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A B S T R A C T   

Cellular Automata (CA) are widely used to model the dynamics within complex land use and land cover (LULC) 
systems. Past CA model research has focused on improving the technical modeling procedures, and only a few 
studies have sought to improve our understanding of the nonlinear relationships that underlie LULC change. 
Many CA models lack the ability to simulate the detailed patch evolution of multiple land use types. This study 
introduces a patch-generating land use simulation (PLUS) model that integrates a land expansion analysis 
strategy and a CA model based on multi-type random patch seeds. These were used to understand the drivers of 
land expansion and to investigate the landscape dynamics in Wuhan, China. The proposed model achieved a 
higher simulation accuracy and more similar landscape pattern metrics to the true landscape than other CA 
models tested. The land expansion analysis strategy also uncovered some underlying transition rules, such as that 
grassland is most likely to be found where it is not strongly impacted by human activities, and that deciduous 
forest areas tend to grow adjacent to arterial roads. We also projected the structure of land use under different 
optimizing scenarios for 2035 by combining the proposed model with multi-objective programming. The results 
indicate that the proposed model can help policymakers to manage future land use dynamics and so to realize 
more sustainable land use patterns for future development. Software for PLUS has been made available at htt 
ps://github.com/HPSCIL/Patch-generating_Land_Use_Simulation_Model   

1. Introduction 

Since Tobler first applied cellular automata (CA) to geographic 
modeling (Tobler, 1979), CA have been extensively applied to model 
spatiotemporal land use dynamics under the influences of natural and 
socioeconomic factors, including their interactions at different scales 
(Chen et al., 2020; Clarke & Gaydos, 1998). Ideally, CA models are 
developed and applied to inform land use policy and land management 
decisions and their results should be clear and accessible during the 
decision-making process (Guzman, Escobar, Peña, & Cardona, 2020; 
Sohl & Claggett, 2013). However, most CA modeling research has 
focused on the improvement of technical modeling procedures or on 
model calibration and rules, and little attention has been paid to the 
need for a more conceptual understanding of the underlying causes of 

LULC (Cao, Tang, Shen, & Wang, 2015; Engelen, White, Maarten, & 
Bernhard, 2002). Sohl and Claggett (2013) noted that CA models have 
not been widely used for planning and policy development because CA 
modelers tend to focus on exercises based on scientific inquiry, while 
decision-makers focus on outcomes and strategy-driven exercises 
(Leenhardt et al., 2012). Recently some studies have improved the 
application of CA models in planning and decision making by using them 
to create urban growth boundaries (Huang, Huang, & Liu, 2019; Liang 
et al., 2018), to design urban forms for development zones (Liang et al., 
2020) or to explore the effects of greenbelt elimination (Park, Clarke, 
Choi, & Kim, 2017). However, for decision-makers, many of the existing 
CA models are still: (1) weak at revealing the underlying drivers of land 
use change (Sohl & Claggett, 2013); and (2) unable to spatio-temporally 
capture the evolution of patches of multiple land uses, especially for the 
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patch evolution of natural land use types (Meentemeyer et al., 2013; 
Yang, Gong, Tang, & Liu, 2020). The reasons and mechanisms that result 
in these deficiencies are described below. 

1.1. Discovering the underlying drivers of LULC change 

The rule mining methods used for CA models are one reason for the 
lack of discovery of the underlying scientific basis of LULC. The most 
commonly used strategy for CA models is to capture the relationships 
between revealed land use transitions and multiple explanatory driving 
factors into the CA behavior rules (Pijanowski, Pithadia, Shellito, & 
Alexandridis, 2005; Shu et al., 2017), what might be called a transition 
analysis strategy (TAS). The TAS must extract sample cells with land use 
states that are changed during the time period between two dates of land 
use data to examine the neighboring states, or distances and weights of 
the contributing factor layers (Fig. 1(a)). This kind of CA model includes 
logistic-CA (Chen, Li, Liu, & Ai, 2013; Wu & Webster, 1998), ANN-CA 
(Omrani, Parmentier, Helbich, & Pijanowski, 2019), and optimization- 
based CA (Feng, Liu, Tong, Liu, & Deng, 2011). However, when simu-
lating the transitions of multiple land use types, CAs based on a TAS 
become very difficult to implement. For example, if a region has K land 
use types, there are a total of K2 − K type transitions (Fig. 1(a)), which 
means that the number of transition types theoretically increases 
exponentially with the number of land use types. Analyzing all transition 
types increases the computational complexity of the model structure of 
CA and reduces the model’s flexibility and general applicability. 

To solve this problem, researchers have developed another rule 
mining method based on an analysis of the patterns of land use instead of 
the changes in the type of land use (Verburg, Schot, Dijst, & Veldkamp, 
2004), naming this method the pattern analysis strategy (PAS). CA 
models based on PAS calculate the probability of occurrences of land use 
types in each cell with just one date for the land use data. They deter-
mine the future cell states through competition between the land use 
types, which avoids analyzing transition type combinations that can 
increase exponentially with the number of land use types in the process 
of mining transition rules (Fig. 1(b)). Many simulation models are 
designed based on PAS, such as the CLUE-s model (Verburg et al., 2002), 
Fore-SCE model (Sohl & Sayler, 2008) and the FLUS model (Liu et al., 
2017). However, CA models based on PAS inherently lack the ability to 
reveal how the driving factors cause land use change (Amato, Pon-
trandolfi, & Murgante, 2015) because they are unable to analyze the 
evolution of land use from the perspective of class transitions. Further, 
the distribution rules of PAS are not as valuable as transition rules, since 
the distribution rules based on one land use map cannot capture the 
rules of land use change over a specific time interval. In summary, 

although previous CA models based on TAS and PAS can provide valu-
able model outcomes, such as forecasting land use patterns under 
climate scenarios (Chen et al., 2020), estimating the impacts of land use 
change on environmental variables (Ahmed, Kamruzzaman, Zhu, Rah-
man, & Choi, 2013), or testing the effects of planning policies on urban 
growth (Liang, Liu, Li, Zhao, & Chen, 2018), nevertheless these models 
are unable to provide insights concerning the drivers behind the dy-
namics of individual land types transitions and the strengths of their 
effects on the expected changes. 

