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Abstract— In high spatial resolution (HSR) imagery scene
classification, it is a challenging task to recognize the high-level
semantics from a large volume of complex HSR images. The prob-
abilistic topic model (PTM), which focuses on modeling topics,
has been proposed to bridge the so-called semantic gap. Con-
ventional PTMs usually model the images with a dense semantic
representation and, in general, one topic space is generated for all
the different features. However, this approach fails to consider the
sparsity of the semantic representation, the classification quality,
as well as the time consumption. In this paper, to solve the
above problems, a fully sparse semantic topic model (FSSTM)
framework is proposed for HSR imagery scene classification.
FSSTM, with an elaborately designed modeling procedure, is able
to represent the image with sparse but representative semantics.
Based on this framework, the topic weights of multiple features
are exploited by solving a concave maximization problem, which
improves the fusion of the discriminative semantic information
at the topic level. Meanwhile, the sparsity and representativeness
of the topics generated by FSSTM guarantee that the image is
adaptive to the change of a topic number. FSSTM can consistently
achieve a good performance with a limited number of training
samples, and is robust for HSR image scene classification. The
experimental results obtained with three different types of HSR
image data sets confirm that the proposed algorithm is effective
in improving the performance of scene classification, and is
highly efficient in discovering the semantics of HSR images when
compared with the state-of-the-art PTM methods.

Index Terms— Fusion, high spatial resolution (HSR) imagery,
limited training samples, probabilistic topic model (PTM), scene
classification, sparsity.

I. INTRODUCTION

ALARGE amount of high spatial resolution (HSR) images
with abundant spectral and spatial information are now

available. With a spatial resolution of up to half a meter, the
HSR images can enable more accurate surface observation.
Object-based and contextual-based methods have been widely
applied to HSR images, and can achieve precise object recog-
nition [1], [2]. However, an HSR scene is often composed
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of diverse objects, such as buildings, trees, and roads. Even
when land-use objects or regions can be recognized correctly,
manual interpretation of the high-level semantics of the scenes
is often essential for many applications of HSR image analysis,
such as ecological analysis in public health studies, land-cover
classification, and urban mapping and monitoring [3]. The
same scenes may contain different land-cover objects, and
the same type of objects may differ in the spectral, textural,
and structural characteristics. Different spatial arrangements
of the same type of objects may also lead to different scenes.
Based on the low-level features, the traditional methods are
unable to capture the complex semantic concepts of HSR
images. This leads to a divergence between the low-level
data and the high-level semantic information, namely, the
so-called semantic gap [4]. According to the geographical
properties, scene classification can be used to automatically
label an HSR image to obtain regions with different semantic
informations.

Scene classification methods based on semantic object
recognition and local visual words are used to capture the
high-level semantics of HSR images [8]–[10]. On the other
hand, deep learning approaches have consistently presented
their superiority in remote sensing tasks [5]–[7]. However,
these methods usually require a large number of train-
ing samples, high time consumption, and high-level hard-
ware. Hu et al. [46] transferred features from a pretrained
deep convolutional neural network (CNN) for HSR image
scene classification. The gradient-boosting CNN framework,
which effectively combines different deep neural networks,
is also effective for HSR scene classification [47]. Among
the diverse scene classification methods, the bag-of-visual-
words (BOVW) model [12]–[14], as an intermediate feature
representation method, has been successfully applied to cap-
ture the high-level information of HSR scenes, without the
recognition of objects. The probabilistic topic models (PTMs),
such as probabilistic latent semantic analysis (PLSA) [15]
and latent Dirichlet allocation (LDA) [16], [17], mine the
latent topics from the images to represent the scenes as a
random mixture of visual words. PTMs have been success-
fully employed to solve the challenges of HSR image scene
classification [18]–[21].

In the previous PTM-based scene classification approach,
LDA is utilized as both the feature extractor and scene
classifier [19], where an image is assigned to the class that
maximizes the likelihood inferred by LDA. However, in this
way, multiple models are built for the different scene classes,
and the correlations between the latent topic spaces of different
scene classes are not considered. For the LDA model, i.e.,
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SAL-LDA [22], the distribution of the topic variables in LDA
is drawn from a Dirichlet distribution with the parameter,
and the topic variable is greater than 0, no matter how α
varies [16]. To acquire more semantic information from a
large number of images, the number of topics may have to be
increased. However, this dense semantic representation usually
contains a lot of unrepresentative information for the scene,
which requires more storage space and is time-consuming with
the complex topic modeling. To solve this problem, some
researchers have imposed sparsity constraints on the topics
to change the objective function of the model [26], [27].
However, these models usually require model selection with
many regularization term-based auxiliary parameters, which
may be problematic with large-scale data sets.

