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ABSTRACT 
Fast urbanization brings great challenges to sustainable develop-
ment goals, such as excessive exploitation and population explo-
sion. Classical cellular automata (CA) have been widely used to 
independently simulate the change of spatial features, i.e. land 
use, population, economic production, etc. However, most CA 
models rely on historical data as static driving factors to simulate 
future scenarios while ignoring the inter-wined influences among 
multiple features in the development process. To address this 
issue, this study proposes a spatial cooperative simulation (SCS) 
approach to simulate the land use, population, and economy 
changes. The SCS approach starts with a separate CA model to 
obtain the initial scenes of each feature. Then, the simulation 
results of each other two features are used as dynamically 
updated driving factors, rather than the static historical data, to 
capture the inter-wined influence of multiple features during the 
development process. This step is iteratively performed until the 
changes of each feature converge and the final simulation results 
will be reported. The simulation experiment in Greater Bay Area 
demonstrates that the SCS approach can well capture the simul-
taneous development process and outperforms baseline 
approaches. The SCS approach is capable of forecasting future 
development scenarios and facilitates spatial planning and infra-
structure synergies.
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1. Introduction

Cities are places gathering people and resources to provide well-living services, job 
opportunities, and scientific innovations (United Nations 2018). With worldwide 
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urbanization, cities grow, connect with each other, and gradually merge into one 
mega-city region. In the past forty years, many mega-city regions have appeared, such 
as the greater London (Rydin et al. 2004), the greater Tokyo area (Du et al. 2018), and 
the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) (Yeh and Chen 2020, Xu 
et al. 2021). These polarized urbanization processes have brought many challenges to 
land, population, economy, and ecology, such as limited developing land, insufficient 
housing, and environmental pollution (Shafizadeh-Moghadam et al. 2017, Liang and 
Yang 2019, Chen et al. 2022, Li et al. 2022). The GBA, including Hong Kong, Macao, 
Shenzhen, Guangzhou, and other seven cities in the Pearl River Delta, is cooperating 
to achieve high-quality sustainable development (Zhou et al. 2018, Shao et al. 2020, 
Weng et al. 2020). Policy analysis for regional coordinated development decisions 
highlights the consideration of many different inter-related features, including popula-
tion, land use, transport, economy, and environment (White et al. 2015, Harvey et al. 
2019, Usman et al. 2022, Zhang and Xia 2022). Spatial simulation considering the inter-
twined influences of multiple features is essential to understanding future develop-
ment scenarios and supporting spatial policy-making (Arsanjani et al. 2013, Liu et al. 
2017, Mustafa et al. 2018, Schwaab et al. 2018).

Spatial simulation has been widely used to forecast the varying geoprocessing by 
considering the interaction among transport, land use, natural resources, and human 
activities. Typical models include cellular automata (CA) (Benenson and Torrens 2004, 
Li et al. 2020, Jalayer et al. 2022), multi-agent system (MAS) (Ghavami et al. 2022, Lu 
et al. 2022), hybrid models (Bijandi et al. 2019, Jiang et al. 2022), etc. Especially, CA is 
a common cellular model to simulate spatial change by estimating the cell state, 
according to its initial state, neighborhood effects, and transition rules (Liu et al. 2017, 
Alaei Moghadam et al. 2018). Because of the ability to generate rich patterns and cap-
ture the spatially dynamic processes, CA-based simulation has been widely used to 
simulate spatial processes of land use and land cover (Shahfahad et al. 2022, Wang 
et al. 2022), urban growth (Alaei Moghadam et al. 2018), population dynamics (Sun 
et al. 2020, Crols et al. 2017), economic development (Yu et al. 2019, Liang et al. 2020), 
etc. As the most intuitive manifestation of urbanization, the simulation of urban 
growth and land use/land cover (LULC) has attracted much attention. For example, Du 
et al. (2018) combined the CA and tree-based machine learning methods to simulate 
multiple land use changes in the Greater Tokyo Area. Rahnama (2021) simulated land 
use change in Mashhad, Iran based on the CA Markov chain model to reveal the his-
torical and future spatial-temporal conversion patterns of land use from 2016 to 2030. 
Geng et al. (2022) proposed the hybrid spatiotemporal convolution-based CA model 
named ST-CA, which used 3D-CNN to assimilate the latent information in spatiotempo-
ral neighborhoods for accurate LULC simulation. These studies provide theoretical and 
practical insights for cooperative simulation of land use, population, and economy in 
megacity regions.

