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ABSTRACT 
Rapid land-use change detection (LUCD) is pivotal for refined 
urban planning and management. In this paper, we investigate 
LUCD through learning embeddings of points of interest (POIs) 
from multiple temporalities. There are several prominent chal-
lenges: (1) the co-occurrence problem of multi-temporal POIs, (2) 
the heterogeneity of POI categorization, and (3) The lack of 
human-crafted labels. Therefore, multi-temporal POIs need to be 
aligned in the embedding space for effective LUCD. This study 
proposes a multi-temporal POI embedding (MT-POI2Vec) tech-
nique for LUCD in a fully unsupervised manner. In MT-POI2Vec, 
we first utilize random walks in POI networks to capture their sin-
gle-period co-occurrence patterns; then, we leverage manifold 
learning to capture (1) single-period categorical semantics of POIs 
to enforce semantically similar POI embedding to be close and (2) 
cross-period categorical semantics to align multi-temporal POI 
embedding in a unified embedding space. We conducted experi-
ments in Shenzhen, China, which demonstrates that the proposed 
method is effective. Compared with several baseline models, MT- 
POI2Vec can better align multi-temporal POIs and thus achieve 
higher performance in LUCD. In addition, our model can effect-
ively identify areas with unchanged land use and land use 
changes in residential and industrial areas at a fine scale.
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1. Introduction

Urban land-use change detection identifies differences in land-use distribution and 
composition over time (Viana et al. 2019), which is a crucial indicator for urban man-
agement and socioeconomic assessment. Currently, urban land use is changing in 
many parts of the world, and the magnitude of the change is influenced by a variety 
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of socioeconomic and biophysical factors, including deforestation, urban expansion, 
and agricultural intensification (Islam et al. 2018). With the continuous development of 
China’s economy and the accelerated pace of urbanization, a large amount of land 
has been continuously developed and expropriated, resulting in significant changes in 
the original land cover in a relatively short period of time (Aderele et al. 2020). Highly 
dynamic changes in urban land-use pose challenges to policy-makers and urban plan-
ners in managing emerging urban communities. Therefore, effectively identifying 
urban land-use changes is essential for optimizing urban land-use patterns and pro-
moting sustainable urban development (Wu et al. 2021).

Remote sensing images have been proven to be one of the important data sources 
for monitoring and analyzing land use change over time (Asokan and Anitha 2019). 
Detecting land use change using remote sensing images consists of the post-classification 
change detection method and the direct change detection method. The post-classification 
change detection method first classifies multi-temporal remote sensing images, and then 
the classification results of different periods are compared and analyzed to derive the final 
results (Zhu et al. 2022). Classification methods include maximum likelihood classification 
(Samanta and Paul 2016, Halimi et al. 2018, Prabu and Dar 2018, Pramanik and Punia 
2020), support vector machines (SVMs) (Zewdie and Csaplovies 2015, Nandam and Patel 
2022), and deep neural networks (Henry et al. 2019, Alhassan et al. 2020, Feizizadeh et al. 
2021), etc. The post-classification change detection method is simple and intuitive, but 
the results of change identification are strongly influenced by the classification accuracy. 
In addition, the post-classification change detection method based on remotely sensed 
images relies on supervised learning; thus, it requires a large number of manually pro-
duced labels, which in many cases are expensive or even impractical. In contrast, the 
methods of direct change detection include the spectral-based comprehensive change 
detection method (CCDM) (Jin et al. 2013), change vector analysis method (CVA) (Jung 
and Chang 2015, Singh et al. 2021), and object-based backtracking method (Yu et al. 
2016). The direct change detection method alleviates this problem, as it avoids classifica-
tion and cumulative errors (Xiaolu and Bo 2011).

However, remote sensing images can mainly reflect the external physical attributes 
of the study area but fail to reflect the socioeconomic characteristics and human activ-
ities of urban areas (Yao et al. 2017). The emergence of big data makes it possible to 
identify refined land-use types by introducing socioeconomic attributes, such as cell 
phone positioning data, social media data, cab track data, street view images, and 
geotagged photos (Cao et al. 2020). Many studies have explored how to utilize the 
socioeconomic attributes of big data to identify urban land-use. For example, Pei et al. 
(2014) provided new insights into aggregating time-series cell phone data for land-use 
classification. Xing and Meng (2018) integrated landscape metrics with socioeconomic 
characteristics extracted from crowdsourced data to classify functional urban areas. Hu 
et al. (2021) used a large quantity of cab track data to classify urban functions at the 
road segment level. Zhang et al. (2021) quantified the trajectories of residents as 
high-dimensional semantic vectors to model the relations between mixed urban 
land-use. In addition, fusing remote sensing images with the data mentioned above 
can better recognize urban land use from both the ‘top-down’ and ‘bottom-up’ 
perspectives (Yao et al. 2020). For example, Zhang et al. (2019) introduced interlinking 
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mechanisms in identifying urban land use using multisource data to achieve a natural 
correspondence between remote sensing images, POIs, and real-time social media 
user data. Cao et al. (2020) proposed an end-to-end deep multimodal fusion network 
to fuse remote sensing images and socially sensed feature data for the asynchronous 
problem of multimodal multisource data. Bai et al. (2023) utilized contrastive learning 
for fusing remote sensing data and POIs in an unsupervised manner, and the learned 
embeddings can be used for multiple applications like sensing land use.

