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Abstract—Scene classification has been proved to be an effective
method for high spatial resolution (HSR) remote sensing image
semantic interpretation. The probabilistic topic model (PTM) has
been successfully applied to natural scenes by utilizing a single
feature (e.g., the spectral feature); however, it is inadequate for
HSR images due to the complex structure of the land-cover classes.
Although several studies have investigated techniques that com-
bine multiple features, the different features are usually quantized
after simple concatenation (CAT-PTM). Unfortunately, due to the
inadequate fusion capacity of k-means clustering, the words of
the visual dictionary obtained by CAT-PTM are highly correlated.
In this paper, a semantic allocation level (SAL) multifeature fu-
sion strategy based on PTM, namely, SAL-PTM (SAL-pLSA and
SAL-LDA) for HSR imagery is proposed. In SAL-PTM: 1) the
complementary spectral, texture, and scale-invariant-feature-
transform features are effectively combined; 2) the three features
are extracted and quantized separately by k-means clustering,
which can provide appropriate low-level feature descriptions for
the semantic representations; and 3)the latent semantic allocations
of the three features are captured separately by PTM, which
follows the core idea of PTM-based scene classification. The proba-
bilistic latent semantic analysis (pLSA) and latent Dirichlet allo-
cation (LDA) models were compared to test the effect of different
PTMs for HSR imagery. A U.S. Geological Survey data set and the
UC Merced data set were utilized to evaluate SAL-PTM in com-
parison with the conventional methods. The experimental results
confirmed that SAL-PTM is superior to the single-feature methods
and CAT-PTM in the scene classification of HSR imagery.

Index Terms—Fusion, high spatial resolution (HSR) imagery,
latent Dirichlet allocation (LDA), multifeature, probabilistic latent
semantic analysis (pLSA), probabilistic topic model (PTM), scene
classification.

I. INTRODUCTION

W ITH the ongoing development of satellite sensors, huge
quantities of high spatial resolution (HSR) remote sens-

ing images have now become available. Nevertheless, this type
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of data demonstrates the phenomena of a complex spatial
arrangement with high intraclass and low interclass variabili-
ties, which poses a big challenge for image classification.
According to these characteristics, the classification methods
for HSR images have evolved from per-pixel-oriented methods
to object-oriented methods. Both object-based and contextual-
based methods can achieve precise object recognition [1]–[5].
However, these methods have no access to the semantics in
the image. This leads to the so-called “semantic gap,” namely,
the divergence between the low-level data and the high-level
semantic information [6]. In order to acquire the semantic infor-
mation in accordance with human cognition, how to effectively
utilize the strengths of the HSR images is a big issue. Therefore,
scene classification, which is aimed at automatically labeling an
image from a set of semantic categories [7], has been proposed
and has shown remarkable success in image interpretation. To
date, it has been systematically studied in natural image anal-
ysis [8]–[10]. For HSR image analysis, scene representation
and recognition is a challenging task owing to the ambiguity
and variability of the scenes. For example, given a set of HSR
images containing different scenes, the land-cover objects can
be recognized based on the low-level feature description, e.g.,
buildings. However, the capture of high-level latent semantic
concepts, such as residential, commercial, and industrial areas,
which usually contain a variety of land-cover objects, is a chal-
lenging problem. In other words, the main problem in HSR im-
age semantic interpretation is to bridge the semantic gap [34].
As a consequence, scene classification, as an effective means
of HSR image semantic interpretation, has been widely applied
[11]–[13]. For instance, in [14], Cheriyadat explored an unsu-
pervised feature learning approach to directly model an aerial
scene by exploiting the local spatial and structural patterns for
scene classification. Yang et al. [49] proposed spatial pyramid
co-occurrence, which can represent land-use scenes from both
the photometric and geometric aspects. Furthermore, in [15],
Aksoy et al. assigned satellite images to different scene classes
under a Bayesian framework.

Among the scene classification methods, object-based scene
classification [15]–[17] utilizes a relevant model to define the
spatial relationship between the objects, based on the recogni-
tion of objects (such as roads, trees, and grass). For this ap-
proach, prior information about the objects is required. The
object recognition needs to be well designed, and the spatial
relationship is difficult to model. Therefore, the bag of words
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(BOW) model-based approach for scene classification has been
receiving more and more attention [18]–[22]. Inspired by the
BOW model assumption [23], the probabilistic topic model
(PTM), including probabilistic latent semantic analysis (pLSA)
[24] and latent Dirichlet allocation (LDA) [25], represents the
imagery as a random mixture of topics. The PTM has been
widely applied in the natural image scene analysis field [26]–
[32]. In recent years, more and more researchers have employed
the PTM to solve the challenges of HSR image scene classifica-
tion [33]. In general, a single feature, e.g., the color, structural,
shape, or texture feature, is utilized to describe the visual words.
For instance, Liénou et al. [34] employed the spectral feature
(mean and standard deviation) as the feature descriptor for the
patches. Xu et al. [35] used scale-invariant feature transform
(SIFT) as the feature extractor. However, due to the complex
structure and abundant information in HSR images, it is widely
accepted that multiple features—such as features based on
texture, color, and structural information-should be adaptively
fused to discriminate each class from the others. Wang et al.
[36] combined visual, object, and spatial relationship semantic
features for image retrieval. Sheng et al. [13] designed sparse
coding-based multiple feature fusion (SCMF) for HSR image
scene classification. SCMF sets the fused result as the concate-
nation of the probability images obtained by the sparse codes of
SIFT, the local ternary pattern histogram Fourier, and the color
histogram features. Shao et al. [11] fused the probability output
of SIFT, tree of colored shapes (tree of c-shapes), the discrim-
inative completed local binary pattern, and the bag-of-colors
features to characterize HSR images. Zheng et al. [37] also used
four features and concatenated the quantized vector by k-means
clustering for each feature to form a vocabulary. Faria et al. [38]
proposed a framework for classifier fusion and for selecting
the most appropriate classifier, based on diversity image de-
scriptors and learning methods. The experiments undertaken by
Faria et al. showed that the framework could achieve results that
were comparable to some well-known algorithms in the litera-
ture. In addition, some studies have employed a boosting clas-
sifier to choose optimal features for the training set [39], [40].

