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The spatial distribution of buildings is one of the key factors influencing the local environment within a

city. The quantitative measurement of building distribution can provide critical information for exploring

local climate patterns in urban areas. Previous studies mainly focused on the two-dimensional spatial

distribution of buildings and ignored the differences in height. In this study, a three-dimensional (3D) urban

texture model based on an improved radial distribution function is proposed to describe the 3D spatial

distribution of urban buildings. Using a set of concentric domes above the ground, a texture curve can be

generated at any location in a city, from which a variety of numerical features are extracted to depict the

local 3D urban landscape quantitatively. The proposed model was applied to Wuhan, one of the largest

cities in central China, and the results demonstrated that the proposed model could identify various building

distribution patterns in the city. Additionally, the relationship between urban texture and land surface

temperature in Wuhan was analyzed. It was found that the 3D urban texture model effectively improved the

accuracy of land surface temperature estimation. This study provides a new tool for urban environmental

assessment and urban planning decision making. Key Words: 3D urban texture model, radial distribution
function, urban structure, urban surface temperature.

D
isorganized urban spatial structure can lead

to a series of environmental problems such

as local climate change and urban heat

islands (UHIs; Sossa et al. 2013; Leconte et al.

2015). Hence, in recent years, accurately describing

urban spatial structures at fine scales and exploring

the relationships between spatial structures and local

environments have become the focus of urban

research (Brian 2008; Xian 2008; Kumar and

Tretkoff 2010), which has far-reaching significance

for the sustainable development of cities (Strømann-

Andersen and Sattrup 2011; Inostroza, Baur, and

Csaplovics 2013).
A city is a complex system, in which buildings

play a key role to form the spatial structure of the

city (Jian et al. 2012; Quattrochi 2013). The distri-

bution of buildings can reflect the layout characteris-

tics of urban spatial structures, which are defined as

urban building textures (Dobinson 1993; Heinzel

and Kemper 2015). The term texture is often used in

remote sensing applications to describe the features

of the detailed structure of an object’s surface

(Gaetano, Scarpa, and Poggi 2009), and the

quantitative extraction of these features can effec-

tively help distinguish different types of ground

objects (Li et al. 2017). The concept of urban tex-

ture was first proposed by Rykwert (1988) and was

defined as the pattern of building distribution in a

city. The distribution of various urban textures is

then regarded as the texture morphology. Previously,

Ai and Zhang (2007) studied urban texture based on

the distribution characteristics of buildings by calcu-

lating the statistical features of buildings. The spatial

variation of urban land was measured using statistical

features such as the building footprint and density.

Later, other scholars analyzed building texture and

landscape morphological characteristics by extracting

building objects and quantifying building density (B.

Yu et al. 2010; Z. Chen and Soh 2014). These stud-

ies focused on urban morphology by calculating the

two-dimensional (2D) urban morphological features

(Pan et al. 2008) and urban morphological evolution

and prediction (Y. He et al. 2015) and often ignored

the variations in building height. As the built space

gradually extends to the sky, the urban texture has

significant three-dimensional (3D) features that

Annals of the American Association of Geographers, 0(0) 2021, pp. 1–21 # 2021 by American Association of Geographers
Initial submission, November 2019; revised submissions, May 2020, April and July 2021; final acceptance, July 2021

Published by Taylor & Francis, LLC.

http://crossmark.crossref.org/dialog/?doi=10.1080/24694452.2021.1972790&domain=pdf&date_stamp=2021-10-28
http://orcid.org/0000-0002-7392-3709
http://orcid.org/0000-0002-2830-0377
http://orcid.org/0000-0002-8144-1929


affect the local environment of a city (Ivanova

2015; Zhu and Sun 2017).
The past decade has seen an increased number of

studies on the 3D forms of cities (Z. He et al. 2020).

Geographical information systems and high-resolu-

tion remote sensing images were combined to extract

the 3D features of buildings for quantifying 3D urban

expansion (X. Yang and Li 2013; Qin et al. 2015).

With the recent acceleration of urbanization in

China, a large number of buildings and roads have

been built in urban areas (Y. Zhang et al. 2018). The

modifications of the material properties and geome-

tries of infrastructures have led to significant changes

in the physical processes on the Earth’s surface, result-

ing in notable local environmental consequences such

as UHIs (Roman et al. 2016; Yin et al. 2018). The

vertical growth of the urban space has been found to

intensify the thermal environment in a city (Perini

and Magliocco 2014). Therefore, scholars have dis-

cussed the microclimates and UHIs in cities by quanti-

fying the building density (Guo et al. 2016) and

designing 3D urban surface models (Luo and Li 2014).
The primary objective of studying the texture

morphology of buildings is to quantify the building

form accurately and to reveal its relevance to the

local climate, UHIs, and other environmental issues

of cities (Strømann-Andersen and Sattrup 2011;

Palme, Inostroza, and Salvati 2018). The microcli-

mate variations in a city have a direct relationship

with the spatial distribution of local buildings.

Previous studies mainly calculated the statistical fea-

tures of buildings at the urban scale. They

expounded the correlation using elements related to

the urban environment while ignoring the relation-

ship between the environment and the texture mor-

phology of local building spaces (or building groups).

Stewart and Oke’s (2012) study on the local climate

zone (LCZ) showed that building layout in a 3D

space has significant impacts on local urban climate.