Among various big data sources depicting urban land-use, POIs are able to reflect 
socioeconomic attributes and are easier to obtain than other data sources like remote 
sensing images and human trajectories (Yao et al. 2017, Huang et al. 2023). A growing 
number of studies show that the spatial contextual relations of POIs can be used to 
mine deep semantic land-use information (Yao et al. 2017, Zhai et al. 2019, Huang 
et al. 2022). Initially, the frequency characteristics of POIs in the region were used to 
explore land-use classification (Tian and Shen 2011, Jiang et al. 2015). However, such 
methods ignore the spatial interplay among POIs, resulting in compromised effective-
ness in mining land-use information. To solve this problem, Yao et al. (2017) utilized 
the Word2Vec model (Mikolov et al. 2013) into POI-based land-use classification and 
established an innovative framework to detect urban land-use distribution at the scale 
of traffic analysis zones (TAZs). This approach yields a good representation of features 
but ignores the influence of the first law of geography, which emphasizes that POIs are 
more associated with points geographically closed (Zhai et al. 2019). Yan et al. (2017) 
then proposed a Place2Vec model to consider the first law of geography in construct-
ing the POI corpus. Zhai et al. (2019) used the Place2Vec model for the extraction and 
identification of urban functional areas and achieved good accuracy. These two meth-
ods mainly focus on capturing the spatial co-occurrence relations of POIs but fail to 
capture the intrinsic categorical semantic information of POIs. To tackle this problem, 
Huang et al. (2022) proposed a new method to estimate the proportional distribution 
of functional types in cities by learning the embeddings of POIs that preserve the 
semantic relatedness between POI categories according to the category hierarchy.

The above methods based on POI embedding justify that using deep-representing 
methods to mine POIs is effective for identifying urban land-use. Such an observation 
raises a natural question, namely whether we could utilize POIs – a single modality data - 
from multiple temporalities and learn their embeddings for LUCD, which is a particularly 
interesting avenue in light of the availability of such data. Considering the heterogeneity 
of POI categories in different years (implying that direct comparison is not possible), a 
straightforward way of using POI embeddings for LUCD is to separately embed POIs in 
different years, and such embeddings can then be aggregated to region (land parcel) 
level to produce region embeddings in different years, which can subsequently be used 
for LUCD. However, such a straightforward manner omits a technical pitfall, ie the separ-
ately learned POI embeddings in different years will end up in isolated embeddings 
spaces, making the unsupervised land use change detection infeasible. On the other 
hand, the embedding spaces in different years could be unified if we consider cross-year 
POI co-occurrence relations, whereas we are reluctant to incorporate such unreliable rela-
tions, eg we cannot regard a restaurant in 2013 and a hotel in 2020 as a co-occurred 
pair, even though they are rather close geographically. In this context, what matters the 
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most is finding a glue between the two isolated embedding spaces of different years. In 
fact, such a problem, to the best of our knowledge, has barely been addressed before, 
and what can serve as a glue for aligning the embedding spaces of POIs in different years 
remains a challenge. In addition, through aligning the embedding spaces, we could 
accomplish unsupervised LUCD by comparing the region embeddings in different years, 
which is particularly useful, as such ground truth data is rarely available.

In this paper, we come up with a solution to utilize the cross-year first-level categories 
as the glue, with two merits: (1) a POI dataset usually only has 20–30 first-level catego-
ries, making the manual alignment light-weight, viable and less painful, and (2) the 
semantics of first-level categories is generic enough to ensure the correctness of the 
manual alignment, while aligning second-level categories would lead to the difficulties in 
fuzzy and subtle semantic differences. With such a principle, we propose the MT-POI2Vec 
model and construct a framework for LUCD with a fully unsupervised approach. Adapted 
from the Semantic model proposed in Huang et al. (2022), we utilize random walks to 
capture within-year POI co-occurrence relations and use a manifold learning method to 
capture the semantic relations from two perspectives: (1) the single-year semantic rela-
tions according to the POI category hierarchy (the embeddings of the categories sharing 
the same upper-level category should be close), and (2) the cross-year category align-
ment through manual alignment for the first-level POI categories (if the first-level catego-
ries of two POI categories in different years are manually aligned, then they should be 
close in the embedding space). Subsequently, we average the POI embeddings over the 
parcels to obtain the parcel representation embeddings, derive the land-use type differ-
ences of the parcels in different years and compare them with the ground truth for 
understanding the effectiveness of the proposed MT-POI2Vec. The parcel change embed-
dings are clustered to obtain the pattern distribution of land-use changes. This study 
takes Shenzhen, China as the study area and uses two periods of POIs for the 
experiment.

Our key contributions are (1) we find the first-level categories as a glue to accom-
plish embedding space alignment for POIs in different temporalities, which has barely 
been explored before and (2) we first use POI embeddings to detect land-use changes 
with a fully unsupervised approach, overcoming the problem of difficulty in acquiring 
labeled data and avoiding the incremental error caused by multiple classification proc-
esses. The rest of the paper is organized as follows. Section 2 introduces the study 
area and data. In Section 3, we present our MT-POI2vec model and a framework for 
identifying land-use change based on this model. In Section 4, we obtain the cluster-
ing distribution of POI category embeddings in 2D space, the cosine distance distribu-
tion at the parcel scale, as well as the clustering distribution of the land use change 
embeddings and then carry out the field validation by using remote sensing images. 
In Section 5, we discuss the feasibility of our method and several important issues 
that can be further improved. Finally, we conclude in Section 6.

2. Study area and dataset

The study area is Shenzhen, China (Figure 1). Shenzhen is one of the most developed 
city in southern China, with a permanent population of 17,681,600 in 2021. The central 
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urban areas of Shenzhen include Futian District, Luohu District, Nanshan District, 
Bao’an District, Yantian District, Longgang District, Longhua District, Pingshan District, 
Guangming District, and Dapeng District. The first four administrative regions belong 
to the central areas of Shenzhen. Land-use planning parcels are the basic units of 
urban cadastral management in China. The data of actual land-use planning parcels in 
Shenzhen used for the study are obtained from the overall plan for land use of 
Shenzhen (2010–2020) by the Bureau of Planning and Natural Resources of Shenzhen 
Municipality (https://pnr.sz.gov.cn/), with a total of 6913 actual parcels and an average 
area of approximately 0.11 square kilometers.

