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Abstract
Sensing urban spaces from multisource geospatial data is 
vital to understanding the transportation system in the 
urban context. However, the complexity of urban context 
and its indirect interaction with traffic flow deepen the diffi-
culty of exploring their relationship.  This study proposes 
a geo-semantic framework first to generate semantic 
representations of multi-hierarchical urban context and 
street-level traffic flow, and then investigate their mutual 
correlation and predictability using a novel semantic match-
ing method. The results demonstrate that each street is 
associated with its multi-hierarchical spatial signatures of 
urban context and street-level temporal signatures of traffic 
flow. The correlation between urban context and traffic flow 
displays higher values after semantic matching than those in 
multi-hierarchies. Moreover, we found that utilizing traffic 
flow to predict urban context results in better accuracy than 
the reversed prediction. The results of signature analysis and 
relationship exploration can contribute to a deeper under-
standing of context-aware transportation research.
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1 | INTRODUCTION

Context awareness refers to linking entities with their contextual information to handle the interpretation task of 
these entities (Perera et al., 2014). Recently, context-aware techniques have attracted much attention in the fields 
of ubiquitous computing, smart cities, and traffic management (Bibri, 2018; Liu, Wan, et al., 2017). These techniques 
are particularly important for transportation research, as the movement of entities that constitutes traffic flow is 
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embedded in the urban context (Buchin et al., 2012). Thus, exploring the relationship between urban context and 
traffic flow is of great significance for a better understanding of the transportation system.

The effects of urban context on human movement are varied, which can both enable and limit traffic flow in 
the transportation network (Sharif & Alesheikh, 2017). From a meteorological perspective, urban context can help 
detect human mobility patterns under different weather conditions (Lana et al., 2018), and boost traffic analysis 
when encountering extreme weather situations that are non-recurrent (Yu et al., 2017). Many previous studies have 
explored the importance of urban weather context in traffic flow and their relationship (Theofilatos & Yannis, 2014). 
From a geographic perspective, urban context is closely associated with most factors in human–environment 
research spanning from population density to road structures to land use (Tedjopurnomo et al., 2020). The richness 
of geographic context leads to the diversity of data sources, such as satellite images, point of interest (POI) data, and 
GPS trajectories (Li et al., 2016). Buchin et al.  (2012) also enumerated some examples of geographic context that 
are relevant for analyzing human movement data, including the transportation network, land cover, and locations. 
Despite the importance of geographic context in traffic flow, its richness deepens the difficulty to measure urban 
context from the geographic view and explores the relationship between urban context and traffic flow.

Essentially, traffic flow in the transportation network connects two essential aspects of urban context geograph-
ically, that is, social and natural aspects (Tu et al., 2020; Wang et al., 2019). The social aspect depicts the thematic 
characteristics of urban entities based on multisource urban data, such as POI and social media data (Liu, He, 
et al., 2017; Yuan et al., 2014). The natural aspect can be described using remote sensing images to uncover the phys-
ical characteristics of urban entities, including spectral, textural, and local features (Shahriari & Bergevin, 2017; Zhong 
et al., 2015). By combining the social and natural aspects, the capability of multisource geospatial data to sense the 
urban environment can be greatly improved (Liu, He, et al., 2017; Zhang, Li, et al., 2019). For example, Zhang, Li, 
et al.  (2019) proposed a cross-correlated framework to integrate the social and natural aspects of urban context 
to recognize functional urban land use, which presented a better performance than using either aspect separately. 
However, there is still a lack of studies to incorporate the two aspects of urban context into traffic flow analysis.

In different situations, the compositions of urban context that may influence human movement are diverse due to 
the spatial variance of urban environments. Given a pick-up or drop-off GPS point, the context refers to nearby POIs of 
the GPS point that passengers may visit, that is, their origin or destination places (Huang & Gartner, 2014). Given the traf-
fic flow in a street, the context refers to the distribution of nearby land parcels that may influence route planning and traf-
fic congestion (Zhang, Sun, et al., 2017). Unlike a pick-up or drop-off point that has a direct interaction with its context, for 
example, passengers' visit and stay (Huang & Gartner, 2014; Liu et al., 2012), the interaction between traffic flow and its 
context is indirect and challenging to measure because of their near-untouchable attribute. This indirect interaction can 
present complicated outcomes in different situations. For example, the common situation is that traffic flow in the down-
town area has a higher probability of being congested than in the suburban area during peaking hours (Zhao & Hu, 2019). 
But there are also some exceptions, such as dense residential areas away from the city center in China. Meanwhile, not 
every traffic flow has a meaningful relationship with its nearby urban context, such as traffic flow on an overpass. Thus, 
an in-depth study is needed to disclose the indirect and complicated interaction between urban context and traffic flow.

To integrate the social and natural aspects of urban context and reveal its relationship with traffic flow, this study 
proposes a novel geo-semantic framework to represent urban context and traffic flow at the street level and explore 
their correlation and predictability. Due to the scale-dependent characteristics of geographic objects (Tu et al., 2020), 
the framework first establishes a multi-hierarchical structure of urban context to cover various influential regions 
for each street. Following that, we utilize the probabilistic topic modeling method to extract semantic representa-
tions of multi-hierarchical urban context by combining its social and natural aspects and traffic flow by capturing 
its mobility patterns (Miao et al., 2021; Roller & Walde, 2013). A semantic matching method is then designed to 
produce correlated versions of all semantic representations borrowed from the cross-modal retrieval system (Pereira 
et al., 2013). Finally, we can identify the most suitable hierarchy of each street by comparing the distance between 
correlated representations of urban context and traffic flow, and explore their relationships through correlation and 
predictability.
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The remainder of this article is organized as follows. Section 2 introduces previous research on urban context 
sensing, especially land use recognition. Section  3 provides a detailed description of datasets and the proposed 
framework. The experimental results and discussion are reported in Sections 4 and 5, respectively, followed by a 
conclusion in Section 6.