Methods combing multiple features have also been proposed
for PTM-based satellite image scene classification. Luo et al.
[41], [42] constructed descriptors for a satellite image by conca-
tenating the color and texture features and then quantized the
descriptors of all the patches into several kinds of visual words
by k-means clustering. However, different features lead to dif-
ferent feature descriptors, and they usually differ greatly. For in-
stance, the spectral feature value can reach 1–255, but the SIFT
feature value is usually very small, even 10−20. When k-means
clustering is used to quantize the vector concatenated by multi-
ple feature descriptors, such as the spectral, texture, and struc-
tural features, the different features interfere with each other.
Furthermore, k-means clustering is inadequate to capture the
abundant spectral information and complex structure in HSR
images. This leads to a visual dictionary in which the visual
words are highly correlated. Hence, to unify the order of magni-
tude, the feature values are usually normalized before fusion.
However, due to the inadequate fusion capacity of k-means
clustering and the mutual interference between different fea-
tures, the normalization operation contributes little to conserv-

ing and exploiting the useful information. We call this method
“visual word level multifeature concatenation” (CAT-PTM).

Inspired by the aforementioned work, we present a semantic
allocation level (SAL) multifeature fusion strategy based on
PTM, namely, SAL-PTM (SAL-pLSA and SAL-LDA), for HSR
imagery. The main contributions of this paper are as follows.

1) Effective Feature Description Method for HSR Imagery:
Considering the distinct characteristics of HSR imagery, we
choose the mean and standard deviation for the spectral fea-
ture, the gray-level co-occurrence matrix (GLCM) [43] for the
texture feature, and SIFT [44] for the structural feature in SAL-
PTM. The three features are combined to exploit the spectral
and spatial information of the HSR imagery. An HSR image
can then be described by the three different feature vectors.

2) Appropriate Image Representation Generation Strategy
for HSR Imagery: The spectral, texture, and SIFT feature vec-
tors are quantized separately to generate three 1-D histograms
during the k-means clustering. In this way, the visual dictionary
generated by the statistical frequency of the histograms for all
the images contains visual words that are uncorrelated and is an
appropriate image representation for the topic model.

3) Adequate Latent Semantic Allocation Mining Procedure
for PTM-Based HSR Image Scene Classification: As for PTM-
based HSR image scene classification, the core idea is to
automatically capture the most discriminative latent semantic
allocations. Hence, the latent semantic allocations of the three
image representations are captured separately by PTM and are
then fused into the final latent semantic allocation vector. This
semantic mining procedure retains the distinctive character-
istics of each image representation. Finally, a support vector
machine (SVM) with the radial basis function (RBF) kernel is
employed to predict the scene labels.

The proposed SAL-PTM was evaluated and compared to the
conventional CAT-PTM and single-feature methods. Four-class
U.S. Geological Survey (USGS) aerial orthophotographs, the
21-class UC Merced data set, and an original large image from
the four-class USGS data set were applied here for the testing.
The experimental results confirmed that the proposed method is
superior to CAT-PTM and the single-feature methods.

The rest of this paper is organized as follows. In Section II,
we describe the PTM, including pLSA and LDA. Section III
provides details about the proposed SAL-PTM for HSR im-
agery scene classification. A description of the data sets and an
analysis of the experimental results are presented in Section IV.
Section V provides the result of the sensitivity analysis. Finally,
the conclusions are drawn in Section VI.

II. BACKGROUND

The PTM, which includes pLSA and LDA, introduces a
latent variable to analyze the visual words generated by the
BOW model. First proposed in natural language processing,
BOW has been widely applied in image interpretation due to the
similarity between text analysis and image processing. Given a
data set consisting of M images, each image can be described
by a set of N visual words wn from a visual dictionary. The
data set can then be represented as a word-image co-occurrence
matrix, where each element denotes the occurrence number of
a visual word in an image.
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Fig. 1. Probabilistic graphical model of pLSA. The nodes D, Z, and W repre-
sent image, topic, and visual word, respectively.

Fig. 2. Probabilistic graphical model of LDA.

pLSA was first proposed by Hofmann in 1990 [24], and it
utilizes a graphical model to represent the relationship between
image, topic, and visual word, as shown in Fig. 1.

By combining probability and statistics theory with the BOW
representation, each element in the co-occurrence matrix can be
transformed into the joint probability p(wj , di), which denotes
the probability of the visual word appearing in image di.
On the basis of a conditional probability formula, we decom-
pose the V ×M probability co-occurrence matrix

p(wj , di) = p(di)p(wj |di). (1)

In a similar way, we decompose p(wj , di) on the basis of the
total probability formula

p(wj |di) =
K∑

k=1

p(wj |zk)p(zk|di). (2)

In (2), {p(wj |z1), . . . ., p(wj |zk), . . . , p(wj |zK), wj ∈ W}
forms a set of base vectors which expand into a latent semantic
space, and the mixing weights p(zk|di) denote the image spe-
cific topic probability distribution, namely, the latent semantics
that we intend to mine. Therefore, with the introduction of
the pLSA model, we represent each image as a set of vectors
{p(z1|di), . . . ., p(zk|di), . . . , p(zK |di), di ∈ D}, which is the
input of the classifier.