POI refers to geographic points with attribute labels and locations (Zhang et al. 
2019). The POI data used in this paper come from Baidu Map, the largest map service 
provider in China, which is widely used in urban research (Yao et al. 2017). Our 
research group collected the POIs of Shenzhen in 2013 and 2020 respectively using 
Baidu Map’s API (https://lbsyun.baidu.com/), and the numbers of POIs in the two peri-
ods are 199,748 and 314,138, respectively. To distinguish the POI categories with the 
same name in the two phases of data, ‘A’ and ‘B’ are added after the same type of 
POI in 2013 and 2020, respectively.

3. Methodology

Figure 2 shows the study workflow. To summarize, (1) after data cleaning of the two 
periods of Baidu POI data, the POIs are spatially joined with the parcel data to mark the 
parcel to which each POI point belongs. (2) The MT-POI2Vec embedding model is con-
structed, which represents the POIs in different periods as vector embeddings in low- 
dimensional embedding space, containing embedding of POI spatial co-occurrence rela-
tions and embedding of POI categorical semantics. (3) Parameter sensitivity analysis is 
performed on the MT-POI2Vec model to determine the best parameters. The MT-POI2Vec 

Figure 1. Case study area: Shenzhen, China.
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model is then qualitatively compared with the baseline models to analyze the superiority 
of the MT-POI2Vec model. (4) The cosine distance between two-period parcel embed-
dings is mapped onto map space to obtain a cartographic representation of land-use 
change based on cosine distance and then the effectiveness of the MT-POI2Vec model 
to represent land-use change is analyzed in comparison with the ground truth. (5) The 
embedding representing the land-use change in each parcel is obtained by calculating 
the vector difference between the two-period parcel embeddings and then clustered to 
analyze the pattern distribution of land-use change. (6) In order to quantitatively evaluate 
our method, we use the learned embeddings to estimate the LUCD in a supervised man-
ner, against several baseline models.

3.1. Random walks based on the Delaunay triangle network

The Semantic model proposed by Huang et al. (2022) is a POI embedding model rep-
resenting both the POI co-occurrence patterns and the categorical semantics POIs. The 
Semantic model consists of two main components: a random walk to construct POI 
sequences based on the Delaunay triangle network, and the embedding of categorical 
semantic information in the training process. In fact, this method of embedding POIs 
mimics techniques in natural language processing (NLP). In NLP, the idea is mainly 
that the words often occurring closely in eg sentences should be more relevant than 
the words that barely co-occur. This idea can be naturally extended to POI categories, 
meaning that the POI categories that often appear closely are highly related, and 
should be embedded closely in the embedding space. For example, shopping mall 
and restaurant usually co-occur, and they, together, reflect certain land use types 
(commercial); however, natural reserve and kindergarten usually do not co-occur, and 
their embeddings should be set apart to boost the capacity of discerning their corre-
sponding land use types. Based on this idea, we need to capture the co-occurrence 
relationship between POIs first. Based on the Semantic model, this study first con-
structs a POI network using the Delaunay triangulation (DT) network for the POIs in 

Figure 2. The workflow architecture of the proposed approach.
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each year. Previous studies have shown that Delaunay triangulation is suitable for rep-
resentation learning of spatial vector data (Yan et al. 2019). Specifically, to generate 
DT, the POIs are represented as vertices in the networks, and the line connecting the 
two POIs is regarded as an edge. Since the two POIs are in different spatiotemporal 
locations and have no spatial co-occurrence relations, Delaunay triangular networks 
are constructed separately for each period (year) to be applied in the random walk 
process. Each node is set to have 3 random walking paths, and the length of each ran-
dom walking path is 5. Multiple traversals are performed starting from each node, and 
then multiple POI sequences can be obtained. To make the POI corpus richer but not 
overly complex, we use the second-level category to represent each POI in the net-
work, and each POI category can be considered a word in the corpus.

Then, the POI sequences were trained using the skip-gram model (Mikolov et al. 
2013). We optimize the training process using a negative sampling technique, which 
essentially entails minimizing the objective function:

Lco� occurrence ¼
XH

t¼1

X

� w�j�w

− log σ vT
t vtþj

� �� �
−
XQ

i¼1

log r vT
t vN

� �� �
 !

(1) 

where H are all the categories in the sequence captured by random walk, w is the 
window size of the central word for locating the surrounding words, r is the sigmoid 
function, vt represents the t-th vector embedding of the central word in the sequence, 
and vtþj represents the tþ 1-th vector embedding of the context word of the central 
word. Q is the number of negatively sampled words for each central word, and vN is 
the N-th vector embedding of each negatively sampled word.

3.2. Embedding cross- and single-year categorical semantics based on manifold 
learning

Since the two periods of POIs are in different temporalities, the POIs from the two 
years are trained separately in skip-gram, which means that we do not incorporate 
cross-period POI co-occurrence. In this context, the POI embeddings of different years 
are not in the same embedding space. Hence, the semantic relations between POI cat-
egories in different years can barely be reflected by the embeddings. For example, we 
might have two embeddings for restaurants in 2013 and 2020; the two embeddings 
are likely to be separate due to the separated training processes, whereas in principle, 
they should reside closely to capture their semantic similarity for change detection.

Therefore, it is necessary to pull the POI vector embeddings of different years into 
the same embedding space so that cross-year POI embeddings with similar categorical 
semantics are close to each other, which is similar to the local invariance assumption 
in the manifold learning theory (Guo et al. 2015). Therefore, we borrow the technical 
solution from Huang et al. (2022), and utilize a manifold learning algorithm, ie the eg 
Laplacian Eigenmaps (Belkin and Niyogi 2001) to help us to achieve this embedding 
goal. Specifically, we align the embedding spaces of the two temporalities by making 
the embeddings of POI categories from different years but entail similar semantics 
close in a unified embedding space. As we are training the embeddings for the 
second-level POI categories, we need to specify every single pair of cross-year POI 
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second-level categories that share similar semantics. However, this is a laborious pro-
cess, as the POIs in each year belong to hundreds of second-level categories, making 
manual alignment impractical.

