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Abstract— High spatial resolution (HSR) imagery scene clas-
sification has been the subject of increased interest in recent
years, and has great potential for many applications, such
as urban functional analysis. Rooted in natural information
processing, the use of the probabilistic topic model (PTM) to
capture latent topics to represent HSR images has been an
effective way to bridge the semantic gap. However, how to
effectively discover discriminative information to recognize the
HSR scenes is a challenging task. In this paper, the sparse
homogeneous–heterogeneous topic feature model (SHHTFM) is
proposed for HSR image scene classification. Differing from
the conventional PTM-based scene classification methods, which
utilize only heterogeneous features, SHHTFM explores the effect
of the homogeneous information. Based on the union of uniform
grid sampling and simple linear iterative clustering superpixel
sampling, SHHTFM exploits both the heterogeneous and homo-
geneous information. After separately mining different types of
low-level features and latent topics, the sparse topic inference
procedure of SHHTFM further improves the fusion of the sparse
heterogeneous and homogeneous topics. In addition, multisource
geographical data are effectively integrated, where the water and
vegetation boundaries define a more accurate way to restrict
the boundaries of different scenes, and are then combined with
the road network data to further improve the scene annotation
performance. This provides more reliable and applicable results
for us to better understand the complex scenes. The experimental
results obtained with two HSR image classification data sets
and an HSR image annotation data set demonstrate that the
proposed SHHTFM framework can solve the scene classification
problem, with a high classification accuracy as well as a high
time efficiency.

Index Terms— Geographical, high spatial resolution (HSR)
imagery, homogeneous topics, multisource, probabilistic topic
model (PTM), scene classification, scene understanding.
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I. INTRODUCTION

ENORMOUS numbers of high spatial resolution (HSR)
remote sensing images are now available and can provide

abundant spectral and spatial information for precise land-
use and land-cover (LULC) investigation. In HSR imagery,
the spectral homogeneity within a class and the spectral
variation between classes are both reduced, which makes the
pixel-based classification methods inadequate for such a case.
Object-based and contextual-based methods have been widely
applied for HSR image classification, and are usually based
on segmenting the images into groups of local homogeneous
regions [1]–[4]. However, an HSR image is usually composed
of diverse land-cover types with a complex spatial distribution,
e.g., roads, buildings, and trees. It is therefore difficult for
these methods to acquire the semantic meaning of a scene
image, e.g., a residential scene or an industrial scene. Scene
classification is aimed at labeling an HSR image according to
the geographical properties to obtain regions using semantic
information, and has recently attracted increased attention in
HSR image understanding.

Scene classification methods based on object recognition
utilize a relevant model to define the spatial relationship
between different objects, which is an approach that requires
the prior information of the objects [7], [8]. For this approach,
the object recognition needs to be well designed, and the
spatial relationship is difficult to model. The deep learning-
based methods have turned out to be good at discovering
the intricate structures hidden in high-dimensional data, and
have shown an impressive feature representation ability for
HSR image scene classification [9]. On the other hand, these
methods usually require a large amount of training sam-
ples [10], and a small volume of training data tends to magnify
the overfitting problem for the convergence of the network.
However, large amounts of training samples are unusual for
most remote sensing problems, since the acquisition of training
data comes with a high cost, both in terms of time and
money [11]. To overcome these problems, transfer learning
with pre-trained convolutional networks (ConvNets) has been
proposed for HSR image scene classification [43]–[46]. There
are two main transfer learning methods: one uses the pre-
trained ConvNets to extract the high-level features, whereas
the other method uses the pretrained ConvNets to partially
initialize the transferred ConvNets. There is no ConvNet
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Fig. 1. Examples of baseball diamond and golf course scenes with similar
visual words.

training process in the former xekmethod, which leads to a
high speed. However, the separate training processes for the
feature descriptor and the classifier weaken the classification
performance. The latter method employs a fine-tuning strategy
to improve the discriminative ability with a new set of HSR
imagery, which yields better performance. On the other hand,
this method is less efficient since it requires a little training
over the parameters of the network [44]. In addition, transfer
learning with pretrained ConvNets can be used only to process
images with three channels, and this approach cannot be
directly used for multispectral imagery scene classification.
Due to its simplicity and effectiveness, the bag-of-visual-
words (BOVW) model [12]–[14] is a popular method for
representing HSR images with unordered local low-level
descriptors. Based on the BOVW model, the probabilistic topic
model (PTM) has been proposed and successfully applied to
HSR scene classification [15]–[17], [42]. Among the PTMs,
the fully sparse topic model (FSTM) [28] discovers sparse
topics of the documents in linear time, which is a simple but
efficient approach for complex LULC classification. However,
the sparse topics mined by the FSTM may lose representative
semantic information, and the FSTM does not perform well
when directly applied to HSR scene classification.

To extract the representative features for HSR scene classifi-
cation, most researchers have utilized a uniform grid sampling
method as the first step [2], [12]–[16], [20]–[26]. The gen-
erated regions are usually heterogeneous, and heterogeneous
visual words are then employed for the complex scenes.
Fig. 1 shows an example of baseball diamond and golf course
scenes. The baseball diamond and golf course scenes both
contain road and grassland, which account for most areas of
the scenes. The representative object in the baseball diamond
scene is made up of red soil, whereas it is white sand for the
golf course scene. For this type of scene, the homogeneous
areas and the representative objects are critical for discrimi-
nating the scene from other scenes. However, after uniform
grid sampling, the images are randomly split into a set of
visual words, and many representative areas are mixed with
others, which leads to heterogeneous visual words. In this
way, the ratio of the representative visual words is very small,
resulting in low discrimination.

Guided by this observation, the following questions are
systematically considered. Can we design more adequate
visual words to improve the discrimination? Can homogeneous
information improve the scene classification performance?
Superpixel segmentation methods, including graph-based and
gradient-based approaches, are common ways to segment

images into homogeneous areas. In this paper, a novel and
effective framework that is called the sparse homogeneous–
heterogeneous topic feature model (SHHTFM) for HSR image
scene classification is proposed. In SHHTFM, the simple
linear iterative clustering (SLIC) superpixel segmentation
method [31] is first incorporated into the HSR scene clas-
sification framework as a region sampling strategy to effi-
ciently generate homogeneous regions, where uniform grid
sampling is simultaneously employed to generate heteroge-
neous regions. To exploit the diverse semantics in HSR
imagery, three types of low-level features—the mean and
standard deviation (MSD)-based spectral feature, the wavelet-
based texture feature, and the scale-invariant feature trans-
form (SIFT) features—are extracted from a set of regions.
To circumvent the inadequate clustering capacity of the hard-
assignment-based k-means clustering algorithm and the mutual
interference between different types of topics, the different
features are separately transferred to different topic spaces for
the scenes. Moreover, the inference by SHHTFM improves the
fusion of the heterogeneous and homogeneous topics (HHTs).
In this way, the scene label of each image can be obtained, and
a large HSR image can be annotated based on the prediction
of the small images.