In the pLSA model, it can be seen that each image is merely
the hybrid digital expression of the discrete probabilities of the
topics, which leads to the overfitting phenomenon. In addition,
the pLSA model is unable to assign probabilities to images
outside of the training samples.

In order to overcome the shortcomings of pLSA, in 2003,
Blei [25] proposed LDA. Based on pLSA, LDA treats the
topic mixture parameters as variables drawn from a Dirichlet
distribution; that is, for an image data set, given K topics,
the K-dimensional random variable θ = {θ1, . . . , θi, . . . , θM},
where θi = {θi1, . . . , θik, . . . , θiK} follows a Dirichlet distri-
bution, whose parameter is α = {α1, . . . , αi, . . . , αK}. The
LDA model is represented as a graphical model in Fig. 2.
LDA defines a probability function for the original discrete
latent semantic distribution, making up for the shortcomings
of pLSA.

III. SCENE CLASSIFICATION BASED ON

THE MULTIFEATURE FUSION PTM FOR

HSR REMOTE SENSING IMAGERY

In the proposed SAL-PTM, we employ the LDA model and
the pLSA model to capture the semantic information from
the HSR images, on the basis of an appropriate image repre-
sentation generation strategy and an adequate latent semantic
allocation mining procedure.

The previous studies have shown that an even grid sampling
strategy yields a better classification performance than other
sampling strategies such as random sampling [29]. Hence, all
the images are split into image patches using an even grid sam-
pling strategy. The image patches are digitized by the spectral,
texture, and SIFT features, respectively, thus making up three
sets of feature vectors: the spectral feature vector (Spe), the
texture feature vector (Tex), and the SIFT feature vector (Sif).
However, with the influence of illumination, rotation, and scale
variation, the same visual word in different images may be
endowed with various feature values. A k-means clustering op-
eration is applied to generate 1-D frequency vector histograms.
In this way, image patches with similar feature values can
correspond to the same visual word. A statistical analysis of the
frequency for each visual word is performed for all the images.
Three word-image co-occurrence matrices, Matspe,Mattex,
and Matsif , are thus acquired. Each column of the matrices
represents an image, and each element denotes the frequency of
the visual word. The co-occurrence matrix generation process
of an image is shown in Fig. 3. Then the multifeature latent
semantic allocation vector is mined by SAL-PTM.

The next procedure is to input the vector into a proper clas-
sifier to predict the scene labels. In this paper, SVM is utilized to
test the ability of the discrimination for the latent semantic allo-
cation. The core idea of SVM [45] is to effectively train a linear
learning classifier in the kernel function space, which can solve
the pattern classification problem in a nonlinear way, as well
as give consideration to the generalization and optimization
performance. SVM is built based on the structural-risk-
minimization principle and Vapnik–Chervonenkis (VC) dimen-
sion theory, in which kernel functions and parameters are
chosen. In this way, a bound on the VC dimension is minimized
[46]. Several researchers have employed SVM as the classifier
for scene classification [28], [47], [48]. Bosch et al. [28] utilized
SVM with the RBF kernel as the scene classifier. The RBF ker-
nel is able to handle the case where the relationship between the
class labels and attributes is nonlinear [49]. It is an appropriate
choice for the kernel function of SVM and is therefore applied
in this paper. The overall procedure for scene classification
based on the multifeature fusion PTM is shown in Fig. 4.

A. Multiple Feature Combination

Diverse features should be combined, and the reasons for
the inadequacy of employing a single feature are manifold.
HSR images have abundant spectral information and are also
rich in spatial information. Among the feature descriptors, the
spectral feature descriptor is the reflection of the attributes that
constitute the ground components. The texture feature descrip-
tor contains information about the spatial distribution of tonal
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Fig. 3. Co-occurrence matrix generation process of an image, where the column of blue blocks represents the word-image co-occurrence matrix of the image.

Fig. 4. Flowchart of scene classification based on the multifeature PTM for HSR imagery.

variations within a band [50]. The SIFT feature descriptor can
overcome affine transformations, changes in the illumination,
and changes in the 3-D viewpoint and has thus been widely
applied in image analysis [14], [44], [51]. A comprehensive de-
scription of the HSR images depends upon the specific combi-
nation of multiple complementary features, such as the spectral
feature, texture feature, and SIFT feature. The method proposed
in this paper utilizes the three features to fully depict the visual
words and provides abundant descriptions for the follow-up
scene classification work.

1) For the spectral feature, the values of the mean and
standard deviation for each visual word of each band are
calculated according to (3) and (4), respectively

mean =

n∑
i=1

vi

n
(3)

std =

√√√√ n∑
i=1

(vi − mean)2

n
(4)

In (3) and (4), n is the total number of image pixels,
and vi denotes the ith pixel gray value of the image band.
We assume that there are B bands, and the kth band con-
forms to k∈(1, B). It is noted that meak denotes the mean
value of the kth band, and stdk denotes the standard de-
viation of the kth band. We stack meak and stdk band by
band, and the final spectral feature Spe can be expressed as
follows: Spe={mea1, std1, . . . ,meak, stdk, . . . ,meaB ,
stdB}.