In addition, the performance of the popular scene classifi-
cation methods is usually heavily dependent on the number
and the quality of the training samples. Fivefold cross val-
idation is often performed to evaluate an experimental data
set, to guarantee enough training samples for the HSR image
scene classification [8], [9]. However, the annotation of the
training samples may be impossible due to many real-world
problems, and usually costs a lot of time [31]. It is, therefore,
expected that only a few training samples are used to train the
classification model, which is important in practice for limited
training samples.

The fully sparse topic model (FSTM) [28], which does
not employ the Dirichlet prior, was proposed for the mod-
eling of large collections of documents with a sparse latent
representation. To date, in addition to the use in natural
language analysis, FSTM has been applied to content-based
video retrieval [29] and abnormality detection in traffic videos.
FSTM is able to discover the latent motion patterns in the
video to detect abnormal events [30]. However, when directly
using FSTM for scene classification, it is unable to generate
discriminative semantics for the HSR images. Multifeature-
based scene classification methods have been proposed and
are effective in discriminating the semantic information of
different scenes [23]–[25]. In general, one dictionary and
one semantic space are acquired for the multiple features,
because the different features are usually fused before k-means
clustering. As the k-means algorithm is not efficient in the
high-dimensional feature space, this approach is unable to
circumvent the inadequate clustering capacity of the hard-
assignment-based k-means algorithm [14]. This also leads to
mutual interference between the multiple features.

In this paper, we simultaneously tackle these problems by
proposing the fully sparse semantic topic model (FSSTM).
First, the heterogeneous features are extracted from the
scenes, and are quantized separately to circumvent the hard-
assignment effect of k-means clustering. The FSSTM is then
employed to mine the sparse latent topics from the low-level
feature representation. The weights of the different types of
features are optimized by solving a concave maximization
problem in FSSTM, which leads to improved fusion of the
multiple types of sparse topics. Derived from the sparse
prior, the sparse and heterogeneous topics are fused at the
topic level, and a generative/discriminative hybrid strategy is
used to classify the scenes. The proposed generative model,

FSSTM, is used to extract the topic features, and the dis-
criminative classifier, support vector machine (SVM) with a
histogram intersection kernel (HIK), is effective in increasing
the discrimination of different scenes. FSSTM with sparse
semantic distribution changes little when the topic number set
is manually increased. This is consistent with the fact that an
image can usually be explained by only a few representative
topics, which contribute a lot to the semantic understanding
of the image. This implies that FSSTM is able to robustly
discover compact and effective semantics from an image.

The main contributions of this paper are presented as
follows.

1) We propose the FSSTM framework to discover intrinsic
low-level information from the image, and represent
complex HSR images with sparse topics. To capture the
important correlation between the multiple topic spaces
of various scene classes, a generative/discriminative
hybrid strategy is utilized. In this way, we can both
speed up the traditional PTMs, i.e., LDA and FSTM, and
extract powerful high-level semantics for the subsequent
scene classifier.

2) An effective procedure is elaborately designed for scene
classification. The different types of features are con-
verted into heterogeneous 1-D histograms based on
multiple dictionaries, and multiple latent topic spaces
are proposed for the holistic scene representation of
HSR images. The inference task of optimization is
reformulated as a concave maximization problem, which
leads to improved fusion of the multiple types of topics,
and thus, a sparse but representative semantic description
is obtained for HSR scenes.

3) We explore a robust PTM, which is adaptive to the
change of the number of training samples. FSSTM
presents a better performance than the existing rele-
vant methods, even with a limited number of training
samples, and is more in line with practical applications.
The time consumption is greatly reduced compared with
the conventional FSTM and the classical PTM. We per-
formed extensive experiments to verify the accuracy and
efficiency of the proposed method with diverse data sets,
including an aerial image and two satellite images.

The rest of this paper is organized as follows. Section II
introduces the background to the PTM. Section III details
the procedure of the proposed FSSTM for HSR image scene
classification. A description of the experimental data sets
and an analysis of the experimental results are presented in
Section IV. A sensitivity analysis is given in Section V. Finally,
the conclusions are provided in Section VI.

II. BACKGROUND

The BOVW model has been a popular approach for content-
based image classification due to its simplicity and good per-
formance. The methods using the BOVW model are strongly
reliant on the extraction of the low-level features, which are
the aggregation of the local image information. However, the
investigation of strong discriminative power and invariant pros-
perities to geometrical changes in the complex HSR images
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Fig. 1. Probabilistic graphical model of PLSA.

Fig. 2. Probabilistic graphical model of LDA.

needs much prior knowledge and expertise in related fields.
This is difficult and time-consuming, especially in the case of
massive images [32].