2 | URBAN CONTEXT SENSING

Accurately sensing urban spaces from multisource geospatial data can benefit the understanding of urban context 
and human activities in cities worldwide (Raubal et al., 2021; Zhang, Li, et al., 2021). Several data-driven frameworks 
have been proposed to perceive urban spaces. For example, Zheng et al. (2014) introduced the framework of urban 
computing, which connects urban sensing, data management, data analytics, and service providing into a recurrent 
process, to handle urban problems using urban big data. In addition, social sensing, urban informatics, and crowd-
sourcing studies are also promising frameworks for understanding urban spaces from a data-driven perspective (Foth 
et al., 2011; Li, 2017; Liu et al., 2015).

In urban sensing, utilizing geospatial data to sense the natural and social aspects of urban context has attracted 
much attention, especially in recognizing urban land use (Yuan et al., 2014; Zhang et al., 2018). From the natural 
aspect of urban context, the object-based classification method plays a critical role in detecting urban land use from 
high-spatial resolution (HSR) satellite images (Zhang, Du, et  al., 2017). This method extracts feature descriptions 
within land parcels (i.e., objects) to classify their land use (Gamanya et al., 2007). Initially, some low-level features 
from HSR satellite images were used to describe land parcels, such as spectral, texture, and local features. These 
features can effectively provide the physical characteristics of urban land parcels but fail to reflect the scene informa-
tion of geographic objects, for example, high-level semantic information (Tu et al., 2020). In other words, it is difficult 
for these features to overcome the semantic gap between low-level physical characteristics and high-level scene 
information within land parcels (Liu, He, et al., 2017).

To handle this semantic gap, probabilistic topic models were proposed to extract semantic features from urban 
land parcels to represent the scene information (Tu et al., 2020). The models contain a variety of methods to discover 
hidden semantic representations from urban context, such as probabilistic latent semantic analysis (pLSA) and latent 
Dirichlet allocation (LDA) (Blei et al., 2003). Zhong et al. (2015) evaluated the performance of using pLSA and LDA to 
recognize urban land use through extracted semantic features. The results suggested that the LDA model performs 
better than the pLSA model in different datasets. Although the LDA model can produce qualified representations 
of high-level scene information from satellite images, it is challenging to discern land parcels with similar physical 
features but different thematic attributes, for example, public service buildings and commercial buildings located on 
the same street (Liu, He, et al., 2017).

This challenge leads to the social aspect of urban context sensing, which can be solved by taking multi-
source geospatial data with thematic attributes into account, such as POI data (Yao et al., 2016), social media 
data (Zhang, Li, et al., 2019), and mobile phone data (Tu et al., 2017). The solution is highly motivated by the 
data-driven frameworks of urban computing, social sensing, and urban informatics. Generally, fusing HSR satel-
lite images with the above mentioned geospatial data can integrate the physical and thematic characteristics to 
simultaneously reveal the natural and social aspects of urban context (Tu et al., 2020; Zhang, Li, et al., 2019). For 
example, Liu, He, et al. (2017) presented a framework for combining HSR satellite images with social media data 
to classify urban functions using the LDA model. Zhang, Li, et al.  (2019) revealed the advantages of correlated 
semantic representations obtained from HSR satellite images, POI data, and social media data in land use recogni-
tion by extending the LDA model. Compared to studies purely using satellite images, multisource geospatial data 
fusion can significantly improve the performance of the LDA model in urban context sensing. Following the fusion 
method, this study will investigate a multi-hierarchical structure of urban context sensing and its application to 
transportation research.
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3 | RESEARCH DESIGN

3.1 | Study area and datasets

This study was conducted in Singapore with a population of 5.45 million and an area of 728.6 km 2 (Figure 1a). As a 
high-density city, the landscape in Singapore is dominated by manufactured structures and holds many residential 
and commercial facilities (Sidhu et al., 2018). Urban streets in high-density cities can promote massive traffic flow 
among land parcels and improve urban vitality (Sulis et al., 2018; Zhang, Li, et al., 2021), making Singapore an ideal 
case to explore the relationship between urban context and traffic flow.

The fused HSR satellite image, POI data, and Grab-Posisi GPS dataset constitute the primary data to extract 
semantic representations from urban context and traffic flow. Also, transportation network and land use data from 
the Urban Redevelopment Authority provide auxiliary information to conduct this study. The information of datasets 
and their basic preprocessing are as follows.

•	 The HSR satellite image in Figure 1a holds a spatial resolution of 2.39 m after fusing the Sentinel-2 and Google 
Earth images. Two Sentinel-2 images with four channels (NIR, R, G, and B) in 2020 and 2021 were first fused 
to remove clouds. The result was then fused into the Google Earth image collected in 2021 using the high-pass 
filter resolution merge method (Gangkofner et al., 2007). Finally, we obtain the fused HSR satellite image with 
four bands and consistent spectral information across Singapore.

F I G U R E  1   Study area and the used datasets in this study. (a) The fused satellite image of the Google and 
Sentinel-2 images and the transportation network. (b) POI data. (c) Grab-Posisi dataset. (d) Land use data.
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•	 The POI data in Figure 1b is from Open Street Map (OSM) in 2021, including the original POIs and building 
polygons. Given a building polygon, its centroid point was extracted as a POI to replenish the number of POIs 
in Singapore. In addition, their categories were reclassified to align with land use information in Figure 1d based 
on their locations. In total, we have 116,097 POIs in Singapore.