2) GLCM [43], [52] has been shown to efficiently describe
the textural component of images. The gray tone of an
image is generally 256 levels, which results in a large
value of GLCM and a heavy computational load. There-
fore, the gray level of the image is compressed to 8, and
four Haralick’s feature statistics [50] are used to describe
the GLCM of each visual word in a compact way.
a) Correlation

Correlation =
L∑

i,j=1

Pij
(i− μ)(j − μ)

σ2
(5)

b) Energy

ASM =

L∑
i,j=1

p2ij (6)

c) Contrast

Contrast =
L∑

i,j=1

(i− j)2Pij (7)

d) Homogeneity

Homogeneity =

L∑
i,j=1

Pij

1 + (i− j)2
(8)

In the aforementioned equations, μ and σ2 denote the
mean and variance of the GLCM, respectively, L denotes
the image gray level, and Pij denotes the ith line and jth
column element of the normalized GLCM. The ultimate
texture feature notation, in which cork, enek, conk, and
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Fig. 5. Procedure of SAL-PTM-based HSR image scene classification.

homk represent the correlation, energy, contrast, and
homogeneity of the kth band, respectively, can be repre-
sented as follows: Tex = {cor1, ene1, con1, hom1, . . . ,
cork, enek, conk, homk, . . . , corB , eneB , conB , homB}.

3) Each visual word is segmented into 4× 4 neighborhood
sample regions for the SIFT feature. Eight directions for
each gradient orientation histogram are counted in each
sample region. Lowe [44] concluded that adopting a 4×
4× 8 = 128 dimension vector to represent the keypoint
descriptor could achieve an optimal effect. Hence, the fi-
nal feature vector can then be represented by stacking the
128-dimension vectors sifk={sifk1, . . . , sifk128} band
by band as follows: Sif = {sif1, . . . , sifk, . . . , sifB}.

In general, the strategy used in CAT-PTM is to simply
concatenate Spe, Tex, and Sif . The image description is then
denoted as F1 = {Spe, Tex, Sif}, which is inadequate for
determining HSR image scenes.

B. SAL Multifeature Fusion Strategy Based on PTM for HSR
Image Scene Classification (SAL-pLSA and SAL-LDA)

On obtaining Spe, Tex, and Sif ,they are quantized separately
by k-means clustering, and three word-image co-occurrence
matrices,Matspe, Mattex, and Matsif , are generated. SAL-
PTM introduces probability statistics theory so that each el-
ement of the co-occurrence matrices is transformed into the
word occurrence probability. For SAL-pLSA, it mines the latent
semantic allocations of Matspe, Mattex, and Matsif accord-
ing to (2). As a result, the latent semantic allocations Lsespe,
Lsetex, and Lsesif of Matspe, Mattex, and Matsif can be
denoted as the mixed weights p(zk|di), where di represents a
column in Matspe, Mattex, and Matsif . In this way, each of
Lsespe, Lsetex, and Lsesif can be represented as a set of vec-
tors {p(z1|di), . . . ., p(zk|di), . . . , p(zK |di), di ∈ D}, where K
denotes the topics selected for each of Matspe, Mattex, and
Matsif . The final latent semantic allocation vector F2 is ac-
quired by concatenating Lsespe, Lsetex, and Lsesif for all
the images. SAL-LDA chooses a K-dimensional latent variable
θ, and the probability distribution of each word wn can be
represented by a set of N topics z as p(wn|zn, β), where β is a

K × V matrix following βij = p(wj = 1|zi = 1) [26]. Given
the parameters α and β, the joint distribution of a topic mixture
θ, a set of N topics z, and a set of N words w is given by

p(w|α, β)=
∫
p(θ|α)

(
N∏

n=1

∑
zn

p(zn|θ)p(wn|zn, β)
)
dθ (9)

where w indicates a column in Matspe, Mattex, and Matsif .
The key problem when utilizing LDA is to compute the poste-
rior distribution of the latent variables written by

p(θ, z|w, α, β) =
p(θ, z,w|α, β)
p(w|α, β) (10)

However, due to the intractable computation, a variational infer-
ence algorithm with the Dirichlet parameter γ and the multino-
mial parameter (φ1, . . . , φn) is employed to solve the problem
in LDA. In more detail, suppose that there are N images; then,
for each of Matspe, Mattex, and Matsif , Kspe, Ktex, and
Ksif topics are selected, respectively, and the latent seman-
tic allocations of Matspe, Mattex, and Matsif , denoted as
Lsespe, Lsetex, and Lsesif , respectively, are approximated by
γ, as written by

γi = αi +

N∑
n=1

φni. (11)

In the next procedure, Lsespe, Lsetex, and Lsesif for all the
images are adaptively concatenated according to each image,
thus obtaining the final multifeature latent semantic alloca-
tion vector F2 = {LseTspe, LseTtex, LseTsif}

T
, with the size of

(Kspe +Ktex +Ksif )×N dimensions. Finally, the F2 with
the greatest discriminative capacity is input into the SVM
classifier to predict the scene label of each class. The procedure
of SAL-PTM is shown in Fig. 5.