1.2. An obstacle to simulating landscape evolution 

A more complete understanding of local land use dynamics is of 
primary importance for effective land use planning and decision mak-
ing. Many models that have relied on cell state transitions have struggled 
to generate realistic spatial structures at the detailed scales that are 
appropriate for plan-specific decision-making (Meentemeyer et al., 
2013). Therefore, the development of patch growth simulation models 
has received increasing attention (Meentemeyer et al., 2013; Yang et al., 
2020). Simulating the succession of land use patches can be used to 
detect ecologically significant changes and to assess, design, and plan 
ecosystem management activities in advance (Keane, Parsons, & Hess-
burg, 2002). Several studies have used patch-based landscape metrics to 
examine past land use trends, and to compare them with simulated 
future behavior (Herold, Goldstein, & Clarke, 2003). 

In the last few years, researchers have developed a set of CA models 
or mechanisms (and even vector-based CAs) to simulate urban growth 
based on patch units (Yao et al., 2017). However, vector-based CA 
cannot be used to simulate the dynamics of natural land use types (e.g., 
forest and grassland) because the parcels of natural land use types can be 
very small, irregular and dispersed and not as well-organized as urban 
land use types. Hence almost all the vector-based CAs are applied to 
urban land use types (e.g., residential land and industrial land). Vector- 
based land use data is more difficult to obtain than raster-based land use 
data, which is an important reason to constrain the application of vector- 
based CA, especially in large scale regions. Some previous studies have 
highlighted the importance of simulating the dynamics of the patches 
using a raster-based CA model which can simulate the growth of urban 
patches, for example, the SLEUTH model (Herold et al., 2003) and the 
Patch-Logistic-CA (Chen et al., 2013). However, to the best way to 
simulate the patch spatio-temporal dynamics of multiple land use types 
is still unclear. Sohl, Sayler, Drummond, and Loveland (2007) promoted 
a patch growth land use simulation by proposing the raster-based Fore- 
SCE model. However, the Fore-SCE model separately processes the 
urban land with a simple density slicing technique because it cannot 

Fig. 1. Panel (a) is the matrix of the transition types generated by the transition analysis strategy; panel (b) shows the competition in the simulation model based on a 
pattern analysis strategy. 
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address the cases where there are very large numbers of very small 
patches, which loses the temporal dynamics and the ability to simulate 
the synchronous evolution of multiple and multi-type patches. In short, 
previous studies lack flexible patch-based strategies for modeling the 
patch growth of multiple natural land use types at a fine-scale resolu-
tion, and the use of these CA models is limited for actual planning, 
decision-making, or policymaking purposes. 

To promote better understanding of the relationships underlying 
LULC change and to improve patch-growth simulation, in this study, we 
developed a raster-based patch-generating land use simulation (PLUS) 
model to help reveal the underlying drivers and their differing contri-
butions to change. The model includes a new data mining framework for 
identifying the rules of land use change, which combines the advantages 
and overcome the disadvantages of both TAS and PAS. We propose an 
approach that combines a CA model with a patch-generating simulation 
strategy to improve the model’s ability to emulate and simulate the real 
landscape pattern. Multiple objective programs were used to generate a 
case study of a sustainable land use scenario and other scenarios using 
the PLUS model. The proposed model was used to explore the under-
lying causes of land use change in Wuhan, China, from 2000 to 2013. 
Next, the model was used to identify sustainable land use scenarios for 
Wuhan from 2013 to 2035. A software package for PLUS has been made 

available at https://github.com/HPSCIL/Patch-generating_Land_U 
se_Simulation_Model which provides a user-friendly interface for po-
tential users. 

2. Method 

The PLUS model contains two modules: (1) a rule-mining framework 
based on a land expansion analysis strategy (LEAS); and (2) a CA based 
on multi-type random patch seeds (CARS). Multiple-objective pro-
gramming (MOP) was used to determine the optimal land use structures 
under different scenarios. The general structure of the simulation 
framework of this study is illustrated in Fig. 2. 

2.1. Rule-mining framework based on land expansion analysis strategy 

2.1.1. Land expansion analysis strategy 
The LEAS proposed in this study requires two dates of land use data 

as its TAS. We overlaid the two periods of land use data and extracted 
the cells with changed states from the later date of the land use data, 
which represented the change regions for each land use type. Sampling 
points were randomly selected, and were divided into subsets according 
to their land use types, which were analyzed separately using a data 

Fig. 2. The framework of the proposed PLUS model and the modeling workflow.  
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mining method (Fig. 3). For example, when we mined the relationship 
between the expansion of a land use type and the driving factors, the 
labels of the samples of the expansion of this type were set to ‘1’, and the 
labels of other samples were set to ‘0’. Thus, the training dataset can be 

reconstructed using the marked labels and the values of the multiple 
driving factors at the same locations extracted. Next, the training dataset 
was used to train the data mining algorithm to obtain the transition rules 
for each land use type. 

Fig. 3. Workflow of the rule mining framework based on a land expansion analysis strategy with random forest models.  

Fig. 4. A schematic diagram of the CA model based on multi-type random patch seeds. The yellow boxes were the key steps in modeling the emergence and growth of 
multi-type patches. 
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By using LEAS, we can obtain the transition rules for all land use 
types by analyzing the growing patches of each changed land use (“to” 
land use type) while ignoring their source types (“from” land use type), 
which avoids the analysis of transition types that increase exponentially 
in number with the number of land use types and effectively simplifies 
the analysis procedure for land use change. The transition rules obtained 
from the LEAS have a temporal aspect, which has the ability to describe 
the properties of land use change during a specific time interval. 
Moreover, this framework also provided new perspectives for analyzing 
the drivers of land use change, which are described in Section 4.2. 

