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A B S T R A C T   

Vector cellular automata (VCA) are effective models for cadastral-scale land use change modeling, leveraging 
fine spatial granularity information from cadastral plot data. The temporal dimension has the potential to 
improve the performance of VCA further. However, it is challenging to precisely capture long sequence infor-
mation of cadastral plot temporal data for VCA while ensuring accurate capture of fine granularity information 
simultaneously. Our paper introduces the Temporal-VCA framework, which fully utilizes fine spatial and tem-
poral granularity information of cadastral plot temporal data to enhance the accuracy of VCA. Applying 
Shenzhen's annual cadastral plot data from 2009 to 2014, this study shows how deep learning techniques can 
elucidate the temporal aspects of VCA models. Temporal-VCA notably improves precision by up to 22.12 %, 
outperforming the regular VCA models and traditional raster CA models. It reveals the complex nonlinear 
temporal patterns within cadastral-scale urban development processes. Designed simulations for 2030, including 
scenarios of disordered development and ecological protection, highlight the benefits of fully leveraging fine 
temporal granularity information of temporal data into urban planning, potentially reducing ecological damage 
by 70 %. Our findings offer a novel methodology for urban land use simulation, with significant implications for 
urban planning and the advancement of sustainable cities.   

1. Introduction 

In recent years, global cities have experienced a rapid development 
stage and have had a significant impact on the ecological environment 
(Deng et al., 2020; Zhang, 2016). The report “Cities and Pollution” is-
sued by the United Nations in 2016 (UN Habitat, 2016) pointed out that 
global cities only cover less than 2 % of the earth's surface but consume 
78 % of the world's energy and generate over 60 % of greenhouse gas 
emissions (Gago et al., 2013). Therefore, understanding the changes in 
urban land use has become a hot topic for researchers worldwide 
(Chaturvedi & de Vries, 2021; Hasan et al., 2020; Wu, 2014). 

Urban land use change refers to the changes in spatial distribution 
and functional structure of various types of land within and around a 
city that occur with urbanization (Cengiz et al., 2022). Simulation of 
urban land use change can help optimize the structure and spatial layout 
of urban land use, and deepen the understanding of the impact mech-
anism of urbanization on land use change. Cellular Automata (CA), as a 
classic type of spatial dynamics model, has a “bottom-up” characteristic 
and can retain more foundation and details in the dynamic system, 
gradually occupying a dominant position in urban land change simu-
lation (Li & Yeh, 2002; Liu et al., 2008). Traditional CA models are based 
on regularly shaped raster-format units (pixels or patches), setting 
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specific transformation rules to change cell states and simulate the 
spatiotemporal dynamic changes of urban development (Chen et al., 
2016; Liu & Phinn, 2003; Tian et al., 2016). Due to the spatial hetero-
geneity of land use characteristics, boundary conditions usually need to 
be considered in simulations. In raster CA models, handling boundary 
conditions can be a challenge (Zhu et al., 2020). The vector CA (VCA) 
model is more accurate in simulating geographical features and land use 
boundaries at small cadastral scales. Furthermore, by using spatial units 
of different shapes and sizes, the spatial heterogeneity of different re-
gions can be more accurately represented (Zhou et al., 2023). 

Time could be a potential dimension to further improve the perfor-
mance of VCA in simulating land use change (Liu & Andersson, 2004). 
The different potential temporal periodic patterns exist for different land 
use changes and affect the overall dynamics of urban land use (Liu et al., 
2012). The temporal dependence on land use change refers to the trend 
and pattern of changes in land use types and patterns over different 
periods, and both the current and historical states and conditions in-
fluence the land use change. For example, suburban land used for urban 
expansion is undergoing rapid and sustained land use transformation, 
while the land use patterns in ecologically protected areas remain un-
changed over time. Researchers regard these patterns as the temporal 
dependencies of land use change (Asabere et al., 2020). Previous 
research has made efforts on the temporal dependencies of traditional 
raster CA models (Li et al., 2020; Wang et al., 2019; Zhou et al., 2023). 
However, the time dependence in VCA model still needs to be further 
explored. Therefore, incorporating the ability to capture time series 
information into VCA models is of great significance for accurately 
achieving land use prediction and enhancing the sensitivity of model 
information capture. 