To solve this problem, we propose to utilize the first-level POI categories as the 
bridge between the two temporalities, ie we manually align the first-level categories 
in the two different years, and all the second-level categories under the aligned first- 
level categories can be paired with each other (only cross-year second-level categories 
are paired in this step). In this way, the manual alignment process becomes more 
light-weight and less painful, as there are usually only around 20 first-level categories 
in each year, the semantics of first-level categories are generic enough to be matched 
with high confidence, and the names of first-level categories are more static across 
years compared to second-level ones.

In practice, there are also unusual cases where only aligning first-level categories 
results in semantic discrepancy, which is mainly due to the changes made to the POI 
categories over the years. Therefore, after the first-level manual alignment, we refine 
the resulted second-level pairs through a further round of manual inspection. For 
example, ‘Leisure & Recreation_A’ and ‘Leisure & Recreation_B’ are two first-level cate-
gories in 2013 and 2020 with the same name. ‘Fitness Centre_A’ and ‘Stadiums and 
Gym_A’ subsumed by ‘Leisure & Recreation_A’ are semantically similar to ‘Fitness 
Centre_B’ and ‘Stadiums and Gym_B’ subsumed by ‘Sports & Fitness’, which is a differ-
ent first-level categories than ‘Leisure & Recreation_B’. We define these semantically 
similar second-level categories in such unaligned first-level as special cross-year 
second-level category pairs, which are also aligned manually as a refinement process.

Specifically, the cross-year second-level POI category pairs used in the manifold 
learning process for embedding space alignment are constructed in the following 
steps: (1) manually align first-level categories with similar semantics from two periods; 
(2) manually align the special second-level categories separately; (3) the categories 
belonging to the pairing results of the special cross-year second-level categories are 
removed from the paired first-level categories; (4) the remaining cross-year second- 
level categories are paired with each other according to the pairing results of the first- 
level categories. The matching principle of cross-year POI second-level categories is 
that they have similar functional semantics, even if the first-level categories they 
belong to do not match each other. By this method, we paired a total of 16 cross-year 
first-level category pairs and 26 special cross-year second-level category pairs. Finally, 
all the cross-year second-level category pairs consist of the matching results of the 
second-level categories respectively included in the matched first-level categories from 
two periods and the special cross-year second-level category pairs.

We utilize the cross-year pairs to manipulate the embeddings spaces of the two 
years, thereby making them aligned. At the meantime, we also construct within-year 
second-level category pairs to preserve the semantics entailed from the category hier-
archy of POIs in each year. This is in line with the method of semantic preservation for 
POI category embeddings in Huang et al. (2022), ie if two second-level categories 
share the same first-level category (eg the second-level categories Chinese restaurant 
and Western restaurant both belong to the first-level category Food), we also utilize 
Laplacian Eigenmaps to make them close in the embedding space.
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With the constructed cross-year and single-year category pairs, we can then utilize 
Laplacian Eigenmaps for both the embedding space alignment between two tempo-
ralities, and the preservation of categorical semantics within each year.

For each year, the embeddings of POI categories sharing the same upper-level cate-
gories are semantically smoothed to capture the semantics carried by POI categorical 
hierarchies. The calculation is based on the following Equation (2):

Lsingle� period� smoothing ¼
1
2

Xm

i¼1

Xm

j¼1

||vAi � vAj ||
2
2 þ

Xn

i¼1

Xn

j¼1

||vBi � vBj ||
2
2

 !

Sij (2) 

where vAi, vAj and vBi, vBj are the i-th and j-th vector embeddings of the second-level 
categories in two phases, respectively, m, n is the total number of second-level cate-
gories of POIs from two periods respectively, and Sij is used to measure the semantic 
smoothness of the embedding space. In each year of POIs, if two second-level catego-
ries belong to the same first-level category, the value of Sij is 1; otherwise, it is 0.

For cross-year embedding space alignment, the embeddings of POI categories 
belonging to the matched (manually aligned) cross-year first-level POI categories or 
belonging to special cross-period second-level matching pairs are semantically 
smoothed to capture the POI cross-period categorical semantics. The calculation is 
based on the following Equation (3):

Lcross� period� alignment ¼
1
2

Xm

i¼1

Xn

j¼1

|vAi � vBj |
2
2Cij (3) 

Where if vAi and vBj belong to the manually aligned first-level categories, the value 
of Cij is 1; otherwise, it is 0. As part of the objective function, we minimize Formula 3 
during the training process, then the difference of vAi and vBj is getting smaller and 
smaller, so that we establish a connection between POIs from different temporalities, 
and make the cross-year POI category pairs with similar semantics close in the embed-
ding space. In a mathematical sense, the embedding space (a manifold) is smoothed 
according to the cross-year category pairs. To distinguish between the impact of 
second-level category pairs of within-year POIs and cross-year POIs on the vector 
embeddings, different weights are assigned to the within-year and cross-year categor-
ical semantics. At this point, all the objective functions of the MT-POI2Vec model for 
optimizing category embeddings of POIs have been manifested. Lco� occurrence is used 
to encode spatial co � occurrence information, and Lsingle� period� smoothing and 
Lcross� period� alignment represent the within-year categorical semantic objective function 
constructed with within-year second-level category pairs and the cross-year categorical 
semantic objective function constructed with cross-year second-level category pairs, 
respectively, for encoding category semantics. Combining the three objective func-
tions, the spatial co-occurrence relations of POIs are coupled with the categorical 
semantic information to form the overall objective function:

Lall ¼ Lco� occurrence þ k1Lsingle� period� smoothing þ k2Lcross� period� alignment (4) 

where k1 and k2 are the hyper parameters controlling the impact of within-year 
second-level category pairs and cross-year second-level category pairs on categorical 
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semantics. Finally, the overall objective function is optimized by the stochastic gradi-
ent descent method.