2.1.2. Random Forest classification for dual-state decisions 
The LEAS transforms the mining of transition rules of each land use 

type into a binary classification problem (obtain the change and inertia 
probabilities of each land use type), which can be solved with many data 
mining methods. This study employed a random forest classification 
(RFC) algorithm to explore the relationships between the growth in each 
land use type and the multiple driving factors. The RFC algorithm is a 
decision tree-based ensemble classifier built from each sub-dataset that 
extracts random samples from the original training dataset. RFC algo-
rithms are able to process high-dimension data as well as dealing with 
multicollinearity among variables, and finally output the growth prob-
ability Pi, k

d of land use type k at cell i. 

Pd
i,k(x) =

∑M

n=1
I(hn(x) = d )

M
(1) 

The value of d is either 0 or 1; a value of 1 indicates that there were 
other land use types that changed to land use type k, while 0 represents 
other transitions; x is a vector that consists of multiple driving factors; I 
(∙) is the indicative function of the decision tree set; hn(x) is the pre-
diction type of the n− th decision tree for vector x; and M is the total 
count of decision trees. In addition, the RF algorithm has the advantage 
of measuring the importance of independent variables to the variation of 
dependent variables, which can be calculated according to the variation 
of the out-of-bag error caused by stochastic noise. This method has been 
implemented in many studies (Yao et al., 2017). 

2.2. CA model based on multi-type random patch seeds 

The CARS module is a CA model that includes a patch-generation 
mechanism based on multi-type random seeds of land uses (Fig. 4). 
The CA model is a scenario-driven land use simulation model that in-
tegrates ‘top-down’ (i.e., global land use demands) and ‘bottom-up’ (i.e., 
local land use competition) effects. In the simulation process, the land 
use demands affect the local land use competition through a self- 

adaptive coefficient, driving the amount of land use to reach future 
demands. 

2.2.1. Feedbacks between macro demands and local competition 
The basic formula for calculating the overall probability (OPi, k

d=1, t) of 
the land use type k can be expressed as follows: 

OPd=1,t
i,k = Pd=1

i,k ×Ωt
i,k ×Dt

k (2)  

where Pi, k
d=1 represents the growth probability of land use type k at cell i; 

Dk
t is the impact of the future demand for land use type k, which is a self- 

adaptive driving coefficient that depends on the gap between the current 
amount of land at iteration t and the target demand of land use k; and Ωi, 

k
t denotes the neighborhood effects of cell i, which are the cover pro-

portions of the land use components of k within the following 
neighborhood. 

Ωt
i,k =

con
(
ct− 1

i = k
)

n × n − 1
×wk (3)  

where con(ci
t− 1 = k) represents the total number of grid cells occupied by 

land use type k at the last iteration within the n × n window and wk is the 
weight among the different land use types because there are different 
neighborhood effects for the different land use types. The default value 
of wk is 1, but it can be defined by the model users. The self-adaptive 
method of Dk

t is as follows: 

Dt
k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Dt− 1
k if ∣Gt− 1

k ∣ ≤ ∣Gt− 2
k ∣

Dt− 1
k ×

Gt− 2
k

Gt− 1
k

if 0 > Gt− 2
k > Gt− 1

k

Dt− 1
k ×

Gt− 1
k

Gt− 2
k

if Gt− 1
k > Gt− 2

k > 0

(4)  

where Gk
t− 1 and Gk

t− 2 are the differences between the current amount of, 
and future demand for, land use type k at the t − 1th and t − 2th itera-
tion. Finally, a roulette wheel is constructed according to the overall 
probabilities of all the land use types and used to select the land use state 
in the next iteration (Liu et al., 2017). 

2.2.2. Multi-type random patch seeds based on a descending threshold 
To simulate the patch evolution of multiple land use types, a multi- 

type random patch seeding mechanism based on threshold descent 
was used in this study, implemented through the calculation process of 
overall probability (Fig. 4). This mechanism generated change ‘seeds’ on 
the growth probability surface (Pi, k

d=1) for each land use type through the 
use of a Monte Carlo approach when the neighborhood effects of a land 

Table 1 
The objective optimization functions of multiobjective programming.  

Function Formula Description 

Function for estimating 
economic benefits. 

f1(x) = max
∑7

i=1eci∙xi =

max{198.04x1 +1.88x2 +6.70x3 +1831.26x4 +0x5 +1.69x6 +1.88x7}

The coefficient eci is the economic benefits of each land use type 
(unit: 104 CNY/ha), CNY = Chinese Yuan. 

Function for estimating 
ecological service value. 

f2(x) = max
∑7

i=1esvi∙xi =

max{8.56x1 +20.63x2 +5.80x3 +0x4 +1.02x5 +33.27x6 +20.63x7}

The coefficient esvi is the ecological service values of each land use 
type (unit: 104 CNY/ha) 

Function for estimating 
ecological capacity. 

f3(x) = max
∑7

i=1eci∙xi =

max{0.08x1 +1.76x2 +5.00x3 +2.5x4 +0x5 +9.42x6 +1.76x7}

The coefficient eci is the ecological capacity of each land use type. 