Further, it is still challenging to mine and reveal the time-dependent 
characteristics of land use change for VCA models because its temporal 
dynamics are intricate (Kumar et al., 2021). Time and space of land use 
changes have a strong interaction (Wu et al., 2015). It is more chal-
lenging for such fine-grained VCA models to precisely decouple the time 
dependence of cadastral-scale land use time series while ensuring the 
accurate capture of fine spatial granularity information simultaneously. 
Traditional methods of revealing temporal patterns include geographic 
weighted regression models (Mustafa et al., 2018), land use change 
simulation based on random forests, neural networks, etc. (Xing et al., 
2020). However, the lack of mining for multiple temporal drivers and 
simulation at finer scales cannot effectively explore the time-dependent 
mechanisms in land use change. Research has confirmed that deep 
learning models can effectively mine time series information and ach-
ieve the expected results (Chung et al., 2014; Hochreiter & Schmid-
huber, 1997; Zhao et al., 2017). Thus, deep learning techniques provide 
an opportunity to enhance VCA's ability to capture long sequence in-
formation, thus further improving the performance of VCA to simulate 
cadastral-scale land use changes accurately. 

In order to enhance VCA's ability to capture long sequence infor-
mation of cadastral plot time series data while ensuring accurate capture 
of fine granularity information simultaneously, this paper proposes a 
Temporal-VCA framework for simulating urban land use change, which 
couples long sequence of cadastral plot data and VCA. This framework 
takes Shenzhen, Guangdong Province, as the study area, based on fine- 
spatially-grained and long-sequence cadastral land use time series data. 
By coupling multiple machine learning, deep learning models, and VCA 
models, it effectively explores the time-dependent mechanism and dy-
namic characteristics of land use change based on vector plots, simulates 
and predicts urban land use change, and improves simulation accuracy. 
In order to verify the effectiveness of the model and evaluate the 
implementation effects of different policies, this paper conducted long- 
term land use development simulations based on different develop-
ment scenarios. This framework aims to analyze the time-dependent 
mechanism of urban land use change based on cadastral plots, reveal 
the laws and future trends in urbanization development, and provide a 
new approach and method for simulating urban land use change. 

2. Literature review 

2.1. Vector cellular automata models for urban land use simulations 

With the refinement of simulation methods, vector CA (VCA) models 
based on irregularly shaped vector-format cells have been proposed and 
proven to be a more advanced model for urban change simulation (Pinto 
et al., 2017). Urban land renewal typically occurs on cadastral land 
parcels (Irwin et al., 2003). However, traditional raster CA models based 
on grid-shaped raster-format units often have inherent limitations, such 
as sensitivity to pixel size and fixed unit shape with the inability to 
accurately express objective geographical entities (Pan et al., 2010; 
Sante et al., 2010). The VCA model based on cadastral plot data can 
accurately represent the irregular shape of actual land use (Jjumba & 
Dragicevic, 2012; Yao, Sun, et al., 2023; Yao, Zhang, et al., 2023), 
leveraging the high spatial granularity of cadastral-scale land use data 
(Abolhasani & Taleai, 2020; Barreira-Gonzalez et al., 2015). 

In the research of VCA models, Zhuang et al. accurately mined CA 
conversion rules based on the random forest algorithm and simulated 
urban land use changes at the cadastral data level, improving the ac-
curacy of model simulation (Zhuang et al., 2022). The HGAT-VCA model 
proposed by Guan et al. effectively expresses spatial interactions and 
improves the accuracy of land use simulation by combining VCA with 
graph convolutional neural networks (Guan et al., 2023). However, 
most of the existing studies focus on how to improve the accuracy of 
VCA simulation, ignoring that time is another important dimension of 
urban land change (Guan et al., 2023; Xu et al., 2022). 

In summary, the current VCA model lacks the ability to capture time 
series information in land use change. Integrating time series informa-
tion into the VCA model can more accurately capture the historical 
trends and cyclical patterns of land use change, thereby better under-
standing the future trends of land use change and assisting urban 
planners in making better land use planning and management decisions. 

2.2. Time dependence in land use 

In the study of time dependence in land use change, some scholars 
have constructed a series of methodological frameworks on how to 
organically integrate spatial region division or time series evolution of 
land cover for traditional raster CA models. Zhou et al. proposed the 
KCL-CA model, which integrates K-Means, Convolutional Neural 
Network (CNN), and LSTM to solve the temporal dependence and 
spatiotemporal heterogeneity in land use change and improve the ac-
curacy of land use change simulation (Zhou et al., 2023). Li et al. pro-
posed using trend adjusted neighborhood as a weighting factor. They 
integrated this factor into commonly used Logistic CA models to achieve 
long-term urban expansion modeling with high accuracy (Li et al., 
2020). 

However, the issue of time dependence in VCA still needs to be 
thoroughly investigated. Cadastral-scale VCA models are good at 
capturing fine spatial granularity information because they can more 
accurately represent boundary shapes and geometric features to reflect 
spatial heterogeneity in the real world (Guan et al., 2023). However, 
regular VCA models lack the ability to exploit long-time series sequence 
information. Long sequence information can help reveal the VCA 
simulation of land use change in different periods. Hence, utilizing fully 
the temporal dependence characteristics of land change can contribute 
to a more accurate simulation of urban cadastral land use change in VCA 
models. 