In terms of the simulation of population and economy, there are two main catego-
ries of studies generally. The first category of studies mainly models spatial change of 
population or economy from the top to the down. These studies simulate future 
population or economy volume with numerical computation methods or take the 
inner structure of population and economy into the projection (Harvey et al. 2019, 
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Liang et al. 2020, Guzman et al. 2022). The spatial changes in population or economy 
volume are simulated, and the citywide population and economy are projected into 
grids with spatialization methods (Li et al. 2019, Georganos et al. 2021). These studies 
verified that economy and population are strongly related to natural characteristics 
(e.g. topographic, land surface temperature, etc.) and built environment (e.g. land 
cover, road network, etc.). However, these studies ignore the spatial diffusion and co- 
evolution characteristics in spatial neighbourhoods during the population growth pro-
cess, thus reducing the simulation accuracy. To tackle this issue, the second category 
of studies mainly uses CA to simulate the population or economy from the bottom to 
the up. For example, Yu et al. (2019) presented a CA-Markov simulation model to esti-
mate the green gross domestic production (GDP) by considering the influence of the 
ecological value, economic suitability, land use, and neighbourhood effect. Sun et al. 
(2020) presented a logistic probabilistic CA model to simulate regular pattern forma-
tion of population dynamics. While Guzman et al. (2022) estimate population density 
with simulated land use patterns from a CA-based model. These studies demonstrate 
that CA models can effectively simulate the complex change in population or 
economy.

The above advanced studies demonstrate the CA’s capability to simulate different 
spatially varying features. They typically use historical economic, social, and trans-
portation data as static driving factors to simulate future development scenarios 
while ignoring the dynamic synergistic influence among multiple features in the 
development process. However, land use, population, and economy concurrently 
evolve and intertwine with each other (National Research Council 2005). For 
example, because of the new economic development zone or high-speed railways, 
urban built-up areas will expand to forests or farming land. It will attract more peo-
ple to migrate into cities and stimulate to build more public and infrastructure 
facilities, such as residential buildings, schools, and hospitals. Consequently, it also 
increases economic production and leads the encroachment on agricultural land 
(Lei et al. 2021). On the other hand, population boom and economic growth will 
further require more factories, roads, and schools; thus, more land will be defor-
ested (Zhang et al. 2020). Whereas, the slumping economy will decrease the popula-
tion and consequently reforest some built-up parcels for a sustainable environment. 
These concurrent spatial processes suggest that the regional coordinated develop-
ment of land, population, and economy should be considered. Therefore, it high-
lights the necessity of cooperative simulation of multiple features, which will 
comprehensively portray future development patterns and benefit regional spatial 
policy-making.

To fill this gap, we propose a spatial cooperative simulation (SCS) approach to 
simulate concurrent land use-population-economy changes in the megacity region. 
The main idea is inspired by the co-evolution of land, population, and economic pro-
duction. The basic CA is used to forecast the spatial process of land use, population, 
and economic production, respectively. Then, the simulation results of each other two 
features will be used as dynamically updating driving factors, rather than the historical 
data, to repeatedly train the simulation model. In this way, the inter-wined influence 
of multiple features during the development process is captured. The training process 
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will be repeated until the overall simulation error is converged. The main contributions 
of this approach are summarized as follows:

1. The SCS approach is proposed to model the concurrent dynamics of land use, 
population, and economic production.

2. A step-wise cooperative simulation framework is designed to portray the coopera-
tive interaction of multiple features by iteratively updating the driving factors.

3. An experiment on the GBA, China, demonstrates that the proposed SCS approach 
outperforms popular baseline methods.

The remaining parts of this article are organized as follows. Section 2 defines the 
spatial cooperative simulation problem. Section 3 presents the details of the proposed 
SCS approach. Section 4 reports the experiment setting and the result analysis. 
Section 5 discusses the implications of this study and the vision for future work. 
Finally, this study is concluded in Section 6.

2. Problem statement

The spatial cooperative simulation problem can be expressed as the synchronous 
simulation of multiple spatial features by considering the cooperative influence among 
them. It can be defined as follows:

Given a set of spatial units S ¼ ½U1, U2, . . . , Un� seamlessly covering the study area, 
each spatial unit with multiple features, i.e. land use, population, economic production, 
etc., simulates the spatial change of multiple features such that the differences 
between the simulated and observed results are minimized.

Taking the simulation of land use-population-economy changes as an example, 
each kind of simulation error at time t can be described as Et

LU, Et
POP, Et

ECO, and the 
aim is to minimize the overall simulation error, as Equation (1):

OSE ¼ wl�Et
LU þ wp�Et

POP þ we�Et
ECO (1) 

where OSE represents the overall simulation error, wl , wp, and we represent the corre-
sponding weights, and the sum of these three weights is set to 1.

3. Methodology

Following the cyclical interaction among land, population, and economic production, 
the proposed SCS approach step-wisely simulates the change of land, population, and 
economic production. It extends the basic urban CA to forecast the co-evolving pro-
cess of multiple spatial features. It generally includes two parts: initial simulation and 
step-wise cooperative simulation. In the initial simulation part, a normal CA-based fea-
ture simulation (CAFS) is used to coarsely simulate the spatial process of land, popula-
tion, and economic production, respectively. In the step-wise cooperative simulation 
part, the interactions of multiple features are considered to refine the simulation by 
iteratively updating interacted features as dynamic driving factors. The overall work-
flow is illustrated in Figure 1.
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3.1. Cellular automaton-based feature simulation

CA has been widely used to simulate the change of urban phenomenon, such as land 
use, population, or economic production, by considering the effect of physical envir-
onment, transport network, location, socio-economic, and neighborhood effects. 
Hence, this study takes them as common driving factors for CAFS. Following the 
patch-generating land use simulation (PLUS) model (Liang et al. 2021), the basic CAFS 
model computing is sequentially divided into four parts: development probability, 
neighborhood effects, adaptive parameter, and overall probability.