Objective optimization 
function under the ED 
scenario 

max{f1(x)} x1~x7 represent the area (ha) of grassland (x1), deciduous forest 
(x2), cropland (x3), urban land (x4), bare land (x5), water area (x6), 
and evergreen forest (x7). The three optimization objectives share 
the same constraint conditions. Multiobjective optimization 

function under the EP 
scenario 

max{f2(x), f3(x)} 

Multiobjective optimization 
function under the SD 
scenario 

max{f1(x), f2(x), f3(x)}  

X. Liang et al.                                                                                                                                                                                                                                    
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use k were equal to 0: 

OPd=1,t
i,k =

⎧
⎨

⎩

Pd=1
i,k × (r × μk) × Dt

k if Ωt
i,k = 0 and r < Pd=1

i,k

Pd=1
i,k × Ωt

i,k × Dt
k all others

(5)  

where r is a random value ranging from 0 to 1; μk is the threshold to 
generate the new land use patches for land use type k, which is deter-
mined by the model users. The seeds may generate a new land use type 
and grow into new patches formed by a set of cells with the same land 
use type. To control the generation of multiple land use patches, a 
threshold descending rule for the competition process was proposed to 

restrict both the organic and spontaneous growth of all land use types. If 
a new land use type wins in a round of competition, a decreasing 
threshold τ is employed to assess the candidate land use type c that was 
selected by the roulette wheel as follows: 

If
∑N

k=1
∣Gt− 1

c ∣ −
∑N

k=1
∣Gt

c∣ < Step Then, l = l+ 1 (6)  

⎧
⎨

⎩

Change Pd=1
i,c > τ and TMk,c = 1

No change Pd=1
i,c ≤ τ or TMk,c = 0

τ = δl × r1 (7)  

where Step is the step size of the PLUS model to approximate the land use 
demand; δ is the decay factor of decreasing threshold τ, which ranges 
from 0 to 1 and is set according to the expert; r1 is a normally distributed 
stochastic value with a mean of 1, ranging from 0 to 2; and l is the 
number of decay steps. TMk, c is the transition matrix that defines 
whether land use type k is allowed to convert to type c (Verburg & 
Overmars, 2009). By using this decreasing threshold, the cells with 
higher overall probabilities are usually most likely to change. CA models 
with multi-type random patch seeds and threshold descent rules are 
spatiotemporally dynamic (have temporal consistency), which allows 
the new land use patches to spontaneously grow and freely develop 
under the constraints of the growth probabilities. 

2.3. Generating sustainable land use structure with MOP 

Multiobjective programming (MOP) is an open and flexible method 
that can incorporate varied ecological and macroeconomic policies 
(Gardiner & Steuer, 1994). The expectations (e.g., land use diversity) 
and variables that concern the planners (e.g., food demand) can be taken 
into account through properly defined objective optimization functions 
and constraint conditions. This study aims to determine a sustainable 
land use structure with MOP to support decision making in the study 
region by employing the objective optimization functions, constraint 
conditions and parameters proposed by Wang, Li, Zhang, Li, and Zhou 
(2018). Three optimization objectives were predefined: (1) max{f1(x)}, 
which maximizes the economic benefits; (2) max{f2(x)} which maxi-
mizes the ecological service value; and (3) max{f3(x)}, which maximizes 
the ecological capacity. In our study, the optimal sustainable land use 
structure was assumed to simultaneously maximize these three objec-
tives (i. e. max {f1(x), f2(x), f3(x)}). Thus, we devised a sustainable 
development (SD) scenario. In addition, an economic development (ED) 
scenario that maximized the economic benefits of the land uses (max 
{f1(x)}) and an ecological protection (EP) scenario that maximized the 
ecological benefits of the land uses (max{f2(x), f3(x)}) were also defined 
to compare and better illustrate the land use patterns under the SD 
scenarios. The optimization objectives of MOP are listed in Table 1. The 
constraint conditions of these objective functions are shown in Table 2. 

3. Study area and data sources 

3.1. Study area 

The study area was Wuhan, the capital of Hubei Province, China 
which covers an area of 8494.41 km2. The city is located in the inter-
section of the Yangtze and Han rivers. Water bodies account for a sub-
stantial area of Wuhan. Forests are mainly distributed in the hilly areas, 
and natural vegetation is primarily composed of deciduous broadleaf 
trees. Wuhan city is a megacity in Central China with a total population 
of 10.4 million. The gross domestic product (GDP) reached 91.3 billion 
dollars in 2011, thirteenth among all the cities in China. Wuhan has 
experienced rapid urban growth in the past decade, which has led to 
extensive expansion of built-up land (from 4.19 × 104 ha in 1988 to 
49.39 × 104 ha in 2011) that has encroached upon the surrounding 
ecologically valuable lands (i.e., cropland, forestland, grassland and 

Table 2 
The constraint conditions of MOP in this study.  

Subject to Description 
∑

i=1
7 xi = 479285.19 (ha) The sum of the area of all land use 

types to remain unchanged. 
0.55 * (x1 + x2 + x3 + x7) + 48.93x4) ≤

1420000 
By 2035, the total population is not to 
be larger than 14.2 million. The 
population densities of the grassland, 
cropland, evergreen forest, and 
deciduous forest are set to 0.55. For 
urban land, the density value was 
48.93 (persons per hectare). 

x5 + x1

479285.19
≥ 2.5%  To maintain the land use diversity of 

the study region, we assumed that the 
bare land and grassland should account 
for at least 2.5% of the total area. 

0.49x1 + x2 + 0.46x3 + x7

479285.19
≥ 22%  The coefficients of corresponding land 

use types denote the ‘green 
equivalent’, set according to Liu, Ming, 
and Yang (2002). The total green 
equivalent was assumed to be larger 
than 22% by 2035. 

x3 × 6312 × 0.4072 × 2.85 ≥ 14200000 
× 209.30 × 0.187 

The amount of grain produced by the 
croplands should not be less than the 
food demand of the population. In this 
study, the amount of grain demand per 
capita was 517.30 kg/capita; the grain 
self-sufficiency rate was 18.7%; the 
grain yield per unit cropland area was 
6312 kg/ha; the rate of the crop 
planting proportion was 40.72%; and 
the multiple cropping index was 2.85. 