2.3. Mining land use time series information based on deep learning 
methods 

Deep learning models can learn long-term dependencies in time se-
ries, identify the interrelationships between different time points, and 
thereby enhance the prediction accuracy of land use patterns (Campos- 
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Taberner et al., 2020). In response to the research on using deep learning 
to mine time dependencies, a recent study has proposed a cellular au-
tomaton model (DL-CA) that integrates convolutional neural networks, 
random forests, and LSTM (Xing et al., 2020). J. Jagannathan et al. 
proposed a hybrid heat coding VGG19 deep learning method, which uses 
mixed logistic regression to classify images and predicts classes based on 
decision trees. The accuracy of land use prediction is as high as 98.5 % 
(Jagannathan & Divya, 2021). Existing research mainly combines 
traditional deep learning algorithms such as neural networks with raster 
CA models to explore time dependencies in CA models. However, 
traditional neural networks are not good at processing time series data, 
and each input is independent, ignoring the pre - and post dependency 
relationships between data points in time series data (Shen et al., 2020). 

LSTM and GRU models can effectively capture and learn long-term 
dependencies in time series data by introducing gating mechanisms 
(Lindemann et al., 2021). Scholars have demonstrated the advantages of 
LSTM and GRU models in mining time series information. Xiao et al. 
proposed a deep learning model (CNN-GRU) that integrates convolu-
tional neural networks and gated recursive units, combining spatio-
temporal neighborhood features to simulate land use change. The study 
found that CNN-GRU has the highest simulation accuracy (Xiao et al., 
2022a). Huang et al. proposed a new model of KCLP-CA, which in-
tegrates K-Means, Convolutional Neural Networks (CNN), LSTM, and 
raster CA models. They confirmed the effectiveness of the LSTM model 
in addressing temporal dependencies and the impact of temporal de-
pendencies on land use change (Huang et al., 2024). Thus, Deep learning 
models can extract high-level features and abstract information from 
data through multi-level nonlinear transformations and can be fully 
applied in time series prediction tasks (Najafabadi et al., 2015). 

3. Study area and data 

Shenzhen City, China, a single case, is taken as the⋅study⋅area in this 
study. Taking a single case as the study area will help to verify the ra-
tionality of the urban land use change model and provide in-depth 
policy recommendations for future urban development (Wang et al., 
2022). Shenzhen, an emerging and rapidly developing city with an area 
of 1997.47 km2, governs 9 administrative regions and 1 new district 
(Yao, Sun, et al., 2023). In the process of urbanization, it emphasizes the 
efficient and intensive use of land resources. However, due to the rapid 
urbanization process and economic development needs, there is a phe-
nomenon of excessive development and utilization of land resources in 
some areas, a prevalent predicament in contemporary urban develop-
ment (Cheng et al., 2023; Pan & Du, 2021; Yu et al., 2019). Research has 
shown that rapid urbanization in Shenzhen from 1979 to 2017 led to a 
3400 % hike in land development, catalyzing prominent urban issues 
encompassing environmental and infrastructural challenges (Hao et al., 
2011; Lai et al., 2017). 

Therefore, the⋅urban⋅development mode⋅of Shenzhen is a represen-
tative case of China's rapid urbanization, as well as a well-known case of 
global urbanization (Cheng et al., 2023). Summarizing the development 
model of Shenzhen can provide reference and explanation for the 
problems and challenges that other cities may face in similar stages of 
urbanization, making it an ideal case area for this study (Bao & Lu, 2020; 
Stark et al., 2020; Tan et al., 2021). 

This paper mainly uses two types of data: land use time series data 
and spatial auxiliary variables from Shenzhen city. Among them, the 
land use time series data comes from the Shenzhen Planning and Natural 
Resources Bureau (https://pnr.sz.gov.cn/) cadastral plot data. The land 

Fig. 1. Study area and land use distribution in (A) 2009 and (B) 2014. (C) Ecological conservation zone (D)Comparison of the number of various land use plots from 
2009 to 2014. 
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use time series data used in this study include 6 cadastral-scale land use 
maps ranging from 2009 to 2014. As shown in Fig. 1, each year's land 
use time series data is divided into six different types of land use, 
including water and roads, unbuilt land, industrial land, public service 
land, commercial land, and residential land. Unbuilt land includes 
cultivated land, forest land, gardens, and grasslands, while industrial 
land, public service land, commercial land, and residential land are 
defined as urban land (Table S1). 

