglass et al. 2015), house price prediction 
(e.g. Kang et al. 2021; Wang and Li 2017), the detec
tion of social events (e.g. Zheng et al. 2013), traffic 
signal control (e.g. Lin et al. 2023), and traffic flow 
prediction (e.g. Qu et al. 2022; Zhang, Gong, Zhang, 
et al. 2023).

Many previous studies in mining human trajec
tories for urban applications have two prominent 
traits. First, feature engineering methods are preva
lent (e.g. Ji et al. 2023), in which varying manually 
crafted features are constructed from the human tra
jectories. Commonly used features include pick-up 
and drop-off numbers of each urban area from vehicle 
traces (e.g. Liu et al. 2012; Pan et al. 2012), hourly 
proportions of callings and total calling numbers 
derived from mobile phone data (Pei et al. 2014). 
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Such features have been proven effective, while they 
heavily rely on human ingenuity and laborious efforts, 
and often neglect some types of latent information, 
e.g. the long-range (multi-hop) dependency between 
urban regions reflected from human travel patterns, 
and the inherent region similarity entailed from spa
tial proximity. Second, many previous studies rely on 
supervised learning for specific tasks (e.g. Hu et al.  
2021), which is sometimes impractical to deal with 
unavailable or sparse ground truth data. In addition, 
models and features learned for one specific task are 
not necessarily useful in other tasks, in spite of the 
commonalities shared among different socioeco
nomic aspects of our cities, e.g. land use is often 
correlated with population distribution (Wang, Li, 
and Rajagopal 2020).

In order to tackle the limitations, representation 
learning approaches have been introduced into trajec
tory mining. Representation learning aims at trans
forming raw data to meaningful representations 
(vector embeddings) that can support effective 
machine learning for downstream tasks (Bengio, 
Courville, and Vincent 2013). The idea of learning repre
sentations has led to a wide array of successful stories 
in several domains in machine learning, e.g. in natural 
language processing (e.g. Devlin et al. 2019; Mikolov 
et al. 2013), time series data mining (e.g. Zhu et al.  
2022), video analysis (e.g. Liu et al. 2022), and skeleton 
action recognition (e.g. Yan et al. 2023). These works 
have fueled the idea of learning effective region repre
sentations (embeddings) utilizing trajectory data in an 
unsupervised manner (e.g. Wang and Li 2017; Yao et al.  
2018; Zhang et al. 2020). The learned region embed
dings should ideally carry the latent information from 
human trajectories for sensing region relevance, simi
larity, and discrimination, and thus a wide range of 
downstream tasks would be benefitted.

One predominating question of learning effective 
region embeddings from human trajectories is that 
what types of latent information are desirable to be 
incorporated to benefit downstream applications. 
Intuitively we have three major perspectives of infor
mation that can reflect urban region semantics:

(1) Transition view: The transitions between differ
ent urban locations (e.g. cell towers in trajec
tories gathered from mobile phone usage) or 
regions are a primary source of information 
carried by human trajectories (e.g. location a 

-> location b -> location a -> location c), and 
they reflect the connectivity and relevance 
between urban regions from a human move
ment and behavior perspective (Barbosa et al.  
2018; Chen et al. 2021; Cheng et al. 2021). 
Transitions in human trajectories often entail 
strong ties between varying locations, where 
long-range dependency can be revealed, such 
as remote commuting between homes and 
workplaces for some people.

(2) Spatial view: Adjacent urban regions or loca
tions usually carry substantial similarities and 
relevance in many socioeconomic factors, e.g. 
population density, and house price. In fact, 
spatial proximity can be partially captured in 
the transition view, whereas explicitly modeling 
the spatial view can strengthen the relevance 
between adjacent urban areas, and largely fill 
the uncaptured transitions (as people are more 
likely to travel to contiguous places when their 
locations are not captured in trajectories) 
(Wang and Li 2017).

(3) Temporal view: Human trajectories are 
sequences of visited locations with time stamp 
information, therefore they are a natural instru
ment to reveal the temporal regularities and 
patterns of urban locations. Temporal regulari
ties are believed to be indicative to urban func
tions, e.g. people’s visiting time to residential 
and industrial regions largely differ (Wan et al.  
2021). In fact, many previous feature engineer
ing methods for trajectory mining focus on 
constructing features to delineate the tem
poral perspective of human trajectories (e.g. 
Kang et al. 2012; Pei et al. 2014).

The three views of information in human trajectories 
carry their respective traits, which are partially illu
strated in Figure 1. For the transition view, long- 
range (multi-hop) transitions between different loca
tions or regions can be meaningful, in light of the 
explicit human movements carried between them. 
For example, the blue trajectory in Figure 1 reflects 
an individual’s movement in a particular day, traver
sing between accommodation, work, catering, and 
transportation places. These places are strongly tied 
by the intended movements between them, and such 
ties stand in a long-range (multi-hop) fashion, e.g. 
residence 1 and company 2 are several hops away in 
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the trajectory sequence (by commuting), while they 
are tightly connected. However, for the spatial view, 
long-range dependency can hardly hold at the gran
ularity of urban regions or cell towers without explicit 
connectivity expressed by human movements. In this 
case, we assume that modeling short-range (one-hop) 
dependency would yield more meaningful region 
embeddings. For instance, when finding the corre
lated neighbors of company 1 in the spatial view, 
only the one-hop-away neighbors are considered 
(orange links), since further away places could have 
weak correlations if not explicitly tied by human 
movements. For the temporal view, we draw an ana
logy to the spatial view, for which we can generate 
temporal features (e.g. hourly temporal distributions) 
as the “temporal coordinates” of urban locations or 
regions, and use them to capture temporal proximity. 
In this case, we still assume that short-range temporal 
dependency is preferable, and long-range temporal 
correlations usually does not hold. For example, we 
build the green links from company 1 to company 2 
and 3 as well as the factory, as their temporal visiting 
patterns are similar.

With the above observations and assumptions, 
we propose an unsupervised multi-view trajectory 
embedding (MTE) model for learning effective 
region representations, which can subsequently be 
used in various urban analytical tasks. MTE com
bines the neural language model skip-gram 
(Mikolov et al. 2013; as used in Word2Vec) and 
unsupervised graph neural networks (GNNs) based 
on graph diffusion and the infomax training objec
tive (Hassani and Khasahmadi 2020; Veličković et al.  
2019). Specifically, we utilize skip-gram to model 
the transition view, in which multi-hop and long- 
range dependencies are meaningful, as this is 
where the neural language models in the family of 
Word2Vec shine with strong expressiveness. We 
then leverage unsupervised GNNs to model the 
spatial and temporal views, as GNNs often prevail 
in modeling the correlation in close proximity 
(Oono and Suzuki 2019). MTE incorporates three 
views of information from human trajectories into 
region embeddings, and leverages expressive repre
sentation learning techniques based on the traits of 
different views.

Figure 1. An illustration of multi-view modeling of locations (regions) utilizing human trajectory data. The transition view (blue) shows 
the sampled locations of an individual, highlighting long-range correlations between locations. The temporal view (green) identifies 
locations that exhibit similar temporal patterns to company 1. Meanwhile, the spatial view (orange) connects three locations that are 
spatially proximate to company 1.
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We apply MTE for learning region embeddings in 
the study area of Shenzhen, China, and utilize the 
generated region embeddings in three downstream 
tasks: land use classification, population density esti
mation, and house price prediction. We compare MTE 
with several competitive baseline models, which 
reveals that our assumptions and observations for 
the three views stand, and our approach consistently 
prevails in all the downstream tasks. In addition, we 
discover that the three views have varying levels of 
effectiveness for different tasks.

Following this introduction, we review related 
works in Section 2 and introduce the main datasets 
in Section 3. In Section 4, we provide the details and 
intuitions of the proposed MTE approach. In Section 5, 
we demonstrate the experiments and results, includ
ing an exploratory similar region search and three 
quantitative downstream tasks, i.e. land use classifica
tion, population density estimation, and house price 
prediction. The paper ends with a discussion in 
Section 6 and conclusions in Section 7.

2. Related works

2.1. Trajectory mining for characterizing urban 
spaces

The employment of human mobility data for under
standing our cities and facilitating urban planning 
and management has boomed in the past decade, 
thanks to the proliferation of various human mobility 
data, e.g. taxi traces, and mobile phone location data. 
Early studies in this direction mainly utilized feature 
engineering methods, in which hand-crafted feature 
extraction from trajectories played a pivotal role. For 
example, Liu et al. (2012) used taxi traces to analyze 
urban land use distributions, in which they created 
features from pick-up and drop-off numbers. Pan et al. 
(2012) crafted a set of pick-up and drop-off features at 
varying temporal granularities, and utilized an 
improved DBSCAN clustering technique for land use 
classification. Pei et al. (2014) created the features of 
hourly patterns of mobile phone data as well as the 
total calling volume for land use classification. J. Chen 
et al. (2018) utilized mobile phone location data for 
spatially and temporally fine-grained population pre
diction, in which several features are developed to 
delineate the stationery and inflow populations for 
different locations. In addition, topic models once 

gained momentum for trajectory data mining. 
A seminal study by Yuan, Zheng, and Xie (2012) pro
posed a topic model-based framework for urban func
tional region discovery, which regards a region as 
a document, a function as a topic, the categories of 
points-of-interest (POIs) as metadata, and human 
mobility patterns as words.