The scene annotation result based on pure remote sensing
data can reflect only the natural properties of the land-cover
objects, as the ambiguous, broken, and irregular boundaries
may interfere with the identification of functional zones.
However, an urban functional zone may be more concerned
with the inner socioeconomic activities. In this way, scene
understanding is a rich field, covering segmentation, object
localization, classification, and annotation, to allow us to
understand the remote sensing scene from local to global
perspectives. The method of overlaying road network data
has been implemented as a pretreatment for scene understand-
ing [41], where the blocks derived by the road network data
usually correspond to large areas. Most of these blocks are
semantically composed of multiple types of scenes. Hence,
in this paper, in order to obtain more accurate scene under-
standing results, the large-scale vegetation and water bound-
aries are extracted from the HSR imagery and are integrated
with the road network data to complement the geographical
data.

The main contributions of this paper are as follows.
1) To explore the effect of homogeneous information for

HSR scenes, SLIC superpixel method is introduced
as a novel region sampling strategy to segment the
images into a set of homogeneous regions. Based on
the semantics extracted from the homogeneous regions,
the SHHTFM framework can decrease the confusion
of the scenes with representative objects.

2) To capture the discriminative high-level semantics,
the SHHTFM framework is proposed. In SHHTFM,
the integration of the homogeneous visual words
and heterogeneous visual words provides an adap-
tive feature description for distinct scenes. Based on
separately mining the sparse topic spaces for the differ-
ent types of features, the optimization-based inference
task of SHHTFM improves the fusion of the HHTs.
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These characteristics result in SHHTFM yielding effi-
cient LULC scene classification results.

3) Based on the scene classification results of SHHTFM,
multisource geographical data are effectively applied
to obtain better scene understanding results. The water
and vegetation boundaries define a more accurate way
to restrict the boundaries of different scenes, and are
integrated with the road network data to tackle the
problems of LULC scene annotation.

Comprehensive evaluations on a challenging 21-class data
set and a 12-class LULC data set and comparisons with
the state-of-the-art approaches demonstrate the effectiveness
and superiority of the SHHTFM framework. Scene annotation
of a large LULC image also confirms the effectiveness of
SHHTFM. In addition, the combination of multisource geo-
graphical data with the scene annotation results is experi-
mentally verified to be both reliable and applicable for urban
planning.

The rest of this paper is organized as follows. Section II
discusses the related work. Section III provides details about
the proposed SHHTFM framework for HSR imagery scene
classification. A description of the datasets and an analysis of
the experimental results are presented in Section IV. Finally,
the conclusions are drawn in Section V.

II. RELATED WORK

SHHTFM is closely related to the BOVW model and
its classical PTM variants, e.g., probabilistic latent seman-
tic analysis (pLSA), latent Dirichlet allocation (LDA), and
the FSTM. The BOVW model is considered as an effec-
tive method for LULC HSR image scene classification. The
BOVW model-based scene classification is dependent upon
the local features of the images, which are then quantized
into visual words. In this way, the BOVW model models the
scene only by the simple statistics of the frequency of each
visual word, whereas scene classification may require more
information about the higher level of semantic information.

A. Scene Classification Based on the PTMs

The PTMs, including the classical pLSA [18] and LDA [19]
models, are able to map the low-level features in the het-
erogeneous regions to high-level semantic concepts, and can
reduce the dimensionality of HSR images. The strategies of
using PTMs for HSR scene classification can be divided into
several types. In general, a single feature is utilized to describe
the visual words. The spectral feature (MSD) as the feature
descriptor with LDA has also been proposed to describe HSR
images [15], [20]. Besides LDA, SIFT with the Markov field
topic model [21] and pLSA [22] have also been proposed.
However, one single type of feature is always inadequate to
capture the entire scene, since scene information is usually
conveyed by multiple cues, e.g., color, shape, structural, or tex-
ture features. It is widely accepted that multiple features
should be adaptively fused with the PTM to discriminate each
class from the others. Multifeature-based LDA and pLSA have
been proposed to incorporate different features to capture the
various aspects of complex scenes and improve the perfor-
mance of scene classification [16], [23]–[25].

Fig. 2. Dirichlet distribution for LDA.

The commonly used PTM, i.e., LDA, treats the topic
mixture parameters as variables drawn from a Dirichlet distri-
bution. However, with the change of the Dirichlet parameter α,
the topic variables acquired from the HSR imagery are always
greater than zero (Fig. 2). The latent semantics mined from
images by LDA are often dense, which results in a lot of
useless information and requires a lot of storage space. The
topic modeling is therefore complex and takes a lot of time.
In an attempt to overcome the issue of dense topics for model-
ing the scenes, sparsity constraints have been imposed on the
topics to change the objective function of the PTM [26], [27].
However, these models usually require model selection with
many regularization term-based auxiliary parameters, which
may be problematic with large-scale data sets.

Instead of the Dirichlet prior and sparsity constraints,
the FSTM [28] was proposed, which models the documents
with a sparse prior. In addition to the natural language
processing domain, the FSTM has been successfully applied
to content-based video retrieval [29] and abnormality detection
in traffic videos [30]. FSTM is a hierarchical model, and
introduces sparse topics to analyze the words in the documents
from a corpus. When FSTM used in the text analysis field
is applied to the image data set, an analogy between their
respective terminologies is defined as follows.

1) A corpus is equivalent to an image data set.
2) A document corresponds to an image.
3) A word is equivalent to a patch or segmented region of

an image, which is usually called a visual word.
Based on the bag-of-words assumption, the order of the

visual words in an HSR image is ignored in FSTM. To reduce
the dimension of representing the images, a k-means clustering
is employed to construct the visual dictionary, where the
number of visual words is the size of the vocabulary.

For a given HSR image Gi composed of a sequence of
visual words, it can be represented by K topics. The generative
process of FSTM for the HSR image is as follows.

1) For each image, choose a topic proportion θ .
2) For each visual word in an image Gi , select a latent

topic tk with probability P(tk |Gi ) = θk , and choose a
visual word v j with probability P(v j |tk) = βkj , where
j ∈ Id , and Id is the set of term indices of image Gi .

The likelihood of an HSR image with FSTM is given by

log P(Gi ) =
∑

j∈Id

Gi j log
K∑

k=1

θkβkj . (1)
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Fig. 3. Probabilistic graphical model of the FSTM.

Fig. 4. Uniform grid-based region sampling method for HSR imagery.