•	 The Grab-Posisi dataset in Figure 1c is an open-source GPS trajectory dataset in Singapore provided by Grab, 1 
a Southeast Asia's ride-sharing company (Huang et  al.,  2019). The Grab-Posisi dataset was collected from 
Grab driver's phones while in transit during April 2019 with a 1-s sampling rate, that is, from 08/04/2019 to 
21/04/2019. Each GPS point has the trajectory ID, time, location, speed, etc. The dataset also provides contex-
tual information, including bearing, the accuracy level, driving modes, and data acquisition modes, which can 
be used in map inference, mode detection, traffic detection and forecast, and next location prediction (Huang 
et al., 2019). In Singapore, there are 28,000 trajectories in total, and we employ this dataset to extract traffic 
flow by aggregating the GPS trajectories in each street segment.

•	 The transportation road network and land use data from 2019, shown in Figure 1a,d, can be obtained from 
Singapore's Urban Redevelopment Authority. The transportation road network has the following types: express-
way, semi-expressway, major arterials, local collector, local access, service road, etc. After reclassifying the cate-
gory of land use data, it contains the following 14 types: health and medical care (HEL), civic and community 
institution (CIV), industry (IND), commercial (CMC), residential (RES), transport facilities (TRS), sports and recre-
ation (SPT), educational institution (EDU), open space (OPE), park (PRK), agriculture (AGC), utility (UTL), water-
body (WAT), and other lands (OTH).

3.2 | Research framework

The proposed geo-semantic framework aims to extract the semantic representations of multi-hierarchical urban context 
and traffic flow, and then explore their relationship according to correlation and predictability, shown in Figure 2. First, 
the framework adopts street segmentation to partition street segments for computing traffic flow and implements hier-
archical region segmentation to establish a multi-hierarchical structure for computing urban context. Then, we utilize 
the probabilistic topic modeling method to generate semantic representations of urban context in multi-hierarchies 
and semantic representations of traffic flow in each street (Miao et al., 2021; Roller & Walde, 2013). Finally, the rela-
tionship between urban context and traffic flow is explored by selecting the most suitable hierarchy of urban context 
for per-street traffic flow through a designed semantic matching method (Pereira et al., 2013; Rasiwasia et al., 2010).

F I G U R E  2   The proposed geo-semantic framework to explore the relationship between multi-hierarchical 
urban context and traffic flow. In the multi-hierarchical structure, A h

1
–h

5
 refer to the five hierarchies of urban 

context (hierarchy 1–hierarchy 5), respectively.
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3.2.1 | Street segmentation and hierarchical region segmentation

A geographic object can exhibit various attributes and geographic phenomena at different spatial scales (Tu 
et al., 2020). This scale-dependent property also applies to traffic flow and urban context. For example, the value of 
traffic flow would vary if streets were partitioned by different nodes; the content of urban context nearby a street 
would also be varied if setting different neighboring coverage regions. Thus, the primary issue is to segment streets 
and regions properly for computing traffic flow and urban context.

As traffic flow calculated in each street segment is potentially affected by land use information (Zhang, Sun, 
et al., 2017), each segmented street should generally accord with the distribution of its nearby land parcels. This accord-
ance is also helpful to explore the relationship between traffic flow and urban context since they are spatially associated. 
In detail, the procedure of street segmentation follows these steps, which finally results in 5581 available street segments.

1.	 We selected main roads from the transportation road network to accommodate traffic flow, that is, expressways, 
major arterials, minor arterials, local collectors, and junction roads.

2.	 The above-selected roads simultaneously satisfying three criteria were merged to generate new street segments. 
(a) The roads to be merged should spatially touch each other. (b) The roads possess the same road name. (c) Land 
parcels nearby the roads have the same land use category. The third criterion was evaluated by matching the 
category of the nearest land parcel to the road.

3.	 For all merged street segments, the over-long street segments were iteratively split by their middle points until 
their length was <2 km. The over-short street segments <50 m were filtered out. Details are shown in Figure 3a.

For region segmentation, we used satellite image segmentation to partition a given image into a series of 
non-overlapping homogeneous regions (Hu et  al.,  2016). The internal heterogeneity of these segmented regions 
is controlled by a scale parameter according to shape and spectral criteria in Equation (1) (Draguct et al., 2010; Tu 
et al., 2020). The weight (A w

shape
 ) of the shape heterogeneity was set as 0.5 to maintain the balance between shape 

(A c
shape

 ) and spectral (A c
spectral

 ) heterogeneity, and the compactness of the shape was also set as 0.5. In this study, we 
employed the estimation of scale parameter 2 (ESP 2) to identify the best scale parameter (Drăguţ et al., 2014), which 
was 116.0 for the given satellite image. Figure 3b illustrates the example of the satellite image segmentation result.

S
criteria

= w
shape

• c
shape

+

(

1−w
shape

)

• c
spectral� (1)

After identifying the spatial range of each segmented street and region, the second issue is to associate each 
segmented street with nearby segmented regions. To solve this problem, we designed a multi-hierarchical structure 
to attach nearby segmented regions in different ranges to the segmented street. Given a street in Figure 3c, its buffer 
zone was drawn based on a predefined buffer size, and all segmented regions touching this zone were merged to 

F I G U R E  3   The diagram of street segmentation and hierarchical region segmentation. (a) Street segmentation. 
(b) Region segmentation. (c) Region merging based on multi-hierarchical buffer zones.
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generate a new aggregated region. The merging process was implemented based on the pre-segmented regions from 
the satellite image. Compared to purely using the buffer zone to identify the region of urban context, the merging 
method takes the shape and spectral homogeneity of each pre-segmented region into account from bottom to top 
(Hu et al., 2016). This method guarantees that the boundary of the aggregated region, to a large extent, accords with 
the actual boundary of geographic objects. In addition, each pre-segmented region holds a complete function from a 
land-use perspective, making the aggregated region consistent with the edge of actual land patches to describe urban 
context information. In addition, we provided five buffer zone sizes to correspond with five hierarchies, that is, 100, 
200, 300, 400, and 500 m, denoted as hierarchy 1 (A h

1
 ), hierarchy 2 (A h

2
 ), hierarchy 3 (A h

3
 ), hierarchy 4 (A h

4
 ), and hierar-

chy 5 (A h
5
 ), respectively. From A h

1
 to A h

5
 , the area of aggregated region increases step by step so that the relationship 

between traffic flow and its urban context could be minutely evaluated in the further stage.