3.3. Evaluating the embedding space alignment

To facilitate the evaluation of the effect of embedding space alignment, we utilize the 
proxy of whether the paired second-level POI categories are indeed located closely in 
a unified embedding space. To this end, a quantitative evaluation method, ie propor-
tional accuracy assessment, is used.

Proportional accuracy refers to the proportion of the cross-year POI pairs that belong 
to the same cluster in the embedding space. Let all embeddings cluster into k classes 
denoted C0, C1, C2 . . . Ck� 1, and among all the POI second-level categories, there are s 
cross-year POI category pairs denoted fðPA0 , PB0Þ, ððPA1 , PB1Þ . . . ððPAs� 1 , PBs� 1Þg: The num-
ber of cross-year POI category pairs, whose embeddings from the two periods belong 
to the same cluster Ci is ci; then, the proportional accuracy p is calculated as follows:

p ¼

Pk� 1
i ci

s
(5) 

3.4. Accuracy evaluation for LUCD

To manifest the advantages of the proposed MT-POI2Vec model, we compare it our 
proposed model against several other popular POI embedding methods in a quantita-
tive experiments for LUCD, we conduct supervised training for evaluation using MLP. 
Specifically, there may be multiple types of land use in each parcel, so the quantitative 
accuracy verification of LUCD can be considered as a multi-label distribution learning 
problem (Geng 2016).

Let F ¼ ff0, f1 . . . ft� 1g be the set of t labels representing the land use types of each 
urban area (land parcel). For each parcel ri 2 R ¼ fr0, r1 . . . rz� 1g, let vri be the average 
embedding of all POI embeddings contained in the i-th parcel representing the parcel 
embedding, and vBri

� vAri 
is the land use change embedding of the i-th parcel. Let yfj

i 

denote the proportion of the j-th land use type for the i-th parcel, where yfj

i 2 ½0, 1� and 
Pt

j¼0 yfj

i ¼ 1: Then the real proportion distribution of the land use change for this parcel 
in the period of 2013–2020 is lri¼ ½y

f0
Bi
� yf0

Ai
, yf1

Bi
� yf1

Ai
. . . yft� 1

Bi
� yft� 1

Ai
�, where 

Pt
j¼0 yfj

Bi
�

yfj

Ai
¼ 0: Then we send vBri

� vAri 
as feature and lri as ground truth label into the MLP for 

supervised training. Between the input and output layers, there can be one or several 
hidden layers with nonlinear activation functions. In short, the MLP takes the difference 
of the embeddings in different years as input, and outputs the changes of each land use 
type over the years. For training the MLP, we use the L1 distance (Cha 2007) as the loss 
function to optimize the MLP. The specific calculation method is as follows:

LMLP ¼
1
z

Xz

i¼1

Xt

j¼1

dyBi � yAi

fj � ðyfj

Bi
� yfj

Ai
Þ

�
�
�

�
�
� (6) 

Where ðyfj

Bi
� yfj

Ai
Þ is the changed proportion of the ground truth corresponding to 

the j-th land use type for the i-th parcel. By minimizing the objective function LMLP, 
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we can learn the relationship between the change embedding vBri
� vAri 

representing 
the land use change of the i-th parcel and the corresponding proportion change distri-
bution of the ground truth. Then we also choose the L1 distance as an accuracy evalu-
ation indicator to assess the degree of match between our predicted proportion 
distribution of land use change and the corresponding ground truth.

4. Results

4.1. Parameter sensitivity analysis

To determine the optimal hyper parameters of the MT-POI2Vec model to control the 
effect of categorical semantics on embedding, we set k1 2 f10� 11, 10� 10, 10� 9, 10� 8g, 
k2 2 f10� 8, 10� 7, 10� 6g for grid search in the MT-POI2Vec model. Parametric sensitivity 
analysis was performed according to the abovementioned criteria. K-means clustering 
was first performed on the embeddings, and the number of clusters was set to 40. The 
clustered POI embeddings were then projected onto the two-dimensional plane using 
the T-SNE (Van der Maaten and Hinton 2008), as shown in Figure 3 below. The values of 
k1 and k2 are annotated in the Figure 3.

When k2 2 f10� 7, 10� 8g, the clustering results show a clear separation between 
clusters and a certain differentiation within each cluster. Apart from the parameters in 
this range, other clustering results encountered the problem that the embeddings 
within the same clusters are too crowded, such as Figure 3(a,d,g,j), which shows a lack 
of clear differentiation between the POI category embeddings within each cluster. To 
more intuitively distinguish the two periods of POI data in embedding space in Figure 
3(b,e,h,k), the POI embeddings from the two periods are represented by circles and tri-
angles, respectively. In Figure 3(b,e,h,k), it is evident that each cluster contains both 
circles and triangles, indicating that the MT-POI2Vec model pulls the two periods of 
POI categories into the same embedding space. The proportional accuracy was further 
evaluated to determine the best parameters, and the comparison between the propor-
tional accuracy p of the eight groups of candidate parameters is shown in Table 1
below.

In Table 1, we observe that the clustering result of k1¼10� 10, k2¼10� 7 contains 
the highest percentage of cross-year POI pairs clustered in the same class, which is 
99.2% among all cross-year POI pairs, so the optimal parameters of k1¼10� 10, 
k2¼10� 7 are selected to perform the subsequent analysis.