The development probability estimates the future feature by considering the impact 
of spatial variables, such as physical environment, transport network, and socio-eco-
nomic. Because of the good performance of random forest (RF) (Du et al. 2018), CAFS 

Figure 1. The flowchart of spatial cooperative simulation.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 5



utilizes the RF for mining the relationship between the development probabilities of 
features (e.g. land-use patterns, population density, economic production density, etc.) 
and multiple associated factors. Data from two time periods are used for modeling 
the impact of spatial variables on feature changes. During the training process, a por-
tion of the areas whose feature state changes at the premier time t-1 and the current 
time t are selected as training samples. The spatial variables of the selected area are 
used as the input vector and the corresponding feature state at time t is used as the 
label. RF is used to accurately mine the feature conversion rules and output develop-
ment probabilities Pgd

u, k , as follows Equation (2):

Pgd
u, k xð Þ ¼

PM
m¼1I hm xð Þ ¼ dð Þ

M
(2) 

where Pgd
u, k is the development probability of cell u shifting to feature type k; d can 

be taken as 0 or 1, 1 means other feature types can be transformed to feature type k, 
0 means no transformation; x is a vector consisting of multiple driver forces, i.e. the 
distance to railways, distance to rivers, distance to first and second grade roads, dis-
tance to second grade roads, distance to major cities in the Greater Bay Area, the 
slope degree. Ið�Þ is the indicative function of the decision trees in RF; hm xð Þ is the 
prediction type of the m-th decision tree for vector x; M is the total count of decision 
trees.

Neighborhood impose great effects on the cell conversion. Neighborhood inter-
action rules play a key role in the calculation of cellular conversion probabilities. The 
neighborhood effect function is given as follows:

Xr
u, k ¼

P
l�l I cr−1

u ¼ k
� �

l � l − 1
� wk (3) 

where Xr
u, k is the neighborhood effect of cell u subject to feature type k at the r-th 

iteration;
P

l�l I cr−1
u ¼ k

� �
denotes the total number of grid cells occupied by feature 

type k at the last iteration r − 1th within the l � l grids; wk denotes the weights 
between different feature types, where different types have different neighborhood 
effects.

The adaptive parameter Ar
k depends on the difference in the number of cells 

between current development and future demand Fk as follows:

Ar
k ¼

Ar−1
k , if Fr−1

k

�
�

�
� � jFr−2

k j

Ar−1
k �

Fr−2
k

Fr−1
k

, if 0 > Fr−2
k > Fr−1

k

Ar−1
k �

Fr−1
k

Fr−2
k

, if 0 < Fr−2
k < Fr−1

k

8
>>>>><

>>>>>:

(4) 

where Fr−1
k and Fr−2

k are the differences between the current amount and future 
demand for feature type k at the r − 1th and r − 2th iteration.

The final overall probability of CAFS model can be estimated as follows:

Pd, r
u, k ¼

Pgd
u, k � u� lkð Þ � Ar

k, if Xr
u, k ¼ 0 and u < Pgd

u, k

Pgd
u, k � Xr

u, k � Ar
k , all others

(

(5) 
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where Pd, r
u, k is the of cell u developing into feature type k at the r-th iteration, and u is 

a random value from 0 to 1, lk determined by model users is the threshold value to 
generate the new patches for feature type k: Finally, according to the overall probabil-
ities of all the feature types, a roulette wheel is used to select the feature state in the 
next iteration.

3.2. Initial simulation with CAFS

The spatial distribution of land use, population, and economic production at premier time 
t-1 and the current time t are used as inputs to get the initial conversion rules with the 
previously introduced CAFS model, respectively. To keep a uniform and clear CA frame-
work for following complex simulations, the population and economic production data are 
first transformed into categorical variables. As both the population and economic produc-
tion data show positive skewness distribution, the natural breaks method was used to 
ensure the largest inter-group spacing and the smallest intra-group spacing (Jenks 1967). 
The values of population and economic production are divided into several groups, and 
the mean values in each group were chosen as the representative values for the following 
calculation. Worth noting that the transformation method and the group number are cru-
cial. In terms of the transformation method, the equal interval classification and the quan-
tile interval classification are considered. Because of the long tails of population and 
economic production, the equal interval method is unable to well portray clustering trends. 
The quantile interval method fails to capture the variations in some areas with extremely 
large populations and economic production (e.g. the area in urban center), resulting in the 
underestimated simulation. In terms of group numbers, a small value will not help distin-
guish the differences between groups. A large value will make some groups with few sam-
ples thus difficult to learn the conversion rules appropriately. After examining the 
distribution of population and economic production data, we set the group number to 30 
with the help of the Cali�nski-Harabasz analysis (Calinski and Harabasz 1974).