They suggested that in a built environment zone,

according to the spatial distribution characteristics of

buildings, the climate zone can be divided according

to whether the buildings are high-rise or low-rise

and compact or open. The buildings in a city are

highly mixed in terms of height and spatial arrange-

ment, however. Simple features (e.g., high- or low-

rise and compactness) can hardly reflect the complex

patterns of spatial distribution of buildings, providing

only limited information for LCZ analysis and other

urban environmental investigations.

Therefore, there are two main problems in the

study of buildings’ spatial form in cities at present:

(1) Most of the studies have focused on either the

building scale or regional scale, ignoring the local

building space. Buildings generally exist in the form

of groups (Kharchenko 2016). Different building

groups have different morphological characteristics

(Sobstyl et al. 2018), which is an essential factor to

be considered in urban planning and the main rea-

son for the formation of local climate in a city

(Stewart and Oke 2012). (2) Even though a few

studies have paid attention to the distribution char-

acteristics of building groups, the quantitative fea-

tures used in these studies, such as the local building

density (X. Yang and Li 2015) and sky view factor

(L. Chen et al. 2012), focused on limited aspects of

spatial distribution of buildings and can hardly

reflect the complex 3D texture morphology of a

building group. An effective quantitative method for

describing the 3D texture morphologies of building

groups is therefore needed.
Analogous to the complex structure in a micro-

scopic system, in which the ordered and disordered

arrangements of particles constitute substances with

different states of existence (Bragg and Lipson

1938), the ordered and disordered distributions of

buildings constitute the varying local urban land-

scapes (Manesh and Tadi 2011). By adopting the

radial distribution function (RDF) to quantitatively

describe the distribution patterns of building groups

in a 2D space, Sobstyl et al. (2018) examined the

2D building textures at various locations in a city

and found that the regularity degree of spatial

arrangement of a building group had a significant

impact on the local temperature. The RDF had been

initially used in physics to describe the spatial struc-

tures of particle arrangements of substances (Burgot

2017), such as crystals with regular structures and

liquids or amorphous substances with irregular struc-

tures (Sukhomlinov and M€user 2017). Sobstyl

et al.’s (2018) study showed that the texture charac-

teristics (or texture morphologies) of buildings

arranged with high regularity are similar to the those

of crystals, whereas the texture characteristics of

buildings arranged with low regularity are similar to

the those of fluids. Here, high regularity means that

buildings are arranged in a 2D space in an orderly

pattern with a clean layout plan, and low regularity

means the buildings are more randomly distributed

without an obvious pattern. They also found that
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these texture morphologies are related to the forma-

tion of UHIs.
Even though Sobstyl et al. (2018) demonstrated

the applicability of RDF in describing the texture

morphologies of building groups in cities and ana-

lyzed the relationship between urban texture and

urban environment, their study was conducted in a

2D space and the variation of building height was

ignored. Three-dimensional texture features are

essential to comprehensively and accurately charac-

terize the complex patterns of spatial distributions

(including 2D arrangements and height variations)

of building groups (Jian et al. 2012; X. Yang and Li

2015; Wentz et al. 2018). Therefore, the effective

extraction and quantitative representation of 3D tex-

ture features of buildings are the key foundation to

unearth the relationship between the urban spatial

structure and urban environment (Ellefsen 1991; S.

Yu et al. 2016; Palme, Inostroza, and Salvati 2018).

This study proposes a 3D urban texture model

based on an improved RDF to quantitatively charac-

terize the 3D texture morphologies of built-up envi-

ronments in cities. For a specific location in an

urban area, the RDF treats buildings as particles, and

generates a texture curve that abstracts the 3D spa-

tial distribution of buildings. A collection of quanti-

tative features can then be extracted from the

texture curve to represent the morphological charac-

teristics of the 3D landscape. By applying the pro-

posed RDF-based model to Wuhan, a megacity in

China, we analyzed the distributions of building

groups with different texture morphologies.

Moreover, the correlation between 3D texture mor-

phology and land surface temperature (LST) in

Wuhan was analyzed. The proposed model is a new

approach for quantitatively extracting the 3D char-

acteristics of spatial distribution of buildings and can

provide key information for analyzing the relation-

ship between built landscape and local environment

in urban areas.

Method

The overall flowchart of this study is shown in

Figure 1. Using the data set of 3D building models,

the proposed RDF-based model generates the urban

texture curves at various locations in the city to rep-

resent the 3D distribution patterns of local buildings.

A set of quantitative features is extracted from each

texture curve to characterize the built landscape at

the corresponding location, such that the texture

morphology of a local building group can be distin-

guished. These 3D texture features are then

used to estimate the LSTs at the corresponding

locations through the random forest regression

(RFR) method to illustrate the correlation

between 3D urban texture and local environment

in urban areas.

RDF-Based 3D Urban Texture Model

The 3D urban texture model based on RDF is

proposed in this study to generate the urban texture

curve at any location in the city to reflect the 3D

spatial distribution pattern of local buildings. As

mentioned before, the RDF was initially used in

physics to describe the spatial structures of particle

arrangements of substances. As shown in Figure 2A,

in a microscopic 3D space, the RDF calculates the

probability g(r) of other particles appearing around

an arbitrarily designated “central” particle within a

radius r (Bragg and Lipson 1938; Burgot 2017); that

is, the ratio of the regional density of particles in

the boundary range (i.e., the density of particles in a

spherical shell with a thickness of dr) to the global

density (i.e., the density of particles within a sphere

with a radius of r). Using multiple concentric

spheres with a radius interval of dr, a curve of g(r)
can be generated to reflect the spatial structure of

particles; that is, the spatial variation of probabilities

of other particles appearing around the “central” par-

ticle at different distances.