A. Classical Probabilistic Topic Models

Based on the BOVW model, the PLSA model was proposed
by Hofmann [15] in 2001. As shown in Fig. 1, the nodes D,
Z, and W represent the image, the topic, and the visual word,
respectively. The index of the N local patches is denoted as j ,
the index of M images is denoted as i , and the index of the
topics is denoted as k. By choosing a topic zk with probability
θ = p(zk|di ) from K topics, and a word w j with probability
β = p(w j |zk), the probability p(w j |di) between visual words
w j and images di can be decomposed as (1)

p(w j |di ) =
K∑

k=1

p(w j |zk)p(zk |di). (1)

However, PLSA lacks a probability function to describe the
images, which means that the number of model parameters
grows linearly with the size of the images [44].

In 2003, Blei et al. [16] proposed LDA, which introduces
the Dirichlet distribution to the topic mixture θ based on
the PLSA model, as shown in Fig. 2. The K -dimensional
random variable θ = {θ1, . . . , θi , . . . , θM }, where θi =
{θi1, . . . , θik , . . . , θi K }, follows a Dirichlet distribution with
parameter α = {α1, . . . , αk , . . . , αK }. LDA provides a proba-
bility function for the discrete latent topics in PLSA, and is,
therefore, a complete PTM.

LDA has been widely applied to spatial analysis [20],
semantic object clustering [33], and HSR image scene classi-
fication [19], [22]. However, the Dirichlet variable is greater
than 0 when varies. The latent semantics mined from images
by LDA are dense when a large amount of images are mod-
eled, which results in a lot of useless information and requires
a lot of storage space. The topic modeling is, therefore,
complex and takes a lot of time.

B. Fully Sparse Topic Model

In 2012, FSTM was proposed by Than and Ho [28] and was
applied to supervised dimension reduction. FSTM is a simpli-
fied variant of PLSA and LDA. It removes the endowment of

Fig. 3. Probabilistic graphical model of FSTM.

the Dirichlet distribution of LDA, and deliberately allows only
a few topics to contribute to an image. It is also a variant of
PLSA when removing the observed variable associated with
each document. In more detail, FSTM assumes that an image
is represented as K topics, denoted by β1, . . . βK . Given a data
set consisting of M images d, each image can be described
by a set of N visual words w j .

The generative process with FSTM follows two steps for
each image.

1) Randomly choose a K -dimensional topic proportion θ .
2) For the j th word in d, the following hold.

a) Choose a latent topic zk with probability
P(zk |d) = θk .

b) Generate a word w j with probability
P(w j |zk) = βkj .

Despite being a simplified variant, FSTM has many interest-
ing properties. Even though there is no explicit prior over the
topic proportions, it was shown in [28] that an implicit prior
does in fact exist. The implicit prior conforms to the density
function

p(θ |λ) ∝ exp(−λ · ‖θ‖0) (2)

where ‖θ ||0 is the number of nonzero entries of θ . The latent
topic proportion θ in FSTM follows an implicit constraint
‖θ ||0 ≤ L + 1, where L is the iteration times. This property is
a consequence of the sparse inference in FSTM. It is termed
implicit modeling, and it allows FSTM to be able to converge
at a linear rate to the optimal solutions. Hence, we chose
FSTM with sparse solutions to model the HSR imagery in
this paper. FSTM utilizes a graphical model to represent the
relationship between the image, topic, and visual word, as
shown in Fig. 3. However, when using FSTM to discover
sparse information, it is unable to capture the complex spatial
arrangements of HSR images when it is directly applied to
scene classification.

III. SCENE CLASSIFICATION BASED ON THE FULLY

SPARSE SEMANTIC TOPIC MODEL

To effectively utilize sparse but representative semantic
information, the FSSTM framework is proposed for HSR
image scene classification. Four tasks have to be addressed for
the scene classification (Fig. 4): 1) extracting heterogeneous
low-level features from each image patch to describe the
complex image; 2) mining sparse but adequate latent semantics
using the FSSTM model; and 3) latent semantic fusion and
classification with the SVM classifier. The overall flowchart
of scene classification based on the FSSTM model is shown
in Fig. 4.



5528 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 55, NO. 10, OCTOBER 2017

Fig. 4. Flowchart of scene classification based on the FSSTM model for HSR imagery.

Fig. 5. HSR images of the parking lot, harbor, storage tanks, dense
residential, forest, and agriculture scene classes. (a1) and (a2) Importance
of the spectral characteristics for HSR images. (b1) and (b2) Importance of
the structural characteristics for HSR images. (c1) and (c2) Importance of the
textural characteristics for HSR images.

A. Heterogeneous Feature Description

In Fig. 5(a1) and (a2), the home park and harbor scene
classes are similar in the structural and textural characteristics,
and the spectral feature is most effective in distinguishing
them. From Fig. 5(b1) and (b2), it can be seen that the
industrial scene and residential scene differ in their structural
characteristics. In addition, it is clear that the forest scene
and agriculture scene differ in their textural characteristics.
To capture the distinctive characteristics of the complex
scenes, three complementary features are designed for the HSR
imagery scene classification task. Before the feature descriptor
extraction, the images are split into image patches using the
uniform grid sampling method.