4.2. Comparison of the effects between different embedding models

4.2.1. Comparison in the embedding space
To further validate the performance of MT-POI2Vec, Word2Vec (Yao et al. 2017), 
Place2Vec (simplified) (Yan et al. 2017), and Semantic (Huang et al. 2022) models were 
selected as the baseline models for comparison. For Word2Vec and Place2Vec models, 
the corpus is constructed separately for the two data periods before training. For the 
Semantic model, the Delaunay triangle networks are constructed separately for 
POIs from two periods before random walking, and finally, the categorical semantic 
embedding is completed, but only the within-year POI categories are paired. Similar to 
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Section 4.1, the embeddings trained by each model were clustered and projected 
onto a two-dimensional plane. Four sets of cross-year POI category pairs were labeled 
in the figure, namely, (Art Gallery_A, Art Gallery_B), (Chinese restaurant_A, Chinese 

Figure 3. The clustering performance of POI category embeddings in 2D planes for the 
MT-POI2Vec model based on 12 sets of parameters.
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restaurant_B), (Office Tower, Office Building), and (Bank_A, Bank_B), as shown in 
Figure 4 below.

In Figure 4(a–c), the separate POI embeddings in all four sets of cross-year POI cat-
egory pairs show a bipolar distribution and do not belong to the same cluster because 
the POIs in the same cross-year POI category pairs are located in different spatiotem-
poral spaces. Therefore, the embeddings trained by Word2Vec, Place2Vec, and 

Table 1. Comparison of proportional accuracy based on 8 sets of candidate parameters.
k1/k2 10� 8 10� 9 10� 10 10� 11

10� 7 0.839 0.991 0.992 0.917
10� 8 0.386 0.303 0.298 0.266

The best value of p among the 8 sets of candidate parameters is presented in bold.

Figure 4. The clustering comparison of POI vector embeddings based on different models. 
(a) Word2Vec model, (b) Place2Vec model, (c) Semantic model, (d) MT-POI2Vec model.
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Semantic models are very far apart when displayed in the same embedding space and 
do not have any connection. In Figure 4(d), the two vector embeddings of any set of 
cross-year POI category pairs are very close to each other and belong to the same 
cluster. This is because the MT-POI2Vec model introduces embedding space 
alignment, which establishes a link between two POIs of a cross-year POI category 
pair. In addition, compared with Figure 4(a–c), the separation between clusters and 
the difference between embeddings in the same cluster are more obvious in 
Figure 4(d). This indicates that the MT-POI2Vec model can pull the multi-temporal POI 
vector embeddings under a unified space and increase the co-occurrence probabilities 
of functionally similar cross-year POI embedding pairs in the same clustering cluster so 
that the clustering effect can be optimized.

4.2.2. Comparison in the map space
To further analyze the land-use change in Shenzhen, all the POI embeddings of each 
parcel for each year are first averaged to obtain the embedding expression of each 
parcel. Then, the cosine distance between the two-period parcel embeddings is calcu-
lated to represent the land-use change for each parcel. Finally, the cosine distance is 
mapped to the map space to obtain the land-use change map representation based 
on the cosine distance, as shown in Figure 5 below. The lighter color of the parcels 
represents less variation, and a darker color, more variation. To facilitate further 
detailed comparison, six typical areas and their remote sensing images were selected 
for field verification. Due to the limitation in the data, the remote sensing images of 
2012 and 2021 were used instead of the images of 2013 and 2020, respectively.

The perception of the overall land use change is not obvious in the Place2Vec 
model, and the Semantic model is too sensitive to the overall land use change. Only 
the MT-POI2Vec model can reasonably perceive the land use change. For example, in 
Figure 5, #1 is located at the airport, which is an important transportation hub and 
will always perform its transportation function in the long term. #2 is surrounded by 
the core area of the city government, with a well-developed living support infrastruc-
ture, highly concentrated population density, and developed economic conditions. The 
urbanization at #2 is very mature and will not change much over a long period. The 
land use types in #1 and #2 did not change from 2012 to 2021. #3 was originally an 
industrial area, but from 2012 to 2021, some industrial parks were demolished and a 
new residential area and its supporting commercial facilities were built. During this 
period, two industrial parks were demolished and a new commercial and residential 
mixed land with high-end office buildings, businesses and apartments was built in #4. 
The Place2Vec model can correctly perceive no land-use change in #1 and #2, but 
does not capture the change in #3 and #4, while the Semantic model shows exactly 
the opposite result. Only the MT-POI2Vec model can correctly perceive the land use 
changes in both cases.

Further combined with Figure 4, it is found that compared with the Place2Vec 
model, the Semantic model can cluster the embeddings of single-period POIs more 
compactly, but this will result in the multi-period embeddings characterizing the same 
POI category being farther apart in embedding space. Therefore the cosine distance 
between them will be larger, which will lead to the Semantic model being too 
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sensitive to the overall land use change. On the basis of the Semantic model, the MT- 
POI2Vec model uses the embedding space alignment method to pull the cross-year 
POI embeddings with similar categorical semantics into the same embedding space, 
so that the difference between all POI embeddings with similar categorical semantics 
is smaller. Therefore, the MT-POI2Vec model can perceive land use change more rea-
sonably and accurately.

In addition, compared with the other two models, the MT-POI2Vec model also has 
significant advantages in reflecting the fineness of land use change. In Figure 5, the 
cosine distance color of the Place2Vec model, Semantic model and MT-POI2Vec model 
gradually deepens in #5 and gradually becomes lighter in #6. Combined with remote 

Figure 5. Cosine distance distribution comparison based on two-period parcel embeddings between 
baseline models and our approach: (a) Place2Vec model; (b) Semantic model; (c) MT-POI2Vec model.
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sensing images, it is found that the #5 was originally an industrial land, but between 
2012 and 2021, many industrial parks were demolished into bare lands, and a large 
commercial office building and some apartment houses were built. The proportion of 
land use types has changed greatly. #6 is a tourist attraction with no land-use change 
from 2012 to 2021. And the MT-POI2Vec model has the darkest color in #5 and the 
lightest color in #6, which is consistent with the change of corresponding remote 
sensing images. Therefore, the MT-POI2Vec model can more accurately perceive the 
intensity of land use changes.