3.2.2 | Probability topic modeling for traffic flow and urban context

The probabilistic topic modeling method has been widely used to extract high-level semantic representations in 
urban spaces, which consists of the bag-of-word (BOW) and LDA models (Liu, He, et al., 2017; Zhong et al., 2015). 
The method regards the set of all research units as the corpus, each research unit as a document, and each basic 
feature in the document as a word. The BOW model quantizes basic features extracted from raw data into words and 
utilizes the histogram of words to represent a document (Shahriari & Bergevin, 2017). Then, the LDA model generates 
semantic representations of each document through a mixture over an underlying set of topics, and each topic is 
characterized by a distribution of words (Blei et al., 2003; Zhang, Li, et al., 2019). In addition, we adopted the indicator 
of coherence (A C

V
 ) to measure topic coherence with various topic numbers and assist in the selection of topic numbers 

(Röder et al., 2015). This part introduces the construction of words for traffic flow and urban context using the BOW 
model and the generation of their semantic representations using the LDA model.

Traffic flow
Its word refers to the amount of traffic flow within a time slot in each street, denoted as a traffic word A w

tf
= {s, t,m} . 

A s , A t  , and A m represent street ID, time slot ID, and the amount of traffic flow, respectively. The time interval to count 
traffic flow in each street was set to 1 h, indicating that there are 24 time slots within one day. However, due to the 
difference of mobility patterns on work and rest days (Yao et al., 2019; Zheng et al., 2014), we separately counted 
their traffic flow to generate the traffic word for each time slot, that is, 24 time slots on a work day and 24 time slots 
on a rest day. Then, the range of A t contains 48 different time slots, for example, w00:00–01:00 and w23:00–00:00 
referring to the first and last time slot on the work day, respectively; r00:00–01:00 and r23:00–00:00 referring to 
the first and last time slot on the rest day, respectively. For the Grab-Posisi dataset on work and rest days, A m

st
 was 

separately calculated to average the amount of traffic flow in the street A s for each time slot A t . Given a segmented 
street A s , its document regarding the traffic word can be expressed as:

Ds =

{

w
1

tf
:m

s1
,w

2

tf
:m

s2
, . . . ,w

t

tf
:m

st

}

� (2)

where A w
t

tf

 is the A t
th

 word of traffic flow and A m
st

 is the count of this word. Then, the corpus of traffic flow is the set 
of all documents A D

tf
= {D

1
,D

2
, . . . ,Ds} , which is input into the LDA model to generate semantic representations of 

traffic flow, denoted as A S
tf

 .

Urban context
POI data and satellite images represent the social and natural aspects of urban context (Zhang, Li, et  al.,  2019), 
leading to multimodal LDA topic modeling that involves two data modalities. To capture multimodal components of 
urban context, we develop three kinds of context words as basic words, that is, thematic, physical, and geographic 
words. The thematic and physical words are constructed based on POI data and satellite images to characterize the 
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social and natural aspects of urban context, respectively. The geographic word is first devised to associate each 
thematic word with its surrounding physical words by characterizing their spatial relations. As there are five hierar-
chies containing urban context in different ranges, semantic representations are separately extracted to model urban 
context for each hierarchy. Given all aggregated regions in a hierarchy A h

i
 , each aggregated region can be regarded as 

a document A Dr .
(1) Thematic word: the category information of POI data is directly treated as the word due to its discrete prop-

erties satisfying the BOW model (Zhang, Li, et al., 2019). Assuming there were A K kinds of POIs, the thematic word 
refers to the amount of POI data for different categories in each aggregated region, denoted as A w

ct
= {l,c,m} . A l  , A c , 

and A m represent the location, category, and the amount of category A c in the aggregated region, respectively. Then, the 
thematic part of a document in the hierarchy A h

i
 can be expressed as:

D
ct

ri
=

{

w
1

ct
:m

1
,w

2

ct
:m

2
, . . . ,w

k

ct
:m

k

}

� (3)

where A w
k

ct
 is the A k

th
 thematic word and A m

k
 is the count of this word.

(2) Physical word: previous studies have verified the effectiveness of three kinds of features from satellite images 
to display multifaceted physical attributes of urban spaces, including spectral, texture, and local features (Liu, He, 
et al., 2017; Zhang, Li, et al., 2019; Zhong et al., 2015). When collecting these three physical features, the size of a 
sliding window is set to 150 × 150 pixels with 25 overlapping pixels (Zhong et al., 2015). Given a small region in the 
sliding window, its spectral feature describes the average value and standard deviation in four bands, denoted as 

A f
spectral

 ; its texture feature is measured by four Haralick's statistical features, that is, contract, energy, correlation, and 
homogeneity, from the gray-level co-occurrence matrix in four bands (Mohanaiah et al., 2013), denoted as A f

texture
 ; 

its local feature applies the dense scale-invariant feature transform algorithm in the near-infrared band to provide a 
128-dimension vector (Zhang, Li, et al., 2019; Zhong et al., 2015), denoted as A f

local
 .