In the proposed 3D urban texture model, the par-

ticles are replaced by buildings. Also, given that the

purpose of this model is to describe the spatial distri-

bution patterns of aboveground buildings in urban

areas, the center of concentric spheres is located on

and above the ground and only the buildings above

the ground are considered. As shown in Figure 2B,

using a specific location “C” as the center, a set of

concentric spheres are constructed, and the building

density in each spherical shell formed by two adja-

cent spheres is calculated to generate the urban tex-

ture curve of local urban landscape. The radius r of

the local building group (i.e., the radius of the largest

sphere) can be determined according to different

research purposes. After r is determined, the best dr
value can be obtained through experiments. The

value of g(r) of each spherical shell is calculated as

follows:
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g rið Þ ¼
qdrði, iþ1Þ

qri
¼ 1

qri

vdrði, iþ1Þ

Vdrði, iþ1Þ
, (1)

where qri represents the global density of the build-

ings within the sphere with a radius of ri and qdrði, iþ1Þ
represents the regional density of the buildings

within the ith spherical shell with a thickness of dr.
vdrði, iþ1Þ represents the volume of the buildings

within the ith spherical shell, and Vdrði, iþ1Þ repre-

sents the total volume of the ith spherical shell.

When a building intersects with one or more

spheres, only the proportion of the building’s volume

within the intersecting sphere or spherical shell is

considered for the density calculation. Thus, both

the spatial arrangement and heights of buildings

(i.e., the key fundamental components of local urban

morphology) are taken into account in the proposed

3D urban texture model.
For the convenience of calculation, this study

regards a building as a regular 3D structure when

estimating its volume and does not consider complex

forms such as building roofs and irregular facades.

The intersection points between the central axis of

the building and the spheres are first determined and

Figure 1. The methodological flowchart. Note: LST¼ land surface temperature.
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the volumes of the building intercepted by the

spheres are then calculated based on the heights of

the intersections and the building footprint area.
As mentioned earlier, in the proposed model, the

center of the concentric spheres is located on or

above the ground, because only the aboveground

buildings are considered in the generation of the

texture curve. To explore whether the height of the

spherical center influences the resultant curve, a series

of experiments was conducted with various center

heights ranging from 0 to 100 m in a typical urban

area. As shown in Figure 3, as the height of the

center increases, the shape of the curve hardly

changes. That is, the height of the spherical center

does not affect the texture curve significantly.

Therefore, this study places the spherical center on

the ground; that is, the height is set to 0m. In

other words, the proposed model uses a set of con-

centric domes on the ground to generate the urban

texture curve of the aboveground buildings at a spe-

cific location in a city.
Therefore, the proposed model can derive a sim-

ple and abstract representation (i.e., urban texture

curve) of the complex 3D spatial distribution of a

group of buildings from the original 3D models of

buildings. Quantitative features can then be

extracted from such a curve to characterize the 3D

texture morphology of the local urban landscape.

Feature Extraction from the Urban Texture Curve

In physics, to help understand and analyze the

particle arrangement in microscopic systems and dif-

ferentiate various types of substances, quantitative

features can be extracted from the RDF curve to rep-

resent the characteristics of the spatial arrangement

of particles for physical interpretation. For example,

the first peak of the RDF curve represents the bond-

ing strength among the particles, and a sharper

shape of this peak indicates that the center particle

and the nearest neighboring particle have a stronger

bonding strength (Cherkas and Cherkas 2016). The

integral from the origin to the first peak position

represents the nearest coordination number of the

central particle. In a microscopic system, the coordi-

nation number describes the tightness of the

arrangement of the particles in the system. The

larger the coordination number is, the closer the par-

ticles are arranged (Bragg and Lipson 1938).

Similarly, quantitative features can be extracted

from an urban texture curve to describe various

characteristics of the 3D spatial distribution pattern

of a group of buildings. In this study, ten features are

extracted, including three data features and seven

curve features (Table 1). Hence, quantitative analy-

sis and comparisons can be carried out using these

features to explore the urban texture morphologies

Figure 2. (A) Schematic diagram of the relationship between radial distribution function and particle structure; (B) the radial

distribution function–based 3D urban texture model proposed in the study.
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Figure 3. Urban texture curves with spherical center at various heights.

Table 1. Features extracted from an urban texture curve

Features Description

Data features Coefficient of variation (CV) CV ¼ a
l , which reflects the absolute value of the degree of data

dispersion. a and l are the standard deviation and average value of data,

respectively. A distribution with a CV greater than 1 is a distribution

with high differences (Brown 2011).

Burst statistics (B) B ¼ a�l
aþl , which can be used to measure the burstiness of the spatial

distribution. a and l are the standard deviation and average value of

data, respectively. A B close to –1 indicates that the data has strong

burstiness, and close to 1 indicates that the data are regular and

predictable (Goh and Barab�asi 2012).
Shannon entropy (Sh) Sh ¼ �Pn

i¼1 pi log pi, which can be used to measure the uncertainty or

disorder of the system. pi is the probability of event i. A large Sh value

indicates that the uncertainty of the information source is large

(Shannon, Weaver, and Wiener 1949).

Curve features Skewness (Sk) Sk ¼ 1
na3

Pn
i¼1 ðxi�lÞ3, which can describe the degree of symmetry of the

distribution’s deviation. a and l are the standard deviation and average

value of data, respectively. Sk > 0 represents a right-skewed distribution,

and Sk < 0 represents a left-skewed distribution (Mardia 1970).