IV. EXPERIMENTS AND ANALYSIS

In order to evaluate the different feature strategies and the
different topic models (pLSA and LDA)for HSR image scene
classification, a four-class USGS data set and the commonly
used 21-class UC Merced data set were used in the scene
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TABLE I
OPTIMAL K AND V VALUES FOR THE DIFFERENT FEATURE STRATEGIES AND DIFFERENT TOPIC MODELS

TABLE II
OVERALL CLASSIFICATION ACCURACIES FOR THE USGS DATA SET WITH PLSA AND LDA FOR THE DIFFERENT FEATURE STRATEGIES

TABLE III
OPTIMAL K AND V VALUES FOR THE DIFFERENT FEATURE STRATEGIES AND THE DIFFERENT TOPIC MODELS

TABLE IV
OVERALL CLASSIFICATION ACCURACIES FOR THE UC MERCED DATA SET WITH PLSA AND LDA FOR THE DIFFERENT FEATURE STRATEGIES

classification experiments. An original large image from the
four-class USGS data set was also utilized to test the perfor-
mance of SAL-PTM in an image annotation application. The
single-feature methods and the conventional CAT-PTM were
used for comparison. In addition, to further evaluate the combi-
nation and fusion strategies of SAL-PTM, the experimental re-
sults with the 21-class UC Merced data set, as published in the
latest papers by Yang and Newsam in 2010 [53], Cheriyadat
in 2014 [14], and Faria et al. in 2013 [38], are shown for
comparison.

A. Experimental Setup for PTM-Based HSR
Scene Classification

In this experiment, each image was empirically split into
several 9× 9 image patches. The 9× 9 patches can be de-
scribed by different features to digitize the image. To retain the
spatial information between the adjacent image patches when
conducting the even grid sampling, an overlap of three pixels
was added, and thus, a better classification performance [34]
was achieved. SVM with the RBF kernel was adopted to predict
the scene labels of all the images. A k-means clustering with the
Euclidean distance measurement of the image patches from the
training set was employed to construct the visual dictionary,
which was the set of V visual words. K topics were selected for

PTM. The visual word number V and topic number K were the
two free parameters in our approach. Taking the computational
complexity and the classification accuracy into consideration,
V and K were optimally set as in Tables I and III for the dif-
ferent feature strategies and different topic models with the two
data sets. In Tables I–IV, SPECTRAL, TEXTURE, and SIFT
denote scene classification employing the mean and standard
deviation-based spectral, GLCM-based texture, and SIFT-based
structural features, respectively. CAT denotes the conventional
multifeature fusion method which concatenates the spectral,
texture, and SIFT features before k-means clustering. The pro-
posed method that fuses the three features at the semantic latent
allocation level is referred to as the SAL strategy. SVM was
performed employing the LIBSVM package [54]. For the free
parameters C and γ of SVM with the RBF kernel, a grid-search
strategy was employed for the model selection. The multifea-
ture latent semantic allocation vectors of the training data and
testing data were put together and normalized between 0 and 1.

B. Experiment 1: Four-Class USGS Image Data Set

This experimental data set consists of 100 color aerial or-
thophotographs from the USGS, covering Montgomery County,
Ohio, USA. These images mainly contain four scene classes:



ZHONG et al.: SCENE CLASSIFICATION BASED ON MULTIFEATURE FUSION PROBABILISTIC TOPIC MODEL 6213

Fig. 6. Example images from the four-class USGS image data set. (a) Residential area. (b) Farm. (c) Forest. (d) Parking lot.

residential area, farm, forest, and parking lot, as shown in Fig. 6,
with a spatial resolution of 2 ft. The original large images were
split into a series of small experimental images with the size
of 150× 150 pixels. The four scene classes of residential area,
farm, forest, and parking lot comprised 143, 133, 100, and
139 small images, respectively. A total of 50 images were
randomly chosen from each scene class as the training samples,
and the rest were used for testing.

1) Evaluation of the Multiple Feature Extraction of SAL-
PTM: In Table II, the results of SPECTRAL for the pLSA
model and LDA model are better than those of TEXTURE
and SIFT. This is in accordance with the knowledge that the
spectral feature is the fundamental information in HSR remote
sensing images. However, the weakness is also apparent since
the mean and standard deviation-based spectral feature cannot
represent the complex spatial relationships between pixels in
the patch. Hence, we chose GLCM [43] for the texture feature
and SIFT [44] for the structural feature to combine with the
spectral feature. It can be seen that the results obtained by SAL
outperform SPECTRAL. This infers that the texture and SIFT
features can compensate for the spectral feature, and the com-
bination of the spectral, texture, and SIFT features can improve
the scene classification performance of HSR images.

2) Evaluation of the Proposed Procedure of SAL-PTM:
Table II shows the overall classification accuracies for the
USGS data set with LDA and pLSA for the different feature
strategies. The classification accuracies of SAL are 96.19%
and 97.46% for the pLSA model and LDA model, respectively,
which are higher than the classification accuracies of all the
single-feature strategies and the conventional CAT at 94.60%
and 94.89%. An interesting observation is that SPECTRAL
performs no worse than CAT. This can be tolerated, as long
as the result of CAT is better than the worst result of the single-
feature strategies. This is mainly due to the inadequate fusion
capacity of k-means clustering and the mutual interference
between different features.

3) Evaluation of the Different Topic Models Adopted by
SAL-PTM: We also compared the pLSA model with the LDA
model. As can be seen from Table II, the classification results
of LDA are slightly better than those of pLSA with the same
feature strategy. LDA is a complete PTM, due to the definition
of a probability function for the original discrete latent semantic
allocation in pLSA. Compared with LDA, pLSA takes less time
and resolves parameters more easily. This indicates that pLSA
and LDA can both achieve good performances for HSR image
scene classification.

Fig. 7. Confusion matrix of SAL-LDA with the four-class USGS data set.

Fig. 7 displays the confusion matrix of SAL-LDA for the
four-class USGS data set. As can be seen in the confusion
matrix, there is some confusion between certain scenes. For in-
stance, some scenes belonging to the residential area are clas-
sified as parking lot. This is, however, reasonable as there are
many parking lots alongside the residential areas.

To allow a better visual inspection, some of the classification
results of CAT-LDA and SAL-LDA are shown in Fig. 8.