After extracting the spectral, texture, and local features from all sliding windows in the satellite image, we used 
the K-Means method to cluster these features separately into various clustering numbers (Tu et  al.,  2020). The 
Davies–Bouldin index (DBI) was then employed to estimate the clustering performance of each clustering number 
(Davies & Bouldin, 1979). As shown in Equation (4),

DBI =

1

N

N

∑
u=1

max

v ̸=u

Su +Sv

Mu,v

� (4)

the DBI measures the clustering quality through the separation between cluster A u and A v , denoted as A Mu,v , and the 
within-cluster scatter for cluster A u and A v , denoted as Su and Sv (Davies & Bouldin, 1979). The lower DBI means a 
better clustering quality. The clustering results with the lowest DBIs can be regarded as their corresponding feature 
descriptors, that is, three sub-words of the physical word (Zhang, Li, et al., 2019). Assuming the optimal clustering 
numbers of fspectral, ftexture, and flocal are x, y, and z respectively, their descriptors constitute a tuple as (wspe, wtex, wloc). 
Then, the physical part of a document in the hierarchy hi can be expressed as:
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










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







� (5)

where A w
x

spe
 , A w

y

tex
 , and A w

z

loc

 are the xth spectral word, yth texture word, and zth local word; A m
x

spe
 , A m

y

tex
 , and A m

z

loc

 are the 
counts of these three words, respectively.

(3) Geographic word: we first devise a novel method to build connections between thematic and physical words 
through their relative spatial locations, ensuring that multimodal components of urban context are spatially related. 
Given a thematic word, wct = {l, c, m}, its location l falls into one particular sliding window that can be used to extract 

v≠u

 14679671, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tgis.13005 by E

th Z
ürich E

th-B
ibliothek, W

iley O
nline L

ibrary on [19/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ZHANG and RAUBAL3338

a tuple of the physical word, (wspe, wtex, wloc). The geographic feature is then constructed by combining the thematic 
and physical words, denoted as fgeo = (wct, wspe, wtex, wloc). Similar to the construction of physical words, the DBI-based 
K-Means method is utilized to produce the discrete word of this geographic feature through clustering. Assuming the 
optimal clustering number is q, the geographic part of a document in the hierarchy hi can be expressed as:

D

cg

ri

=

{

w
1

cg :m1
,w

2

cg :m2
, . . . ,w

q

cg
:mq

}

� (6)

where the A w

q

cg
 is the qth geographic word and mq is the count of this word.

After integrating the thematic, physical, and geographic words in Equations (3, 5, 6) within an aggregated region, 
its document in the hierarchy hi can be expressed as A D

ri
=

{

D
ct

ri

,D

cp

ri

,D

cg

ri

}

 . Then, the corpus of urban context in this 
hierarchy is the set of all documents A Di

uc
= {D

1i
,D

2i
, . . . ,D

ri
} , which is input into the LDA model to generate seman-

tic representations of urban context in hi, denoted as A S i

uc
 . Similarly, semantic representations of urban context at 

multi-hierarchies can be obtained using the same method, denoted as A Suc =

{

S1

uc
,S2

uc
,S3

uc
,S4

uc
,S5

uc

}

 .

3.2.3 | Semantic matching and relationship exploration

The semantic representations of multi-hierarchical urban context and traffic flow allow us to analyze the spatial 
signatures of urban context and temporal signatures of traffic flow for each street. After that, we design a semantic 
matching method to project urban context and traffic flow into their common feature spaces and explore their rela-
tionship through correlation and predictability.

We began by analyzing the signatures of multi-hierarchical urban context and street-level traffic flow through the 
DBI-based K-Means clustering method. For the spatial signature of urban context, K-Means clustered its semantic 
representations A S i

uc
 in each hierarchy into various clustering numbers. The DBI evaluated the clustering performance 

to select the optimal clustering result (Davies & Bouldin, 1979). Then, land use information within each aggregated 
region was attached to the optimal clusters by averaging the areas of different kinds of land use, that is, the spatial 
signature specified by the spatial distribution of land use information. For the temporal signature of traffic flow, we 
analyzed its signature pattern using the same method to cluster semantic representations A S

tf
 . Then, the temporal 

amount of traffic flow was attached to the optimal clusters by averaging its per-hour amount, that is, the temporal 
signature specified by the temporal variations of traffic flow amount. Finally, each street can be represented by its 
multi-hierarchical spatial signatures of urban context and street-level temporal signature of traffic flow.

The next question arises of which hierarchy of urban context best matches traffic flow in a street, as there are 
multi-hierarchical semantic representations of urban context but only one semantic representation of traffic flow. 
To handle this problem, we devise a semantic matching method borrowed from the cross-modal retrieval system to 
retrieve the most suitable semantic representation of urban context from multi-hierarchies for each street (Pereira 
et al., 2013; Rasiwasia et al., 2010). The core of this method is kernel canonical correlation analysis (KCCA), which 
nonlinearly projects the semantic representations of two modalities, that is, traffic flow and urban context, into their 
maximally correlated common spaces (Lai & Fyfe, 2000; Zhang, Li, et al., 2019). Assuming the semantic representa-
tions of traffic flow and urban context are A S

tf
 and A Suc =

{

S1

uc
,S2

uc
,S3

uc
,S4

uc
,S5

uc

}

 , their correlated representations 

obtained from their common spaces through KCCA can be expressed as A S′
tf

 and A S′
uc
=

{

S1′
uc
,S2′

uc
,S3′

uc
,S4′

uc
,S5′

uc

}

 . For 

each street, we measured the distance between A S′
tf

 and each hierarchy in A S′
uc

 , and the hierarchy with the minimal 
distance was selected as the most suitable hierarchy. For all segmented streets, the set of correlated representations 
of urban context and traffic flow in their most suitable hierarchies was regarded as the matched version.

After semantic matching, we explored the mutual relationship between traffic flow and urban context through two 
indicators, that is, correlation and predictability. For the correlation, the Pearson's coefficients between traffic flow A S′

tf

 
and urban context A S′

uc
 were calculated to compare the difference between the multi-hierarchical and matched versions. 

For the predictability, it can be divided into two parts, that is, using urban context to predict traffic flow and using traffic 
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ZHANG and RAUBAL 3339

flow to predict urban context. When using urban context A Suc in multiple hierarchies to predict traffic flow A S
tf

 , we gener-
ated the predicted labels through clustering A S

tf
 and then utilized semantic representations in A Suc to predict these labels. 