The past years have witnessed a shift of trajectory 
mining methods toward various sophisticated 
machine (deep) learning techniques. To this end, Hu 
et al. (2021) proposed a framework combining skip- 
gram and a graph convolutional network (GCN) for 
urban function classification at the level of road seg
ments. Specifically, they first utilized taxi traces to 
obtain the embeddings of road segments using skip- 
gram, and performed graph convolution in a road 
segment adjacency graph for classifying urban func
tions. This study accomplished superior results, while 
it generally omits the temporal information in trajec
tories. Sun et al. (2022) utilized a deep convolutional 
autoencoder to reconstruct the aggregated temporal 
features from mobile phone usages, and the learned 
embeddings are used for clustering analysis and land 
use classification. This work deeply mined the tem
poral patterns of each cell tower and urban region, 
while the correlations embedded in adjacent regions 
and human transitions are yet to be explored. In 
addition, such deep learning-based studies generally 
rely on task-specific supervised learning frameworks, 
and thus can hardly be generalized to other tasks.

Concurrently, the idea of learning region represen
tations with human mobility data has become 
increasingly prosperous. Such studies have two key 
features that make them distinctive: (1) they are unsu
pervised (or self-supervised) with no prior knowledge 
from the ground truth data of downstream tasks, and 
(2) they learn general and multi-task representations. 
A pioneering work in region representation learning is 
Wang and Li (2017), who considered temporal 
dynamics, multi-hop transitions, and spatial adja
cency between regions with taxi flow data. 
Specifically, they constructed a flow graph and 
a spatial graph in different time slots and conducted 
random walks in the two graphs; finally, they learned 
region embeddings using a skip-gram-based recon
struction objective. This study is particularly inspira
tional, as it considers all the three types of relations 
between regions, i.e. transition, spatial, and temporal. 
However, this work has several limitations: (1) long-range 
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spatial dependency can be easily captured, which over- 
smooths the embeddings of distant regions; (2) each 
region is duplicated for every time slot (e.g. each hour), 
thereby the constructed graph is hardly tractable for 
a large city.

Later, Yao et al. (2018) developed a skip-gram-like 
model for learning region embeddings with human 
mobility data, in which they leveraged the co- 
occurrence between regions and mobility events 
(transitions between regions) to learn region embed
dings. Fu et al. (2019) used both POIs and human 
transitions between the POIs for learning region 
embeddings, in which they constructed two complete 
graphs (distance graph and mobility graph) and uti
lized a graph reconstruction objective to optimize the 
model. Zhang et al. (2020) used taxi traces, POIs, and 
check-in data to compose a mobility graph and 
a spatial graph of regions; they finally combined skip- 
gram-like reconstruction loss functions to learn region 
embeddings. Shimizu, Yabe, and Tsubouchi (2020) 
proposed to learn place embeddings in multiple spa
tial scales with human trajectories using an autore
gressive model, namely a long short-term memory 
(LSTM); this model mainly relied on human transitions 
between different locations and also incorporated the 
transitions’ time stamps. Wu et al. (2022) proposed 
multi-graph fusion networks for learning region 
embeddings with human trajectories, in which they 
first used several custom similarity metrics to cluster 
mobility graphs, and then applied a multi-level cross- 
attention mechanism to enable intra- and inter- 
cluster message passing; the model is trained also 
with a reconstruction loss. In the geospatial domain, 
Zhang et al. (2021) used Word2Vec to learn region 
embeddings from mobile phone location data, in 
which they regarded each cell tower as a word, and 
each trajectory as a sentence. Although this study was 
dedicated to sensing urban land use, its method does 
not rely on supervisory signals from a specific task, 
and thus can be potentially generalized to other tasks.

The above studies in region representation learn
ing using trajectory data, besides Wang and Li (2017), 
omit certain aspects in trajectory data among the 
three information views discussed in the article. In 
addition, the expressiveness of their methodological 
frameworks is generally limited, as we believe the 
commonly used skip-gram-based and graph-based 
reconstruction objectives are limited in modeling 
the interactions between spatially adjacent and 

temporally relevant regions. In this study, we propose 
the MTE model to unleash the rich information carried 
by the transition, spatial, and temporal views of 
human trajectories.

2.2. Region representation learning: skip-gram and 
GNNs

From a methodological viewpoint, many unsuper
vised region representation learning studies rely on 
two types of techniques, i.e. skip-gram (e.g. Huang 
et al. 2022; Wang and Li 2017; Zhang et al. 2021; here 
we do not differentiate the two variants of Word2Vec, 
skip-gram and CBOW) and graph representation 
learning (e.g. Wu et al. 2022; Zhang et al. 2020). In 
fact, these two strands have overlaps, as graph repre
sentation learning can also use skip-gram-like objec
tives through random walks (e.g. Huang et al. 2022). 
We believe that skip-gram is particularly useful to 
model long-range and multi-hop dependency, which 
is prevalent in the transition view of human trajec
tories. However, for the spatial and temporal views 
that are not bonded by human movement, GNNs 
have better expressiveness (Oono and Suzuki 2019) 
with the message passing mechanism to naturally 
capture interactions between adjacent locations and 
regions. The question then boils down to how to train 
GNNs in an unsupervised manner for the spatial and 
temporal views.

There are some unsupervised graph representa
tion learning techniques relying on random walks or 
the reconstructions of adjacency information (e.g. 
Grover and Leskovec 2016; Hamilton, Ying, and 
Leskovec 2017; Kipf and Welling 2017), whereas it 
is unclear whether such objectives are useful, as 
graph convolutional encoders already enforce 
smoothing over adjacent nodes (Veličković et al.  
2019). Some state-of-the-art graph representation 
learning techniques rely on the infomax principle 
(Linsker 1988) that encourages the graph encoder 
to learn representations through maximizing 
mutual information of the representations from dif
ferent scales. A seminal work is deep graph infomax 
(DGI; Veličković et al. 2019), which relies on mutual 
information maximization between node embed
dings and a graph-level embedding, thus making 
the node embeddings globally relevant. Hassani 
and Khasahmadi (2020) developed further along 
this line, and proposed a contrastive multi-view 
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graph representation learning approach (MVGRL) 
for unsupervised graph learning, and their funda
mental idea is to maximize the mutual information 
between different structural forms of graphs. 
Specifically, MVGRL applies diffusion to the struc
tural information of a graph (i.e. the adjacency 
matrix) to obtain a more global view of the original 
graph. MVGRL then maximizes the mutual informa
tion between the node embeddings in one form 
and the graph-level embedding in the other form 
to learn node and graph representations. MVGRL is 
an expressive graph representation learning meth
ods and prevails in a series of node and graph level 
tasks. And it deeply explores the interactions 
between local and global scales, which particularly 
fits the task of learning region representations, in 
which both local and global relevance is profitable. 
Therefore, in this study, we combine skip-gram and 
MVGRL to learn region embeddings, and the two 
techniques are used to model different information 
views based on their traits.

3. Study area and data

As there are different types of trajectory data, we 
introduce the study area and datasets before diving 
into the methodology. The study area is one of the 
most developed cities in China, Shenzhen, which has 
about 18 million residents. The study area is parti
tioned into 6,890 regions, which are the urban plan
ning land parcels from the Municipal Planning and 
Natural Resources Bureau of Shenzhen. Essentially, 
these regions are divided by the major roads, and 
serve as the basic unit for urban planning and man
agement. The trajectories used are anonymous 
mobile phone location data in two days, i.e. 
March 22 and 23 in 2012. The data records the transi
tions of more than 16 million mobile phone users 
among 5,818 cell towers (each user produces one 
trajectory), providing a reliable representation of the 
city’s population (given that the year-end permanent 
population figures recorded in the 2012 Shenzhen 
Statistical Yearbook, totaling 10.46 million indivi
duals). Specifically, each trajectory s 2 S is 
a sequence of transitions between cell towers C, and 
formally can be represented as r1; r2; . . . ; rnf g, in 
which ri ¼ {cj; ti} consisting of a cell tower identifier 
cj 2 C (it is possible that the records of different time 

stamps direct to a same cell tower) and a timestamp ti 

associated ri. In addition, each cell tower cj is asso
ciated with a 2D geographic location {xcj ; ycj }. The 
average number of visited cell towers of the trajec
tories is 20.67. The dataset has a comprehensive cov
erage of Shenzhen’s population and contains rich 
spatial and temporal information; thus, we utilize 
this dataset to learn region embeddings for different 
downstream tasks. See Figure 2 for the geographic 
locations of cell towers and urban regions.

4. Methodology

The overarching architecture of the proposed MTE 
model is demonstrated in Figure 3. MTE is predomi
nately composed of four components. First, we feed 
the trajectory sequences of human transitions 
between cell towers into a skip-gram model to learn 
the transition embeddings of cell towers, which cap
tures their long-range (multi-hop) dependencies 
entailed from the massive human trajectories. 
Second, we interconnect the cell towers into two 
graphs based on their spatial adjacency and their 
similarity in temporal patterns, i.e. a spatial graph 
and a temporal graph; the embeddings from the 
transition view are used as the initial node (cell 
tower) features. Third, the two graphs are respectively 
fed into a graph encoder, i.e. the unsupervised graph 
representation learning model MVGRL, to learn cell 
tower embeddings of the spatial and temporal views. 
In this process, the cell tower embeddings are learned 
through graph diffusion and mutual information max
imization between local and global representations. 
Finally, we utilize a Voronoi diagram to map multi- 
view cell tower embeddings to region embeddings 
that are used in several downstream tasks.