Secondly, the study presented in this paper utilizes Gaode's Point-Of- 
Interest (POI) data (https://lbs.amap.com/). The data encompasses in-
formation on various venues, such as catering, bus stops, and daily 
services. This study also incorporates OpenStreetMap (OSM) data 
(https://www.openstreetmap.org/). Furthermore, night light data 
(https://eogdata.mines.edu/) is jointly used to construct spatial auxil-
iary variables by utilizing driving factors such as terrain, industry, and 
commerce that affect land use change. Among them, the data age is all 
2018, the spatial resolution is set to 30 m, and all variables are 
normalized to a range of 0 to 1, as shown in Fig. 2. 

4. Methodology 

Fig. 3 illustrates the construction and analysis process of the Tem-
porary VCA model. This framework consists of three steps. (1) Time 
series model construction. This step uses multiple machine learning 
models to mine temporal factors and their probabilities in land use 
change based on preprocessed temporal data of land use change; (2) 
Model fusion and urban land use simulation. This step combines the 
prediction probability of the time series model with the prediction 
probability calculated by the VCA model for different types of land use 
and selects the final development category through the roulette wheel 
algorithm; (3) Urban land use prediction under different scenarios. This 

step involves designing two future scenarios, the disordered develop-
ment scenario and the ecological protection scenario, to simulate long- 
term land use development and analyze the temporal characteristics of 
land use. 

4.1. Construction of time series model 

Our proposed times series forecasting model employs conventional 
machine learning and deep learning models to automatically derive 
features from time series data. This model performs end-to-end training 
and prediction, ensuring its accuracy (Jiao et al., 2021; Zhang et al., 
2022). This paper uses land use temporal data from 2009 to 2013 as 
training data and land use data from 2014 as accuracy verification data. 
The training set has a test set data ratio of 7:3 (Fang et al., 2022). To 
avoid imbalanced samples for the multi-class classification, this paper 
adopts the method of adjusting the training weight parameters to ensure 
the model receives relatively balanced training on different classifica-
tions (Huang et al., 2020). The equation for training weight parameters 
calculation is as follows. 

αi =

∑4

j=− 1
nj

ni (1) 

In the equation: αi represents the training weight of the i-th type of 
land use category; 

∑4
j=− 1nj represents the number of samples for all land 

use categories within the study area; ni represents the number of samples 
for the i-th category of land use. The number and proportion of samples 
in each category, as well as the adjusted training weights, are shown in 
Table S2. 

In addition, for time series prediction, this paper adopts a fixed width 

Fig. 2. Spatial driving factors calculated for the urban land use change.  
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sliding window technique (Chengcheng Chen & Chau, 2022; Roodposhti 
et al., 2020), which trains the model with fixed-length historical data at 
each time step and predicts the last time point within the window. After 
completing the prediction, slide the time window forward by a fixed step 
size to prepare for the next time step prediction. Using the latest 
generated land use map as input data for the model can effectively 
capture the dynamic characteristics of time series data. At the same 
time, this method allows us to simulate land use changes over a long 
period and make predictions based on past data, providing valuable 
information for land planning and decision-making. 

4.1.1. ML-based overall probability calculation 
To thoroughly compare the predictive performance of various time 

series prediction models in this multi-classification task, this paper se-
lects four machine learning models, including Decision Tree (DT) (Song 

& Ying, 2015), Support Vector Machine (SVM) (Sapankevych & Sankar, 
2009), Random Forest (RF) (Kane et al., 2014), and K-Nearest Neighbor 
(KNN) (Xu et al., 2020), and two deep learning models, including LSTM 
(Fischer & Krauss, 2018) and GRU (Dey & Salem, 2017), to explore the 
temporal factors and their probabilities in the process of land use 
transformation. 

Due to the different basic mathematical principles of different ma-
chine learning methods, the six classifiers mentioned above calculate the 
prediction probability of each category differently, with the prediction 
probability p of category i in the DT model. The equation is: 

pi =
ni

NL
(2) 

In the equation: L represents the leaf node that satisfies the propa-
gation path of the individual decision tree for the probability sample to 

Fig. 3. Workflow of the proposed Temporal-VCA framework.  
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be calculated,NL represents the number of samples contained in leaf 
node L, ni represents the number of i-class samples contained in leaf 
node L. 

The RF model, as an ensemble learning method, consists of multiple 
DTs, each of which can output the probability of each category of sample 
data. The equation for its prediction probability P is: 

P =
1
N
∑N

n=1
pn (3) 

In the equation: N is the total number of DT trained by RF,pnis the 
probability vector of the n-th tree. 