0.0066 ≤
x1

479285.19
≤ 0.0112  We set 1.12% (cover proportion of 

grassland in 2006) as the upper bound 
and 0.66% (predicted cover proportion 
of grassland in 2035 by Markov chain) 
as the lower bound for the percentage 
of grassland in 2035. 

0.2349 ≤
x4

479285.19
≤ 0.3523  The percentage of built-up land will be 

between 23.49% (80% of the predicted 
urban land in 2035 by Markov chain) 
and 35.23% (120% of the predicted 
urban land in 2035 by Markov chain) 
in 2035. 

0.2502 ≤
x6

479285.19
≤ 0.373  We set 25.02% (predicted cover 

proportion of grassland in 2035 
according to the Markov chain) as the 
upper bound and 27.30% (cover 
proportion of grassland in 2013) as the 
lower bound for the percentage of 
water area. 

0.0136 ≤
x7

479285.19
≤ 0.0355  We set 1.36% (half of the cover 

proportion of evergreen in 2013) as the 
upper bound and 3.55% (cover 
proportion of evergreen in 2006) as the 
lower bound for the percentage of 
water area. 

0.325 ≤
x7

x2
≤ 0.65  The proportion between evergreen and 

deciduous forest was 0.65 in 2013. 
Under the background of global 
warming, we assumed that this 
proportion will not be lower than half 
of the value in 2013 (0.325) until 2035.  
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Fig. 5. The location and Landsat 8 imagery of the study region in 2013.  

Table 3 
The spatial driving factors of the land use change in this study.  

Category Data Yeara Original 
resolution 

Data resource 

Land use/cover data Land use/cover data 2000–2013 30 m Liu et al., 2019 
Socioeconomic driver Population 2010 1000 m http://www.geodoi.ac.cn/WebCn/Default.aspx 

GDP 
Proximity to governments 2013 30 m http://lbsyun.baidu.com 
Proximity to highway 2015 30 m OpenStreetMap (https://www.openstreetmap.org/) 
Proximity to railway 
Proximity to arterial road 
Proximity to primary road 
Proximity to secondary road 
Proximity to tertiary road 
Proximity to high-speed railway 
stations 

2013 30 m http://lbsyun.baidu.com/ 

Climatic and environmental 
driver 

Soil type 1995 1000 m HWSD v 1.2 (http://westdc.westgis.ac.cn/data/844010ba-d359-4020-b 
f76-2b58806f9205) 

Proximity to open water  30 m CLUD datasets in 2013 
Annual Mean Temperature 1970–2000 30 arc-sec WorldClim v2.0 (http://www.worldclim.org/) 
Annual Precipitation 
DEM 2016 30 m NASA SRTM1 v3.0 
Slope  

a Driving factors collected from different time periods are allowed (Long, Han, Lai, & Mao, 2013), but we have made the time periods of the driving factors as close as 
possible to the time periods of the land use data. 
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Fig. 6. Comparison of the simulated land use patterns using the Degraded PLUS (I) model, Degraded PLUS (II) model, FLUS model and PLUS model. The c2, d2, e2 
and f2 panels show the incorrect patches compared to the observed map for 2013 simulated by the four models. The c3, d3, e3 and f3 panels show the incorrect 
patches of a sub region. 
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water areas). The study area included 11 of the 13 districts in Wuhan, 
covering the central metropolitan area (Fig. 5). 

3.2. Data sources 

The land use data in this study were created by Liu, Su, Cao, Wang & 
Guan (2019) with an extent of 2931 × 2931 grid cells and a spatial 
resolution of 30 m × 30 m and were classified by a decision tree from the 
corresponding Landsat images in 2003 and 2013. The Landsat imagery 
was classified into seven land use types, including built-up areas, crop-
land, broadleaf deciduous forest, broadleaf evergreen forest, grassland, 
water bodies, and bare land. We also derived raster maps of multiple 
driving factors (including climatic and environmental drivers and so-
cioeconomic drivers) with the same extent as the land use data. Table 3 
lists the data sources of the spatial data used in this study. 

4. Model implementation and results 

The PLUS model was calibrated over the past time interval from 
2003 to 2013 to assess the RFC performance and simulation accuracy. 
Using a random sampling approach, 5% of the sample cells were selected 
from the spatial variable maps and the land expansion map (Fig. 2). 
These samples served as inputs to the RFC classifier for each increase in a 
land use type. A total of 14 predictor variables for each tree split and 50 
trees were used to build the final RFC models and then to compute the 
growth probability maps for each land use type. During the calibration 
time interval, the 3 × 3 Moore neighborhood was adopted to quantify 
the neighborhood effects of the PLUS model. The threshold to generate 
the new land use patches (μk) in Eq. (5) was set to 0.1, and the decay 
factor of the decreasing threshold δ in Eq. (7) was defined as 0.9. The 
step size (Step) of the PLUS model to approximate the land use demand 
was set to 500. All the parameters are set using a trial-and-error method 
(Liang et al., 2021). 

4.1. Model validation and comparison 

The figure of merit (FOM) was used to validate the simulation results 
and to compare with those of three other models: the degraded PLUS 
model (I) (using PAS), the degraded PLUS model (II) (without the multi- 
type random patch seed function), and the FLUS model (a CA model 
based on an artificial neural network). The FLUS model has been 
commonly used to simulate different regions at different scales 
(regional, continental and global), and can obtain higher simulation 
accuracies than the other traditional models, such as CLUE-S, ANN-CA 
and Logistic-CA (Liu et al., 2017). 