Compared with LDA, there is no explicit distribution to
model the topics from the HSR image. In fact, an implicit
prior of the topic distribution does exist, having the density
function of (2). In more detail, the latent topic proportion θ
in the FSTM follows an implicit constraint ||θ ||0 ≤ L + 1,
where L is the iteration times. The number of nonzero entries
of θ is denoted by ||θ ||0. This property of “implicit modeling”
allows the FSTM to be able to converge at a linear rate to
the optimal solution. The probabilistic graphical model of the
FSTM is shown in Fig. 3. In this paper, the FSTM is chosen
to model the HSR scenes with sparse topics

p(θ |λ) ∝ exp(−λ · ||θ ||0). (2)

B. Region Sampling Based on Uniform Grid Sampling
As a preprocessing step for the extraction of low-level

features, region sampling is essential for HSR imagery scene
classification. Region sampling is aimed at selecting a repre-
sentative subset for the HSR image. Accordingly, it is crucial
to appropriately sample the imagery to generate discriminative
features for complex scenes. Previous researchers have divided
the existing sampling methods for HSR imagery into random
sampling and saliency-based sampling methods [35]. Here,
the saliency-based sampling method consists of keypoint-
based sampling and salient region-based sampling, and the
uniform grid sampling is included as a specific type of random
sampling method. The uniform grid sampling method is the
most commonly used sampling method for HSR imagery, and
it is chosen as one of the sampling strategies in this paper.
As shown in Fig. 4, given an image, the proposed SHHTFM
assumes that each image of a scene can be represented by
a set of sampled patches from the image. Here, a patch is a
local rectangular image region that can be used for feature
description in the following step. SHHTFM employs the
uniform sampling strategy with two parameters—patch size
and patch spacing—to obtain the set of patches to represent
the image. The patch spacing determines the frequency of
the sampling. Compared with the original image, the sampled
subset of patches is more compact and less complex.

C. SLIC Superpixel Sampling
Various superpixel classification methods have been pro-

posed and have been proven to be effective in image

segmentation for diverse images. In this paper, SLIC [31]
is employed to aggregate nearby pixels into superpixels in
the HSR image scenes, for its simplicity, memory efficiency,
and excellent boundary adherence [34]. The only parameter
of SLIC is the desired number of approximately equally sized
superpixels, which is denoted by p. In SLIC, the HSR image
with N pixels is converted into a 5-D vector in the CIELAB
color space. Then p initial cluster centers are sampled based
on a regular grid, which is spaced S = √

N/p pixels apart.
These centers are moved to the positions with the lowest
gradient in a 3 × 3 neighborhood, which avoids centering
a superpixel on an edge. Differing from the conventional
k-means clustering, each pixel in SLIC is associated only with
the nearest cluster center whose search region overlaps its
location, where the search region is set as 2S × 2S around
the superpixel center. The new cluster center is iteratively
calculated for each pixel with a distance measure D, which is
based on the color and spatial proximity. In addition, an update
step adjusts the cluster centers to be the mean vector of all
the pixels belonging to the cluster. The iteration continues
until the residual error between the new cluster center and
the previous ones converges. In this way, SLIC significantly
reduces the number of distance calculations, and is very fast.
Finally, the disjoint pixels are reassigned to nearby superpixels
to enforce connectivity.

III. SCENE CLASSIFICATION BASED ON THE SPARSE

HOMOGENEOUS–HETEROGENEOUS

TOPIC FEATURE MODEL

To effectively employ the representative semantics,
the SHHTFM framework is proposed for HSR image scene
classification. Four tasks have to be addressed: 1) region
sampling based on the union of uniform grid sampling and
SLIC superpixel sampling; 2) heterogeneous and homoge-
neous visual word generation; 3) sparse topic representation;
and 4) improved sparse topic fusion and classification. The
scene classification results are then integrated with multisource
geographical data to obtain an applicable scene understanding
map. The overall flowchart of scene classification and under-
standing based on the SHHTFM framework is shown in Fig. 5.

A. Region Sampling Based on the Union of Uniform
Grid Sampling and SLIC Superpixel Sampling

As the uniform grid-based region sampling method usually
generates heterogeneous information for HSR imagery, can
the homogeneous information also be mined from the images
to improve the scene classification accuracy? Superpixel seg-
mentation is the common way to mine the homogeneous
information of images. Accordingly, in this paper, the simple
and effective SLIC segmentation algorithm is used to construct
a set of compact and homogeneous patches. The nearby
pixels in the image are aggregated into superpixels by the
SLIC-based sampling of SHHTFM. SHHTFM employs the
SLIC-based sampling strategy with two parameters: region
size and regularizer. The region size refers to the expected
spatial extent of a superpixel. The regularizer is a constant
that allows us to weight the relative importance between



ZHU et al.: SCENE CLASSIFICATION BASED ON THE SHHTFM 2693

Fig. 5. Flowchart of scene classification and understanding based on the SHHTFM framework for HSR imagery, where the descriptions in red indicate the
main contributions of the SHHTFM framework.

color similarity and spatial proximity. When the regularizer is
large, the spatial proximity becomes more important, and the
acquired superpixels are more compact and have a lower area
to perimeter ratio. When the regularizer is small, the acquired
superpixels adhere more tightly to image boundaries, but their
size and shape are less regular. SHHTFM uses an adequate
region sampling strategy to make up for the shortcomings of
the traditional uniform grid sampling methods, and is more
appropriate for complex HSR scene classification.

B. Heterogeneous and Homogeneous Visual Word Generation

After acquiring two sets of representative image patches,
i.e., IPhe and IPho, by the combination of uniform grid
sampling and SLIC superpixel sampling, SHHTFM utilizes
a visual analog of a word, acquired by vector quantizing the
region descriptors [18]. With diverse spatial configurations and
complex details, HSR scenes are usually hard to recognize
if not enough information is discovered. Two scenes that
are made up of the same objects, e.g., buildings, trees, and
roads, may result in different scene types since they have
different spatial distributions. These diverse semantic concepts
lead to different scene labels, e.g., commercial scene and
residential scene (Fig. 6). In this way, the use of the FSTM
to discover very sparse topics may result in the loss of some
representative semantics. Hence, in this paper, SHHTFM is
proposed to comprehensively capture the images using three
feature descriptors, i.e., the MSD, wavelet, and SIFT features.

1) The MSD features refer to the first-order statistics of
the mean value and the second-order statistics of the
standard deviation value of the image patches. The
MSD features are calculated in each spectral channel
as the spectral feature, which reflects the attributes of
the HSR images that constitute the ground components
and structures.

2) To compensate for the deficiency of the statistical MSD
features, the texture feature is utilized to describe the
images. The texture feature contains information about
the spatial distribution of the tonal variations within
a band [36], which considers both the macroscopic

Fig. 6. Examples of two different scenes from HSR imagery.

properties and fine structure. Among the various tex-
ture features, wavelets discover information from an
image about both the spatial and frequency content,
and thus they can be adopted to analyze texture for
nonstationary or nonhomogeneous images, such as HSR
remote sensing images [37]. By decomposing the image
into different frequency sub-bands, wavelet transforms
are similar to the way the human visual system oper-
ates [38], which infers that they are suitable for image
classification. SHHTFM employs multilevel 2-D wavelet
decomposition to extract the texture feature, and the
level of the wavelet decomposition is optimally set to
three.