The changes in land use, population, and economic production are affected by the nat-
ural environment, transport, and locations (Lippe et al. 2022, Wang et al. 2022). Hence, 
three categories of factors are considered, including natural resources (rivers, forests, 
slopes, etc.), transport elements (roads, railways, airports, etc.), and the location factor (city 
centers, etc.). With the support of the feature important test with RF and the grid search 
strategy, the distance to the rivers, the slope, and the elevation, the distance to railways, 
the distance to first and second-grade roads, the distance to the centers of major cities in 
the GBA (Guangzhou, Shenzhen, and Hongkong), are selected as common driving factors.

Using the categorical features and those driving factors, the initial simulation is con-
ducted. Three CAFSs, including the LU CAFS, the POP CAFS, and the ECO CAFS are 
implemented separately, and the initial simulation results at current time t, IS-LUt, IS- 
POPt, and IS-ECOt are obtained.

3.3. Step-wise cooperative simulation

Regional land use, population, and economic production development are inter-wined 
and demonstrated with significant cooperative development characteristics. Here, we 
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develop a step-wise dynamic driving factor updating strategy that follows the cyclical 
interaction among land, population, and economic production. The core idea is to 
train the CAFS models repeatedly using the simulated features, rather than the histor-
ical data, to capture the cooperative influence of features. The details of the step-wise 
cooperative simulation are described as follows. Firstly, the initial simulation results are 
used as part of the driving factors to learn the conversion rules between the initial 
simulated results and the observed results and output the cooperative simulation 
result in step 1. Then, the cooperative simulation results are used as the dynamically 
updating driving factors to re-train the corresponding CAFS model, thus improving 
the simulation performance of the remained two simulation features. This step will be 
iteratively performed until the changes of each feature are converged.

Taking land use as an example, Figure 2 illustrates the step-wise cooperative simu-
lation process. The initial simulated population (labelled as IS-POPt) and economic pro-
duction (labelled as IS-ECOt) are first used as driving factors to learn the conversion 
rules from the initial simulated land use (labelled as IS-LUt) and the observed land use 
(labelled as LUt) at time t. Then, output the result of cooperative simulation land use 
in step 1 (labelled as SC1-LUt). Similarly, the cooperative simulated results of the popu-
lation (labelled as SC1-POPt) and economic production (labelled as SC1-ECOt) in step 1 
are obtained. They are used as part of the driving factors to generate the cooperative 
land use simulation result in step 2 (labelled as SC2-LUt). The same cycle will be itera-
tively performed until the changes of each feature tend to converge. The final step of 
the land use simulation result (labelled as SCn-LUt) is reported as part of the SCS 
results. A complete technical flowchart of the step-wise cooperative simulation is 
shown in Figure A2 in the Appendix file. When performing future scenario forecasting, 
the land use, population, and economic production scenes and the common driving 
factors at current time t will be organized into the same format and transmitted 
sequentially to the series of trained CAFS models, and the final output SCn-LUtþ1, SCn- 
POPtþ1, and SCn-ECOtþ1, will be treated as the forecasted scenario.

Note that the number of simulation steps significantly affects the performance. As 
the problem statement section suggests, the aim is to minimize the overall error OSE 
(which was defined in Equation 1). In this study, the weights wl, wp, and we were set 
equally which was widely used in the multi-criteria studies (Tran et al. 2020). The land 
use simulation error Et

LU was set to the difference between one and the overall 

Figure 2. Illustration of step-wise cooperative simulation in land use.
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accuracy (OA). As the sub-district is usually the basic spatial unit that holds the local 
authority for urban governance, the mean absolute percentage error (MAPE) at the 
administrative sub-district level is set as the population simulation error Et

POP and the 
economic production simulation error Et

ECO: When the OSE does not decrease for k 
steps, the SCS model is converged. The result with the lowest OSE is output as the 
final result. The k value affects the final result. A larger k value can improve the confi-
dence of model convergence, but it will cost more computational effort.

3.4. Performance evaluation

As both the categorical variable (land use) and the continuous variables (population 
and economic production) are simulated in the SCS approach, four kinds of metrics 
are used to evaluate the performance. In particular, the OA and the (FOM) coefficient 
are used to measure the inter-rater reliability for land use simulation, which are 
defined as follows:

OA ¼ 1 −
Aþ C þ D

N
(6) 

FOM ¼
B

Aþ Bþ C þ D
(7) 

where N indicates the number of cells in the GBA, China. A denotes the area of error 
due to the observed changes being simulated as unchanged, B denotes the area of 
observed changes being simulated as changing into a right category, C denotes the 
area of error due to the observed changes being simulated as changing into a wrong 
category, D denotes the area of error due to the unchanged being simulated as 
changes.

The simulation of population and economic production were evaluated using the 
metrics of MAPE and root mean square error (RMSE). The metrics can be defined as 
follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i¼1ðvi, t − v0i, tÞ

2

M

s

(8) 

MAPE ¼

PM
i¼1
jvi, t−v0i, t j

.

vt

M
�100% (9) 

where M indicates the number of spatial units in the GBA, vi, t denotes the density of 
the observed feature value in sub-district i at time t, and v0i, t denotes the density of 
the simulated value of the feature in sub-district i at time t: Worth noting that the 
performance evaluation on population and economic production were evaluated with 
the raw values to ensure comprehensibility.