4.1. Learning cell tower embeddings of the 
transition view

It has been widely acknowledged that the collective 
travel patterns of urban residents exhibit locational 
semantics through the explicit connections carried by 
human transitions (Barbosa et al. 2018; Hu et al. 2021). 
Intuitively, people often travel with certain purposes, 
such as the sequence {home, workplace_1, dining_1, 
workplace_2, dining_2, entertainment, home} indicates 
strong relevance between these locations. Although 
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individual travels often have certain randomness, the 
collective patterns entailed from the massive human 
trajectories in the mobile phone location dataset pro
visions an ideal proxy to understand and capture 
location and region semantics. We believe that with 
explicit human transitions, long-range and multi-hop 
dependency between cell towers holds, where skip- 
gram is effective.

Feeding the trajectories into skip-gram is straight
forward, as the dataset is highly tailored to this model 
if we omit the timestamps. In this case, each trajectory 
is simplified to a sequence of cell tower identifiers, 
which can be regarded as a sentence of several words. 

With a window size w, for each location (cell tower) in 
a trajectory, we retrieve all its context cell towers in 
the window (w steps both to the left and to the right). 
We can then form many co-occurrence pairs between 
cell towers, which captures multi-hop dependencies 
between them. With these co-occurrence pairs and 
negative sampling (Mikolov et al. 2013), cell tower 
embeddings in the transition view can be obtained 
through minimizing the objective function according 
to Equation 1:  

Figure 2. The study area, Shenzhen, encompassing 5,818 cell towers and 6,890 distinct regions.

Figure 3. The overarching architecture of MTE.
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where cr
i denotes the target embedding of the cell 

tower ci in the transition view, and NR cð Þ represents 
the set of context cell towers of ci within the given 
window. c0q denotes the context embedding of the cell 
tower cq co-occurred with ci. σ denotes the sigmoid 
function. cni means the cell towers obtained by the 
negative sampling process.

4.2. Constructing spatial and temporal graphs

To capture spatial and temporal correlations, we con
struct two undirected graphs to explicitly connect 
spatially and temporally relevant locations (cell 
towers), which is a prerequisite for the following 
graph representation learning process. We regard 
each cell tower as a node in a graph, and utilize the 
trained cell tower embeddings in the transition view 
as initial node features. Then we build spatial edges 
and temporal edges to form the two graphs.

For the spatial view, the edges are built using 
k-nearest-neighbors (KNN) method, meaning that 
each node is connected to all other nodes within its 
KNN with undirected edges. Each edge is then 
assigned an unnormalized weight ws by Equation 2: 

in which D denotes the diagonal length of the mini
mum bounding rectangle of all the cell towers, and 
sdci cj represents the spatial distance between two cell 
towers ci and cj. All the spatial edge weights are finally 
linearly rescaled to [0, 1]. The reason behind the dis
tance decay of ws,sd� 1:5 is in view of previous prac
tices, e.g. in Huang et al. (2023). In this way, a spatial 
graph Gs ¼ Cr;Asð Þ is constructed.

For the temporal view, we first construct the “tem
poral coordinates” in a latent temporal space. 
Specifically, we summarize a proportional hourly visit 
distribution for each cell tower in the dataset, then the 
“temporal coordinates” tci of a cell tower is a 24- 
dimensional vector, formally tci ¼ tp1; tp2; . . . ; tp24f g, 
in which tpj is the hourly proportion of visits recorded 
with the time slot tsj, which satisfies the constraints 
tpj 2 0; 1½ � and 

P

k
tpj ¼ 1. An example is that a cell 

tower has 6% of its visits recorded in the time slot 
11:00 am to 11:59 am (tp12 ¼ 0:06). Such simple tem
poral features capture the temporal regularities of loca
tions, e.g. intuitively the proportional hourly visit 

distributions largely differ between residential and 
industrial areas. With the “temporal coordinates,” we 
first apply a global minmax scalar for normalization, 
and then use ,2 distance to capture the temporal 
similarity between cell towers. We, once again, use 
the KNN strategy to construct a temporal graph with 
unnormalized edge weights td� 1

cicj
, in which tdcicj 

denotes the ,2 distance between ci and cj using their 
temporal coordinates, and all the temporal edge 
weights are also finally linearly rescaled to [0, 1]. After 
this process, the temporal graph Gt ¼ Cr;Atð Þ is 
constructed.

The rationale of using simple KNN graphs over 
other methods, e.g. Delaunay triangulation, is that 
we empirically find the performance is benefited 
from moderately lifting edge densities (cf. 
Section 5.7). Furthermore, in principle the two graphs 
can be also viewed as one multiplex graph with two 
types of edges (spatial edges and temporal edges). 
However, we keep them as two graphs for separately 
feeding them to a graph representation learning 
model because we empirically discover that the spa
tial view and the temporal view have different levels 
of effectiveness in varying downstream tasks, and 
completely mixing all the information views some
times does not guarantee the best performance (cf. 
Section 5).

4.3. Learning spatial and temporal embeddings 
with unsupervised graph representation learning

For the spatial and temporal views, we attempt to 
grasp the semantic similarities between different cell 
tower locations (and thus regions) based on their 
adjacency in the geographic space and the latent 
temporal space. We argue that graph representation 
learning is particularly useful for these two views, 
where modeling the relevance between direct and 
one-hop neighbors is more meaningful than multi- 
hop and long-range dependency. As we aim to learn 
multi-task region representations in a fully unsuper
vised manner, the essential question then boils down 
to the design of self-supervisory signals for training 
GNNs.

In this study, we utilize the infomax principle to 
accomplish unsupervised representation learning for 
both the spatial graph Gs and the temporal graph Gt, 
specifically using the MVGRL model. Such processes 
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are identical for the two graphs, so we illustrate only 
the case for the spatial graph in Figure 4. Overall, for 
each graph, MVGRL creates another version (form) of 
the original graph through a graph diffusion techni
que (Klicpera, Weißenberger, and Günnemann 2019), 
and both the original and diffused versions undergo 
graph convolution to obtain node embeddings; 
finally, the model is trained by maximizing the mutual 
information between node embeddings in one ver
sion and the graph embedding (obtained through 
pooling) in the other version. In this way, node 
embeddings become both locally and globally rele
vant, and carry rich connectivity information entailed 
from different structural forms of the graph.

Specifically, for the spatial graph Gs, we first apply 
a graph diffusion technique, which discovers a more 
global structural form of the graph to capture nuance 
linkages between unconnected cell towers. Graph dif
fusion is realized by the Personalized PageRank algo
rithm. Given the graph Gs, its adjacency matrix As is 
transformed to Ad

s with the following rule: 

where β is a tunable teleport probability, I denotes an 
identity matrix, and Ds is the degree matrix of the 
adjacency matrix As.

We then have a diffused version of the spatial 
graph Gs, i.e. Gd

s ¼ Cr;Ad
s

� �
. Subsequently, graph con

volutions (two dedicated one-layer GCNs; Kipf and 
Welling 2017) are applied to both the original spatial 

graph and the diffused spatial graph. Formally, the 
node embeddings are generated with the informa
tion propagation rule: 

in which τ is a parametric ReLU (PReLU) function, bA is 

an adjacency matrix with self-loop, bD is the degree 

matrix of bA, and Θ 2 R Fr�Fs is a learnable linear trans
formation applied to every node (Θ is different for Go

s 

and Gd
s ), and Co

s and Cd
s are the node embeddings of 

the original spatial graph Gs and the diffused spatial 
graph Gd

s after graph convolution.
We further carry out pooling operations to gener

ate graph embeddings, in order to provide global- 
level supervisory signals for training the graph enco
ders. In addition, we introduce an additional activa
tion function to provide nonlinearity for the network 
and enhance the expressive power of the graph 
representation. For each of the two graph versions, 
all the node embeddings are averaged respectively, 
before going through sigmoid function, which can be 
formally represented as: 

Figure 4. The graph representation learning model for learning cell tower embeddings in the spatial and temporal views.
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where σ is the sigmoid function, nc is the number of 
nodes (cell towers), co

s;i and cd
s;i are the node embed

dings in the original spatial graph and the diffused 
spatial graph respectively (after graph convolution). 
After this step, we obtain an embedding for both the 
original spatial graph and the diffused spatial graph, 
i.e. go

s and gd
s .

We can now learn rich node (cell tower) embed
dings using the infomax principle, which is agnostic to 
downstream tasks. The model is optimized by max
imizing the mutual information between the node 
embeddings in one version of the graph (e.g. the 
original spatial graph) and the graph embedding in 
the other version (e.g. the diffused spatial graph), and 
vice versa. The objective is formally defined as: 

in which co
s;i is a node embedding in the original 

spatial graph, and gd
s is the graph embedding of the 

diffused spatial graph. D is a discrimination modeled 
using a noise-contrastive type objective based on 
Jensen-Shannon divergence: 

where fφ is a bilinear transformation, and eco
s;i is the 

embedding of the node ci in the corrupted original 
spatial graph through row-wise shuffling of node 
initial features (transition embeddings), i.e. replacing 
the initial features of a node (cell tower) with the 
initial features of another randomly picked node. 
The definition of Dðcd

s;i;go
s Þ is a mirror replication 

of Dðco
s;i;gd

s Þ.
Through minimizing the objective function in for

mula (8), we can then obtain the spatial embedding of 
a cell tower through summarizing its corresponding 
node embeddings in both the original spatial graph 
and the diffused spatial graph, i.e. cs;i ¼ co

s;i þ cd
s;i 

where cs;i is the spatial embedding of cell tower ci 

(note that spatial embeddings also carry transition 
information, which is the initial features). Following 
an identical process, we can also obtain a temporal 
embedding ct;i for each cell tower. Finally, the multi-view 

embedding of a cell tower is obtained by simply con
catenating its spatial embedding and temporal embed
ding (transition embedding is also carried by them), 
i.e. ci ¼ cs;ict;i.