3) The SIFT feature [39] is able to overcome noise, affine
transformation, and changes in illumination, and has
been widely applied in image analysis. Gray dense SIFT
is employed as the patch descriptor in SHHTFM, which
was inspired by [40]. The image patches are divided
into 4 × 4 neighborhood regions, where the gradient
orientation histograms of eight directions are counted;
4 × 4 × 8 = 128-D vectors are finally acquired to
describe the keypoint descriptor.

The information in the image patches obtained by uniform
grid sampling is usually heterogeneous. Hence, the distinct
features, i.e., the MSD, wavelet, and SIFT features, are
separately employed to describe the image patches. On the
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Fig. 7. Probabilistic graphical model of SHHTFM.

other hand, the information in the image patches obtained
by SLIC segmentation is homogeneous, and the scenes with
representative objects that are prone to confusion, e.g., baseball
diamond with red soil and golf course with white sand, mainly
differ in the spectral feature for the representative image
patches. In addition, the spectral feature usually performs
best for describing the HSR images according to empirical
research. Hence, give consideration to both time efficiency and
satisfactory performance and also to avoid feature redundancy,
only the MSD feature is employed to describe the patches
generated by SLIC sampling. In this way, the image patches
acquired by region sampling of the HSR images are digitized
by R types of features, and all the types of feature descriptors,
d1, . . . , dR , are obtained. The influence of illumination, rota-
tion, and scale variation may lead to the same visual word in
different images being endowed with different feature values.
Accordingly, the feature descriptors are quantized by k-means
clustering to generate R 1-D frequency histograms, where
image patches with similar feature values correspond to the
same visual word. By statistical analysis of the frequency of
each visual word, the corresponding visual dictionary can be
obtained.

C. Sparse Topic Representation

After the heterogeneous and homogeneous visual word
generation, SHHTFM analyzes the different visual words
by introducing probability theory, and the sparse topics are
discovered to represent the semantic information. SHHTFM
can greatly reduce the dimension of the feature vectors for
the representation of HSR images. The probabilistic graphical
model of SHHTFM is displayed in Fig. 7. Specifically, given
M images Gi , they can each be described by N visual
words v j , where Gi = {v1, . . . , v j , . . . , vN }. Rhe and Rho
types of features are then extracted from the image sets
IPhe and IPho, and separately quantized by the k-means
clustering algorithm. In this way, the inadequate clustering
capacity of the hard-assignment-based k-means algorithm is
circumvented, and Rhe and Rho histograms are acquired and
then transformed into word occurrence probability matrices.
SHHTFM separately models the word occurrence probability
matrices as random mixtures over the latent variable space.
By choosing a K -dimensional latent variable θ , K1, . . . , K Rhe

and K1, . . . , K Rho topics are selected from each histogram
of the two image sets IPhe and IPho, respectively. This cir-
cumvents the mutual interference between the heterogeneous
and homogeneous features, and allows the heterogeneous and
homogeneous features to adequately describe the HSR images
in the different latent topic spaces.

For each type of feature, given K topics β = (β1, . . . , βK ),
the log likelihood of an image Gi can be decomposed as
shown in (2), where Gij is the frequency of visual word v j

in image Gi . In the inference procedure, SHHTFM sets
x j = ∑K

k=1 θkβkj and x = (x1, . . . , xD)t , where D is the size
of the visual dictionary. Differing from other PTMs, the latent
variables are not directly inferred. SHHTFM treats the infer-
ence of optimizing the latent variables as a concave maxi-
mization problem over the simplex � = conv(β1, . . . , βK ).
Following

∑θk
k = 1, where θk ≥ 0, x is a convex combi-

nation of the K topics β = (β1, . . . , βK ). The Frank–Wolfe
algorithm, which follows the greedy approach, is employed
as the inference algorithm. The latent variable can be denoted
by θl+1 := (1 − α′)θl after L iterations, where α′ is defined
in (3), and is solved by the gradient ascent approach. Here, βy′
denotes the standard unit vectors in the simplex �, and xl is a
convex combination of at most L + 1 vertices of the simplex,
which is defined in (4). This implies an implicit constraint
||θ ||0 ≤ L + 1 in SHHTFM, which shows that at most L + 1
out of the latent variables are nonzero. By finding the x ∈ �
that maximizes the objective function, the latent variable θ of
image Gi can be inferred by converging at a linear rate to the
optimal solution, which is a sparse solution

α′ := arg max
α∈[0,1] f (αβy′ + (1 − α)xl) (3)

xl =
K∑

k=1

θlkβk . (4)

Based on the latent variable θ , an expectation–maximization
scheme is executed to iteratively learn all the topics
β = (β1, . . . , βK ). In more detail, SHHTFM begins the
E-step with the inference of the latent topic distributions,
and undertakes the M-step to maximize the likelihood of
the M images with regard to β. Accordingly, the lower
bound of the log likelihood of the M images is maximized
in the learning procedure. By taking into consideration of
the Lagrangian multipliers, the topics β = (β1, . . . , βK ) are
obtained, as written in (5). In this way, SHHTFM models
the topics from the HSR imagery by iterating the E-step
and M-step until convergence. The sparse topic proportions
θ1, . . . , θRhe and θ1, . . . , θRho are then obtained for all the types
of features from the heterogeneous and homogeneous image
patches, respectively

βkj ∝
∑

G jθk . (5)

D. Improved Sparse Topic Fusion and Classification
In the task of semantic-level fusion, the MSD-based topic

feature for the homogeneous regions, denoted by θ1, and the
MSD, wavelet, and SIFT-based topic features for the heteroge-
neous regions, denoted by θ2, θ3, θ4, are effectively fused at the
semantic level. The inference task in SHHTFM reformulates
the optimization of the latent topic distribution as a concave
maximization problem, which leads to improved fusion of the
distinct types of topics. In this way, the final sparse semantic
representation can be denoted by F = {θT

1 , θT
2 , θT

3 , θT
4 }T .