During this process, this study developed multi-group labels by clustering semantic representations of traffic flow into 
various clustering numbers, that is, 2–10. This multi-group method can guarantee that the measure of the predictability 
is comprehensive to consider various scenarios. Similarly, we can measure the performance of using traffic flow to predict 
urban context in multiple hierarchies. Regarding the matched version, we applied A S′

uc
 and A S′

tf

 instead of A Suc and A S
tf

 to 
predict each other in their most suitable hierarchies through the same method. We used the random forest algorithm to 
implement the prediction task and adapted the 10-fold cross-validation method to evaluate the performance of predict-
ability. As there are five hierarchies and a matched version, the correlation and predictability in each hierarchy and the 
matched version are separately computed and then compared their difference.

4 | RESULTS

The three main outcomes from the proposed framework are urban context signatures by clustering their 
multi-hierarchical semantic representations, traffic flow signatures by clustering their street-level semantic 
representations, and the relationship between urban context and traffic flow. In the following subsections, we discuss 
our experiments on these three outcomes and investigate the sensitivity analysis of several critical parameters of the 
proposed framework.

4.1 | Multi-hierarchical spatial signatures of urban context

We developed a multi-hierarchical structure to cluster aggregated regions through the semantic representations 
of urban context, and employed land use distribution as the spatial signature for each cluster. Such a structure can 
uncover the hierarchical characteristic of the complex connotations of spatial urban context. This characteristic holds 
significant future potential in urban planning since mixed land use is becoming increasingly common in the current 
urban environments (Dovey & Pafka, 2017).

We used a coherence value (CV) to measure the topic coherence of the LDA model, assisting to identify the 
topic number (Röder et al., 2015). Figure 4a shows the values of CV under various topic numbers in multi-hierarchies. 
We observe that the CV values for low hierarchies (e.g., h1 and h2) are consistently higher than those for high hier-
archies (e.g., h4 and h5). This can be explained by delving into the meaning of high hierarchies. With the increase of 
hierarchies, more geographic objects would be included to model hidden topics, deepening the complexity of urban 
context. The relatively smaller CV values in high hierarchies reveal the influence of mixed land use on this spatial 
complexity. Furthermore, the change trends of CV values in all five hierarchies are similar, that is, beginning with a 
sudden rise in the early part, achieving the peak value in the middle, and ending with a slow downtrend. We selected 
the topic number with the highest CV value as the parameter of the LDA model, marked by gray dots in Figure 4a, to 
generate semantic representations of aggregated regions for each hierarchy.

Based on the generated semantic representations, we applied the DBI value to measure the clustering quality 
by computing the separation between clusters and the scatter within clusters (Davies & Bouldin, 1979). Figure 4b 
shows the DBI values under various clustering numbers using the K-Means clustering method. In five hierarchies, the 
trends of DBI values are all descending, indicating that a larger clustering number refers to a better clustering quality. 
We selected the clustering results with the lowest DBI values, marked by gray dots in Figure 4b, to analyze the spatial 
signatures of aggregated regions through land use information. For each cluster, the area ratio of each kind of land 
use to this cluster was computed. Then, this area ratio was ranked among clusters to emphasize the difference in land 
use distribution across clusters.

From five hierarchies, we selected two middle hierarchies to reveal the spatial patterns of urban context signa-
tures, that is, h2 and h4 in Figures 4c,d. We find that the spatial signatures of h2 and h4 present complex compositions 
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ZHANG and RAUBAL3340

due to the involvement of mixed land use. For example, the highest rank of RES in A14 of h2 holds a close connection 
with the CMC, EDU, HEL, and PAK land, but the highest rank of RES in B11 of h4 is isolated from other land use. 
Furthermore, we discover the co-occurrence relationship of some kinds of land use despite different hierarchies. 
For example, the spatial distribution of RSE is positively related to the CMC, EDU, and PAK land but negatively 
associated with the IND land. Despite land use distribution, the multi-hierarchical semantic representations can be 
associated with other urban variables, for example, building function and population distribution (Lin et al., 2021; Yao 
et al., 2017), to help urban planners understand contextual information from a hierarchical perspective.

4.2 | Street-level temporal signatures of traffic flow

In line with St 4.1, we utilized street-level semantic representations of traffic flow to cluster segmented streets, and 
employed traffic flow variations as the temporal signature for each cluster. This part aims to disclose the mobility 
patterns of temporal traffic flow in work and rest days. The result can provide references for understanding human 
activities and locating the distribution of travel demand as the data is from a ride-sharing company.

We also used the CV and DBI values to evaluate the performance of the LDA and K-Means models under various 
topic numbers and clustering numbers, respectively. Figure 5a presents the change trend of CV, achieving the marked 
peak value as the topic number is 6. We selected this topic number to generate street-level semantic representations 
of traffic flow using the LDA model. The interesting phenomenon appears that the DBI also achieves the marked 
valley value as the clustering number is 6 in Figure 5b. The same topic and clustering numbers imply the potential 

F I G U R E  4   Multi-hierarchical urban context sensing analysis and the spatial signatures. (a) The coherence 
(CV) values of LDA by setting various topic numbers. (b) The DBI values of K-Means by setting various clustering 
numbers. (c) The area ratio rank heatmap of the spatial signature in h2. (d) The area ratio rank heatmap of the spatial 
signature in h4. In (a, b), h1–h5 represent the five hierarchies of urban context (hierarchy 1–hierarchy 5), respectively. 
In (c, d), the area ratio was first computed in each column, and then this ratio was ranked by each line. The higher 
number in the color bar means that the area ratio in the cluster has priority over other clusters.
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ZHANG and RAUBAL 3341

consistency of semantic meanings between hidden topics and clustering results. Essentially, the LDA model aims to 
discover hidden topics to represent traffic flow in each street (Blei et al., 2003), and the streets with similar topics 
were gathered into corresponding clusters during the clustering process. An evidence is that the values of CV and 
DBI at the point of 6 both have an obvious advantage over any other measure points in Figures 5a,b. Moreover, 
we observe that the change trends of CV and DBI of urban context in Figure 4 fluctuates and is hard to discern the 
extreme values, compared to those of traffic flow in Figure 5. This can be explained by the spatial complexity of urban 
context due to the rich connotations of geographic objects.