4.4. Mapping cell tower embeddings to region 
embeddings

As we intend to perform downstream analytical tasks 
in the scale of urban regions, we map the learned cell 
tower embeddings to region embeddings. The map
ping process follows the previous practice in Zhang 
et al. (2021), in which Voronoi diagram was utilized to 
delineate the service area of each cell tower, and 
a region embedding is defined as an area-weighted 
summation of the cell tower embeddings whose 
Voronoi polygons spatially intersect with the region. 
Formally, this process is defined as Equation 10: 

in which ari is the area of the region ri, ari;cj is the 
interaction area between region ri and the Voronoi 
polygon of the cell tower cj, and cj is a cell tower 
embedding.

5. Experiments and results

5.1. Implementation details

We first utilize skip-gram to generate the transition 
embeddings of cell towers (64-dimensional), and in 
this process we tune the window size w in {3, 5, 7, 9, 
11} to find out the best range to model the depen
dency between cell towers in the transition view. We 
train the skip-gram for 10 epochs in a minibatch 
mode, and each minibatch trains 10,000 target cell 
towers. The dimension of the transition view is 64. 
Additionally, the temporal and spatial views are con
catenated through graph contrastive learning, result
ing in a combined dimension of 128, representing the 
concatenation of the original and diffused versions. 
After obtaining the transition embeddings, they are 
used as initial features in both the spatial and tem
poral graphs. For each graph, we train the graph 
representation learning model MVGRL for 2,000 
epochs without a minibatch mode, and with the 
learning rate of 0.001. And we tune the number of 
nearest neighbors in the graph construction 
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processes, i.e. we tune ks (for the spatial graph) and kt 

(for the temporal graph) both in {4, 16, 64, 128, 256} to 
find the best graph forms to capture short-range 
dependencies in the geographic and temporal 
spaces. The hyperparameter tuning of w, ks, and kt is 
carried out and weighed in all three downstream 
tasks, and we find that the best parameters that pro
duce generally favorable results in all the downstream 
tasks are w = 9, ks = 64, and kt = 128 (see Section 5.7).

5.2. Baseline models

We compare the proposed MTE model for region 
representation learning with several baseline models:

(1) Traj2Vec (Zhang et al. 2021): This model is essen
tially the skip-gram model used for learning 
region embedding also with mobile phone mobi
lity data. It is equivalent to only using the transi
tion view of MTE to generate region embeddings.

(2) MNE (Zhang et al. 2018): This method treats the 
three views as a multiplex graph, i.e. cell towers 
are nodes which are connected by three types 
of edges. Transition edges are built based the 
transition frequencies between cell towers, and 
spatial and temporal edges remain the same as 
in our model. For each node, MNE learns spe
cific embeddings of each edge types and 
a common embedding to bridge them. The 
final node embeddings also incorporate the 
information from all three views.

(3) HDGE (Wang and Li 2017): This model con
structs a flow graph and a spatial graph for 
cell towers to learn a specific cell tower embed
ding for each time slot. We concatenate the 
embeddings of each cell tower in all time slots 
to generate region embeddings.

(4) HIER (Shimizu, Yabe, and Tsubouchi 2020): This 
model uses LSTM and a next location prediction 
training objective to learn cell tower embed
dings (and thus region embeddings). In this pro
cess, the visit times are directly used as input 
features to have a sense of the temporal 
patterns.

(5) Sk-3views: In this variant, we learn the embed
dings of all three views separately using skip- 
gram. For the spatial and temporal views, we 

conduct biased random walks in the spatial and 
temporal graphs (the biases are equal to unnor
malized edge weights) to generate cell tower 
sequences, which are then fed into skip-gram. 
The embeddings from the three views are finally 
concatenated to form region embeddings.

(6) Graph-3views: In this variant, we replace skip- 
gram in MTE with the graph representation 
learning model MVGRL. Like the baseline 
MNE, the transition graph is constructed 
based on transition frequencies between cell 
towers.

In addition, we also compare MTE with two ablations, 
MTE-spatial and MTE-temporal, in order to verify the 
necessity of the spatial view and the temporal view.

5.3. Similar location search

Before diving into the quantitative evaluations of our 
proposed model in downstream tasks, we carry out an 
exploratory search of similar locations (cell towers) 
through measuring the cosine similarities of their 
embeddings (Gao, Janowicz, and Couclelis 2017; 
Liang et al. 2022). The similarity search results can 
help us gain intuitions of the information content 
and effectiveness of different views.

We demonstrate a case of similar location search in 
Figure 5. In this case, we use an anchor location, i.e. 
the pink point located in an industrial park, to search 
its similar locations. If we only use the embeddings 
from the spatial graph (which are initialized with tran
sition embeddings), we can find the two yellow points 
as the most similar locations, which are very spatially 
close while both located in a residential area. This 
indicates that spatial and transition views combined 
focuses mainly on spatial proximity, while not on 
functional similarity (although often spatially close 
regions are also functionally similar). If we only use 
the embeddings from the temporal graph, we then 
find the two orange locations as the most similar 
ones, which are located far apart while both are 
located in industrial parks. This means that the tem
poral and transition views combined emphasizes 
functional similarity while generally is irrelevant to 
spatial proximity. Finally, we combine the embed
dings from the spatial and temporal graphs, we then 
find the two blue points located in industrial parks as 
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the most similar locations, which are both spatially 
adjacent (further than the yellow points though) and 
functionally similar. This illustrates the effectiveness of 
our model, which balances spatial proximity and func
tional resemblance.

5.4. Land use classification

The spatial distribution of urban land use (urban func
tion) is of paramount relevance for urban planning 
and management. Over the last decade, numerous 
studies have utilized human trajectories for sensing 
urban land use, in view of the explicit linkage 
between human mobility patterns and the spatial 
distribution of land use in our cities (e.g. Liu et al.  
2012; Pei et al. 2014; Shimizu, Yabe, and Tsubouchi  
2020; Zhang et al. 2021). In principle, more meaning
ful region embeddings learned from human trajec
tories should better capture the linkage between 
city structures and human movement, and thus can 
yield better performance in land use classification.

In this task, we utilize the MTE region embeddings 
for land use classification against the baseline models. 
The ground truth data is the authoritative land use 
data of Shenzhen in 2014 and is available in 5,487 
regions. We merge the fine-grained land use types in 
the authoritative dataset into six: (1) natural and open 
space (nat.), (2) commercial (com.), (3) residential (res.), 
(4) industrial (ind.), (5) public service (pub.), and (6) 
transportation and logistics (trans.). Specifically, we 
use a random forest (RF) classifier (with 100 decision 
trees) and randomly choose 2/3 of the regions as 
training data, and the remaining 1/3 of the regions 
as test data (from the 5,487 regions with ground truth 
information). We repeat the experiments for 100 
times with random training test set splits, and finally 
report the average performance metrics. In view of 
the unbalanced nature of the land use types in the 
study area (industrial and residential dominant), we 
use the metrics of accuracy (ACC; it is equivalent to 
weighted recall), weighted precision (WP), and 
weighted F1 score (WF1).

Figure 5. The results of similar location (cell tower) search. A selected anchor point (pink) is presented along with the two most similar 
locations using the embedding fusing three views (blue), fusing transition and spatial views (yellow), and fusing transition and 
temporal views (orange).
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5.4.1. Performance
The results are presented in Table 1, and we observe 
that MTE (w = 9, ks = 64, and kt = 128) that incorpo
rates the information from all three views outper
forms all baselines in all evaluation metrics, 
suggesting that it can lead to not only more accurate 
predictions, but also more balanced results among all 
land use types (in view of the weighted F1). We also 
report the performance of using only the region 
embeddings generated from the spatial graph (MTE- 
spatial) and the temporal graph (MTE-temporal) 
respectively. We find that the MTE-temporal leads to 
better performance than MTE-spatial (note that both 
spatial embeddings and temporal embedding also 
carry the information from the transition view), mean
ing that the similarities exhibited from the temporal 
regularities are more indicative than spatial adjacency 
for this task. However, the information from all three 
views is useful, which is suggested by the superior 
performance of MTE.

For the baselines, Traj2Vec is essentially the trans
action view of MTE, and it produces similar results as 
Sk-3views, suggesting that incorporating the spatial 
and temporal similarities through modeling the long- 
range dependencies in the two domains generally 
does not help for this task. Likewise, the unsatisfactory 
performance from Graph-3views indicates that using 
a (one-layer) GNN to capture the dependencies car
ried by the human transaction sequences is subopti
mal. HDGE is also less effective than Traj2Vec, and we 
speculate that its approach to capture long-range 
dependency based on spatial adjacency undermines 
its performance for this task, as such long-range rela
tions usually do not hold, especially with our dataset 
(trajectories from mobile phone data). HIER generates 
slightly better performance than other baselines 
except for MNE, as it considers all three perspectives. 
The performance of MNE is the best among all base
line methods, indicating that explicitly capturing the 

commonalities among the three views helps mitigate 
the (sometimes backward) effects of the long-range 
spatial and temporal dependencies in a skip-gram like 
architecture. However, it still does not reach the effec
tiveness of MTE.