Kurtosis (K) K ¼ 1
na4

Pn
i¼1 ðxi�lÞ2, which describes the degree of abruptness. a and l

are the standard deviation and average value of data, respectively. Under

the same standard deviation, the larger the kurtosis is, the more extreme

and the steeper the distribution (Mardia 1970).

The first peak (FP) Radius r at the first peak.

The maximum peak (MP) Radius r at the maximum peak.

The first peak area (FPA) The integral from the origin to the first peak position, which is used to

describe the extent to which other particles are bound around the center

particle (Burgot 2017). In this study, buildings are considered as particles

in a system.

The maximum peak area (MPA) The integral from the origin to the maximum peak position, indicating the

degree of binding of all particles to the central particle (Burgot 2017).

In this study, particles are replaced by buildings.

Transition point (Tg) Tg ¼ gmax

gmin
, which is the ratio of the first peak (gmax) to the first valley

(gmin). The larger Tg is, the stronger the dependence between particles

(Burgot 2017). In this study, particles are replaced by buildings.

6 Guan et al.



in a complex urban landscape, which can hardly be

done using the original 3D models of buildings.

Various spatial distribution patterns of buildings can

be identified because they exhibit distinguishing tex-

ture morphologies, and their relationships with the

local environment (such as land surface temperature)

can be evaluated.

Correlation Analysis with LST

The difference in the shape of built space greatly

affects the temperature variation in an urban area

(Sobstyl et al. 2018). In this study, the correlation

between urban texture morphology and LST is

explored through an RFR model. It is worth noting

that the correlations between urban texture mor-

phology and other environmental variables (e.g., air

quality and noise) can also be analyzed through such

an approach.
Because previous studies suggested that the best

range for an LCZ is between 200m and 500m

(Stewart and Oke 2012), we take 500m as the maxi-

mum range r to ensure that the LSTs in the area

have the same characteristics and that the area

under the dome can form a suitable LCZ (Luo and

Li 2014). We regard each sampling point and its sur-

rounding 500-m radius as an LCZ and generate a

texture curve based on the proposed model. We use

the texture features in each LCZ to fit the LST of

the center sampling point, creating 10,000 training

sets. Moreover, we set up different radius gaps to

explore the best configuration (from 5m–100m with

an interval of 5m). The scikit-learn package based

on the Python language (Kramer 2016) is used to

implement the RFR fitting.

The RFR is an integrated decision tree consisting

of a set of unrelated regression decision trees

h x, htð Þ, t ¼ 1, 2 , 3, ::: T
� �

(Cutler, Cutler, and

Stevens 2011), and the formula is as follows:

h xð Þ ¼ 1

N

XT
n¼1

hðx, htÞ
� �

, (2)

where ht is an independent and identically distrib-

uted random vector, x is the input vector, and T is

the number of decision trees. In this study, T is set

as 50.

The goodness of fit (R2) is used to describe the

fitting accuracy between LST and 3D texture fea-

tures. R2 can test the fitting effect of the regression

model to sample data, and an R2 close to one

indicates that the regression model has a good fit.

The formula for calculating R2 is as follows

(Gr€omping 2009):

R2 ¼
Pn

i¼1
ðbyi � y�Þ2

Pn
i¼1

ðyi � y�Þ2 , (3)

where yi is the obtained actual temperature, byi is the
predicted surface temperature using the model, y� is

the average value of the obtained actual tempera-

ture, and n represents the sample size.

The influence of each feature on the LST is fur-

ther investigated by calculating the average contri-

bution of each feature using the Gini index or the

out-of-bag error rate (Cutler, Cutler, and

Stevens 2011).

Data Sets for Experiments

To demonstrate the proposed 3D urban texture

model’s capabilities for extracting urban texture fea-

tures and distinguishing various texture morpholo-

gies, a series of experiments was conducted using

two data sets: a simulated data set that includes

building groups with highly distinguishable texture

morphologies and a real-world data set that repre-

sents complex urban landscapes. The real-world data

set was also used in experiments to explore the rela-

tionship between 3D urban texture and LST.

Simulated Building Data Set

To verify whether the texture curve derived by

the proposed RDF-based model has significantly dis-

tinguishable characteristics for various spatial pat-

terns of local urban landscapes, we simulated two

types of building groups: buildings with high regulari-

ties (R-type) and buildings with low regularities (C-

type). Each category includes three sets of data. As

mentioned before, an R-type building group is com-

posed of buildings that are orderly arranged in the

2D space with a clean layout pattern (Figure 4; R1/

R2/R3), whereas a C-type group is composed of

buildings that are randomly scattered in space with-

out a clean pattern (Figure 4; C1/C2/C3). The num-

ber of buildings in each group ranges from 100 to

200. The heights of buildings can be set according

to the purposes of experiments (see the “Results”

section for details). The maximum spatial range of

these simulation data is 3,000m, meaning that all

A 3D Urban Texture Model and Its Relationship with Urban Land Surface Temperature 7



buildings are included in the dome with a radius

of 1,500m.

It is worth noting that in the real world, a local

urban landscape might include one or more clusters

of buildings. The simulated data set only includes

single-cluster building groups, but the real-world

data set (see the next section) includes both single-

cluster and multicluster building groups. In a single-

cluster building group, all buildings are distributed

relatively close to each other, forming one cluster of

buildings. In a multicluster group, multiple clusters

of buildings exist and each cluster consists of a set of

closely distributed buildings that are relatively dis-

tant from other clusters of buildings.