SVM was originally a binary classification model. We can use it for 
multi-classification problems through the one vs the rest method and 
employ Platt scaling to calculate the probability of categories (Melvin 
et al., 2007). The original output of the classifier can be mapped to the 
probability estimation of the class, making these probabilities more in 
line with the proper class probability distribution. The probability 
calculation equation after Platt calibration is: 

P(Y = 1|Z) =
1

1 + eA*Z+B
(4) 

In the equation: P(Y = 1|Z) indicates the probability that the sample 
belongs to a positive category, Z represents the raw output of SVM, A 
and B is a calibration parameter, estimating through training datasets. 

KNN predicts the category of the tested sample based on the category 
of the nearest K individuals (Xu et al., 2020). The probability calculation 
equation is: 

Pi =

∑
mwm × mY

∑
y
∑

mwm × mY
(5) 

The equation for the weight coefficient wm is: 

wm =
1

dm
(6) 

In the equation: m represents the K individuals closest to the 
sample,dm represents the Euclidean distance from the individual m to the 
predicted individual,mY is an individual with a classification label of Y, y 
represents all values of the classification label. 

4.1.2. DL-based overall probability calculation 
Existing research suggests that GRU and LSTM models can capture 

long-term temporal dependencies for land use classification and pre-
diction performance, effectively improving classification accuracy and 
establishing more comprehensive land use conversion rules (Xiao et al., 
2022b; Xing et al., 2020). Among them, LSTM has a similar structure to 
GRU. Therefore, This paper takes the LSTM neural unit proposed by 
Hochreiter and others (Hochreiter & Schmidhuber, 1997) as an 
example. Fig. 4 shows the LSTM and GRU training models constructed 
regarding time dimension. 

LSTM and GRU use the Softmax function to calculate the probability 
distribution of categories (Kumar & Abirami, 2021). The equation is as 
follows: 

P(Y = i|Z) =
ezi

∑C
j=1ezj

(7) 

In the equation: P(Y = i|Z) represents the probability that the sample 
belongs to category i, zi is the i-the value in the score vector logits, 
∑C

j=1ezj is the sum of exponentially calculated logits for all categories. 

4.2. Consolidation of land development probability and simulation of 
land use 

Based on the land use conversion probability calculated by the above 
model, this study combines the conversion probability of each plot 
calculated by the time series prediction model and the VCA model (the 
calculation method in Eq. (S1) through to Eq. (S4)) and obtains the ul-
timate development probability of the plot, the equation for calculating 
the development probability of the VCA model is as follows: 

Pk
i = Pgk

i × Ωk
i × Pck

i × RA (8) 

In the equation: Pk
i is the overall development probability of con-

verting the i plot into a Class k plot,Pgk
i is the development probability of 

each plot, Ωk
i is the neighborhood effect of the k type of land parcel on 

the i type of land parcel,Pck
i is the development limiting factor, RA is a 

random value. 
Finally, the roulette wheel algorithm is used to determine the final 

category of land use change (Lv et al., 2021; Xu et al., 2024). The 
calculation method is: 

pi =
qi

∑4

i=0
qi

(9) 

In the equation: qi is the sum of the conversion probabilities of land 
use categories after merging the time series model and VCA model; piis 
the probability of roulette wheel selection. 

4.3. Prediction of urban land use in different scenarios 

In the context of global environmental change and promoting sus-
tainable development, urban land use change prediction is of great 
significance for guiding land resource management, urban planning 
policy formulation, and sustainable development (Wang et al., 2021; 
Zhang et al., 2020). The prediction of different scenarios aims to simu-
late and compare different land use development paths, evaluate the 
impact of different policy measures and planning strategies on urban 
land use changes, in order to achieve optimal utilization and protection 
of land resources, and formulate more accurate land use and ecological 

Fig. 4. Flowchart of LSTM and GRU Mining Land Use Conversion Probability.  
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protection policies (Zou et al., 2021). 
To compare the land use patterns and trends under different devel-

opment paths, explore the impact of ecological protection policies on 
urban land use change and ecological environment. The Temporal-VCA 
model proposed in this paper can be used to simulate the future urban 
development of Shenzhen. This study designed two development sce-
narios: (1) Disordered development scenario (O1), (2) Ecological pro-
tection scenario (O2). In scenario O1, following historical development 
trends, allowing for the mutual transformation of various types of land. 
Scenario O2 prohibits all plots within the ecological conservation zone 
from being developed into four types of urban land: industrial land, 
public service management land, commercial land, and residential land. 

4.4. Model evaluation 

To comprehensively evaluate the simulation performance of the 
proposed model, this paper applied several evaluation indicators, i.e., 
Figure of Merit (FoM), Kappa coefficient, and Overall Accuracy (OA). 
Among them, the Kappa coefficient describes the consistency between 
two classification datasets. OA is a commonly used indicator for evalu-
ating the performance of classification models, considering the model's 
accuracy in classifying all class samples. This measure is intuitive, 
simple, and easy to compare with models (Liu et al., 2007) (the calcu-
lation method in Eq. (S5) through to Eq. (S8)). 