C. Experiment 2: The UC Merced Image Data Set

To compare the scene classification performance of the pro-
posed approach with the results of Yang and Newsam in 2010
[53] and Cheriyadat in 2014 [14], we tested the classification
performance with the challenging UC Merced data set. The
challenging UC Merced evaluation data set was downloaded
from the USGS National Map Urban Area Imagery collection
[55]. It consists of 21 land-use scenes, which are manually la-
beled as follows: agricultural, airplane, baseball diamond,
beach, buildings, chaparral, dense residential, forest, golf
course, harbor, intersection, medium density residential, mobile
home park, overpass, parking lot, river, runway, sparse residen-
tial, storage tanks, and tennis courts, as shown in Fig. 9. Each
class separately consists of 100 images, which were cropped to
256× 256 pixels, with a spatial resolution of 1 ft. The training
samples were randomly selected from the UC Merced data set,
and the remaining samples were retained for testing. The num-
ber of training samples per class was set from 20 to 80 with an
interval of 10,to test the effect of the number of training sam-
ples per class, and the test results are given in Section V.
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Fig. 8. Some of the classification results of CAT-LDA and SAL-LDA. The first, second, and third lines correspond to the scene classes of residential area, farm,
and parking lot, respectively. (a) Correctly classified images for all the strategies. (b) Images which are classified correctly by SAL-LDA, but incorrectly classified
by CAT-LDA.

Fig. 9. Example images from the 21-class UC Merced data set.

In this experiment, following the experimental setup in [55],
80 samples were randomly selected per class for training, and
the remaining images were kept for testing. In addition, to fur-
ther compare the proposed combination and fusion approach,
the results of the feature combination and fusion method of
Faria et al. [38] with the UC Merced data set were chosen for
comparison. The color descriptors used in this experiment were
border/interior pixel classification, the color coherence vector,
and the global color histogram. The texture descriptors were
the local activity spectrum and the quantized compound change
histogram. The edge orientation autocorrelogram was used as

the shape descriptor. Six learning methods were also chosen:
naive Bayes (NB), decision tree, NB tree, and three k-nearest
neighbors (k-NN)strategies, using k = 1, k = 3, and k = 5.
Faria et al. [38] performed the meta-learning methods with
36 classifiers (6 descriptors × 6 learning methods), using the
SVM classifier with the RBF kernel. The parameters in the ex-
periment were set according to the recommendations of the
authors. The experimental results are presented in Table V.

1) Evaluation of the Multiple Feature Extraction of SAL-
PTM: As can be seen in Table IV, SPECTRAL does not always
acquire the highest classification accuracies. The classification
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TABLE V
COMPARISON WITH THE PREVIOUS REPORTED ACCURACIES FOR THE UC MERCED DATA SET

Fig. 10. Confusion matrix for SAL-LDA with the UC Merced data set.

result of TEXTURE, 78.33% for the pLSA model, is the best
among the single-feature strategies. This is mainly due to the
complex structure in the UC Merced data set. The results ob-
tained by SAL are superior to that of the spectral strategies,
which confirms the effectiveness of the combination of the
spectral, texture, and SIFT features.

2) Evaluation of the Proposed Procedure of SAL-PTM:
Among the five feature strategies, the classification perfor-
mance of SAL, 87.62% and 88.33% for the pLSA model and
LDA model, respectively, is the best, as shown in Table IV.
These results are consistent with the analysis in Experiment 1.
In Table V, it can be seen that, when compared to the best clas-
sification performances using the UC Merced data set, SAL-
pLSA and SAL-LDA perform even better. When compared to
the feature combination and fusion method of Faria et al. [38],
SAL-pLSA and SAL-LDA can also obtain better results.

3) Evaluation of the Different Topic Models Adopted by
SAL-PTM: As can be seen from Table IV, the PTM, including
pLSA and LDA, can achieve good performances for HSR image
scene classification. The classification results of pLSA for
TEXTURE and SIFT are better than those of LDA. For the other
strategies, LDA performs better. This indicates that neither
LDA nor pLSA are superior to the other, and the classification
performance depends on the experimental data set.

An overview of the performance of SAL-LDA is shown in
the confusion matrix in Fig. 10. On the whole, most of the scene
classes achieve good classification performances, and the agri-
culture, beach, chaparral, harbor, and river classes can be fully

recognized by SAL-LDA. There is some confusion between
golf course and baseball diamond, dense residential and mobile
home park, and freeway and overpass. This can be explained by
the fact that the pairs of classes have similar spectral or structu-
ral features, such as both golf course and baseball diamond fea-
turing vegetation cover and bare ground. In addition, it can be
seen that some classes, such as storage tanks and airplane, have
distinctive shape characteristics. Therefore, more work needs to
be done with regard to the use of the shape feature.

To allow a better visual inspection, some of the classification
results of CAT-LDA and SAL-LDA are shown in Fig. 11.

D. Experiment 3: Semantic Annotation of the Original
Large Image

The size of the large image was 10 000× 9000 pixels, as
shown in Fig. 12(a). In the annotation experiment, each class
consisted of 50 training images with a size of 150× 150 pixels.
The large image was split into a set of small overlapping images
of 150× 150 pixels. In an empirical way, the overlap between
two adjacent small images was set to 25 pixels. Hence, the spa-
tial information lost during the large image sampling could be
preserved. For the small images, the spectral, texture, and SIFT
features also performed well when the patch size was set to
9× 9 pixels and the overlap between two adjacent patches was
set to three pixels. In the following procedure, all the small
images were annotated with scene labels by the different feature
strategies under the optimal parameter settings in Experiment 1.
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Fig. 11. Some of the classification results of CAT-LDA and SAL-LDA. The first, second, third, fourth, and fifth lines correspond to the scene classes of baseball
diamond, dense residential, freeway, storage tanks, and tennis court, respectively. (a) Correctly classified images for all the strategies. (b) Images classified correctly
by SAL-LDA, but incorrectly classified by CAT-LDA.