Real-World Data Set

To illustrate the performance of the proposed

3D urban texture model and explore its relation-

ship with the local environment (LST in this

study), we also applied the model to the central

area of Wuhan, Hubei Province, China, a

national-level central city that has gone through

rapid development in recent years. As shown in

Figure 5, the study area is the downtown area of

Wuhan (29�580–31�220N and 113�410–115�050E),
which includes seven districts (Hongshan, Jiang’an,

Jianghan, Wuchang, Qingshan, Hanyang,

and Qiaokou).
The rapid economic development of Wuhan in

recent years has caused drastic changes in the spatial

structure of the urban area, leading to highly com-
plex urban landscapes (e.g., new districts, old towns,

and urban villages) with varying spatial patterns of

buildings. The original building data set of the study
area contains not only the footprints but also the

heights of buildings, providing 3D information on

the urban landscapes. Some typical urban texture
morphologies are shown in Figure 6, including a

group of low-rise buildings that are arranged with

high regularity (RL), a group of low-rise buildings
that are arranged with low regularity (CL), a group

of high-rise buildings that are arranged with low reg-

ularity (CH), and a group of high-rise buildings that
are arranged with high regularity (RH).

To prove that a texture curve carries adequate
information to represent the complex texture mor-

phology of the local urban landscape and to explore

the relationship between urban texture morphology
and local environment, we randomly selected 10,000

locations in the study area and used the texture fea-

tures of each local building group to estimate the
LST at its location.

The LST data for the study area during the day-
time on a sunny day (26 July 2017) with a spatial

Figure 4. Simulated building data with various texture morphologies.
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resolution of 30m were generated using satellite

imagery through a practical single-channel algorithm

proposed by Wang et al. (2019). Landsat images

(including Landsat 4, Landsat 5, Landsat 7 data, and

the first band of Landsat 8 TIRS), the

Thermodynamic Initial Guess Retrieval database,

and the MODIS/UCSB Emissivity Library were used

to derive the LST.

Results

Texture Curves of Simulated Building Data Set

Texture Curves of Single-Cluster Building

Groups with Varying Regularities. The proposed

RDF-based model was applied to the simulated

building data set to examine the model’s capability

of distinguishing various regularities of spatial

arrangement of building groups. In such an experi-

ment, the height of the simulated buildings was set

as 100m and the radius interval dr for the concen-

tric domes was 5m.
In microscopic physics, an RDF-derived curve

with a smoother shape and exhibiting obvious peaks

within a longer range indicates that the particles are

arranged with high regularity and the structure is

stable, which can often be found in crystals. On the

contrary, the RDF curves of fluids are highly fluctu-

ating, indicating chaotic arrangements and unstable

structure of particles. Our experiment demonstrated

Figure 5. Case study area: Downtown area of Wuhan, Hubei Province.
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the same phenomenon in urban landscapes. As

shown in Figure 7, the curves of R-type building

groups are significantly smoother (i.e., less fluctuat-

ing) than those curves of C-type groups, and a dis-

tinct peak can be found for the general trend of

each R-type curve. Therefore, the shape of urban

texture curve derived by the RDF-based model can

clearly distinguish the arrangement regularity of

building groups.
Texture Curves of Single-Cluster Building

Groups with Varying Heights. The heights of

buildings can affect the local environment (e.g.,

temperature) in an urban area (Palme, Inostroza,

and Salvati 2018). To explore the change of the

curve with various building heights, we set the

height of simulated buildings as 6 m, 100m, 200m,

and 300m. As shown in Figure 8, the texture

curve becomes smoother when the building height

increases but the peak position remains

unchanged. Therefore, the heights of buildings

also affect the shape of a texture curve, indicating

the proposed RDF-based texture model can repre-

sent the 3D spatial patterns (including 2D arrange-

ments and height variations) of building groups.

The quantitative features extracted from such

RDF-derived curves can describe the texture mor-

phologies of local urban landscape.

Real-World Case Study Results

The urban landscape in the real world is much

more complex than the simulated data set, but simi-

lar patterns can also be found. Various degrees of

regularity in the spatial arrangement of buildings

were found in Wuhan. Figure 9A shows a building

group that is arranged with low regularity, less uni-

fied planning, and messy roads (C-type). Figure 9B

shows a building group that is arranged with high

regularity, the layout plan is unified, and the roads

are neat (R-type).

The heights of buildings in Wuhan also vary sig-

nificantly. High-rise buildings (more than ten floors,

>30m) and low-rise buildings (one to six floors,

3–18m) are widely scattered in the urban area. We

found a large number of building groups that include

mostly high-rise buildings (H-type), such as central

business districts, or mostly low-rise buildings

(L-type), such as urban villages.

Figure 6. The building footprints in the study area and four typical building groups with various spatial patterns. (A) an area containing

a group of low-rise buildings that are arranged with high regularity, (B) an area containing a group of low-rise buildings that are arranged

with low regularity, (C) an area containing a group of high-rise buildings that are arranged with low regularity, and (D) an area

containing a group of high-rise buildings that are arranged with high regularity.
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Texture Curves of Single-Cluster Building

Groups with Varying Regularities and

Heights. Similar to the simulated data set, the tex-
ture curves of the R-type building groups in Wuhan
have more distinct peaks and smoother shapes like
those of crystals, whereas the curves of C-type groups

have larger fluctuations and no obvious peaks like
the ones of fluids (Figure 10). Additionally, the
curves of H-type building groups are smoother than

those of L-type groups.
As shown in Table 2, the quantitative features

extracted from the texture curves can greatly help

differentiate various texture morphologies of local

urban landscapes. With respect to the data features,
the burst statistics (B) and Shannon entropy values

(Sh) of R-type building groups are smaller than
those of C-type groups. Additionally, the coefficient
of variation (CV) of an R-type building group is less
than 1, whereas that of a C-type group is larger than

1. These features indicate that the g(r) values of R-
type building groups are regular and orderly. With
respect to the curve features, the kurtosis (K) and

skewness (Sk) of the C-type groups are much higher
than those of R-type groups, indicating that the
overall difference of the g(r) results from the R-type

groups is smaller than that from the C-type groups;

Figure 7. Texture curves of single-cluster building groups that are arranged with low regularities (C1, C2, and C3) and high regularities

(R1, R2, and R3).
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thus, the C-type groups’ g(r) results are
more irregular.