FoM is a commonly used model validation indicator in land use 
change simulation. The value range of FoM is [0, 1]. Research has shown 
that (Pontius et al., 2008; Yao et al., 2017; Zhai et al., 2020), If FoM is 
more significant than 0.2, the land use simulation model has excellent 
simulation ability. The equation for calculating FoM and its derived 
indicators is as follows: 

FoM =
B

A + B + C + D
(10) 

In the equation, A represents the area error where the actual land use 
type changes and the simulation results remain unchanged. B represents 

the area error of the actual transformation and the correct type trans-
formation in the simulation results. C represents the area error of the 
actual transformation and the simulated error type transformation. D 
represents the area error where there is no actual change but the 
simulated change occurs. N represents the total number of cellular units 
in the study area. 

It's worth noted that the proposed model is only verified in our study 
area in this study (please check Section 3 for the detailed reasons), but 
the methodology and the model are applicable to any study area. 

5. Results 

5.1. Analysis of simulation results of land use change 

Based on machine learning models, Temporal-VCA simulated the 
urban land use in Shenzhen in 2014 (Fig. 5). Table 1 reveals that the 
Temporal-VCA model improves the overall simulation accuracy by 
19.027 % to 22.124 % compared to the discrete data model PLUS. 
Among them, the overall simulation accuracy FoM of Shenzhen based on 
the KNN-VCA model reached 0.276, and even the FoM simulation ac-
curacy of Luohu District, Futian District, and Bao'an District was above 
0.290. The results indicate that Temporal-VCA has extreme simulation 
accuracy in simulating land use changes. In addition, the performance of 
the models varies significantly in different regions of the study area, 
with poor simulation results among the models in the Dapeng New Area. 
This observation signifies that different regions exhibit significant dif-
ferences in their land use transformation rules and geographical 
characteristics. 

To provide a more comprehensive evaluation of the simulation re-
sults, Table 2, displays the assessment of simulation outcomes and the 
statistical analysis of indicators for each model. Based on the simulation 
results of land use in Shenzhen in 2014, we found that KNN had a better 
simulation effect among various models. Among them, FoM is as high as 
0.276, PA and UA are as high as 0.596 and 0.327. Secondly, the 

Fig. 5. Simulation result of the land-use dynamic. (A) Ground truth data in 2014. (B) The optimal simulation results of land use change in 2014 (KNN-VCA). (C) The 
correctly simulated and incorrectly simulated land parcels. A, B, C and D indicate the predicted land parcels in the four situations of FoM metric. 
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simulation effect of LSTM is good, with a Kappa coefficient of up to 
0.982 and an OA of 0.986. In contrast, the Decision Tree (DT) model 
underperforms. The subpar performance of the DT model could stem 
from the influence of multiple factors on Shenzhen's land use changes. 
Different models, capturing unique features from various data types, 
consequently produce distinct simulation effects observable in the 
simulation results. 

In addition, the complete model accuracy evaluation and indicator 
statistics are shown in Tables S3 and S4. Moreover, considering the 
higher accuracy of KNN, SVM, LSTM, and GRU models compared to 
other models' FoM, this paper evaluates the refined models of each land 
use category for the above four models (Tables S5 to S9). 

5.2. Prediction results in different scenarios 

Based on Temporal-VCA and different future development scenarios, 
this paper conducted a long-term prediction of land use change in 
Shenzhen in 2030 (Fig. 6) and quantitatively studied the temporal 
characteristics of land use. Table 3 shows various land use areas under 
different scenarios in 2030. The results suggest that the effective 
execution of ecological protection and sustainable development strate-
gies has successfully safeguarded urban green spaces. Nonetheless, these 
strategies pose significant challenges, as projections indicate a 6 % 
decrease in public management service land by 2030. Secondly, in all 
scenarios, the continuous expansion of unbuilt land between 2014 and 
2030 will limit the development of urban construction land. 

Fig. 7 shows the changes in land use by administrative regions in the 
O2 scenario compared to each category in the O1 scenario. Compara-
tively, regional policies in the Pingshan and Nanshan regions prioritize 
converting ecological land into construction land. In contrast, the 
ecological conservation zone in the Guangming and Longhua regions 
have a relatively low proportion. However, the reduction in construction 
land is relatively high. Simultaneously, ecological strategies can reduce 
ecological damage by 71.9 % by 2030. 