Fig. 12. Semantic annotation of the four-class USGS large image. (a) Original large image to be annotated. (b) Ground reference data.
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TABLE VI
NUMBERS OF LABELED SAMPLES OF THE FOUR SCENES

To check whether the differences between the annotation
results were meaningful, McNemar’s test was employed to
determine the statistical significance of the differences observed
in two annotation results using the same test set [56]. Given two
classifiers C1 and C2 (e.g., CAT-LDA and SAL-LDA), the num-
ber of pixels misclassified by C1 but not by C2 (M12), and the
number of cases misclassified by C2 but not by C1 (M21) were
compared. If M12 +M21 ≥ 20, the X2 [where X2 is defined
by (12)] statistic could be considered as following a chi-squared
distribution with one degree of freedom [57]. Given a signifi-
cance level of 0.05, χ2

0.05,1 = 3.841459, and if the McNemar’s

value was greater than χ2
0.05,1, the two classifiers were signif-

icantly different. The case of M12 +M21 < 20, for which the
chi-squared approximation should not be applied, did not occur
in the experiment

X2 =
(|M12 −M21| − 1)2

M12 +M21
≈ χ2

1. (12)

A visual comparison and quantitative evaluation were con-
sidered to assess the semantic annotation results. To evaluate
the annotation accuracy, a field map is provided in Fig. 12(b),
based on ground reference data. Table VI provides the numbers
of labeled samples of the four scenes. The spectral feature
reflects the fundamental and important information in HSR im-
ages and was used as the annotation feature in [34]. Hence, the
spectral feature strategy was selected as the single-feature strat-
egy for the large image annotation. The final visual results of the
scene annotation acquired by the SPECTRAL, CAT, and SAL
strategies with the pLSA and LDA models (denoted as s-pLSA,
CAT-pLSA, SAL-pLSA, s-LDA, CAT-LDA, and SAL-LDA)
are shown in Fig. 13.

On the whole, most of the scene regions are annotated cor-
rectly, particularly the residential area scene and the farm scene.
It can be seen that CAT-pLSA, CAT-LDA, SAL-pLSA, and
SAL-LDA perform better than s-pLSA and s-LDA in the classi-
fication of the parking lots surrounded by the residential areas.
Cut from Fig. 13(a)–(c), respectively, (g), (h), and (i) represent
the same regions, to allow a detailed evaluation. In these three
images, SAL-pLSA and CAT-pLSA can recognize the farm
scene, while s-pLSA cannot. SAL-LDA improves the annota-
tion performance in the distribution of residential area, which
can be seen from the comparison of (j), (k), and (l). Among
all the annotation results, SAL-pLSA and SAL-LDA obtain the
best performances from the visual inspection. However, some
misclassifications do occur, due to the unknown scene classes
in the test images. For instance, the main roads are annotated as
a parking lot scene or residential area scene. Hence, more work
is needed to further define semantic concepts that cover all the
possible area types or to add a reject class for the test image.

For the quantitative evaluation of the results, the correspond-
ing annotation accuracies, evaluated by pixels, are presented in
Table VII. From Table VII, it can be seen that the accuracies of
SAL-LDA and SAL-pLSA for the residential scene and parking
lot scene are higher than that of the other methods. CAT-pLSA
and CAT-LDA obtain higher overall accuracies than s-pLSA
and s-LDA, respectively, with SAL-pLSA and SAL-LDA ob-
taining the highest overall accuracies. This result infers that
the proposed fusion procedures of SAL and the combination
of the spectral, texture, and SIFT features in SAL both work
effectively.

In addition to the annotation accuracy, Table VIII provides a
pairwise comparison of the six methods using the McNemar’s
test for the USGS data set. In order to evaluate the statistical
significance of the annotation results, we randomly selected
about one-ninth of the test samples for the McNemar’s test. As
shown in Table VIII, all the McNemar’s values of SAL-pLSA
and SAL-LDA are greater than the critical value of χ2

0.05,1

(3.841459), which means that the differences are significant and
SAL-PTM performs better than the other methods.

V. SENSITIVITY ANALYSIS

The number of visual words V generated by the k-means
clustering plays a significant role in HSR image scene classif-
ication. Hence, a sensitivity analysis between the visual word
number V and the four methods (CAT-pLSA, CAT-LDA,
SAL-pLSA, and SAL-LDA) was carried out. In addition, to
investigate the effectiveness of the PTM, as applied to scene
classification, we analyzed the sensitivity of the topic number
K mined by the PTM for the four methods. The effects of
the number of training samples per class and the different
classifiers for HSR image scene classification were also tested.
The 21-class UC Merced data set was used for the sensitivity
analysis.

A. Sensitivity Analysis in Relation to the Visual Word NumberV

To investigate the sensitivity of CAT-PTM (CAT-pLSA and
CAT-LDA) and SAL-PTM (SAL-pLSA and SAL-LDA) in re-
lation to parameter V , the values of the patch scale, the overlap,
and the topic number K were kept constant at 9, 3, and 210,
respectively. The visual word number V was then varied over
the range of [1000, 1500, 2000, 2500, 3000, 3500] for the UC
Merced data set.