In addition, the B, CV, K, and Sk of H-type

groups are relatively larger than those of L-type
groups. Compared with the H-type groups, the fea-
tures of the L-type groups are more regular

and orderly.

The first peak (FP) represents the radius of the
building cluster that is closest to the spherical cen-
ter, and the first peak area (FPA) reflects the degree

of integration among the buildings inside the cluster.
The FPs are shown in Table 2, and the value that is
defined here indicates that a tight building cluster is

formed within this radius. At the same building

Figure 8. Texture curves of single-cluster building groups with different heights.
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Figure 9. Examples of building groups that are arranged with (A) low regularity or (B) high regularity in Wuhan. The concentric circles

represent the ground coverages of domes for the radial distribution function–based model. dr is the radius interval, and r is the

maximum radius.

Figure 10. Texture curves of single-cluster building groups. Note: C¼ buildings are arranged with low regularity; R¼ buildings are

arranged with high regularity; H¼ group includes mostly high-rise buildings; L¼ group includes mainly low-rise buildings; FP¼ position

where the first peak of the curve appears; MP¼ position where the largest peak of the curve appears.
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height, the FPA of an R-type group is larger than

that of a C-type group, meaning the tightness among

buildings in a R-type group is stronger than that of a

C-type group. For single-cluster building groups, only

one peak exists; hence, the FP and maximum peak

(MP) are the same as the FPA and maximum peak

area (MPA), and the transition points (Tgs) are null

because no valley exists.
Texture Curves of Multicluster Building Groups

with Varying Regularities and Heights. In a city,

a local urban landscape might include one or more

clusters of buildings. A multicluster building group

at a certain location is composed of multiple clus-

ters of buildings, and each cluster includes a set of

closely distributed buildings that are relatively dis-

tant from other clusters. The urban texture model

can also be used to describe the 3D characteristics

of multicluster building groups, for which the tex-

ture curves might consist of multiple peaks and

valleys (Figure 11). The curves of the R-type

building groups have sharper peaks and are undu-

lating. The g(r)s of the C-type groups oscillate

more and the curves fluctuate more. As the height

of the building increases, the curves tend to

be smoother.
Table 3 shows the features of multicluster building

groups. The results show that multicluster building

groups have almost the same tendency as single-clus-

ter ones. For the curve features, due to the existence

of multiple clusters, the degree of disorder in the

group increases, so K and Sk increase. In general,

the feature values of the R-type groups are smaller

than those of the C-type groups. The MP represents

the location of the most significant peak in the

curve, and it is used to define the extent of a build-

ing cluster in the multicluster building group. From

the results of the FPA and MPA, the degree of inte-

gration in an R-type group is stronger than that in a

C-type group. Additionally, the FPA and MPA of

H-type groups are higher than those of L-type

groups, indicating that the tightness of H-type

groups is stronger than that of L-type groups.

A large Tg denotes that a “covalent bond” exists

among the buildings and the dependence among the

buildings is strong. In this study, the buildings in an

R-type group are regularly arranged and there is a

strong dependence among the buildings; therefore,

the Tg is significant. Conversely, the buildings in a

C-type group are irregularly arranged and the depen-

dence among the buildings is weak; therefore, the

Tg is small. The Tg can be used as a key feature to

distinguish between R-type and C-type groups in a

multicluster urban landscape.

Urban Texture Morphologies in the Study Area

The proposed model is able to quantitatively

characterize the texture morphologies of local urban

landscapes at various locations in a city and effec-

tively distinguish various morphological patterns in a

complex urban area. We randomly selected 10,000

locations in the downtown area of Wuhan and used

the proposed model to calculate the texture features

of all building groups at the selected locations within

a 500m radius. These building groups were classified

into four typical morphological types (RH/RL/CH/

CL), as shown in Figure 12.
A large proportion of the randomly selected loca-

tions exhibit either RH or CL texture morphologies.

RH morphologies are primarily located in the mature

commercial areas along the Yangtze River and newly

developed residential areas along the urban edges,

where high-rise commercial and residential buildings

have been developed with rigorous planning. CL

morphologies are concentrated in the northeast part

of the study area, where many industrial plants and

small villages are located. CH morphologies are

mostly found at the locations between RH and CL,

where urban renewal is in progress and newly built

high-rise buildings are scattered in old town land-

scapes. Notably, the heights of buildings around the

Yellow Crane Tower (the location is marked in

Figure 12) are highly restricted, so a large number of

RL and CL morphologies are located in this area.