This paper analyzes the area changes of urban land in Shenzhen 
(Fig. S2) to clarify the trend of changes in different types of land under 
O2 scenarios. The results show that under the O2 scenario, unbuilt land 

grew from 2014 to 2030 and gradually stabilized after 2022, with less 
change in commercial land. However, the other three types of land, 
including industrial land, showed a significant decreasing trend from 
2020 to 2026 and gradually stabilized. 

6. Discussion 

This paper proposes a Temporal-VCA model for simulating and 
predicting urban land use change, which couples temporal data with 
vector cellular automata. It effectively improves the accuracy of urban 
land use change simulation, reveals the dynamic characteristics of land 
use change, and clarifies the time-dependent mechanism of urban land 
use development. This framework provides a new approach for simu-
lating urban land use changes from the perspective of coupling temporal 
data and machine learning models. 

The VCA model integrates temporal land use data and uses Shenzhen 
city data for simulation validation to better understand the time- 
dependent mechanism of land use change. This approach enriches the 
simulation methods of urban land use change. The simulation results 
show that compared to the discrete data model, Temporal-VCA can 
improve the simulation accuracy by 19.03 % to 22.12 %, with KNN-VCA 
having the highest simulation accuracy (FoM = 0.2762). Compared to 
the current advanced PLUS model and RF-VCA model, the simulation 
accuracy has been improved by 22.12 % and 10.48 %, respectively. It is 
worth noting that the simulation accuracy of Luohu District, Futian 
District, and Bao'an District is all above 0.29, while the FoM accuracy of 
Dapeng New Area and Pingshan District is around 0.24. Due to the high 
level of urbanization in Luohu District and Futian District, 90.61 % and 
71.01 % of the land areas did not undergo land use category changes 
from 2009 to 2014, respectively. The land use structure and change 
trend are relatively stable. So the model can easily record historical 
status information of different plots under the same conditions and 
forms a time-dependent mechanism, presenting higher accuracy (Xie 
et al., 2013). In contrast, Dapeng New Area and Pingshan District are 
newly established administrative districts in Shenzhen, with frequent 
land use changes and significant policy impacts (Yue et al., 2013). The 
dependence of land use time series is relatively diverse, resulting in low 
simulation accuracy. 

Diverse machine learning and deep learning models have been in-
tegrated with the VCA framework to analyze land use change exten-
sively. This study has uncovered the time series and nonlinear 
characteristics of land use dynamic change. This study found that using 
multiple traditional machine learning models and deep learning models 
performed similarly on FoM metrics, and even KNN and SVM machine 
learning models performed better than LSTM and GRU deep learning 
models. Due to the time-dependent nature of land use change (Jia et al., 
2014) and the fact that both KNN and SVM are nonparametric models 
when dealing with nonlinear problems, they can capture nonlinear 
features between land use through instance-based learning methods and 
kernel techniques, adapting to complex decision boundaries and land 
use change patterns (Liu et al., 2019). The local optimal selection of DT 

Table 1 
The simulation accuracy (FoM) of different models based on Temporal-VCA. The up and down arrows represent the maximum and minimum values of the column, with 
* indicating the model constructed by previous studies.   

DT RF KNN SVM LSTM GRU PLUS* RF-VCA* 

Futian  0.298  0.297  0.310↑  0.307  0.294  0.305  0.133  0.241 
Luohu  0.302↑  0.306↑  0.309  0.309↑  0.309↑  0.306↑  0.252  0.261 
Yantian  0.242  0.242  0.274  0.258  0.249  0.251  0.115  0.252 
Nanshan  0.259  0.261  0.262  0.261  0.257  0.267  0.178  0.200 
Baoan  0.295  0.294  0.298  0.298  0.298  0.293  0.258  0.215 
Longgang  0.251  0.254  0.261  0.259  0.253  0.255  0.187  0.263 
Longhua  0.268  0.272  0.280  0.278  0.273  0.277  0.328  0.263 
Pingshan  0.238  0.238  0.241  0.242  0.242  0.243  0.269  0.246 
Guangming  0.270  0.267  0.273  0.276  0.267  0.265  0.225  0.285 
Dapeng  0.237↓  0.231↓  0.227↓  0.229↓  0.222↓  0.237↓  0.118  0.293  

Table 2 
Evaluation of simulation results indicators for each model. The up and down 
arrows represent the maximum and minimum values of the column, with * 
indicating the model constructed by previous studies.   