4. Experiment and result analysis

4.1. Study area and datasets

The GBA, which includes nine cities in Guangdong Province, and two special adminis-
trative regions (Hong Kong and Macao), was selected to investigate the performance 
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of the presented SCS approach. The GBA is one of the regions with the highest degree 
of openness and economic vitality in China, which holds an important strategic role in 
national development, as Figure 3 shows. The area of the GBA was �56,000 km2, with 
a population of 86.17 million, and a GDP of 11.59 trillion CNY in 2020 (Xu et al. 2021). 
According to the national GBA development plan, it will be built as the international 
financial, transportation, innovation, and trade centers.

The publicly accessible land use, population, and economic production were retrieved 
for the experiment. The land use data were derived through the GlobeLand30 project in 
the years 2010 and 2020 (Chen et al. 2014). Manual corrections were conducted with 
the aid of concurrent high-resolution remote sensing images. The classification evalu-
ation was carried out by an independent group with an overall accuracy of 85.72%. The 
population data were derived through the open GPWv4 project (CIESIN 2018). It consists 
of human population density based on counts consistent with national censuses and 
population registers. Population counts are assigned to 1� 1 km grid cells with the allo-
cation gridding algorithm. In terms of economic production, we took the GDP as the 
indicator. The GDP data with a spatial resolution of 1� 1 km was derived through the 
Resource and Environment Science Data Centre of China (Xu 2017). All these three fea-
tures were calculated. The overall distributions of land use, population, and GDP in the 
year 2020 are shown in Figure 4.

The natural environment, transportation, and location are considered as the common 
driving factors of the SCS approach. The railways, rivers, first and second-grade roads, 
and major cities in the Greater Bay Area (Guangzhou, Shenzhen, and Hongkong), were 
obtained by using the AMAP API (https://lbs.amap.com/). The digital elevation model 
(DEM) was downloaded from the ASTER GDEM project (https://www.jspacesystems.or.jp/ 
ersdac/GDEM/E/). Using these data, driving factors in Section 3.2 were calculated. All 
these spatial variables were reclassified with a spatial resolution of 1� 1 km. The distri-
butions of driving factors are shown in Figure A1 in the Appendix file.

Figure 3. The map of the Greater Bay Area.
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4.2. Results of the spatial cooperative simulation approach

To verify the performance of the presented SCS approach, the simulation errors of 
land, population, and GDP were calculated. The OSE was summed. The corresponding 
errors are shown in Figure 5. It suggests that the simulation errors of all four indices 
decrease at the beginning, and converge after the 3rd, 4th, 6th, and 6th steps, 
respectively. It demonstrates the effectiveness of the proposed step-wise dynamic driv-
ing factor updating strategy as these indices fast converge to a lower value. Worth 
noting that the simulation of land use reaches convergence at the early step. We 
speculate that it is because the number of categories in land use is smaller (four cate-
gories vs. 30 categories), making it easier for the LU CAFS model to learn the conver-
sion rules. More categories of population and economy increase the complexity of the 
CAFS model therefore it is not easy to learn the conversion rules. As the simulation 
results have initially converged in the first part, the final results demonstrate that the 
step-wise cooperative simulation can still reach a good and reliable performance.

The OA and the FOM of the SCS approach in land use simulation are 90.71% and 
0.267, respectively. The MAPE of the population and the GDP are 15.56 and 18.56%, 

Figure 4. The spatial distribution of (a) land use, (b) population (thousand people per km2), and 
(c) GDP (billion CNY per km2) for the GBA 2020.

Figure 5. Influences of the number of steps on simulation error.
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respectively. The repeatability test is conducted to test the reliability of the simulation 
performance. The SCS approach was run five times repeatedly with the same dataset 
and hyperparameter settings. The OA of land use ranges from 90.39 to 90.79%, the 
MAPE for population ranges from 15.56 to 16.51%, and the MAPE for GDP ranges 
from 18.56 to 23.84%. The uncertainty was quite acceptable. A detailed simulation 
result is shown in Table A1 in the Appendix file.

The spatial comparison analysis was conducted to examine the spatial trends of the 
simulation results. The simulation results of land use, population, and GDP for the GBA 
in 2020 are shown in Figure 6, respectively. Compared to the actual land use, popula-
tion, and GDP in 2020 in Figure 4, it suggests that the simulated spatial patterns are 
well correlated with the actual pattern at the whole GBA scale. Most urban built-up 
areas and populations are distributed in the area along the Pearl River, such as 
Guangzhou-Foshan, Shenzhen-Hong Kong, and Zhuhai. Regarding the economy, 
Guangzhou, Shenzhen, and Hong Kong are with high GDP. Moreover, a typical high- 
density sub-district, Shatian in Hong Kong, and a low-density sub-district, Kaiping in 
Jiangmen, are selected to show more details of the simulated results. The enlarged 
views of these two areas also showed high spatial consistencies with actual and simu-
lated patterns of land use, population, and GDP. It further demonstrates the versatility 
of the proposed SCS approach in mega-city regions with different development levels.