Such a spatial distribution pattern of urban texture

morphologies reflects the complex landscapes and

Table 2. Feature values of single-cluster building groups

Data features Curve features

CV B Sh Sk K FP MP FPA MPA Tg

RL 0.92 0.05 3.35 0.83 2.89 1,045 1,045 80.56 80.56 —

RH 0.80 0.01 7.60 0.48 1.77 1,050 1,050 153.21 153.21 —

CL 1.82 0.25 8.18 1.80 5.00 1,185 1,185 67.94 67.94 —

CH 1.18 0.17 14.69 1.27 3.72 1,195 1,195 125.60 125.60 —

Note: CV¼ coefficient of variation; B¼ burst statistics; Sh¼Shannon’s

entropy; Sk¼ skewness; K¼ kurtosis; FP¼ first peak; MP¼maximum

peak; FPA¼ first peak area; MPA¼maximum peak area; Tg¼ transition

point; RL¼ low-rise buildings that are arranged with high regularity;

RH¼high-rise buildings that are arranged with high regularity;

CL¼ low-rise buildings that are arranged with low regularity;

CH¼high-rise buildings that are arranged with low regularity.
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the development progress of the downtown area of

Wuhan, providing key information for the evalua-
tion of local environment and decision making in
urban planning.

Relationship between 3D Texture Features
and LST

The 3D texture morphology of an urban land-

scape has a significant impact on the local environ-

ment. We used the quantitative features extracted

by the proposed 3D texture model to estimate the

LST at the 10,000 randomly selected locations,

through an RFR model. Also, to provide a baseline

for the performance assessment, we used a 2D tex-

ture model to estimate the local LST as well.

Instead of a set of concentric domes above the

ground, the 2D model uses a set of concentric 2D

circles on the ground to characterize the spatial

arrangement of buildings in a 2D space (as in

Sobstyl et al. 2018), which means the height varia-

tions of buildings are ignored.
A series of experiments was conducted using vari-

ous radius intervals for the concentric domes or

circles (as mentioned earlier, even though the radius

Figure 11. Texture curves of multicluster building groups. Note: C¼ buildings are arranged with low regularity; R¼ buildings are

arranged with high regularity; H¼ group includes mostly high-rise buildings; L¼ group includes mainly low-rise buildings; FP¼ position

where the first peak of the curve appears; MP¼ position where the largest peak of the curve appears.

Table 3. Feature values of multicluster building groups.

Data features Curve features

CV B Sh Sk K FP MP FPA MPA Tg

RL 0.88 0.11 10.38 1.04 4.02 440 1070 35.69 89.12 2.14

RH 0.62 0.07 27.17 0.98 3.35 485 1085 90.78 241.35 2.51

CL 1.60 0.53 13.03 2.60 11.02 210 1100 17.84 56.44 1.38

CH 1.11 0.15 16.56 2.28 6.41 300 1105 50.79 195.82 1.76

Note: CV¼ coefficient of variation; B¼ burst statistics; Sh¼Shannon’s

entropy; Sk¼ skewness; K¼ kurtosis; FP¼ first peak; MP¼maximum

peak; FPA¼ first peak area; MPA¼maximum peak area; Tg¼ transition

point; RL¼ low-rise buildings that are arranged with high regularity;

RH¼high-rise buildings that are arranged with high regularity;

CL¼ low-rise buildings that are arranged with low regularity;

CH¼high-rise buildings that are arranged with low regularity.
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intervals in these experiments are different, the max-

imum range of the LCZ remains the same at 500m,

so the number of concentric circles will change

accordingly). As shown in Figure 11A, the fitting

accuracy (R2) of the 3D model is better than that of

the 2D model at every radius interval. When the

radius interval is 50m, the accuracy of the 3D model

reaches the maximum at 0.639, a 12.7 percent

improvement over the accuracy of the 2D model

(0.567). Such results indicate that the 3D texture

morphological features by the proposed model carry

critical information for the local LST that the 2D

model is unable to fully capture. The model consider-

ing the heights of the buildings can describe the over-

all characteristics of buildings more accurately in the

urban canopy (Chun 2011; Berger et al. 2017).

Therefore, the proposed model effectively revealed

the correlation between the 3D morphology of urban

buildings and the thermal environment within a city.
Figure 13 also shows that for both the 2D and 3D

models, with the increase of radius intervals, the fit-

ting accuracy increases to the maximum value and

then decreases. When the radius interval is 50m,

the 3D texture features quantified by this model can

explain the difference in LST with a correlation of

0.639, which means that these 3D spatial morpho-

logical characteristics of buildings are important fac-

tors influencing the differences in the LSTs within

the city. It indicates that at a granularity of 50m,

the features quantified in this study have a high cor-

relation with the surface temperature.

Discussion

The Importance of Texture Features to Affect LST

One of the key advantages of the RFR method is

the capability of providing the importance of each

feature to the target variable (i.e., the LST in this

case). As shown in Figure 14, CV, Tg, FPA, and

MPA of the texture curve contribute the most to

the LST fitting, followed by B, K, MP, and Sk. The

FP and Sh values contribute the least to the fit-

ting result.
CV and Tg are the two most important features

that characterize the degree of regularity of the

Figure 12. Texture morphologies of the 10,000 random locations in Wuhan. Note: RH¼high-rise buildings that are arranged with high

regularity; CH¼ high-rise buildings that are arranged with low regularity; CL¼ low-rise buildings that are arranged with low regularity;

RL¼ low-rise buildings that are arranged with high regularity.
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building group and quantitatively reflect the spatial dis-

tribution of the building groups. A distribution with a

CV greater than 1 is a distribution with high differ-

ences. The larger that Tg is, the stronger the depen-

dence between particles. The MPA and FPA can also

reflect the density of the buildings in the local land-

scape, in addition to reflecting the interdependence of

the buildings. A larger MPA means that the center

building has more “coordination” under the dome,

which indicates that the building density is greater.