FoM Kappa OA 

DT  0.269↓  0.979↓  0.984↓ 
RF  0.270  0.981  0.985 
KNN  0.276↑  0.981  0.985 
SVM  0.275  0.981  0.985 
LSTM  0.271  0.982↑  0.986↑ 
GRU  0.273  0.980  0.985 
PLUS*  0.226  0.783  0.863 
RF-VCA*  0.250  0.809  0.899  
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will result in the inability to capture this nonlinear feature. In addition, 
LSTM and GRU, as powerful time series and neural network models, can 
better capture long-term dependencies in time series and memorize and 
train large amounts of data (Su & Kuo, 2019). The insights extracted 
from LSTM and GRU regarding time trends can provide valuable sup-
plemental data alongside environmental and socio-economic factors 
(Patra et al., 2018). This information is vital for departments focused on 
land resource management and planning, as it aids in comprehending 
the nature and patterns of land use evolution, allowing for the devel-
opment of relevant policies and planning strategies. 

This study conducts long-term simulation and prediction based on 
two future scenarios of the uncontrolled urban sprawl and ecological 
protection, quantitatively verifying the future implementation effects of 
different land use policies and further revealing that land use change 
temporal information can become practical information for predicting 
future land use changes. The prediction results show that between 2014 
and 2030, residential land shows a decreasing trend under ecological 
protection scenarios, with a decrease in industrial land in Pingshan 

District (5.8 %) and Nanshan District (4.3 %) and significant changes in 
the growth of unbuilt land, while the opposite is true under the un-
controlled sprawl scenario. Following policy regulations (SPNRB, 2021), 
Shenzhen will achieve and promote the redevelopment of small-scale 
housing by 2035, and strengthen the protection of natural resources 
and ecological restoration, which indicates that introducing temporal 
data for land use scenario prediction can effectively evaluate the effec-
tiveness of policy implementation. After 2026, the changes in the area of 
various land types gradually tend to stabilize. Due to the continuous 
improvement of land use data accuracy and shortened data update cy-
cles, more abundant time series information is easily accessed. By 
leveraging these abundant time series information, more clear time- 
dependence characteristics can be captured to accurately model land 
use change and develop CA theories. Coupling time series data with VCA 
models becomes a practical basis and promising direction for land use 
change modeling and simulation, which can assist decision-makers in 
making targeted and rational planning and policy recommendations (Jin 
et al., 2020). 

Fig. 6. Spatial distribution in 2030 based on Temporal-VCA: (A)O1 Scenario; (B) O2 Scenario; (C1)–(C2), (D1)–(D2), (E1)–(E2) Comparison of details of O1 and O2 
in different regions corresponding to the predicted results. 

Table 3 
The total area of each urban land use in 2030 under different scenarios (unit: m2).  

Year Scenarios Unbuilt land Industrial land Public service land Commercial land Residential land 

2014 \  959,506,757  299,375,767  147,705,670  55,746,817  212,069,779 
2030 O1  965,279,518  299,182,851  144,991,972  52,525,940  215,403,356 
2030 O2  983,063,589  289,597,683  138,847,167  52,205,962  211,214,471  
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This study still has some possible opportunities for improvement. 
Firstly, the model proposed in this paper combines the temporal pre-
diction results with the VCA framework results at the probability level of 
land parcel conversion prediction. Future research can consider gener-
ating temporal conversion factors based on the temporal prediction re-
sults to achieve deep coupling at the probability level of VCA 
conversion. Secondly, there is uncertainty in the model's prediction re-
sults. Various uncertain factors like the economy and policies influence 
urban land use change (Long et al., 2020; Wei et al., 2016). These factors 
demand more discussions and evaluations during model application and 
decision-making. Finally, in future research, we will apply the VCA 
model to the field of urban agglomeration and global land use change to 
explore its generalizability. 

7. Conclusion 

This paper proposes an advanced framework for simulating and 
predicting urban land use changes, Temporal-VCA. The framework 
simulates land use change in Shenzhen by coupling time series data with 
different machine learning and deep learning models. The results verify 
that land use change has obvious time dependence and trends. Intro-
ducing time dimension information significantly improves the simula-
tion accuracy of the model. It shows that temporal VCA can process 
high-precision information of time and space dimensions at the same 
time, providing a feasible direction for the further development of VCA 
model. The long-term prediction results based on multiple scenarios 
indicate that combining time series data can assist decision-makers in 
better predicting and planning the spatial distribution of land use and 
have a clear understanding of the implementation effects of different 
policies. This paper suggests that in the future, the Shenzhen Municipal 

Government should pay more attention to the combination of urban 
planning and time dependence mechanisms, establish and improve a 
land use temporal database, strengthen the application of time series 
analysis in land use planning, in order to accurately predict land use 
demand, improve urban livability and attractiveness. In the future, this 
study will consider environmental and economic factors, deeply analyze 
the driving mechanism of land use temporal factors, and accurately 
excavate and evaluate the factors affecting urban development in 
different regions. The study results contribute to a deeper understanding 
of the temporal dependence mechanism of urban land use and provide a 
reference for formulating regional development policies. 
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