4.2.3. Quantitative accuracy verification of LUCD
In order to evaluate the accuracy of the model, we need to use parcels that contain 
both periods of POI data. For this purpose, we selected some parcels in the central 
urban area of Shenzhen, which are relatively highly built-up, for quantitative valid-
ation. The selected area covers all or part of Nanshan District, Futian District, Luohu 
District and Baoan District of Shenzhen, with a total of 878 parcels. We use the ground 
truth data from the Bureau of Planning and Natural Resources of Shenzhen 
Municipality in 2013 and 2020, which both have five land use categories: (1) industrial, 
(2) residential, (3) commercial, (4) public management and public service, and (5) 
green space.

In the process of quantitative verification, we split the dataset into a training set 
(60%), a verification set (20%) and a test set (20%) and the number of training epochs is 
100. MLP has two 256-dimensional hidden layer. For reliability, the entire dataset (878 
regions) are shuffled 10 times at random to repeat the above-mentioned training, valid-
ation and testing processes. We evaluated our models and baseline models by using the 
test set. The average L1 distance and its standard deviation between the proportion 
change distribution of land use types predicted by each model and the corresponding 
proportion change distribution of the ground truth are shown in Table 2 below.

It can be seen that the average L1 distance of the proposed MT-POI2Vec model is 
the smallest, indicating that our model has the smallest average estimation error for 
LUCD, which is closer to the changed ground truth and has the best performance. 
This is because our proposed MT-POI2Vec model pulls POIs with similar semantics in 
different years into the same embedding space, making the operation more accurate.

4.3. Category analysis of land use change using clustering method

To further analyze the transformation relations of land-use change types for each 
parcel, the clustering results of the land-use change embeddings are mapped to the 
Shenzhen city map, and K represents the number of clusters. Figure 6 shows the 

Table 2. Comparison of average L1 distance and standard devi-
ation based on the baseline and our proposed model.
Model L1 Standard deviation

Word2Vec 0.502 0.021
Place2vec 0.495 0.030
Semantic 0.485 0.031
MT-POI2Vec 0.448 0.019
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mapping distributions with the number of clusters from 2 to 4, where C0 and C1 
denote two kinds of clusters when the number of clusters is 2, and the rest of the 
clusters are named similarly. To facilitate further detailed comparison and validation, 
similar to the analysis in Section 4.2.2, six typical regions and their remote sensing 
images are also selected for field validation, where #2 is the same as region #2 in 
Figure 5.

Figure 6. Clustering distribution comparison of the land use change vector embeddings under dif-
ferent clustering categories based on the MT-POI2Vec model: (a) 2 categories; (b) 3 categories; (c) 
4 categories.
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K¼ 2:
Areas with relatively smaller land use change [K¼ 2, C0] and areas with relatively 

larger land use change [K¼ 2, C1]: Compared with Figure 5(c), it is found the cluster 
region [K¼ 2, C0] basically overlaps with the light-colored parcels in the cosine dis-
tance distribution map based on two-period parcel embeddings, and the cosine dis-
tance in this region is smaller than the cluster region [K¼ 2, C1]. The cluster region 
[K¼ 2, C1] is the opposite. Therefore, it can be considered that the cluster region 
[K¼ 2, C0] represents the areas with relatively smaller land use change, and the cluster 
region [K¼ 2, C1] represents the areas with relatively larger land use change. For 
example, combined with remote sensing images, it can be found that #2 is residential 
land with no land-use change, while #1 is completely changed from bare land to com-
mercial land.

K¼ 3 and K¼ 4:
Areas dominated by land use change in residential areas [K¼ 3, C0] and [K¼ 4, C0], 

and areas dominated by land use change in industrial areas [K¼ 3, C2] and [K¼ 4, C2]: 
Compared with the results of K¼ 2, this study can find these two clusters are mainly 
stripped from the cluster region [K¼ 2, C0] with relatively small land use changes. We 
find the residential areas of cluster regions [K¼ 3, C0] and [K¼ 4, C0] account for the 
highest proportion before and after land use change. Further combined with remote 
sensing images, it is found this cluster is mainly residential areas with no land-use 
change or with certain land use changes but no change in regional functions, such as 
#2 and #3. #3 is an unchanged residential area from 2012 to 2021, but the eastern 
part of the block is demolished to become bare land. Similarly, we can find the indus-
trial areas of cluster regions [K¼ 3, C2] and [K¼ 4, C2] account for the highest propor-
tion before and after land use change. This cluster is mainly industrial areas with no 
land-use change or certain land use change but no change in regional functions, such 
as #4, #5 and #6. #4 is a dense industrial area with no change from 2012 to 2021, and 
only a large industrial park has been built on the bare land in the south of the parcel. 
Both #5 and #6 are industrial areas with unchanged regional functions, and part of 
the green space in #6 is changed into an industrial park.

Areas with large land use change [K¼ 3, C1] and [K¼ 4, C1]: Compared with the 
results of K¼ 2, we can find the distribution of parcels in this cluster region is basically 
consistent with the distribution of [K¼ 2, C1], and the land use change in this cluster 
region is large. For example, the regional functions in #1 have completely changed.

Areas containing mainly land use changes in green space and industrial areas [K¼ 4, 
C3]: Compared with the results of K¼ 3, this study can find this cluster is mainly stripped 
from the cluster region [K¼ 3, C2]. We find the land use change in this cluster mainly 
occurred in industrial areas with a high proportion of green space, such as #5 and #6. A 
large area of park green space is included in #5, and part of the green space in #6 is 
changed into an industrial park, which contains a higher proportion of green space.