5.4.2. Classification confusion analysis
We further analyze the performance of MTE, MTE- 
spatial, and MTE-temporal through visualizing their 
confusion matrixes of land use classification, which 
are shown in Figure 6. We observe that the accuracy 
scores for residential and industrial are generally 
higher than other land use types, as they are dominat
ing in the study as the predictions from RF are mostly 
inclined to them. We notice that MTE-spatial and MTE- 
temporal have similar performance for industrial, 
which is likely because that industrial areas both exhi
bit spatial clustering and distinct temporal patterns; 
for residential areas, MTE-temporal leads to a large 
performance gain compared to MTE-spatial, which 
suggests that the temporal regularity is more indica
tive than spatial adjacency for residential areas. For 
the land use types of natural and open space, trans
portation and logistics, MTE-spatial produces better 
accuracy scores than MTE-temporal, suggesting that 
the spatial clustering effects of these land use types 
are more salient than their temporal regularities. We 
believe that such an analysis at the individual land use 
type level is useful in a binary classification scenario, 
e.g. discerning residential and nonresidential areas. At 
last, MTE takes the advantages of MTE-spatial and 
MTE-temporal, and produces the best performance 
for most of the land use types.

5.5. Population density estimation

The correlation between human mobility patterns 
(particularly those exhibited from mobile phone 
data) and the spatial distribution of population has 

Table 1. Performance of land use classification using MTE and several baseline 
methods, with the evaluation measures of accuracy (ACC), weighted precision 
(WP), and weighted F1 score (WF1).

Model ACC WP WF1

Traj2Vec 0.527±0.010 0.519±0.011 0.508±0.011
MNE 0.543±0.010 0.535±0.012 0.525±0.012
HDGE 0.520±0.009 0.511±0.009 0.505±0.009
HIER 0.537±0.011 0.532±0.011 0.513±0.011
Sk-3views 0.528±0.010 0.525±0.012 0.502±0.010
Graph-3views 0.521±0.010 0.516±0.010 0.506±0.010
MTE-temporal 0.530±0.010 0.519±0.011 0.509±0.010
MTE-spatial 0.520±0.010 0.508±0.010 0.508±0.010
MTE 0.554±0.011 0.546±0.012 0.538±0.012
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been verified in many previous studies (e.g. Ahas et al.  
2010; Chen et al. 2018; Douglass et al. 2015; Kang et al.  
2012; Ratti et al. 2006). Therefore, in the second down
stream task, we utilize the MTE region embeddings 
learned from the massive amount of mobile phone 
human trajectories for estimating population density 
for urban regions, which is useful to provide basic 
evidence for planning regional economic and social 
development.

In the experiment, we use the population den
sity data in 2013 from WorldPop1 as the ground 
truth data (6,789 regions have ground truth data). 
We input the region embeddings produced from 
MTE and the baseline models into a RF regression 
model (with 100 decision trees), and randomly 
choose 2/3 of the regions as training data, and 
the remaining 1/3 of the regions as test data 
(from the 6,789 regions with ground truth informa
tion). We repeat the experiments for 100 times 
with random training test set splits, and finally 
report the average performance metrics, i.e. R2, 
root mean squared error (RMSE), mean absolute 
error (MAE), and mean absolute percentage error 
(MAPE).

The results are demonstrated in Table 2, and we 
further spatially visualize the absolute estimation errors 
in each region in Figure 7. We observe that MTE pro
duces impressive performance for this task, with R2 > 0.8, 
meaning that the variation of population density across 
the study area can be very well explained by the varia
tion of MTE embeddings. Interestingly, we can observe 
that MTE-spatial produces much better performance 
than MTE-temporal, and is also slightly better than the 
full version of MTE. This means that spatial adjacency is 
much more indicative for population density estimation 
than temporal similarities; adding the information from 
the temporal view only worsens the performance. This is 
likely because that densely or sparsely populated areas 
are generally respectively clustered, and thus spatial 
adjacency is pivotal for this task. Temporal regularities 
are useful for discerning residential and industrial areas 
with other land use types, but they are not indicative to 
different residential areas with varying levels of popula
tion density. For example, the temporal regularities in 
a region with high-rise apartment buildings (densely 
populated) and another region with detached houses 
(sparsely populated) are similar, while their population 
densities largely differ.

Figure 6. The confusion matrixes for (a) MTE, (b) MTE-spatial, and (c) MTE-temporal.

Table 2. Performance of population density estimation. Units for RMSE and MAE are number of people/ 
km2.

Model R2↑ RMSE↓ MAE↓ MAPE↓
Traj2Vec 0.669±0.023 5355.76±322.30 2996.36±75.13 0.793±0.066
MNE 0.691±0.020 5165.66±259.55 2912.74±77.24 0.746±0.06
HDGE 0.705±0.021 5080.28±292.38 2802.99±78.36 0.711±0.062
HIER 0.506±0.025 6557.95±329.47 3740.22±88.79 1.134±0.083
Sk-3views 0.644±0.025 5513.84±341.16 3118.17±86.53 0.846±0.062
Graph-3views 0.680±0.026 5273.55±334.89 2858.80±78.01 0.673±0.049
MTE-temporal 0.313±0.023 7692.49±292.24 4751.09±94.05 1.574±0.114
MTE-spatial 0.827±0.016 3863.49±244.08 2132.52±71.66 0.467±0.036
MTE 0.816±0.015 3987.62±243.51 2226.17±65.64 0.493±0.037
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As to the baselines, the ones with explicit modeling of 
spatial adjacency (e.g. MNE and HDGE) generally out
perform others. Although Sk-3views and Graph-3views 
also encode spatial adjacency, the information from the 
temporal perspective could have slightly backward 
effects for this task. Traj2Vec also produces average- 
level performance, as the human transition patterns 
can be useful in discriminating residential areas with 
different levels of population density, and the spatial 
adjacency information can partially be reflected by mas
sive amounts of human transitions. At last, HIER pro
duces the worst performance among all baseline 
models, as it uses an autoregressive model to learn 
location embeddings, which neither enforces the fre
quently co-occurred (from the transition view) nor the 
spatially close locations to be similar in the embedding 
space.

5.6. House price prediction

House price is an important factor for human habita
tion and economic development in our cities. 
Modeling and predicting house price using different 
types of geospatial data have been explored in sev
eral disciplines, such as geography, urban studies, and 
economics. Among other data sources, human 

mobility data has been proved to be effective for 
modeling house price (e.g. Kang et al. 2021). In the 
third downstream task, we use the learned region 
embeddings for house price prediction.

In the experiment, we use the house price data 
in 2020 from a Chinese real estate agent Lianjia2 as 
the ground truth data (970 regions have ground 
truth data). The human trajectories and house price 
data do not perfectly temporally align, while the 
general patterns of house price should be largely 
similar. We use the same RF regression model, 
dataset split means, number of times of experiment 
repetition, and evaluation metrics and for this task, 
as in the population density task.

The results are demonstrated in Table 3, and the 
absolute errors of the regions are spatially visualized 
in Figure 8. We observe that MTE also prevails in this 
task, and the information from the transition and 
spatial views is more indicative than the temporal 
view. However, the temporal view also has certain 
effectiveness, as MTE with all three views has the 
best performance (only slight performance gain com
pared to MTE-spatial though). This indicates that 
house with similar price ranges tends to be spatially 
close, which conforms with our common cognition. 
However, it seems that house with varying price 

Figure 7. Visualization of absolute errors of population density estimation on a map. Unit is number of population/km2.
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ranges only has blurry patterns in their temporal reg
ularities, and thus the temporal view merely leads to 
marginal performance gain for this task.

As to the baselines, we observe that MNE outper
forms others, probably as it has a more sophisticated 
method to fuse the three views of information, which 
mitigates the negative effects of modeling long-range 
dependencies in the spatial and temporal domains; 
this could be the reason of its superior performance 
compared to Sk-3views. HDGE also has comparable 
performance as MNE likely due to its emphasis on 
modeling the spatial adjacency and human transition 
patterns. The transition view’s information is also 
important for this task, as evidenced by the perfor
mance of Traj2Vec, which is better than Sk-3views 
where the long-range dependencies in the spatial 
and temporal domains downgrade the effectiveness. 
HIER and Graph-3views have unsatisfactory 

performance, which is likely because that the former 
does not incorporate spatial information, and the 
latter only models short-range dependency in the 
transition view.

5.7. Parameter sensitivity analyses

As described in Section 5.1, we tune three hyperpara
meters for the three information views: for the transi
tion view, we tune the window size w in {3, 5, 7, 9, 11}; 
for the spatial and temporal views, we tune ks (for the 
spatial graph) and kt (for the temporal graph) both in 
{4, 16, 64, 128, 256}. The parameter tuning is weighted 
in the three downstream tasks to select the best 
combination. All experiment settings are consistent 
with the respective downstream tasks.

As the embeddings from the transition view are 
used as the initial features for the spatial and 

Table 3. Performance of house price prediction. Units for RMSE and MAE are CNY/m2.