4.3. Comparison with baseline approaches

To further evaluate the simulation performance of the proposed SCS approach, three 
popular approaches were selected as baselines:

� Artificial neural network-CA (ANN-CA): This approach applies an artificial neural 
network to learn the transition rules and simulate the evolution of feature changes 
based on the integration of neural networks and CA (Li and Yeh 2002).

� Random forest-CA (RF-CA): This approach combines random forest and CA for 
feature simulation. (Kamusoko and Gamba 2015).

� Patch-generating simulation model (PLUS): This approach adopts a land expan-
sion analysis strategy and CA with multi-type random patch seeds to portray the 
drivers of feature changes (Liang et al. 2021).

For all baseline methods, the data used and the static parameters were consistent 
with the SCS approach to ensure comparability. Specific parameters of baseline meth-
ods were set with a grid search algorithm. The detailed parameters were reported in 
Table A2 in the Appendix file.

The results of all methods are shown in Table 1. The OA and the FOM of the SCS 
approach in land use simulation are 90.71% and 0.267, respectively, which outperform 
three baseline methods with the best OA of 90.01% (PLUS) and 0.200 (PLUS). The 
MAPE and RMSE of the SCS in population and GDP simulation are also the lowest. 
PLUS reported good population and GDP simulation results with the MAPE 21.08 and 
26.12%, respectively. RF-CA and ANN-CA reported similar simulation results of the 
population and the GDP with the MAPE around 29 and 44%, respectively. These 
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results thus demonstrate the superiority of the presented SCS approach. We acknow-
ledge that the performance of the GDP simulation doesn’t look good enough. 
Considering that the GBA China is a large region with significant development hetero-
geneity and the inherent uncertainties arising from the spatialization process of the 

Figure 6. The simulation results of land use, population (thousand people per km2), and GDP (bil-
lion CNY per km2) in the GBA, 1 Shatian, and 2 Kaiping in 2020.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 13



population and GDP, the simulation performance of land use, population, and GDP in 
the GBA was quite acceptable. Moreover, since the metrics of OA and MAPE are more 
intuitive and easier to understand, they are used as the main evaluation metrics for 
the following analysis.

A Wilcoxon signed rank test was conducted to verify whether the simulation results of 
the proposed approach were significantly different from the baseline methods (Wilcoxon 
1945). The simulation errors were aggregated into the sub-district scale with the evalu-
ation metric of OA and MAPE, respectively. The hypothesis testing result is shown in 
Table 2. Compared to the expected values of the null hypothesis, all compared pairs 
achieved larger statistics values and showed relatively small p-values (p< 0.05). They indi-
cated that the simulation performance of our proposed SCS approach for land use, popu-
lation, and GDP were all significantly better than baseline approaches.

To further examine the superiority of the proposed SCS approach, the simulation 
performance was analyzed from the perspectives of the land use type and the density 
of the cities. In terms of the land use simulation, the errors of different land use types 
have different meanings. As the water area was regarded as a limiting factor that 
wasn’t allowed to be converted, the simulation errors of the other three types of land 
use in each approach were calculated. The comparison results are shown in Figure 7. 
We observed that all simulation approaches showed better simulation performance on 
forest and grassland than on urban land and crops. It could be expected that the for-
est and grassland were less likely to change and the conversion rules were relatively 
simple. The SCS approach performed well for each land use type. Worth noting that 
the simulation performance of our approach on urban land, the most important type 
in land use simulations, was significantly better than baseline methods.

In terms of the simulations of population and GDP, population density, as an impor-
tant factor in economic and urban planning studies, affects the simulation 

Table 1. Comparison of simulation performance with baseline methods (population in thousand 
people per km2, GDP in billion CNY per km2).
Feature Approaches OA (%) FOM MAPE (%) RMSE

Land Use SCS 90.71 0.267 – –
PLUS 90.01 0.200 – –
RF-CA 85.95 0.158 – –
ANN-CA 86.00 0.155 – –

Population SCS – – 15.56 2.205
PLUS – – 21.08 4.222
RF-CA – – 28.26 4.311
ANN-CA – – 29.15 4.485

GDP SCS – – 18.56 0.980
PLUS – – 26.12 1.222
RF-CA – – 45.94 1.716
ANN-CA – – 43.89 1.715

Table 2. The Wilcoxon signed rank test results for the simulation performance comparison.

Compared pairs

Land use Population GDP

Statistics p-Values Statistics p-Values Statistics p-Values

SCS and PLUS 90 p< 0.001 662 0.0018 743 0.0134
SCS and RF-CA 170 p< 0.001 429 p< 0.001 91 p< 0.001
SCS and ANN-CA 99 p< 0.001 422 p< 0.001 91 p< 0.001
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performance (Hui 2001). Referring to the cumulative distribution values of 40 and 80% 
of the population density, we classified the sub-districts into three groups (the high, 
the medium, and the low group) with the density thresholds of about 2500 people 
and 12,500 people per km2, respectively. The comparison results are shown in Figure 
8. It is noted that the MAPE of our proposed SCS approach varied from 13.78 to 
18.12% in population simulation and from 17.06 to 18.57% in GDP simulation in three 
groups. Compared with baseline methods, it still achieved the lowest simulation error.