5. Discussion

Utilizing POI embeddings from multiple temporalities to accomplish unsupervised 
LUCD is useful in the case of insufficient ground truth. However, the separately 
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learned POI embeddings in different years will end up in isolated embeddings spaces, 
making the unsupervised land use change detection infeasible. To solve these prob-
lems, this study proposes the MT-POI2Vec embedding model, which maps POIs to the 
real-valued embeddings in a unified low-dimensional mathematical space. We propose 
the MT-POI2Vec model to construct a framework for identifying land-use changes by 
fully unsupervised methods and explore in depth the effectiveness and capability of 
representing land-use changes using POI embeddings.

The MT-POI2Vec model is the first model that uses POI embeddings for unsuper-
vised LUCD, highlighting the temporal heterogeneity of land use change, effectively 
solving the problem that two periods of POI embeddings are not in the same space- 
time, resulting in the inability to interact directly. We introduce embedding space 
alignment based on the Semantic model proposed by Huang et al. (2022). The POIs 
from two periods are first manually aligned, ie POIs with similar categorical semantics 
are matched into cross-year second-level category pairs. Then, we combine the cross- 
year second-level category pairs with the co-occurrence relations of POIs to achieve 
the vector embedding. In the mathematical space, the MT-POI2Vec model can pull 
multi-temporal POI vector embeddings under a unified space and establish connec-
tions and increase the co-occurrence of functionally similar cross-year POI embedding 
pairs in the same cluster to make the clustering effect optimal. In addition, a quantita-
tive experiment shows that the proposed MT-POI2Vec model has the highest accuracy 
in identifying land use change. This is because our method can gather cross-year POI 
category pairs closer together in the embedding space to improve the accuracy of 
land-use change identification in downstream tasks.

By taking the cosine of the multi-temporal parcel embeddings and projecting it to 
map space, we find land-use changes are greater in areas more closely associated 
with human activities, such as industrial and residential areas of megacities. In com-
parison, land-use changes are smaller in areas with public service facilities, such as air-
ports. The MT-POI2Vec model has a more advanced effect than the baseline models in 
representing land-use changes and can more finely identify areas with unchanged 
land use during urbanization and land-use changes in residential and industrial areas. 
In addition, by clustering the parcel change embeddings and mapping them to the 
map space, the land-use classification is refined step by step and the accuracy of iden-
tification gradually improves as the number of clusters changes from 2 to 4. The 
results of the cluster analysis reflect the ability of the MT-POI2Vec embedding method 
to represent the land-use change in a hierarchical way. Our method directly uses par-
cel-scale change embeddings for LUCD and skillfully avoids gradually accumulating 
errors in the classification. In contrast, the traditional methods of first-classify-then- 
detect can only rigidly identify the transformation from one land-use type to another 
land-use type and cannot discover the hierarchical characteristics of land-use change. 
Moreover, in this case, the final change identification results are also subject to the 
influence of classification accuracy (Tewabe and Fentahun 2020). In addition, the dis-
covered hierarchical characteristics of land-use change patterns can guide the explor-
ation of subsequent researches on the drivers of land-use changes.

However, there are still some limitations in this paper. First, the limitations of the 
single-source POI data could add some errors to the study results. Due to the various 
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categories and large number of POIs, as well as differences in statistical methods and 
time, even as the largest map service provider in China, the POIs collected by Baidu 
Maps will inevitably have missing and inconsistent information on scale and rank. 
Moreover, the sparsity of data in some areas can affect the results of LUCD. 
Subsequent studies can consider combining POI data from multiple sources, such as 
Gaode POI, to supplement the missing POI information with each other to form a 
higher-quality POI dataset. Second, the MT-POI2Vec model is greatly affected by the 
manual alignment of cross-year POI categories. Specifically, the names of first-level cat-
egories between multi-period POI data with a large time span are not exactly the 
same. In the case where the first-level categories cannot be directly matched, it may 
also need to be judged in combination with specific second-level categories. 
Therefore, the manual process of aligning categories could introduce errors to some 
extent, resulting in the inaccurate matching of certain cross-year POI category pairs, 
which in turn affects the accuracy of the model. Therefore, high-quality POI data with 
more consistent or similar categories can reduce the impact of manual alignment on 
the model. Furthermore, future research can consider developing a program or neural 
network that can match specific POI names for automatic and accurate category 
matching, which could likely improve the accuracy of matching and increase effi-
ciency. Finally, this study uses the same parcel data as the basic unit to group POIs 
and analyze land use changes in both time periods, while the parcel boundaries in dif-
ferent periods may change. In this case, the parcels need to be divided into smaller 
units to unify the analysis units. However, too small a scale will lead to the absence of 
POI data in some units, thus making the LUCD infeasible. Therefore, in future research, 
what is the optimal analytical scale for LUCD using our approach is also worth 
exploring.

6. Conclusion

In this paper, we propose the MT-POI2Vec model to identify land use change in an 
unsupervised manner, which achieves embedding space alignment and pulls multi- 
period spatiotemporally non-cooccurring POI vector embeddings into the unified 
embedding space. Compared with the baseline models such as Word2Vec, Place2Vec 
and Semantic, the MT-POI2Vec model can increase the co-occurrence probabilities of 
functionally similar cross-year POI embedding pairs in the same cluster with the best 
performance in quantitative accuracy verification of LUCD. The results of the megacity 
study show that land-use types have greater variability in areas that are more closely 
associated with human activities, such as industrial and residential areas. In contrast, 
land-use change in areas with public service facilities such as airports is smaller due to 
the continuous urbanization process in recent years. In addition, by comparing the 
cluster mapping distribution of the land-use change vector embeddings under three 
kinds of cluster numbers, we find the MT-POI2Vec model can effectively reflect the 
hierarchical nature of land-use changes as the number of clusters increases. In future 
studies, the hierarchical characteristics of land-use change can be used to explore the 
potential drivers of land-use change more deeply. This study can provide a reference 
for the rapid urban land-use change monitoring.
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