In the task of HHT classification, the F with the discrimi-
native semantics is classified by the support vector machine
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Fig. 8. Procedure of scene understanding combining multisource geographical data.

classifier with a histogram intersection kernel (HIK). By mea-
suring the degree of similarity between two histograms,
the HIK deals with the scale change, and has been applied to
image classification using color histogram features. Assuming
Ṽ = (ṽ1, ṽ2, . . . , ṽM ) to be the SHHTFM representation
vectors of M images, the HIK is calculated as shown in (6).
Finally, the scene label of each image can be predicted

K (ṽi , ṽ j ) =
∑

k

min(ṽi,k , ṽ j,k). (6)

E. Scene Understanding Combining Multisource
Geographical Data

To date, sensing technologies and large-scale computing
infrastructures have produced a variety of big data in urban
spaces (e.g., human mobility, air quality, traffic patterns, and
geographical data) [32]. Among the big data, road network
data, water boundaries, and vegetation boundaries are overlaid
on the scene annotation results based on the scene labels
predicted by SHHTFM. Specifically, the procedure of scene
understanding combining the multisource geographical data is
shown in Fig. 8. As can be seen in Fig. 8, the vegetation is
acquired with the use of the ratio vegetation index, and the
water is acquired by extracting the region with the use of
the near-infrared band from the original large image. What
we need is large connected regions of vegetation and water,
instead of fragmented regions. Hence, a closing operation
based on the mathematical morphology method is used to fill
the small holes in the image, and an opening operation is
used for denoising. However, the small regions of the urban
landscape, which may belong to residential or commercial
scenes, are also extracted. To avoid the interruption of these
pixels, an eight-connectivity scheme is employed to label
the connected regions. When the number of pixels in the
connected region is smaller than 10 000, this region will
be excluded and removed. The mathematical morphology
method is then used to obtain the boundaries of the remaining
regions. To overlay the raster data of the vegetation and water
boundaries and the vector data of the road network data, their
spatial references and data format are unified, and the raster

data of the vegetation and water boundaries is transformed to
vector data. In addition, some of the topological errors of the
data are removed, such as removing pseudo nodes. Finally,
the line data are transformed into polygonal data to form the
final geographical blocks, which can be overlaid on the scene
annotation result. The majority voting method is employed
to justify which scene category the final geographical block
belongs to. Combining scene annotation with geographical
data is not only more reliable and meaningful in scene
classification but also makes the results suitable for direct
application, by urban planning departments and others.

IV. EXPERIMENTS AND ANALYSIS

A. Experimental Setup

In order to test the performance of SHHTFM, the commonly
used 21-class UC Merced data set and the 12-class Google
data set of the scene image data set designed by the Intelligent
Data Extraction and Analysis of Remote Sensing (RS_IDEA)
Group in Wuhan University (SIRI-WHU) were evaluated in the
experiments. In addition, an original large image of the Wuhan
IKONOS data set was also used to test the scene annotation
performance of SHHTFM. The multiple types of geographical
data were applied to the scene annotation results for better
scene understanding. In the experiments with uniform grid-
based region sampling, the patch size and spacing were
optimally set to 8 × 8 and 4 × 4 pixels, respectively. In the
experiments with SLIC superpixel-based region sampling, the
region size and regularizer were optimally set to 10 and 0.05
for the UC Merced data set, respectively; 10 and 0.01 for
the Google data set of SIRI-WHU, respectively; and 15 and
0.05 for the Wuhan IKONOS data set, respectively. The visual
dictionary with V visual words was constructed by employing
Euclidean distance measurement-based k-means clustering
over the image patches from the training data. The different
methods were implemented 100 times by randomly select-
ing the training samples, to ensure that convincing results
were obtained and the stability of the proposed SHHTFM
could be tested. There are two free parameters in the pro-
posed SHHTFM: the visual word number V and the topic
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TABLE I

OPTIMAL K AND V VALUES FOR THE DIFFERENT METHODS
WITH THE UC MERCED DATA SET

TABLE II

OPTIMAL K AND V VALUES FOR THE DIFFERENT METHODS

WITH THE GOOGLE DATA SET OF SIRI-WHU

TABLE III

OVERALL CLASSIFICATION ACCURACY (%) COMPARISON

WITH THE UC MERCED DATA SET

number K , where V and K are determined according to
the sensitivity analysis for the different data sets in Exper-
iment 3. Taking the classification accuracy and the com-
putational complexity into consideration, V and K were
optimally set as shown in Tables I and II for the different
feature strategies with the two data sets. In Tables I–IV,
SFSTM-HET and SFSTM-HOM denote FSTM-based scene
classification utilizing the MSD-based spectral features from
heterogeneous and homogeneous image patches, respectively.
MFFSTM-HET denotes FSTM-based scene classification uti-
lizing multiple features, including the MSD-based spectral
feature, the wavelet-based texture feature, and the SIFT
features, from heterogeneous image patches. Different from
MFFSTM-HET, the proposed method utilizes both the mul-
tiple features from heterogeneous patches and the spectral
features extracted from homogeneous regions, which is gen-
erated by SLIC segmentation. Hence, by comparing the pro-
posed method with MFFSTM-HET, we can analyze whether
the homogeneous information is able to improve the scene
classification performance.

The performance of the proposed framework is evaluated
using the overall accuracy (OA). The OA is calculated as the
total number of correctly classified scene images divided by
the total number of test images, which indicates how well

TABLE IV

OVERALL CLASSIFICATION ACCURACY (%) COMPARISON
WITH THE GOOGLE DATA SET OF SIRI-WHU

the model predicts the actual data. In addition, the confusion
matrices allow visualization of the performance of a frame-
work [Figs. 12, 15, and 18(b)]. In these confusion matrices,
each row represents the proportion of a scene in an actual
class, while each column represents the proportion of a scene
in a predicted class. This allows a more detailed analysis than
the proportion of the overall classification accuracy. All the
experiments were run on a personal computer with a single
Intel core i3 CPU, an NVIDIA Quadro 600 GPU, and 8 GB
of memory. The operating system was Windows 10, and the
implementation environment was under MATLAB 2012a. The
SHHTFM framework is divided into four steps in Section III,
where the computational loads of the first and the fourth
step are very small and can be ignored. The computational
load of the second heterogeneous and homogeneous visual
word generation step is about 25%–35% of the CPU and
800–1500 MB of the memory, and the third topic modeling
step is about 22%–27% of the CPU and 14–17 MB of the
memory. The whole process of the SHHTFM framework takes
around 1 h to be completed.

To further evaluate the performance of SHHTFM, the exper-
imental results obtained with the conventional MFFSTM-HET,
pLSA [17], and LDA [15] are shown for comparison.
We also provide the experimental results obtained with the
UC Merced data set, as published in [6], [14], [25], [33], [44],
[45], and [46]. In addition, the experimental results obtained
with the Google data set of SIRI-WHU with the conventional
MFFSTM-HET, pLSA [17], LDA [15], and SAL-LDA [23]
are shown for comparison, along with the experimental results
published in [25].

B. Experiment 1: The UC Merced Image Data Set
The UC Merced data set was downloaded from the USGS

National Map Urban Area Imagery collection [14]. This data
set consists of 21 land-use scenes (Fig. 9), namely, agricul-
tural, airplane, baseball diamond, beach, buildings, chaparral,
dense residential, forest, freeway, golf course, harbor, inter-
section, medium residential, mobile home park, overpass,
parking lot, river, runway, sparse residential, storage tanks,
and tennis courts. Each class contains 100 images, measuring
256 × 256 pixels, with a 1-ft spatial resolution. Following
the experimental setup published in [14], 80 samples were
randomly selected per class from the UC Merced data set for
training, and the rest were kept for testing.