4.4. Future land use-population-economics scenario in the GBA

The future scenario of land use, population, and GDP in the GBA in 2030 was fore-
casted using the SCS approach. In this study, the natural development scenario (which 
is based on the past and current development in the GBA) was set to project future 
land use, population, and economic production. Current trends for land use, 

Figure 7. Simulation performance on different land use types.

Figure 8. Influence of urban density on (a) population simulation and (b) GDP simulation.
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population, and economics and the influence of natural environment, transport, and 
location factors are assumed to remain consistent.

The forecasting results are shown in Figure 9. In terms of land use, we find that 
urban land expansion is mainly located in places around the metropolitan areas. The 
cities of Guangzhou, Shenzhen, Dongguan, and Zhongshan will form large contiguous 
areas of urban land. Most of the forest and grasslands are distributed in cities, such as 
Zhaoqing, Jiangmen, and Huizhou, which is consistent with the actual pattern in 2020. 
This result agrees with that of Jiao et al. (2019). As for the population and GDP, the 
cities of Shenzhen and Guangzhou still are the leaders in both the total amount and 
the growth rate. The city of Zhuhai has a low GDP growth rate despite a significant 
population growth rate. Zhuhai will attract more people to live but the economic 
growth is still limited by its industrial infrastructures. This suggests that the develop-
ment pattern envisioned in the GBA development plan, with Zhuhai as the fourth-larg-
est regional growth center, has not yet taken shape. Moreover, the surrounding cities, 
such as Zhaoqing are still developing at a slower pace. It reflects that, in the current 
development situation, the role of core GBA cities to drive neighboring cities still 
needs to be further strengthened.

5. Discussion

5.1. Empirical basis for cooperative simulation in regional development

Regional coordinated development is the result of the cooperation of natural, social, 
and economic resources (Wilson 1981, Alberti 2008, Zhao et al. 2022). The mutual 
influence and co-evolution phenomena of spatial features, such as land use, popula-
tion, and economy in the regional development process provide an empirical basis for 
our proposed spatial cooperative simulation approach. Take land use change as an 
example, the growth of urbanization drives population and industry to a few cities. In 
the early stages of regional development, the combined effect of population and 
economy produced the rapid expansion of urban built-up areas. Consequently, it fur-
ther accelerated the population and economic growth in the long term. With the fur-
ther development of the region, the expansion of built-up area has squeezed the 
space of agricultural and ecological land, intensifying the contradiction between 

Figure 9. The forecasting results of (a) land use, (b) population (thousand person per km2), and (c) 
GDP (billion CNY per km2) in the GBA in 2030.
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urban, water, forest, and grass. The distribution of high-quality arable land typically 
overlaps highly with urban built-up areas, which pressure on arable land protection. 
Nevertheless, the limited built-up area controlled urban sprawl and affected the 
growth rate of the urban population and economy to some extent. This study demon-
strates the urban built-up area of Shenzhen is nearing the ceiling, which has driven 
up land prices. It has led to the migration of manufacturing industries to the north of 
Shenzhen, such as Huizhou and Dongguan. Local industries are transforming into 
high-value-added industries, such as Internet and financial companies. This has caused 
an out-migration of workers and affected the economic growth in the short term. 
While cities with population and industrial outflows show the opposite situation. The 
loss of population and economy has caused a significant gap between the urban 
built-up expansion rate in these cities and the core GBA cities. Its reserved surplus of 
urban built-up area can provide good conditions for industrial transfer from the core 
city. The Shenzhen-Shantou Cooperation Zone also provides a new paradigm for such 
cross-city cooperation and congenerous development. These phenomena pointed to 
the existence of the cooperative influence among land use-population-economy devel-
opment, thus helping to demonstrate the rationality of our proposed SCS approach.