As shown in Fig. 14, it can be clearly seen that SAL-PTM is
superior to CAT-PTM over the entire range. With the increase in
the visual word number V , the classification accuracy of CAT-
PTM tends to decline, while the accuracy of SAL-PTM tends
to increase. SAL-LDA obtains the highest accuracy of 88.33%
when V is 3000. CAT-LDA provides an overall precision of
77.29% when V is 1000, with all of the methods being sensitive
to the visual word number V .

B. Sensitivity Analysis in Relation to the Topic Number K

To study the sensitivity of CAT-PTM (CAT-pLSA and CAT-
LDA) and SAL-PTM (SAL-pLSA and SAL-LDA) in relation
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Fig. 13. Visual results of the semantic annotation of the original large image containing four semantic classes: (Brick red) Residential area, (yellow) farm, (green)
forest, and (purple) parking lot, with the six methods (a) s-pLSA, (b) CAT-pLSA, (c) SAL-pLSA, (d) s-LDA,(e) CAT-LDA, and (f) SAL-LDA. (g), (h), and (i) are
detailed comparisons of the same regions from (a), (b), and (c), respectively. (j), (k), and (l) are detailed comparisons of the same regions from (d), (e), and (f),
respectively.
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TABLE VII
ANNOTATION ACCURACIES WITH THE USGS DATA SET FOR THE DIFFERENT FEATURE STRATEGIES

TABLE VIII
MCNEMAR’S TEST FOR THE USGS DATA SET

Fig. 14. Sensitivity analysis of CAT-PTM and SAL-PTM in relation to the visual word number V . (a) pLSA model. (b) LDA model.

Fig. 15. Sensitivity analysis of CAT-PTM and SAL-PTM in relation to the topic number K. (a) pLSA model. (b) LDA model.

to parameter K, the values of the patch scale, the overlap, and
the visual word number V were kept constant at 9, 3, and 3000.
The topic number K was varied over the range of [120, 140,
160, 180, 200, 220] for the 21-class UC Merced data set.

From Fig. 15, it is notable that SAL-PTM obtains a remark-
able performance, which far transcends that of the conventional
CAT-PTM. Comparing Figs. 14 with 15, it can be clearly
seen that the results of CAT-PTM and SAL-PTM display a
greater fluctuation in relation to the visual word number V , and

CAT-PTM and SAL-PTM are less sensitive to the topic number
K. Therefore, the number of topics can be set as fixed at first to
determine the optimal number of visual words.

C. Sensitivity Analysis in Relation to the Number of Training
Samples per Class

The effect of the number of training samples per class
for CAT-PTM (CAT-pLSA and CAT-LDA) and SAL-PTM
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Fig. 16. Sensitivity analysis of CAT-PTM and SAL-PTM in relation to the number of training samples. (a) pLSA model. (b) LDA model.

Fig. 17. Sensitivity analysis of the different methods in relation to different classifiers. (a) pLSA model. (b) LDA model.

(SAL-pLSA and SAL-LDA) was tested using the 21-class UC
Merced data set. The number of training samples in each scene
class was set from 20 to 80 with an interval of 10. In the
experiment, the training samples were randomly selected from
the data set, and the remaining images were kept for testing. As
shown in Fig. 16, the proposed SAL-PTM performs better and
is relatively stable with the increase in the number of training
samples per class, when compared to CAT-PTM.

D. Sensitivity Analysis in Relation to Different Classifiers

In order to study the effect of different classifiers for the
PTM-based HSR image scene classification, the SPECTRAL,
TEXTURE, SIFT, CAT, and SAL strategies with the pLSA
and LDA models (denoted as s-pLSA, t-pLSA, S-pLSA,
CAT-pLSA, SAL-pLSA, s-LDA, t-LDA, S-LDA,CAT-LDA,
and SAL-LDA) were tested using the k-NN, spectral angle
mapper (SAM), and SVM classifiers, respectively. All the
experimental results were obtained under the optimal parameter
settings for the 21-class UC Merced data set. The values of
K for k-NN were set to 3 for the SPECTRAL and SAL
strategies, 1 for the TEXTURE and SIFT strategies, and 4 for
the CAT strategy, respectively. It can be seen from Fig. 17 that
SVM outperforms k-NN and SAM for all the methods, which
confirms that SVM is an appropriate classifier for PTM-based
HSR image scene classification.

VI. CONCLUSION

In this paper, an effective SAL multifeature fusion strategy
based on PTM is proposed for HSR image scene classification
(SAL-PTM). Considering the abundant information and com-
plex structure in HSR images, SAL-PTM efficiently combines
three complementary features. We chose the mean and standard
deviation for the spectral feature, GLCM for the texture feature,
and SIFT for the structural feature. The combination of the three
features is able to capture the characteristics of HSR imagery.

In contrast to CAT-PTM, the three feature vectors in
SAL-PTM are separately extracted and quantized by k-means
clustering. This circumvents the inadequate fusion capacity of
k-means clustering. The latent semantic allocations from the
complete visual dictionary are mined by PTM separately and
are then fused into the final semantic allocation vector. The pro-
posed method is able to yield abundant low-level feature de-
scriptions and adequate semantic allocations, and on this basis,
accurate high-level concepts can be obtained for HSR imagery.

Experiments performed on a USGS data set and the UC
Merced data set confirmed that the proposed SAL-PTM out per-
forms the conventional CAT-PTM and the single-feature meth-
ods. In our future work, we will consider other topic models
which can relax the normalization constraint of the PTM. More-
over, other texture, shape, or structural features which are more
appropriate for HSR images will be explored for HSR image
scene classification.
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