Fig. 6 compared the observed land use patterns in 2013 with the 
simulated land use patterns of the four models. We found that the 
simulated result of the PLUS model (Fig. 6(d)) was most similar to the 
observed pattern (Fig. 6(b)) and obtained the highest simulation accu-
racy (FOM = 0.2642). The c2-3, d2-3, e2-3 and f2-3 panels show 
incorrect patches simulated by the four simulation models. The incorrect 
patches derived from the PLUS model are small and uniformly scattered 
across the study area, which is different from the results generated by 
the other models that have many obvious and large incorrect patches. 
The comparison between the simulated accuracy of the PLUS model 
(Fig. 6(d)) and the degraded PLUS model (I) (Fig. 6(e)) demonstrated 
that the LEAS had advantages in improving the simulation accuracy 
(FOM increases from 0.1310 to 0.2642). The simulation accuracy of the 
PLUS model was higher than that of the degraded PLUS model (II) (Fig. 6 
(f)), which indicated that the multi-type random patch seed mechanism 
proposed in this study could help improve the simulation results (FOM 
increased from 0.2514 to 0.2642). Finally, the comparison between the 
FOM values of the PLUS model and the FLUS model (0.2642 vs. 0.1895) 
suggested that the PLUS model was superior to the traditional model in 
simulating the process of historical land use change. 

We also validated whether the PLUS model could better trace the Ta
bl

e 
4 

La
nd

sc
ap

e 
si

m
ila

ri
ty

 o
f t

he
 s

im
ul

at
io

n 
re

su
lts

 o
f t

he
 a

bo
ve

 m
od

el
s 

co
m

pa
re

d 
w

ith
 a

 s
er

ie
s 

of
 la

nd
sc

ap
e 

m
et

ri
cs

.  

La
nd

sc
ap

e 
m

et
ri

cs
 

N
P 

LP
I 

PA
RA

_M
N

 
PA

RA
_A

M
 

PA
RA

_M
D

 
PA

RA
_R

A
 

PA
RA

_S
D

 
PA

RA
_C

V 
EN

N
_M

N
 

EN
N

_A
M

 
EN

N
_M

D
 

EN
N

_R
A

 
EN

N
_S

D
 

EN
N

_C
V 

PL
A

D
J 

D
eg

ra
de

d 
PL

U
S 

(I
I)

 
65

60
6b 

22
.2

88
 

10
46

.8
28

 
14

9.
29

3a 
11

11
.1

11
b 

12
91

.2
87

 
32

6.
42

1 
31

.1
82

 
14

9.
60

7b 
74

.4
28

 
84

.8
53

b 
99

91
.0

75
 

20
5.

39
1b 

13
7.

28
7 

88
.8

03
a 

D
eg

ra
de

d 
PL

U
S 

(I
) 

52
,3

20
 

27
.1

04
 

99
0.

04
8 

11
5.

30
2 

10
00

a 
12

96
.9

11
a 

34
0.

33
4 

34
.3

75
 

15
0.

95
4a 

65
.4

97
b 

84
.8

53
b 

81
25

.6
58

 
23

9.
28

2 
15

8.
51

3 
91

.3
52

 
FL

U
S 

46
,8

04
 

21
.0

19
b 

94
0.

22
7a 

12
6.

59
 

10
00

a 
12

95
.2

91
b 

36
4.

20
2a 

38
.7

36
a 

18
1.

29
2 

74
.9

21
 

94
.8

68
a 

78
67

.7
8b 

23
9.

93
7 

13
2.

34
9b 

90
.5

06
 

PL
U

S 
71

06
3a 

20
.4

18
a 

96
4.

43
6b 

14
4.

95
7b 

10
00

a 
12

94
.4

82
 

34
8.

53
4b 

36
.1

39
b 

14
6.

48
7 

66
.9

17
a 

84
.8

53
b 

47
13

.3
01

a 
17

9.
39

1a 
12

2.
46

2a 
89

.1
28

b 

O
bs

er
ve

d 
20

13
 

77
,8

90
 

20
.0

64
 

89
7.

57
3 

15
2.

79
5 

88
8.

88
9 

13
00

.9
95

 
35

9.
05

 
40

.0
02

 
16

3.
38

3 
69

.7
91

 
10

8.
16

7 
53

89
.8

53
 

17
4.

62
 

10
6.

87
8 

88
.5

4 
 

a
Th

e 
un

de
rl

in
e 

an
d 

bo
ld

 v
al

ue
s 

ar
e 

th
e 

fir
st

 c
lo

se
st

 la
nd

sc
ap

e 
m

et
ri

cs
 to

 th
e 

ob
se

rv
ed

 la
nd

 u
se

 p
at

te
rn

. 
b

Th
e 

ita
lic

 a
nd

 b
ol

d 
va

lu
es

 a
re

 th
e 

se
co

nd
 c

lo
se

st
 la

nd
sc

ap
e 

m
et

ri
cs

 to
 th

e 
ob

se
rv

ed
 la

nd
 u

se
 p

at
te

rn
. 

X. Liang et al.                                                                                                                                                                                                                                    



Computers, Environment and Urban Systems 85 (2021) 101569

10

change in the landscape patterns compared to other models. The land-
scape similarity was quantified through a comparison among a series of 
simulated and observed landscape metrics in 2013. A total of 15 land-
scape metrics were selected to quantify their landscape similarity: (1) 
the number of patches (NP); (2) the largest-patch index (LPI); (3–8) the 
perimeter-area ratio metrics, including mean (PARA_MN), weighted 
average (PARA_AM), mid-value (PARA_MD), extreme value (PARA_RA), 
standard deviation (PARA_SD), variable coefficient (PARA_CV); (9–14) 
Euclidean nearest-neighbor distance metrics include the mean 
(ENN_MN), weighted average (ENN_AM), mid-value (ENN_MD), 
extreme value (ENN_RA), standard deviation (ENN_SD), variable coef-
ficient (ENN_CV); and (15) the proportion of like adjacency (PLADJ). 
The landscape metrics we used are shown in Table 4. 