Given six clusters of different mobility patterns, Figures 5c–h illustrate their temporal signatures in work and rest 
days by averaging traffic flow amount in each cluster. In Figure 5c, we observe that D1's signature presents an enor-
mous traffic flow amount, indicating the most common mobility pattern of people taking the Grab. It contains two 
peak periods in the work day displaying commuting activities and a long peak period in the rest day displaying enter-
tainment behavior. D2 in Figure 5d has a similar workday mobility pattern to D1, but its rest-day signatures differ. The 

F I G U R E  5   Street-level traffic flow analysis and the temporal signatures. (a) The coherence (CV) values of 
LDA by setting various topic numbers. (b) The DBI values of K-Means by setting various clustering numbers. (c–h) 
Temporal signatures: The work-day and rest-day traffic flow signatures of six clusters, and each cluster represents 
its mobility pattern specified by traffic flow. In (c–h), the x-axis refers to the ith time slot (hour) of the work day and 
rest day.
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ZHANG and RAUBAL3342

rest-day amount of traffic flow in D2 reduces substantially compared to workday's, which reveals that the vibrancy 
of urban streets within D2 is mainly activated during the work day. D3 in Figure 5e can be regarded as the enhanced 
version of D2. A divergent part is that D3's traffic flow amount in the morning is less than that in the afternoon for 
the rest day. This phenomenon can also be observed in D4, D5, and D6, implying that consumers prefer to take the 
Grab in the afternoon rather than in the morning. Furthermore, we find that the workday mobility patterns in D4, 
D5, and D6 can find clues from other clusters, but their rest-day signatures are in different situations. For example, in 
Figure 5g, the traffic flow amount of D5 in the rest day achieves the peak period until the night, reflecting that there 
may be many night activities. The rest-day signatures of D4 and D6 in Figures 5f,h show large fluctuations and rela-
tively low traffic amount, which are closely related to the characteristics of origin and destination points of traffic flow.

4.3 | Relationship between urban context and traffic flow

For each street, matching multi-hierarchical urban context representations to one traffic flow representation can 
be converted into a retrieval problem across multi-modalities. Given two modalities describing the same street, 
one is a determined modality of its traffic flow representation, and the other is an undetermined modality of its 
multi-hierarchical context representations. After converting, the problem becomes how to retrieve the most suitable 
urban context representation from multi-hierarchies through the traffic flow representation. It leads to the third 
outcome of our framework, that is, semantic matching, which aims to solve the converted problem by projecting the 
two modalities into their common spaces. Then, we can explore the relationship between urban context and traffic 
flow through correlation and predictability regarding the multi-hierarchical and the matched versions.

In terms of correlation, Figure 6a demonstrates the Pearson's coefficient values between urban context and traffic 
flow for the multi-hierarchical and the matched versions. We find that the box plot of the matched version presents 
overall higher correlation values than the multi-hierarchical version. The 50th percentile in the box plot of the matched 
version achieves 0.76, higher than 0.58 shown in any other hierarchies. It reveals the effectiveness of semantic match-
ing to capture correlated information between urban context and traffic flow. Also, we find that the correlation differ-
ence among the five hierarchies is not apparent, maintaining a similar range in their box plots. This is because urban 
context in either hierarchy cannot entirely interpret its correlation with traffic flow using a fixed spatial range across 
the whole of Singapore. Furthermore, we noticed that there also exist some negative correlation values in the matched 
version. This suggests that not every street would keep a strong positive correlation between traffic flow and its nearby 
urban context. To illustrate this phenomenon, the correlation value map of Singapore and its two enlarged areas are 
shown in Figures 6c–e, where the color indicates the correlation value and the width indicates the matched hierarchy.

In Figure 6c, the spatial distribution of correlation implies that most streets retain high correlation values accord-
ing to observing a large portion of dark red streets in Singapore. This can be verified by the box plot of the matched 
version in Figure 6a, with its 50th percentile over 0.75 and its 75th percentile over 0.60. Figure 6d presents the 
correlation distribution in the central area of Singapore, where traffic flow is positively related to its urban context. 
However, in the southwest area shown in Figure 6e, the situation differs a lot. Traffic flow in partial streets is weakly 
related to its urban context, especially streets on Jurong Island. Regarding this phenomenon, we infer there are two 
potential explanations. First, the region is mainly covered by industrial land and distant from the central area, leading 
to the lack of travel needs by taking the Grab cars. The access of social vehicles to Jurong Island is also limited. Thus, 
traffic flow in this region could be largely underestimated because of ignoring other traffic vehicles. Second, not every 
street is closely related to its nearby urban context mentioned above, such as the street on the elevated highway and 
the context of the complex mixed land use, resulting in low correlation.