Model R2↑ RMSE↓ MAE↓ MAPE↓
Traj2Vec 0.532±0.043 16678.13±1310.83 11591.79±528.89 0.203±0.012
MNE 0.561±0.040 16184.94±1533.87 11240.92±572.29 0.195±0.012
HDGE 0.552±0.045 16454.15±1556.21 11090.67±539.56 0.188±0.010
HIER 0.460±0.038 18062.00±1470.42 12735.77±557.24 0.229±0.015
Sk-3views 0.506±0.041 17292.47±1278.74 12022.85±543.42 0.212±0.013
Graph-3views 0.430±0.053 18578.60±1663.10 12969.44±615.66 0.229±0.014
MTE-temporal 0.073±0.041 23704.17±1366.91 17862.36±663.14 0.324±0.018
MTE-spatial 0.576±0.047 15958.75±1498.07 10523.48±510.15 0.178±0.011
MTE 0.579±0.044 15734.94±1380.20 10502.69±501.10 0.179±0.011

Figure 8. Visualization of absolute errors of house price prediction on a map. Unit is CNY/m2.
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temporal views, we first solely use the transition 
embeddings with different window sizes in the three 
downstream tasks (which is equivalent to hyperpara
meter tuning for the baseline Traj2Vec). The results 
of shown in Table 4, from which we observe that the 
w = 9 leads to the generally best performance across 
the three tasks. It appears that land use and house 
price tasks tend to benefit from medium or large win
dow size, meaning that long-range dependency is pre
ferable. However, for the population density task, it 
seems that small window size is favorable. This is inter
esting as the spatial view weighted the most in this 
task, which implies that short-range spatial adjacency 
is preferable for this task, while long-range depen
dency exhibited from the transition view is not.

The results of the grid search of ks and kt in the 
spatial and temporal graphs are demonstrated in 
Figure 9. We observe the tendency that generally 
large kt leads to better performance in all three 
tasks, especially in population density and house 
price tasks. In fact, the temporal view only has mar
ginal and even backward effectiveness for the two 
tasks, so we believe that capturing temporal simila
rities from large numbers of “temporal neighbors” 
could bring slight benefit or mitigate the backward 
effects in the two tasks. We also observe that medium 
numbers of neighbors in the spatial graph result in 
better performance.

Overall, we find that w = 9, ks = 64, and kt = 128 result 
in balanced best performance across the three down
stream tasks, implying long-range dependency in the 
transition view, while medium-sized short-range depen
dencies in the spatial and temporal views.

6. Discussion

Through extensive experiments, we find that the pro
posed MTE approach consistently prevails in the down
stream tasks compared to several competitive baselines. 

It is also encouraging to see that our assumptions stand: 
(1) The three information views carried by human tra
jectories indeed have respective advantages in different 
downstream tasks, and combing them generally pro
duces the most favorable results (although incorporat
ing the temporal view induces slight backward effect in 
the population density task). (2) Modeling long-range 
dependency is favorable for modeling the transition 
view, thereby skip-gram model is a good fit. (3) 
Modeling the dependencies in close proximities in the 
spatial and temporal views is preferable, where the 
powers of GNNs shine.

The different ways of modeling long-range and short- 
range dependencies could be analogous to the difference 
between depth-first and breath-first strategies in search 
algorithms (Cormen et al. 2022). In the transition view, 
a depth-first-like method is used, where skip-gram could 
peek at further away locations (9-steps away) that are linked 
by human trajectories. As to the spatial and temporal views, 
a breath-first-like approach is used; even though 64 and 
128 neighbors are finally used for graph construction, they 
enclose central locations and compose generally short- 
radius areas. We believe that this also partially answers 
another question in the geospatial domain, i.e. skip-gram 
vs. GNNs, which one should be used in what scenarios? Our 
answer to this is that skip-gram is favorable when long- 
range dependency stands, while GNNs are better for mod
eling short-range correlations.

An interesting observation from the study is that 
different information views have varying effectiveness 
in different downstream tasks. The transition view is 
important for all tasks, and it serves as an indispensa
ble foundation of the learned region embeddings. 
The spatial view is also important for all tasks, while 
it is less indicative than the temporal view in the land 
use task. The temporal view can largely benefit the 
land use task, and subtly benefit house price predic
tion, while it is not preferable to be used in estimating 
population density. This indicates that it is not always 

Table 4. Parameter analysis in terms of the window size w in the transition view. LU-F1 denotes the 
weighted F1 score in the land use classification task, PD-MAE denotes MAE in the population 
density estimation task, and HP-MAE denotes MAE in the house price prediction task. These three 
columns are in the form of metric (rank).

Window size w LU-F1↑ PD-MAE↓ HP-MAE↓ Average rank↓
3 0.505(5) 2951.830(1) 11885.103(3) 2.33
5 0.506(4) 3018.193(4) 11875.263(2) 3.67
7 0.507(3) 3048.656(5) 11918.788(4) 4.33
9 0.513(1) 2982.641(2) 11591.789(1) 1.67
11 0.509(2) 3001.700(3) 12342.406(5) 3
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the case that fusing all information views provides the 
best performance, and it should be weighted on par
ticular downstream tasks. This is also the reason that 
we use simple concatenation for combining the 
embeddings from the spatial and temporal graphs, 
rather than sophisticated means for fusion, e.g. to 
perform further contrastive learning between them 
(Park et al. 2020).

Human trajectories are an important component in 
today’s landscape of geospatial big data. In particular, 
POIs are another pivotal data source that are preva
lently used in many urban sensing tasks. We believe 
that it is also important to compare different types of 
data in terms of their effectiveness in varying down
stream tasks. In this regard, this study utilizes the 
same ground truth dataset in the population density 
and house price tasks as a state-of-the-art POI-based 

region embedding study (HGI; Huang et al. 2023), so 
a direct comparison can be drawn between them. We 
observe that MTE considerably outperforms HGI in 
the two tasks, which is even more impressive if one 
considers the temporal misalignment between the 
used human trajectories and the ground truth data. 
This finding does not water down the contributions of 
Huang et al. (2023), while it indicates that human 
trajectories can be more useful than POIs for the two 
tasks. This observation implies that we should con
sider the fitness of different types of geospatial data 
when using (integrating) them for various urban sen
sing tasks; simply fusing all data modalities might not 
be an optimal solution, while developing task- 
adaptive machine learning solutions might be 
a promising avenue, i.e. each data modality weighs 
differently in varying tasks.

Figure 9. Parameter sensitivity analyses in terms of ks (for the spatial graph) and kt (for the temporal graph), i.e. the k number in 
constructing KNN graphs.
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At last, we observe that pre-training methods are 
increasingly popular in spatiotemporal data mining, 
particularly in urban mobility studies (e.g. Li, Xia, et al.  
2024; Zhang, Gong, Zhang, et al. 2023). In such stu
dies, region (location) representations are also 
learned in varying manners, e.g. using masked auto
encoder, to carry the rich information of different 
urban areas in terms of their roles (functions) and 
correlations. These representations are effective in 
mobility prediction tasks. In this regard, it is 
a promising research direction to further develop pre- 
training methods in urban mobility studies, for var
ious (relatively) static urban analyses, e.g. inferring 
land use and population density.

7. Conclusions

In this paper, we propose a novel approach MTE for 
learning effective region representations (vector 
embeddings) with human trajectories in a fully unsuper
vised manner. MTE models three salient information 
perspectives of trajectory data, namely the transition, 
spatial, and temporal views, and utilizes varying 
machine learning techniques based on the traits of 
different views. Specifically, long-range dependency is 
meaningful in the transition view, and thus we utilize 
skip-gram for this view; short-range dependency is pre
ferable for the spatial and temporal views, so unsuper
vised graph representation learning is leveraged to learn 
embeddings for the two views. We use a mobile phone 
trajectory dataset in Shenzhen for pre-training the pro
posed MTE model. Through extensive experiments in 
three downstream tasks, i.e. land use classification, 
population density estimation, and house price predic
tion, we observe that MTE region embeddings consider
ably outperform several competitive baselines in all 
three tasks. In addition, we observe that the effective
ness of different perspectives varies in particular down
stream tasks, e.g. the temporal view is more effective 
than the spatial view in land use classification, while it is 
the opposite in house price prediction. This study pro
vides insights into the fitness of distinctive machine 
learning techniques for modeling different information 
perspectives carried by geospatial data.

Notes

1. https://www.worldpop.org/
2. https://lianjia.com

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was funded in part by the National Natural Science 
Foundation of China [No. 42101421 and 92367202]; the Knut 
and Alice Wallenberg Foundation [No. KAW 2019.0550]; the 
“CUG Scholar” Scientific Research Funds at China University of 
Geosciences (Wuhan) [No. 2022034]; a grant from State Key 
Laboratory of Resources and Environmental Information 
System.

ORCID

Yu Zhang http://orcid.org/0009-0004-6404-4958
Weiming Huang http://orcid.org/0000-0002-3208-4208
Yao Yao http://orcid.org/0000-0002-2830-0377
Song Gao http://orcid.org/0000-0003-4359-6302
Lizhen Cui http://orcid.org/0000-0002-8262-8883
Zhongmin Yan http://orcid.org/0000-0002-5271-5417

Data availability statement

The codes and embeddings that support the findings of the 
paper can be found at https://github.com/ZYuSdu/MTE.

References

Ahas, R., A. Aasa, S. Silm, and M. Tiru. 2010. “Daily Rhythms of 
Suburban commuters’ Movements in the Tallinn 
Metropolitan Area: Case Study with Mobile Positioning 
Data.” Transportation Research Part C: Emerging Technologies 
18 (1): 45–54. https://doi.org/10.1016/j.trc.2009.04.011  .

Barbosa, H., M. Barthelemy, G. Ghoshal, C. R. James, 
M. Lenormand, T. Louail, R. Menezes, J. J. Ramasco, 
F. Simini, and M. Tomasini. 2018. “Human Mobility: Models 
and Applications.” Physics Reports 734:1–74. https://doi.org/ 
10.1016/j.physrep.2018.01.001  .

Bengio, Y., A. Courville, and P. Vincent. 2013. “Representation 
Learning: A Review and New Perspectives.” IEEE Transactions 
on Pattern Analysis & Machine Intelligence 35 (8): 1798–1828.  
https://doi.org/10.1109/TPAMI.2013.50  .