The classification performance of the single feature-
based SFSTM-HET and SFSTM-HOM, the conventional
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Fig. 9. UC Merced data set. (a) Agricultural. (b) Airplane. (c) Baseball dia-
mond. (d) Beach. (e) Buildings. (f) Chaparral. (g) Dense residential. (h) Forest.
(i) Freeway. (j) Golf course. (k) Harbor. (l) Intersection. (m) Medium
residential. (n) Mobile home park. (o) Overpass. (p) Parking lot. (q) River.
(r) Runway. (s) Sparse residential. (t) Storage tanks. (u) Tennis courts.

MFFSTM-HET, the proposed SHHTFM, and the experimental
results of previous methods for the UC Merced data set are
reported in Table III. As can be seen in Table III, the classifica-
tion results of the homogeneous feature-based SFSTM-HOM
are slightly better than those of the heterogeneous feature-
based SFSTM-HET, which indicates that the homogeneous
topics are also valuable for HSR image scene classifica-
tion. The classification results of MFFSTM-HET are better
than those of the multiple heterogeneous feature-based LDA
model, which shows the effectiveness of the sparse semantic
representation for scene classification. However, the results
of SFSTM-HOM, SFSTM-HOM, and MF-HEFST are all
unsatisfactory. The classification accuracy for the proposed
SHHTFM, 98.33%±0.98%, is the best among all the different
methods. This indicates that the combination of the HHT
description and the improved semantic fusion capacity is
able to provide discriminative image representations for scene
classification. In addition, it can be seen that SHHTFM per-
forms better than the current state-of-the-art methods, i.e., the
midlevel feature-based methods of pLSA and LDA, the meth-
ods in [6], [14], and [25], and the deep learning-based methods
of the fine-tuned GoogLeNet approach [44], the Scenario (II)
approach [45], and the method in [33]. The performance of
the fine-tuned GoogLeNet approach is better than that of the
Scenario (II) approach with no fine-tuning process, which
confirms the superiority of the fine-tuned ConvNets. The
proposed SHHTFM achieves better results than the fine-tuned
GoogLeNet and Scenario (II) approaches, which indicates
that SHHTFM performs better than the feature descriptor
based or fine-tuning-based transfer learning with pretrained
ConvNets. On the other hand, the proposed method performs
slightly worse than the VGG-VD16 + AlexNet approach and
the fine-tuned GoogLeNet descriptors approach [44], which
can be explained. The VGG-VD16 + AlexNet approach
[46] integrates many kinds of features, including the three
scales of the image-based features extracted from the five
convolutional and three fully connected layers of AlexNet and
the three scales of the image-based features extracted from
the last five convolutional and three fully connected layers of
VGG-VD16, whereas SHHTFM fuses only the simple spec-
tral, texture, and SIFT features. In addition, the computational
requirements of the VGG-VD16 + AlexNet approach and the

Fig. 10. Confusion matrix of MFFSTM-HET with the UC Merced data set.

fine-tuned GoogLeNet descriptors approach are higher than
that of SHHTFM, whereas the running time of SHHTFM
is much shorter. This demonstrates that the homogeneous
information can compensate for the heterogeneous semantics,
and the proposed method is a highly efficient framework with
a low computational cost.

An overview of the performance of MFFSTM-HET and
SHHTFM is shown in the confusion matrices in
Figs. 10 and 11, respectively. As can be seen in Fig. 11, most
of the scene categories can be fully recognized by SHHTFM.
Compared with the confusion matrix of MFFSTM-HET,
the scene categories in the confusion matrix of SHHTFM
obtain a better performance. For example, the baseball dia-
mond, storage tanks, harbor, golf course, medium residential,
mobile home park, river, sparse residential, and freeway
scenes, which are confused in MFFSTM-HET, are fully
recognized by SHHTFM. There is, however, some confusion
between certain scenes. For instance, a scene belonging to
dense residential is classified as medium residential. This
can be explained by the fact that the two categories have the
same objects and similar spatial distributions.

C. Experiment 2: The Google Data Set of SIRI-WHU

The Google data set of SIRI-WHU1 was acquired from
Google Earth (Google, Inc.), covering urban areas in China,
and the scene image data set was designed by the RS_IDEA
Group in Wuhan University [12], [25]. The data set consists
of 12 land-use classes, which are labeled as follows: agri-
culture, commercial, harbor, idle land, industrial, meadow,
overpass, park, pond, residential, river, and water, as shown
in Fig. 12. Each class separately contains 200 images, which
were cropped to 200 × 200 pixels, with a spatial resolu-
tion of 2 m. In this experiment, 100 training samples were
randomly selected per class from the Google data set of
SIRI-WHU, and the remaining samples were retained for the
testing.

The classification performance of the single feature-
based SFSTM-HET and SFSTM-HOM, the conventional
MFFSTM-HET, the proposed SHHTFM, and the experimen-
tal results of previous methods for the Google data set of

1The Google data set of SIRI-WHU can be downloaded at
http://www.lmars.whu.edu.cn/prof_web/zhongyanfei/e-code.html.



2698 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 56, NO. 5, MAY 2018

Fig. 11. Confusion matrix of SHHTFM with the UC Merced data set.

Fig. 12. Google data set of SIRI-WHU. (a) Agriculture. (b) Commercial.
(c) Harbor. (d) Idle land. (e) Industrial. (f) Meadow. (g) Overpass. (h) Park.
(i) Pond. (j) Residential. (k) River. (l) Water.

SIRI-WHU are reported in Table IV. As can be seen from
Table IV, SFSTM-HOM obtains a slightly better performance
than SFSTM-HET, which indicates that the MSD features
extracted in the homogeneous regions are more discriminative
for the HSR images. The classification result for the proposed
SHHTFM, 99.25% ± 0.88%, is better than the results of
the SFSTM-HOM, SFSTM-HOM, and MF-HEFST methods,
which confirms that SHHTFM is an effective approach for
HSR image scene classification. In Table IV, compared with
the other methods, i.e., SAL-LDA [23], the LDA method
proposed in [15], the pLSA method proposed in [17], and the
experimental results published in [25], the highest accuracy is
acquired by the proposed SHHTFM.

Figs. 13 and 14 display the confusion matrices of MFFSTM-
HET and SHHTFM for the Google data set of SIRI-WHU,
respectively. On the whole, most of the scene classes achieve
good classification performances with SHHTFM. Compared
with the confusion matrix of MFFSTM-HET, the performances
of most of the scene categories, i.e., the harbor, industrial,
overpass, and river scenes, are improved.