In terms of predictability, Figure  6b visualizes two reversed parts of prediction accuracy, that is, “traffic flow 
predicts context” and “context predicts traffic flow.” Similar to correlation, we find that the matched version holds 
better predictability than the multi-hierarchical version for both two parts. This reveals the advantages of the semantic 
matching method to better capture the cross-modality information between traffic flow and urban context. In addition, 
we discover that “traffic flow predicts context” performs much better than “context predicts traffic flow” in all box plots 
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ZHANG and RAUBAL 3343

in Figure 6b. Although urban context holds the potential to unveil spatiotemporal urban mobility patterns (Zhang, Wu, 
et al., 2019), it is still a challenging task to predict dynamic traffic flow accurately by purely utilizing static urban context. 
In contrast, mining human activities hidden in mobility data can significantly benefit recognizing urban land use and 
environmental attributes (Liu et al., 2012; Yao et al., 2019; Yuan et al., 2012). Meanwhile, the biased sampling of the 
Grab-Posisi dataset can also lead to the unbalanced performance of two reversed parts. This dataset only provides the 
driving records of partial Grab's consumers in Singapore that cannot represent all commuting activities of residents.

5 | DISCUSSION

This study proposed a geo-semantic framework to produce representations of urban context and traffic flow using 
the BOW and LDA models. In this framework, how to determine the range of documents, the category of words, and 
the number of topics are critical (Tu et al., 2020; Zhang, Li, et al., 2019). For traffic flow, its documents and words, that 
is, street segments and traffic words wtf, are fixed due to its discrete properties. For urban context, its documents and 

F I G U R E  6   The relationship between urban context and traffic flow and their correlation map in Singapore. 
(a) The correlation box plot for the multi-hierarchical and the matched versions. (b) The predictability box plot for 
the multi-hierarchical and the matched versions. (c) The correlation map in each street for the matched version in 
Singapore. (d) The enlarged correlation map in the central area (right rectangle in c). (e) The enlarged correlation 
map in the southwest area (left rectangle in c). In (a–c), h1–h5 represents the five hierarchies of urban context 
(hierarchy 1–hierarchy 5), respectively. For each street in (c–e), its color and width indicate the correlation value and 
the matched hierarchy, respectively.

 14679671, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tgis.13005 by E

th Z
ürich E

th-B
ibliothek, W

iley O
nline L

ibrary on [19/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ZHANG and RAUBAL3344

words are decided by a scale parameter of satellite image segmentation that influences the size of pre-segmented 
regions and the numbers of physical words, including the spectral (wspe), texture (wtex), and local (wloc) words. As to 
the selection of topic numbers, they have been discussed in Section 4.1 and Figure 4a for urban context and in 
Section 4.2 and Figure 5a for traffic flow. Thus, this part discusses the scale parameter selection in satellite image 
segmentation and the selection of physical word numbers in the BOW model.

In satellite image segmentation, ESP 2 detects scale transition by measuring local variance (LV), which can reflect 
the segmentation performance of the satellite image (Drăguţ et al., 2014). The rate of change (ROC) between LVs 
of two neighboring scales can help to select a suitable scale parameter. In Figure 7a, LV increases along with the 
increase in the scale parameter, implying that the homogeneity of segmented regions increases. Since satellite image 
segmentation aims to ensure homogeneity within segmented regions and heterogeneity among segmented objects, 
the higher LV value contributes to the better segmentation result for interpretation. After that, the segmented results 
need to be merged to generate multi-hierarchies. Thus, the size of each segmented region cannot be too large in case 
the merged region contains an oversized area. Considering all these factors, we selected the peak point in the curve 
of ROC as the targeted scale with a scale parameter of 116.0, where LV has a sudden increase in Figure 7a. In general, 
the LV at this point is high to guarantee the segmentation quality, and the average size of segmentation results is also 
suitable to aggregate multi-hierarchies shown in Figure 3.

In the BOW model, the solution to identifying the word numbers of non-discrete features is to discretize these 
features by clustering them into multiple clusters (Tu et al., 2020; Zhang, Li, et al., 2019). Figure 7b visualizes the DBI 
values of three physical words with various clustering numbers, including the spectral (wspe), texture (wtex), and local (wloc) 
words. The lowest value of DBI means the best clustering quality, whose clustering number can be regarded as the word 
number. For the spectral and texture features, their overall trends of DBIs increase along the x-axis, which achieve the 
lowest DBIs when the clustering numbers are 11 and 10, respectively. For the local feature, its overall trend presents a 
decreasing shift along with the clustering number, and we can identify its lowest DBI value when the clustering number 
is 37. The obtained clusters of these three features are the three kinds of sub-words under  the physical word.

6 | CONCLUSION

To fully understand the relationship between urban context and traffic flow, this study proposed a novel geo-semantic 
framework to analyze multi-hierarchical urban context and traffic flow at the street level. In each street, we provided 
multi-hierarchical urban context signatures specified by land use distribution from a spatial perspective and the 

F I G U R E  7   The selection of the scale parameter and physical word numbers. (a) Local variance (LV) and its rate 
of change (ROC) with different scale parameters for satellite image segmentation. (b) DBI values of the physical 
words along with various clustering numbers for the spectral, texture, and local words.
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ZHANG and RAUBAL 3345

traffic flow signature specified by mobility patterns from a temporal perspective. Furthermore, we found that urban 
context and traffic flow present a close relationship in terms of correlation and predictability after semantic matching.

The contribution of this study is threefold. First, we devised a novel framework to associate urban context with 
traffic flow by projecting the cross-modal semantic representations into their common spaces. This framework can be 
further extended to related research to explore the relationship across multiple modalities. Second, we demonstrated 
the use of a multi-hierarchical structure in comprehensively depicting street-level contextual information, which can 
provide personalized contextual representations depending on the targeted research. Also, the geographic word 
enables the generated semantic representations to better connect the social and natural aspects of urban context. 
Third, the proposed framework can provide support for other urban studies, such as utilizing semantic representa-
tions of urban context and traffic flow in POI recommendation and next place prediction.

However, this study fails to integrate dynamic contextual information into urban context sensing from the 
temporal dimension, which is crucial to improve the ability to predict traffic flow. In the future, this research will be 
expanded to incorporate temporal information from urban environments into urban context sensing, which can help 
urban planners make more evidence-based transportation planning strategies.
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