Chen, J., T. Pei, S.-L. Shaw, F. Lu, M. Li, S. Cheng, X. Liu, and 
H. Zhang. 2018. “Fine-Grained Prediction of Urban Population 
Using Mobile Phone Location Data.” International Journal of 
Geographical Information Science 32 (9): 1770–1786. https:// 
doi.org/10.1080/13658816.2018.1460753  .

Chen, M., Q. Liu, W. Huang, T. Zhang, Y. Zuo, and X. Yu. 2021. 
“Origin-Aware Location Prediction Based on Historical 
Vehicle Trajectories.” ACM Transactions on Intelligent 
Systems and Technology (TIST) 13 (1): 1–18. https://doi.org/ 
10.1145/3462675  .

GISCIENCE & REMOTE SENSING 19

https://www.worldpop.org/
https://lianjia.com
https://github.com/ZYuSdu/MTE
https://doi.org/10.1016/j.trc.2009.04.011
https://doi.org/10.1016/j.physrep.2018.01.001
https://doi.org/10.1016/j.physrep.2018.01.001
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1080/13658816.2018.1460753
https://doi.org/10.1080/13658816.2018.1460753
https://doi.org/10.1145/3462675
https://doi.org/10.1145/3462675


Cheng, H., W. Liao, M. Y. Yang, B. Rosenhahn, and M. Sester. 
2021. “Amenet: Attentive Maps Encoder Network for 
Trajectory Prediction.” Isprs Journal of Photogrammetry & 
Remote Sensing 172:253–266. https://doi.org/10.1016/j. 
isprsjprs.2020.12.004  .

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein. 2022. 
Introduction to Algorithms. Cambridge, Massachusetts Ave: 
MIT press.

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova. 2019. BERT: 
Pre-Training of Deep Bidirectional Transformers for Language 
Understanding, 4171–4186. Minneapolis, Minnesota: 
Association for Computational Linguistics.

Douglass, R. W., D. A. Meyer, M. Ram, D. Rideout, and D. Song. 
2015. “High Resolution Population Estimates from 
Telecommunications Data.” EPJ Data Science 4 (1): 1–13.  
https://doi.org/10.1140/epjds/s13688-015-0040-6  .

Fu, Y., P. Wang, J. Du, L. Wu, and X. Li. 2019. “Efficient 
Region Embedding with Multi-View Spatial Networks: A 
Perspective of Locality-Constrained Spatial Autocorrelations.” 
Proceedings of the AAAI Conference on Artificial Intelligence, 
Hawaii, USA, 906–913.

Gao, S., K. Janowicz, and H. Couclelis. 2017. “Extracting Urban 
Functional Regions from Points of Interest and Human 
Activities on Location-Based Social Networks.” Transactions 
in GIS 21 (3): 446–467. https://doi.org/10.1111/tgis.12289  .

Grover, A., and J. Leskovec. 2016. “node2vec: Scalable Feature 
Learning for Networks.” Proceedings of the 22nd ACM SIGKDD 
international conference on Knowledge discovery and data 
mining, San Francisco, USA, 855–864.

Hamilton, W., Z. Ying, and J. Leskovec. 2017. “Inductive 
Representation Learning on Large Graphs.” Advances in 
Neural Information Processing Systems, Long Beach, 
California, USA, 30.

Hassani, K., and A. H. Khasahmadi. 2020. “Contrastive Multi-View 
Representation Learning on Graphs.” International Conference 
on Machine Learning. PMLR, Virtual, 4116–4126.

Hu, S., S. Gao, L. Wu, Y. Xu, Z. Zhang, H. Cui, and X. Gong. 2021. 
“Urban Function Classification at Road Segment Level Using Taxi 
Trajectory Data: A Graph Convolutional Neural Network 
Approach.” Computers, Environment and Urban Systems 
87:101619. https://doi.org/10.1016/j.compenvurbsys.2021.101619  .

Huang, W., L. Cui, M. Chen, D. Zhang, and Y. Yao. 2022. 
“Estimating Urban Functional Distributions with Semantics 
Preserved POI Embedding.” International Journal of 
Geographical Information Science 36 (10): 1905–1930.  
https://doi.org/10.1080/13658816.2022.2040510  .

Huang, W., D. Zhang, G. Mai, X. Guo, and L. Cui. 2023. “Learning 
Urban Region Representations with POIs and Hierarchical 
Graph Infomax.” Isprs Journal of Photogrammetry & Remote 
Sensing 196:134–145. https://doi.org/10.1016/j.isprsjprs. 
2022.11.021  .

Ji, Y., S. Gao, T. Huynh, C. Scheele, J. Triveri, J. Kruse, C. Bennett, and 
Y. Wen. 2023. “Rethinking the Regularity in Mobility Patterns of 
Personal Vehicle Drivers: A Multi-City Comparison Using 
a Feature Engineering Approach.” Transactions in GIS 27 (3): 
663–685. https://doi.org/10.1111/tgis.13043  .

Kang, C., Y. Liu, X. Ma, and L. Wu. 2012. “Towards Estimating 
Urban Population Distributions from Mobile Call Data.” 
Journal of Urban Technology 19 (4): 3–21. https://doi.org/ 
10.1080/10630732.2012.715479  .

Kang, Y., F. Zhang, W. Peng, S. Gao, J. Rao, F. Duarte, and 
C. Ratti. 2021. “Understanding House Price Appreciation 
Using Multi-Source Big Geo-Data and Machine Learning.” 
Land Use Policy 111:104919. https://doi.org/10.1016/j.landu 
sepol.2020.104919  .

Kipf, T. N., and M. Welling. 2017. “Semi-Supervised 
Classification with Graph Convolutional Networks.” 
Proceedings of the 5th International Conference on Learning 
Representations, Toulon, France.

Klicpera, J., S. Weißenberger, and S. Günnemann. 2019. 
“Diffusion Improves Graph Learning.” Proceedings of the 
33rd International Conference on Neural Information 
Processing Systems, Vancouver, Canada, 13366–13378.

Li, Z., W. Huang, K. Zhao, M. Yang, Y. Gong, and M. Chen. 2024. 
“Urban Region Embedding via Multi-View Contrastive Prediction.” 
Proceedings of the AAAI Conference on Artificial Intelligence 38 (8): 
8724–8732. https://doi.org/10.1609/aaai.v38i8.28718  .

Li, Z., L. Xia, Y. Xu, and C. Huang. 2024. “GPT-ST: Generative 
Pre-Training of Spatio-Temporal Graph Neural Networks.” 
Advances in Neural Information Processing Systems, Vancouver, 
Canada, 36.

Liang, Y., J. Zhu, W. Ye, and S. Gao. 2022. “Region2Vec: 
Community Detection on Spatial Networks Using Graph 
Embedding with Node Attributes and Spatial Interactions.” 
In Association for Computing Machinery, New York, NY, USA, 
Article. Proceedings of the 30th International Conference on 
Advances in Geographic Information Systems (SIGSPATIAL 
’22), 39, 1–4. https://doi.org/10.1145/3557915.3560974  .

Lin, J., Y. Zhu, L. Liu, Y. Liu, G. Li, and L. Lin. 2023. “Denselight: 
Efficient Control for Large-Scale Traffic Signals with Dense 
Feedback.” Proceedings of the Thirty-Second International 
Joint Conference on Artificial Intelligence, Macao, China.

Linsker, R. 1988. “Self-Organization in a Perceptual Network.” 
Computer 21 (3): 105–117. https://doi.org/10.1109/2.36  .

Liu, Y., F. Wang, Y. Xiao, and S. Gao. 2012. “Urban Land Uses and 
Traffic ‘Source-Sink areas’: Evidence from GPS-Enabled Taxi 
Data in Shanghai.” Landscape and Urban Planning 106 (1): 
73–87. https://doi.org/10.1016/j.landurbplan.2012.02.012  .

Liu, Y., K. Wang, L. Liu, H. Lan, and L. Lin. 2022. “Tcgl: Temporal 
Contrastive Graph for Self-Supervised Video Representation 
Learning.” IEEE Transactions on Image Processing 
31:1978–1993. https://doi.org/10.1109/TIP.2022.3147032  .

Mazimpaka, J. D., and S. Timpf. 2016. “Trajectory Data Mining: 
A Review of Methods and Applications.” Journal of Spatial 
Information Science 2016 (13): 61–99. https://doi.org/10. 
5311/JOSIS.2016.13.263  .

Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. 
2013. “Distributed Representations of Words and Phrases 
and Their Compositionality.” Proceedings of the Twenty- 
sixth International Conference on Neural Information 
Processing Systems, Nevada, USA.

Oono, K., and T. Suzuki. 2019. “Graph Neural Networks 
Exponentially Lose Expressive Power for Node Classification.” 

20 Y. ZHANG ET AL.

https://doi.org/10.1016/j.isprsjprs.2020.12.004
https://doi.org/10.1016/j.isprsjprs.2020.12.004
https://doi.org/10.1140/epjds/s13688-015-0040-6
https://doi.org/10.1140/epjds/s13688-015-0040-6
https://doi.org/10.1111/tgis.12289
https://doi.org/10.1016/j.compenvurbsys.2021.101619
https://doi.org/10.1080/13658816.2022.2040510
https://doi.org/10.1080/13658816.2022.2040510
https://doi.org/10.1016/j.isprsjprs.2022.11.021
https://doi.org/10.1016/j.isprsjprs.2022.11.021
https://doi.org/10.1111/tgis.13043
https://doi.org/10.1080/10630732.2012.715479
https://doi.org/10.1080/10630732.2012.715479
https://doi.org/10.1016/j.landusepol.2020.104919
https://doi.org/10.1016/j.landusepol.2020.104919
https://doi.org/10.1609/aaai.v38i8.28718
https://doi.org/10.1145/3557915.3560974
https://doi.org/10.1109/2.36
https://doi.org/10.1016/j.landurbplan.2012.02.012
https://doi.org/10.1109/TIP.2022.3147032
https://doi.org/10.5311/JOSIS.2016.13.263
https://doi.org/10.5311/JOSIS.2016.13.263


International Conference on Learning Representations, New 
Orleans, USA.