D. Experiment 3: Sensitive Analysis for Scene Classification

To study the sensitivity of MFFSTM-HET and SHHTFM in
relation to the visual word number V , the values of the patch
size and the patch spacing were kept constant at eight and four,
respectively. The topic number K and the values of the region
size and the regularizer for the SLIC sampling were optimally
set to 1640, 10, and 0.05 for the UC Merced data set and 1570,
10, and 0.01 for the Google data set of SIRI-WHU. The visual
word number V was then varied over the range of [2300, 2800,
3300, 3800, 4300] for the UC Merced data set and the Google

Fig. 13. Confusion matrix of MFFSTM-HET with the Google data set of
SIRI-WHU.

Fig. 14. Confusion matrix of SHHTFM with the Google data set
of SIRI-WHU.

data set of SIRI-WHU. As shown in Fig. 15, with the increase
in the visual word number V , the OA of SHHTFM is higher
at the beginning and then tends to decline, whereas the OA
curve of MF-HFFSTM displays fluctuation. It is notable that
SHHTFM is superior to MF-HFFSTM over the entire range
for the two data sets, which infers that the proposed SHHTFM
can outperform the traditional heterogeneous feature-based
methods.

To investigate the sensitivity of MFFSTM-HET and
SHHTFM in relation to the topic number K , the values of the
patch size, the patch spacing, and the visual word number V
were kept constant at 8, 4, and 3800, respectively. The values
of the region size and the regularizer for the SLIC sampling
were optimally set to 10 and 0.05 for the UC Merced data
set and 10 and 0.01 for the Google data set of SIRI-WHU.
The topic number K was then varied over the range of
[700, 1000, 1300, 1600, 1900] for the UC Merced data set
and Google data set of SIRI-WHU. As can be seen in Fig. 16,
SHHTFM obtains the best performance when K is 1600,
while MFFSTM-HET demands fewer topics. This indicates
that SHHTFM employing HHTs can effectively capture more
semantic information for HSR scene classification. Comparing
Figs. 15 and 16, it can be seen that the OA curves of SHHTFM
and MFFSTM-HET display a smaller fluctuation in relation to
the topic number K , and they are more sensitive to the visual
word number V . Hence, the number of topics can be set as
fixed at first to determine the optimal number of visual words.
The topic number can then be varied to determine the optimal
number of topics.

To investigate the time efficiency of the proposed SHHTFM
and the conventional MFFSTM-HET and SAL-LDA, the val-
ues of the patch size, the patch spacing, the region size,
the regularizer, and the visual word number V were kept
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Fig. 15. Sensitivity analysis of MFFSTM-HET and SHHTFM in relation to
the visual word number V . (a) UC Merced data set. (b) Google data set of
SIRI-WHU.

Fig. 16. Sensitivity analysis of MFFSTM-HET and SHHTFM in relation
to the topic number K . (a) UC Merced data set. (b) Google data set
of SIRI-WHU.

Fig. 17. Sensitivity analysis of the time efficiency for MFFSTM-HET
and SHHTFM in relation to the topic number K . (a) UC Merced data set.
(b) Google data set of SIRI-WHU.

at the optimal parameter settings, respectively. The topic
number K was then varied over the range of [200, 400, 600,
800, 900] for the UC Merced data set and the Google data set
of SIRI-WHU. As can be seen from Fig. 17, the topic
modeling time of SAL-LDA far transcends the modeling time
of MFFSTM-HET and SHHTFM. With the increase in the
topic number K , the time curve of SAL-LDA displays linear
growth, and the time curves of MFFSTM-HET and SHHTFM
stay relatively smooth. In addition, even though SHHTFM
requires more topics than MFFSTM-HET to reach the best
performance, their time consumptions show little difference.
This indicates that SHHTFM can give consideration to both
time efficiency and satisfactory performance.

In order to study the sensitivity of MFFSTM-HET and
SHHTFM in relation to the region size during SLIC superpixel
sampling, the values of the patch size, the patch spacing,
the regularizer, the topic number K , and the visual word num-
ber V were kept at the optimal parameter settings, respectively.
The value of the region size was then varied over the range of
[5, 10, 15, 20, 25] for the UC Merced data set and the Google
data set of SIRI-WHU. The OAs obtained with different
region sizes for the UC Merced data set and the Google
data set of SIRI-WHU are reported in Fig. 18. As shown

Fig. 18. Sensitivity analysis of MFFSTM-HET and SHHTFM in relation to
the region size. (a) UC Merced data set. (b) Google data set of SIRI-WHU.

Fig. 19. Sensitivity analysis of MFFSTM-HET and SHHTFM in relation to
the number of training samples. (a) UC Merced data set. (b) Google data set
of SIRI-WHU.

in Fig. 18, the performance of the proposed SHHTFM is
better than that of MFFSTM-HET. In addition, when the
region size is changed from 5 to 25 with a step size of five,
the OA of SHHTFM is relatively stable, which infers that
the change of region size has little influence on the proposed
framework.

In order to study the sensitivity of SAL-LDA,
MFFSTM-HET, and SHHTFM in relation to the number
of training samples, the values of the patch size, the patch
spacing, the region size, the regularizer, the topic number K ,
and the visual word number V were kept at the optimal
parameter settings, respectively. The number of training
samples was then varied over the range of [80, 60, 40,
20, 10] for the UC Merced data set and [100, 80, 60, 40, 20]
for the Google data set of SIRI-WHU. The curves of the
OAs obtained by SAL-LDA, MFFSTM-HET, and SHHTFM
for the UC Merced data set and the Google data set of
SIRI-WHU are reported in Fig. 19. As shown in Fig. 19,
the proposed SHHTFM performs the best, and is relatively
stable with the decrease in the number of training samples
per class for the two data sets compared with SAL-LDA and
MFFSTM-HET.

E. Experiment 4: Semantic Annotation of the Wuhan
IKONOS Image Data Set

The Wuhan IKONOS data set was acquired by the IKONOS
sensor in June 2009, covering the Hanyang area of the
city of Wuhan in China. All of the images in the Wuhan
IKONOS data set were obtained by Gram–Schmidt pan-
sharpening with ENVI 4.7 software. The spatial resolutions
of the panchromatic images and the multispectral images
are 1 and 4 m, respectively. The Wuhan IKONOS data set
consists of eight land-use scenes, namely, dense residential,
idle, industrial, medium residential, parking lot, commercial,
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TABLE V

ANNOTATION ACCURACIES (%) WITH THE WUHAN IKONOS DATA SET FOR THE DIFFERENT SCENE CLASSIFICATION METHODS

Fig. 20. Google data set of SIRI-WHU. (a) Agriculture. (b) Commercial.
(c) Harbor. (d) Idle land. (e) Industrial. (f) Meadow. (g) Overpass. (h) Park.
(i) Pond. (j) Residential. (k) River. (l) Water.

vegetation, and water, as shown in Fig. 20. Each class sepa-
rately contains 30 labeled small images, which were cropped
to 150 × 150 pixels, with a spatial resolution of 1 m. The size
of the large image used for the annotation experiment was
6150 × 8250 pixels, as shown in Fig. 21.