These findings from the perspective of the texture mor-

phology are consistent with the conclusions from other

studies that the density of the buildings has a strong

correlation with the LST (Guo et al. 2016).

Comparison with State-of-the-Art 3D Feature
Extraction Models

To further assess the performance of the proposed

3D texture model in revealing the correlation

Figure 14. Importance ranking of the features. Note: CV¼ coefficient of variation; Tg¼ transition point; FPA¼ first peak area;

MPA¼maximum peak area; B¼ burst statistics; K¼ kurtosis; MP¼maximum peak; Sk¼ skewness; FP¼ first peak; Sh¼ Shannon’s entropy.

Figure 13. Land surface temperature fitting accuracies (R2) of the proposed 3D model and the 2D model with varying radius intervals.
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between urban landscape and LST, this study also

applied several state-of-the-art models in the study

area to extract various 3D features of buildings at

the same scale (50m), including building density

and heights (Guo et al. 2016), sky view factor (L.

Chen et al. 2012), spatial fluctuation factors (P.

Zhang 2016), and 3D landscape factors (J. Yang

et al. 2017). These features were then used to esti-

mate the LST at the 10,000 locations in the study

area through the RFR method. The fitting accuracies

(R2) of these models are shown in Table 4.
Model 1 does not achieve good accuracy because

simply calculating the effects of the building density

and heights is not sufficient to accurately estimate

the urban temperature (Berger et al. 2017). Model 2

considers the effects of the street view around a

building and achieves a better result than Model 1.

Although the street condition is an important factor

that affects the temperature between buildings, the

morphological characteristics of buildings are ignored

in Model 2. The proposed RDF-based model can

quantitatively describe the morphological character-

istics of buildings around any location and improve

the fitting accuracy by 26.0 percent to 71.3 percent.

The spatial fluctuation factors and 3D landscape

factors of the buildings can reveal their 3D morpho-

logical characteristics from different angles (e.g.,

undulation, building otherness, floor area ratio; Preez

2015). Both Model 3 and Model 4 are more compre-

hensive than Model 1 and Model 2 and achieve bet-

ter fitting accuracies. They cannot reflect the 3D

distribution state (e.g., tightness of distribution,

degree of regularity) of the buildings, however,

which is an important factor affecting the urban

temperature (Sobstyl et al. 2018). By making an

analogy between the buildings and the particles in

the microscopic system, the proposed RDF-based

model summarizes both the 3D landscape features

and the distribution arrangement of the buildings.

Compared with the state-of-the-art models that

consider buildings’ 3D morphological characteristics,

the proposed RDF-based model improved the fitting

accuracy by 18.11 percent to 49.29 percent.

Conclusions

To quantitatively characterize the 3D texture

morphology of buildings, this study proposes a 3D

urban texture model based on the RDF. By using a

set of concentric domes above the ground, the model

generates a texture curve for a specific location in

the city, from which a variety of numerical features

are extracted to depict the local 3D urban landscape

quantitatively. The experiments on both a simulated

data set and a Wuhan data set showed that the pro-

posed model can effectively distinguish various 3D

texture morphologies of buildings at any location in

a city. The 3D texture features extracted by the pro-

posed model were used to estimate the LST at

10,000 randomly selected locations in Wuhan and

improved the fitting accuracy by 12.7 percent com-

pared with the 2D RDF-based model and by 18.11

percent to 71.3 percent compared with several state-

of-the-art 3D feature extraction models.
The proposed RDF-based 3D urban texture model

provides a new perspective and approach to effec-

tively depict 3D urban landscapes at fine scales with

a set of simple and straightforward indexes, which

enables numerical computations and analysis of com-

plex urban morphologies. Such a 3D texture model

can be used in a wide range of urban studies and

applications. For example, various spatial patterns of

building groups can be differentiated and compared

within a city or across cities, providing essential

information for urban planning and building design.

In addition, the 3D texture morphology of buildings

provides a basis for the analysis of an urban environ-

ment. The correlations between urban texture and

various environmental variables (e.g., ventilation,

humidity, air quality, noise, and light) can be analyzed

to discover the mechanism of the urban landscape’s

effects on the environment and to derive measures to

mitigate citizens’ exposure to environmental pollution

and improve living comfort. More important, by

replacing buildings with other elements of the city

(e.g., air pollution, meteorological variables), the pro-

posed RDF-based model can also be applied to quan-

tize the 3D texture morphology of these elements,

effectively characterizing the 3D distribution of the

elements in a complex urban system.

Table 4. Accuracy comparison for the state-of-the-art
building–land surface temperature models

Models Fitting accuracy (R2)

Building density and heights (Model 1) 0.373

Sky view factor (Model 2) 0.507

Spatial fluctuation factors (Model 3) 0.428

3D landscape factors (Model 4) 0.541

The proposed RDF-based model 0.639

Note: RDF¼ radial distribution function.
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In follow-up research, we will combine multisource

spatiotemporal data and apply the model to other

aspects of urban research (e.g., urban LCZ, urban per-

ception) for further analysis of the 3D texture of the

city. To accurately quantify the texture morphology

of buildings, we will use the true shape of the build-

ing to estimate the precise building density. By com-

paring the LST data of different seasons and periods,

we will further explore the correlation between urban

texture and urban climate and environment. Also, we

will enhance the LST fitting accuracy by considering

additional factors such as traffic networks and flows,

water bodies, and vegetation coverage.
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