We found that 7 (NP, LPI, PRAR_MD, ENN_AM, ENN_RA, ENN_SD, 
ENN_CV) among the 15 landscape metrics of the simulated pattern of the 
PLUS model were closest to the metrics of the observed pattern in 2013, 
which was higher than the number of closest metrics for the other three 
models (the FLUS had 5 higher metrics, the degraded PLUS (I) had 3 
metrics and the degraded PLUS (II) had 2 metrics). For the other 6 
landscape metrics (PRAR_MN, PRAR _AM, PRAR _SD, PRAR _CV, 
ENN_MD), the simulation by the PLUS model ranked second among the 
models. These results show that the proposed PLUS model can generate 
simulation results whose landscape patterns are most similar overall to 
the observed land use pattern. 

4.2. Analyzing the underlying driving forces of the LULC with LEAS 

By adopting the LEAS proposed in this study, the analysis of the 
driving factors for land use change can be more rigorous and have a 
more clear meaning than those in previous studies (Gounaridis, Cho-
rianopoulos, Symeonakis, & Koukoulas, 2019; Zhang et al., 2019). For 
example, a previous CA model based on a transition analysis strategy 
trained 18 random forest models and derived corresponding ‘from-to’ 
transition probabilities; but other possible transitions were ignored 
(Gounaridis et al., 2019). Although this process can drive the allocation 
of cells in CA, the contribution of multiple driving factors to the indi-
vidual land use types cannot be derived from the training step. The 
‘from’ land use type was specified in the training process of each random 
forest model. Different than the TAS, the LEAS used by the PLUS model 
merges all the ‘from’ land use types of a “to” land use type. Thus, the 
significance of the measurement of variable importance was more 
explicit, which could be understood as the contributions of multiple 
driving factors in driving the other land uses to convert to a specified 
target land use type. Fig. 6 shows the variable importance that informs 
the contribution of each variable to the growth of the three land use 
types. 

For the grasslands, we found that proximity to administrative centers 
(governments) had the most influence on the growth of grass. We 
overlaid the grass growth with the proximity to administrative centers 
and found that the new grassland was mainly distributed in areas far 
away from the governments. The areas around the governments were 
generally areas where human beings are most active. This result 

indicates that grass was most likely to grow in areas where it was not 
strongly impacted by human activities. In contrast to the grassland, 
deciduous forest was most influenced by proximity to the arterial roads. 
Although almost no new deciduous forests grew in the metropolitan 
areas where the density of arterial roads was relatively high from 2003 
to 2013, the new deciduous forests were most likely to grow in the re-
gions adjacent to arterial roads in the suburbs. This suggested that the 
growth of deciduous forest may have been managed by human beings. 
Policymakers tend to plant new deciduous forests along the arterial 
roads that go through the suburbs. Moreover, we also found that urban 
growth was most influenced by tertiary roads. The distribution of the 
new urban growth also had a high consistency with the pattern of the 
tertiary roads. This is hardly surprising, as most new urban growth 
implies and depends on extending first the local, then the connector road 
networks. 

4.3. Forecasting the different LULCs under multiple scenarios 

For future simulations, we created one baseline scenario and three 
alternative future scenarios using a Markov chain model and multi-
objective programming (MOP), respectively. Then, the PLUS model was 
employed to allocate the predicted land use demand at the local scale of 
land use change at a fine resolution to support the master plan of Wuhan 
(2017–2035). The main differences between the four scenarios were the 
future demands. Other parameters of the four scenarios were set the 
same as in the validation process discussed in Section 4. 

4.3.1. Scenario description 
Based on the optimization objectives and constraint conditions, we 

solved the multiobjective optimization problems using Lingo 12.0 soft-
ware. Table 5 shows the predicted land use demands in 2035 under the 
different scenarios. In addition, a baseline scenario (BS) was derived 
from a Markov chain (Bai et al., 2018), which represents the historical 
trend of land use change in Wuhan. A transfer probability matrix for 
2003–2013 was generated with the Markov chain model to predict land 
use demands in 2026 and 2039. Next, linear interpolation was applied to 
project the land use demands in 2035. We found that under the ED and 
SD scenarios, the decrease in cropland was the same, but the areas of 
water, evergreen forest, and deciduous forest were greater in the SD 
scenario. This comparison indicated that urban expansion avoids 
encroaching upon forest land and water areas and can promote more 
sustainable regional development. The EP scenario has the most 
forestland, grassland, water area, and cropland, and the least amount of 
urban land among these scenarios. It is worth noting that the BS scenario 
will lose the most cropland and grassland, which indicates that more 
attention should be paid to protecting the cropland and grassland under 
the current trend of land use change. 

4.3.2. Projecting future LULCs with the PLUS model 
Driven by future land use demands, the PLUS model was applied to 

simulate land use changes under the four different scenarios. The dif-
ference maps of the simulation results in 2035 are shown in Fig. 8. The 

Table 5 
Land use demands under different scenarios (unit: ha).  

Type  Markov Multiobjective optimization 

BS scenario ED scenario EP scenario SD scenario 

2013 2035 2035 2035 2035 

Grassland 3995.64 3178.99 5367.99 5367.99 5367.99 
Deciduous forest 20,801.16 25,010.82 10,033.91 27,499.03 22,814.06 
Cropland 222,968.79 175,295.11 187,522.29 188,970.75 187,522.29 
Urban land 83,651.49 140,757.93 149,542.20 112,584.06 130,766.13 
Bare land 3547.35 3020.94 383.43 383.43 383.43 
Water area 130,827.87 119,935.84 119,917.08 130,844.88 124,988.76 
Evergreen forest 13,570.38 12,085.56 6518.28 13,635.01 7442.53  
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Fig. 7. The importance of the contribution of each variable to the growth of three land use types. The most important factors were overlapped with the expansion of 
the corresponding land uses. 
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main characteristics of land use change under the BS and ED scenarios 
were the rapid urban expansion and the reduction of cultivated land 
compared to the actual land use in 2013, but the new urban patches 
under the ED scenario are more compact. The land expansion map under 
the ED scenario is characterized by the emergence of many large de-
ciduous forest and grassland patches. The urban growth and expansion 
of deciduous forest under the SD scenario are intermediate between the 
patterns under the ED and EP scenarios. 