In the annotation experiment, the large image was split into
a set of small overlapping images of 150 × 150 pixels. The
annotation experiment obtained good results when the overlap
between two adjacent small images was set to 50 pixels.
In this way, the spatial information lost during the large image
sampling could be preserved. For the small images, the MSD,
wavelet, and SIFT features extracted from the heterogeneous
regions performed well when the patch size and overlap
were set to 8 × 8 and 4 pixels, respectively. The region size
and regularizer of the small images annotated based on the
MSD feature extracted from the homogeneous regions were
optimally set to 15 and 0.75, respectively. The final labels of
the overlapping regions were decided according to the majority
voting method.

To evaluate the performance of SHHTFM, the experimental
results obtained with pLSA, LDA, MFFSTM-HET, and the
experimental results published in [25] are shown for compari-
son. The different methods were evaluated using the evaluation
method published in [15], where 80% of the labeled images
were used as training images, and the remaining images were
used for testing to evaluate the model. To annotate the large
image, all the labeled images were used to train the model.
The different methods were executed 20 times by random
selection of training samples. To visually evaluate the large
annotation maps, the annotation maps were overlaid on the
original images with 50% transparency. From Table V, it can
be seen that the accuracy of SHHTFM, 97.92% ± 1.89%,
is the highest. This confirms the ability of SHHTFM to
capture a discriminative and sparse semantic representation
for HSR images.

The confusion matrices obtained by MFFSTM-HET and
SHHTFM for the Wuhan IKONOS data set were selected from
the results and are shown in Fig. 22. The misclassified image

Fig. 21. Large image in the Wuhan IKONOS data set for annotation.

Fig. 22. Confusion matrices of (a) MFFSTM-HET and (b) SHHTFM with
the Wuhan IKONOS data set, respectively.

of the medium residential scene in MFFSTM-HET is correctly
classified by SHHTFM. In the confusion matrix of SHHTFM,
all of the scenes can be recognized by SHHTFM, except for
the dense residential scene. Only one image of the dense
residential scene in SHHTFM is misclassified to the medium
residential scene, which is mainly due to the composition
of the similar LULC objects in these scenes, i.e., the trees,
buildings, and roads.

A visual comparison of the performance of MFFSTM-HET
and SHHTFM is displayed in Fig. 23(a) and (b), respectively,
to further assess the semantic annotation results. On the
whole, most of the scenes are annotated correctly. From
the visual inspection, it can be seen that SHHTFM per-
forms better than MFFSTM-HET. The annotation results
obtained by SHHTFM are smoother, and some small con-
fused regions in MFFSTM-HET are rectified with SHHTFM.
Fig. 23(c) and (d) represents the same regions cut from
Fig. 23(a) and (b), respectively, to allow a detailed evaluation.
In Fig. 23(c), for MFFSTM-HET, there are many misclassifica-
tions with the other types of scene categories in the vegetation
scenes, whereas SHHTFM [Fig. 23(d)] can fully recognize the
vegetation scenes. However, some classes in the large image
are undefined, i.e., the school, road, and gymnasium classes,
which may lead to misclassification. In this way, the road may
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Fig. 23. Semantic annotation results obtained by the two methods.
(a) MFFSTM-HET. (b) SHHTFM. (c) and (d) Detailed comparisons of the
same regions from (a) and (b), respectively.

be classified to commercial, vegetation, or dense residential
scenes.

Some misclassifications occur between the dense residential,
medium residential, and commercial scenes. This is mainly
due to two reasons. The first reason is that these scenes
have similarity in both the MSD and texture characteristics.
In addition, the large image sampling methods usually lead
to ambiguous, br oken, and irregular boundaries between dif-
ferent scene categories, which may result in misclassification
between the boundary regions of the dense residential, medium
residential, and commercial scenes. To solve these problems,
geographical data are employed in SHHTFM.

F. Experiment 4: Scene Understanding With the
Combination of Multisource Geographic Data

In this experiment, the road network data were acquired
from the Wuhan Land Resources and Planning Bureau
for 2009, reflecting the road network information of the city of
Wuhan in China. The scene annotation results were directly
combined with the road network data, and the correspond-
ing scene understanding results are shown in Fig. 24(a).
As can be seen in Fig. 24(a), the derived scene blocks
are mixed and coarse, and the results are unpractical for
urban land-use planning. The multisource geographical data,
i.e., the integration of the road network data and the boundaries
of vegetation and water, were then overlaid on the scene
annotation results. Based on the majority voting strategy,
the final scene understanding results were obtained and are
shown in Fig. 24(b). Compared with the scene annotation
results and the results in Fig. 24(a), the results obtained with

Fig. 24. Scene understanding results. (a) Scene understanding results
combining only road network data. (b) Scene understanding results combining
multisource geographical data.

the multisource geographical data are better and are more
suited to practical use. Specifically, in Fig. 24(b), the road
network and distribution of the vegetation and water areas
are accurately defined, which could provide a reference for
urban planning. The distributions and land occupation of the
dense residential, medium residential, commercial, industrial,
idle, and parking lot classes are easily identified, which could
help the government to study the urbanization of Wuhan and
rationally exploit the unutilized land. On the whole, it can be
seen that the industrial and residential scenes occupy more area
than the other scenes, whereas the commercial scene occupies
the least area in the Hanyang region. This indicates that the
Hanyang region is the industrial center of the city of Wuhan,
and is undergoing the process of urban expansion.

V. CONCLUSION

In this paper, the efficient SHHTFM framework has been
proposed for HSR remote sensing imagery scene classification.
In SHHTFM, an effective region sampling strategy based
on the union of uniform grid sampling and SLIC super-
pixel sampling is employed, and thus both the homogeneous
information and heterogeneous information are simultaneously
exploited for modeling the images. The sparse inference task
of SHHTFM further improves the fusion of the HHTs, and
thus a discriminative semantic description is obtained for
distinguishing the scenes. The classification and annotation
experiments undertaken in this paper showed that the proposed
SHHTFM method performs better than the conventional PTM
in discovering high-quality semantics from HSR images, with
high time efficiency. In addition, the combination of multi-
source geographical data with the scene annotation results
provides more reliable and applicable scene understanding
results.

In our future research, we plan to use more social media
data, e.g., point of interest data, volunteered geographic infor-
mation data, and OpenStreetMap data, to further improve
the scene classification results. On the other hand, to further
analyze the scenes, multitemporal HSR images and images
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with different resolutions from diverse remote sensing sensors
will also be considered.
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