Pan, G., G. Qi, Z. Wu, D. Zhang, and S. Li. 2012. “Land-Use 
Classification Using Taxi GPS Traces.” IEEE Transactions on 
Intelligent Transportation Systems 14 (1): 113–123. https:// 
doi.org/10.1109/TITS.2012.2209201  .

Park, C., D. Kim, J. Han, and H. Yu. 2020. “Unsupervised Attributed 
Multiplex Network Embedding.” Proceedings of the AAAI 
Conference on Artificial Intelligence, New York, USA, 5371–5378.

Pei, T., S. Sobolevsky, C. Ratti, S.-L. Shaw, T. Li, and C. Zhou. 
2014. “A New Insight into Land Use Classification Based on 
Aggregated Mobile Phone Data.” International Journal of 
Geographical Information Science 28 (9): 1988–2007.  
https://doi.org/10.1080/13658816.2014.913794  .

Qu, H., Y. Gong, M. Chen, J. Zhang, Y. Zheng, and Y. Yin. 2022. 
“Forecasting Fine-Grained Urban Flows via Spatio-Temporal 
Contrastive Self-Supervision.” IEEE Transactions on 
Knowledge and Data Engineering 35 (8): 8008–8023. https:// 
doi.org/10.1109/TKDE.2022.3200734 .

Ratti, C., D. Frenchman, R. M. Pulselli, and S. Williams. 2006. 
“Mobile Landscapes: Using Location Data from Cell Phones 
for Urban Analysis.” Environment & Planning. B, Planning & 
Design 33 (5): 727–748. https://doi.org/10.1068/b32047  .

Shimizu, T., T. Yabe, and K. Tsubouchi. 2020. “Enabling Finer 
Grained Place Embeddings Using Spatial Hierarchy from 
Human Mobility Trajectories.” Proceedings of the 28th 
International Conference on Advances in Geographic 
Information Systems, Seattle, Washington, USA, 187–190.

Sun, Z., Z. Peng, Y. Yu, and H. Jiao. 2022. “Deep Convolutional 
Autoencoder for Urban Land Use Classification Using Mobile 
Device Data.” International Journal of Geographical 
Information Science 36 (11): 1–31. https://doi.org/10.1080/ 
13658816.2022.2105848  .

Veličković, P., W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and 
R. D. Hjelm. 2019. “Deep Graph Infomax.” International 
Conference on Learning Representations, New Orleans, USA.

Wan, H., Y. Lin, S. Guo, and Y. Lin. 2021. “Pre-Training 
Time-Aware Location Embeddings from Spatial-Temporal 
Trajectories.” IEEE Transactions on Knowledge and Data 
Engineering 34 (11): 5510–5523. https://doi.org/10.1109/ 
TKDE.2021.3057875 .

Wang, H., and Z. Li. 2017. “Region Representation Learning via 
Mobility Flow.” Proceedings of the 2017 ACM on Conference 
on Information and Knowledge Management, Singapore, 
Singapore, 237–246.

Wang, K., L. Liu, Y. Liu, G. Li, F. Zhou, and L. Lin. 2023. “Urban 
Regional Function Guided Traffic Flow Prediction.” 
Information Sciences 634:308–320. https://doi.org/10.1016/j. 
ins.2023.03.109  .

Wang, Z., H. Li, and R. Rajagopal. 2020. “Urban2vec: 
Incorporating Street View Imagery and Pois for 

Multi-Modal Urban Neighborhood Embedding.” 
Proceedings of the AAAI Conference on Artificial Intelligence, 
New York, USA, 1013–1020.

Wu, S., X. Yan, X. Fan, S. Pan, S. Zhu, C. Zheng, M. Cheng, and 
C. Wang. 2022. “Multi-Graph Fusion Networks for Urban 
Region Embedding.” Proceedings of the Thirty-First 
International Joint Conference on Artificial Intelligence, 
Vienna, Austria.

Yan, H., Y. Liu, Y. Wei, Z. Li, G. Li, and L. Lin. 2023. “Skeletonmae: 
Graph-Based Masked Autoencoder for Skeleton Sequence 
Pre-Training.” Proceedings of the IEEE/CVF International 
Conference on Computer Vision, Paris, France, 5606–5618.

Yao, Z., Y. Fu, B. Liu, W. Hu, and H. Xiong. 2018. “Representing 
Urban Functions Through Zone Embedding with Human 
Mobility Patterns.“ Proceedings of the Twenty-Seventh 
International Conference on International Joint Conferences 
on Artificial Intelligence, Stockholm, Sweden, 3919–3925. IJCAI.

Yuan, J., Y. Zheng, and X. Xie. 2012. “Discovering Regions of 
Different Functions in a City Using Human Mobility and POIs.” 
Proceedings of the 18th ACM SIGKDD international conference on 
Knowledge discovery and data mining, Beijing, China, 186–194.

Zhang, H., L. Qiu, L. Yi, and Y. Song. 2018. “Scalable Multiplex 
Network Embedding.” IJCAI, 3082–3088.

Zhang, J., X. Li, Y. Yao, Y. Hong, J. He, Z. Jiang, and J. Sun. 2021. “The 
Traj2Vec Model to Quantify residents’ Spatial Trajectories and 
Estimate the Proportions of Urban Land-Use Types.” 
International Journal of Geographical Information Science 35 (1): 
193–211. https://doi.org/10.1080/13658816.2020.1726923  .

Zhang, M., T. Li, Y. Li, and P. Hui. 2020. “Multi-View Joint Graph 
Representation Learning for Urban Region Embedding.” 
Proceedings of the Twenty-Ninth International Conference on 
International Joint Conferences on Artificial Intelligence, 
Yokohama, Japan, 4431–4437.

Zhang, X., Y. Gong, C. Zhang, X. Wu, Y. Guo, W. Lu, and X. Dong. 
2023. “Spatio-Temporal Fusion and Contrastive Learning for 
Urban Flow Prediction.” Knowledge-Based Systems 282:111104.  
https://doi.org/10.1016/j.knosys.2023.111104  .

Zhang, X., Y. Gong, X. Zhang, X. Wu, C. Zhang, and X. Dong. 
2023. “Mask-And Contrast-Enhanced Spatio-Temporal 
Learning for Urban Flow Prediction.” Proceedings of the 
32nd ACM International Conference on Information and 
Knowledge Management, Birmingham, United Kingdom, 
3298–3307.

Zheng, K., Y. Zheng, N. J. Yuan, and S. Shang. 2013. “On 
Discovery of Gathering Patterns from Trajectories.” 2013 
IEEE 29th international conference on data engineering 
(ICDE), Brisbane, Australia, 242–253. IEEE.

Zhu, Y., Y. Zhang, L. Liu, Y. Liu, G. Li, M. Mao, and L. Lin. 2022. 
“Hybrid-Order Representation Learning for Electricity Theft 
Detection.” IEEE Transactions on Industrial Informatics 19 (2): 
1248–1259. https://doi.org/10.1109/TII.2022.3179243.

GISCIENCE & REMOTE SENSING 21

https://doi.org/10.1109/TITS.2012.2209201
https://doi.org/10.1109/TITS.2012.2209201
https://doi.org/10.1080/13658816.2014.913794
https://doi.org/10.1080/13658816.2014.913794
https://doi.org/10.1109/TKDE.2022.3200734
https://doi.org/10.1109/TKDE.2022.3200734
https://doi.org/10.1068/b32047
https://doi.org/10.1080/13658816.2022.2105848
https://doi.org/10.1080/13658816.2022.2105848
https://doi.org/10.1109/TKDE.2021.3057875
https://doi.org/10.1109/TKDE.2021.3057875
https://doi.org/10.1016/j.ins.2023.03.109
https://doi.org/10.1016/j.ins.2023.03.109
https://doi.org/10.1080/13658816.2020.1726923
https://doi.org/10.1016/j.knosys.2023.111104
https://doi.org/10.1016/j.knosys.2023.111104
https://doi.org/10.1109/TII.2022.3179243

	Abstract
	1. Introduction
	2. Related works
	2.1. Trajectory mining for characterizing urban spaces
	2.2. Region representation learning: skip-gram and GNNs

	3. Study area and data
	4. Methodology
	4.1. Learning cell tower embeddings of the transition view
	4.2. Constructing spatial and temporal graphs
	4.3. Learning spatial and temporal embeddings with unsupervised graph representation learning
	4.4. Mapping cell tower embeddings to region embeddings

	5. Experiments and results
	5.1. Implementation details
	5.2. Baseline models
	5.3. Similar location search
	5.4. Land use classification
	5.4.1. Performance
	5.4.2. Classification confusion analysis

	5.5. Population density estimation
	5.6. House price prediction
	5.7. Parameter sensitivity analyses

	6. Discussion
	7. Conclusions
	Notes
	Disclosure statement
	Funding
	ORCID
	Data availability statement
	References