5.2. Insight of the step-wise simulation

This study designed a step-wise SCS framework to simulate the regional coordinated 
development of land, population, and economy. It generally has two implications. 
First, the step-wise SCS framework dynamically uses the predicted future feature as 
part of the driving factors. It is quite different from existing urban CAs that only use 
static and historical data to calculate driving factors. Taking land use as an example, 
when simulating the land use change in 2020, most methods used the 2010 popula-
tion data and economic data as driving factors (e.g. Liu et al. 2017). The latent ques-
tion is whether land use changes in 2020 are determined by the properties 
surrounding this patch in 2010. However, in the real-world development process of 
the city, for example, by 2015, the population and economic data have changed. If we 
can simulate the population and economic data in 2015 first, and then simulate the 
land use in 2020 with the simulated results, it will effectively improve the performance 
of the simulation approach. This is also the core idea of our proposed approach. From 
this perspective, the SCS approach can capture not only the natural trend of a whole 
time period, but also the interaction among land use, population, and economy in a 
long time period. Second, the step-wise SCS approach draws on a similar idea of the 
gradient descent decision tree (Friedman 2001). Since the CAFS model builds conver-
sion rules by focusing only on cells with different categories, in the step-wise frame-
work, the cells that are simulated correctly will no longer participate in the next step 
of conversion rule extraction. That is, in the next step, the SCS model pays more atten-
tion to the wrong simulation results by incorporating better results of land use, popu-
lation, and economy. This reduces the complexity of the following simulation to a 
certain extent, thereby helping to improve the final simulation. The good performance 
of the step-wise SCS approach was verified by comparing it with three baseline meth-
ods including RF-CA, ANN-CA, and PLUS. We also compare our simulated 2020 
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population and economy results with two commonly used population datasets, 
GPWv4 (CIESIN 2018) and WorldPop (Tatem 2017), and two economy datasets, a data-
set published by Resource and Environment Science and Data Center, China (Xu 2017) 
and a dataset published in the journal of Scientific data (Chen et al. 2022). The MAPEs 
of these two population datasets are 25.68 and 26.43%, respectively. While the MAPEs 
of these two economy datasets are 33.03 and 57.29%. All are worse than our proposed 
SCS approach (15.56% for the population and 18.56% for the economy). These results 
also demonstrated the superiority of the proposed SCS approach. Furthermore, the 
proposed step-wise framework is extensible. The simulated features can be replaced 
by other phenomena, such as carbon footprints and energy consumption.

5.3. Limitations and future work

There are several limitations to be further explored. First, in the current SCS approach, 
the continuous variables (population and GDP) were discretized firstly for the input 
requirement of the used feature simulation model. It allows a uniform CA base for the 
SCS approach but also limits the upper boundary of the simulation performance. 
Simulation models for continuous variables, such as Grayscale CA and machine learn-
ing-based models, may help solve this issue in future work. Second, limited by the 
obtained data, the used driving factors are mainly derived from basic geographic data. 
More driving factors (e.g. local climate, detailed economic factors, etc.) and important 
policies should be considered to further improve the performance. Third, the spatial 
scale of CA also affects the simulation performance. When increasing the size of the 
cell from 1 to 2 km, the FOM of the SCS approach on land use decreases to 0.181, and 
the MAPE on population and GDP simulation increases to 21.19 and 26.34%, respect-
ively. A reasonable spatial scale selection scheme will be developed for the spatial 
cooperative simulation approach. Finally, since the aim of this study is to provide a 
novel cooperative simulation approach, only the natural development scenario, was 
implemented to forecast the future development patterns of the GBA. Move develop-
ment scenarios, such as fast development scenarios, energy conservation and emission 
reduction scenarios, and ecological conservation scenarios, should be implemented to 
forecast the regional dynamics of GBA to provide technical support for policy 
decisions.

6. Conclusion

Classical CAs have been widely used to independently simulate the change in land 
use or population, which fosters spatial planning and policy-making. But they ignore 
the intertwined influences among land, population, and economy. This study proposes 
the SCS approach to simulate the land use-population-economy changes in the meg-
acity region. Basic CA is used to forecast the spatial process of one feature. The inter-
actions among multiple features are captured by taking one feature as the dynamic 
driving factor. The CA model is iteratively trained until the overall simulation error is 
converged. An experiment in the GBA, China was conducted to examine the perform-
ance of the SCS approach. The results demonstrate that the SCS outperforms baseline 
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approaches with an OA of 90.71% on land use simulation, a MAPE of 15.56% on popu-
lation simulation, and a MAPE of 18.56% on GDP simulation. Future GBA 2030 scen-
arios were obtained to support spatial planning and regional coordinated 
development policy-making.

This study provides an effective approach to comprehensively simulate the land 
use-population-economy in the mega-city region. It enables us to forecast the future 
regional development scenario under different development goals, which provides 
technical support for megacity region applications, such as regional planning and facil-
ity locations. In addition, the feature variation processes can help reveal the patterns 
of regional development, thus enriching the relevant theories and practices of sustain-
able development goals in the mega-city region.
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Appendix A 

Figure A1. The maps of the driving factors. All the values were normalized into the range [0,1] 
with the min-max scale algorithm.
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Table A1. The repeatability test result of SCS approach.

No.

Land use Population GDP

OA (%) FOM MAPE (%) RMSE MAPE (%) RMSE

1 90.71 0.267 15.56 2.205 18.56 0.980
2 90.79 0.270 16.01 3.348 23.84 1.129
3 90.48 0.246 16.22 3.960 20.19 1.000
4 90.48 0.263 16.14 3.218 20.49 0.980
5 90.39 0.251 16.51 2.834 21.40 1.014

Figure A2. The complete technical flowchart of the step-wise cooperative simulation.
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Table A2. Hyperparameter settings of the presented SCS 
approach and baseline methods.
Method Hyperparameter Value

Static setting Neighborhood size 5�5
Sampling method Uniform sampling
Sampling rate 30%
Loss function MSE

PLUS Patch generate 0.5
Expansion coefficient 0.5
Percentage of seeds 0.01

ANN-CA Number of input units 9
Number of hidden layers 1
Number of output units 4

RF-CA Number of trees 1000
Min samples split 2
Min samples leaf 1
Max depth 10
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