In a sub-region around Tangxun Lake in Wuhan (Fig. 9), the urban 
growth under the BS scenario will expand and encroach on a large 
portion of the cropland, but the largest deciduous forest patch would be 
well preserved. The deciduous forest corridor would become larger and 
more continuous, which was different from the situation in the ED 
scenario. Although the urban growth in the ED scenario was much more 
compact, it preserved more cropland, which could create more eco-
nomic benefits at the cost of encroaching on more deciduous forest. 
Thus, the deciduous forest patches would be much smaller, and the 
deciduous forest corridor would almost disappear under the ED sce-
nario. In contrast to the ED scenario, the EP scenario had the highest 
demand for forestland and the best-preserved deciduous forest patches 
among all the scenarios. The deciduous forest corridor under the EP 
scenario had the most obvious growth. Under the SD scenario, the urban 
growth would be controlled to reduce the influence on the deciduous 
forest. The distribution pattern of the deciduous forest remained almost 
the same as in 2013. A new evergreen patch was predicted to appear in 
the center of the largest deciduous forest patch. 

5. Discussion 

The CA module with the multi-type patch strategy and the rule- 
mining framework based on the land expansion analysis strategy were 
closely linked and together constitute the PLUS model. The training 
process of the PLUS model can directly provide quantitative information 

on how the various driving factors influenced the expansion of the 
multiple land use types (Fig. 7). Considering that the forces of land use 
change may change with time (i.e., variation in the driving factors), the 
transition rules obtained from the training process of the PLUS were 
more valuable and flexible than the distribution rules that have been 
mined in previous studies, because the transition rules in this study have 
a temporal aspect, which gives transition rules the ability to describe the 
properties of land use change for specific time interval (Fig. 3) (He et al., 
2020). This advantage can help policymakers understand how the 
driving factors (e.g., growth in arterial roads) influence short-term land 
use change. In addition, as indicated by the results of the model vali-
dation and comparison, the simulation results obtained higher simula-
tion accuracy (FOM increased from 0.1895 to 0.2642) and gave more 
similar landscape metrics than the other models tested (Table 4). Thus, 
more reliable simulation results under the different future scenarios can 
be expected with the PLUS model. 

By using the MOP, policymakers can obtain optimized land use 
patterns under different policies and scenarios. For example, the optimal 
land use structures for economic development were calculated under the 
ED scenario. The total economic benefits under this scenario were ex-
pected to reach 2.764 × 1012 CNY. Similarly, a land use structure that 
could balance both the ecological service values and the ecological ca-
pacity was also obtained under the EP scenario, the values of which were 
6.3657 × 1010 CNY and 2.6115 × 1010, but the economic benefits were 
predicted to decrease to 2.088 × 1012 CNY. These two scenarios were 
adopted by Wang et al. (2018), and we projected the land use structures 
in our study region to 2035 under these two scenarios. Moreover, pre-
vious studies have not arranged scenarios to find the balance between 
the economic benefits and ecological benefits. This study designed an SD 
scenario aimed at maximizing the three aforementioned objectives 
simultaneously. The three benefit values found by the MOP were 2.4205 
× 1012 CNY (economic benefits), 5.9165 × 1010 CNY (ecological service 
value), and 2.4956 × 1010 (ecological capacity). The land use structure 

Fig. 8. The land expansion maps from 2013 to 2035 generated by the PLUS model under different scenarios.  
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that helped to improve regional sustainable development was obtained 
(Table 5), which is also of importance for assisting policymakers in 
determining future management objectives and reasonable land polices 
(Cao, Huang, Wang, & Lin, 2012). 

6. Conclusion 

This research has presented a rule-mining framework based on a land 
expansion analysis strategy (LEAS), which can bring new scientific un-
derstanding of LULC to a study region. The LEAS simplified the analysis 
of land use change while maintaining the ability to support multi-type, 
complex land use change. Based on the growth probabilities output by 
the LEAS, a CA model based on multi-type random patch seeds (CARS) 
was proposed, to better simulate the patch growth of multiple land use 
types at a fine-scale resolution. As a result, a more realistic landscape 
pattern can be generated to support decision-making. 

By applying a combination of the LEAS and CARS, we constructed a 
patch-generating land use simulation (PLUS) model that was available 
to simulate the change of land use patches and to analyze the underlying 
drivers of land use dynamics. The PLUS model was calibrated using a 
simulation of Wuhan (2003− 2013) and obtained higher simulation 

accuracy and more similar landscape patterns than the other models 
tested. The variable importance derived from the LEAS revealed some 
transition effects that could not be found by the previous analysis 
methods. For example, grassland was most likely to grow in areas where 
it was not strongly impacted by human activities, and new deciduous 
forests were most likely to grow along arterial roads in the suburbs. 

By coupling the PLUS model with the MOP, the land use structures 
under the different scenarios in 2035 and their corresponding future 
economic and ecological benefits can be predicted, which are of great 
importance for policymakers to plan for the future development goals of 
the study region. In particular, the land use structure under the SD 
scenario can be regarded as a baseline for examining whether the study 
region has developed along a sustainable pathway. In summary, the 
PLUS model produced results that were more accurate, had more reli-
able landscape patterns and allowed for important insights concerning 
the drivers of land expansion. It also can produce substantive guidance 
for policymakers on how to manage future land use patterns with 
different development objectives. We encourage others to use this 
approach for understanding the mechanisms of land expansion and to 
obtain optimal land use patterns under different policies. 

Fig. 9. A local-scale subset of the simulated land use patterns in 2035 and land expansion maps from 2013 to 2035 under different scenarios.  
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