1) The spectral feature reflects the attributes that constitute
the ground components and structures. The first-order
statistics of the mean value and the second-order statis-
tics of the standard deviation value of the image patches
are calculated in each spectral channel as the spectral
feature. According to

mean j =
∑n

i=1 vi

n
(3)

std j =
√∑n

i=1 (vi j − mean j )
2

n
(4)

n is the total number of image pixels in the sampled
patch, and vi j denotes the j th band value of the i th
pixel in a patch. In this way, the mean (mean j ) and
standard deviation (std j ) of the spectral vector of the
patch are then acquired.

2) The texture (TEX) feature contains information about
the spatial distribution of the tonal variations within
a band [34], which can give consideration to both
the macroscopic properties and fine structure. Wavelet
transforms enable the decomposition of the image into
different frequency subbands, which is similar to the
way the human visual system operates [35]. This makes
it especially suitable for image classification. Multi-
level 2-D wavelet decomposition is utilized to capture
the TEX feature from the HSR images. The level of
the wavelet decomposition for the images is optimally
set to 3.

3) The scale-invariant feature transform (SIFT) feature [36]
has been widely applied in image analysis, since it can
overcome the addition of noise, affine transformation,
and changes in illumination, as well as compensating
for the deficiency of the spectral feature for HSR
imagery. Each image patch is split into neighborhood
regions, and each direction for each gradient orientation
histogram is counted in each region. Hence, the gray
dense SIFT descriptor with 128 dimensions is extracted
as the structural feature. This was inspired by previous
work, in which dense features performed better for scene
classification [37]. In addition, Lowe [36] suggested that
using a 4 × 4 × 8 = 128-dimension vector to describe
the key-point descriptor is optimal.

B. Latent Semantic Mining Based on FSSTM

The previous studies have shown that a uniform grid sam-
pling method can be more effective than other sampling meth-
ods, such as random sampling [37]. As a PTM, FSSTM utilizes
a visual analog of a word, acquired by vector quantizing
the region descriptors [18]. In this way, the image patches
acquired by uniformly sampling the HSR images are digitized
by S types of features, and all the types of feature descriptors,
D1, . . . , DS , are obtained. However, with the influence of
illumination, rotation, and scale variation, the same visual
word in different images may be endowed with various feature
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Fig. 6. Algorithm inference and learning task of FSSTM for one type of feature.

values. The k-means clustering is applied to quantize the
feature descriptors to generate a 1-D frequency histogram,
where image patches with similar feature values correspond to
the same visual word. By statistical analysis of the frequency
of each visual word, we can obtain the corresponding visual
vocabulary.

The conventional methods usually directly concatenate the
S types of feature descriptors to make up a long feature
F1 = {D1, . . . , DS}, which is named concatenate (CAT)-
FSTM. The long vector is then quantized by k-mean clustering
to generate a 1-D histogram for all the features. However,
as the features interfere with each other when clustering, the
1-D histogram is unable to fully describe the HSR imagery.
Accordingly, FSSTM is designed to avoid the shortcoming of
the conventional methods.

As a statistical method, FSSTM analyzes the visual words
of the original images to discover the topics that run through
them, how these topics are connected to each other, and
how they change over time [17]. By introducing the topics
characterized by a distribution over words, FSSTM models
the images as random mixtures over the latent variable space.
Labeling or annotation of the images is not required in
FSSTM. The scene classification methods using FSSTM are
able to greatly reduce the dimension of the feature vectors for
the representation of the HSR images. In FSSTM, the S types
of features are quantized separately by the k-mean clustering
algorithm to acquire S distinct 1-D histograms, H1, . . . , HS.
By introducing probability theory, each element of the 1-D
histogram for FSSTM is transformed into the word occurrence
probability. To mine the most discriminative semantic features,
which is also the core idea of the PTM, the S histograms are
separately mined by FSSTM to generate S distinct latent topic
spaces. This is different from the conventional strategies which
fuse the S histograms before topic modeling, obtaining only
one latent topic space, which is inadequate.

Hence, given an image data set C, the dth image M
can be described by a set of words w j . Hence, an image
can be represented as M = {w1, . . . , w j , . . . , wN }, where
w j ∈ {1, 2, . . . , V }, and V is the number of visual words
from the visual dictionary. Specifically, FSSTM chooses
a k-dimensional latent variable θ . Then, for each of the

H1, . . . , HS values, K1, . . . , KS topics are assumed to be
mined from the images, respectively. The algorithm inference
and learning task of FSSTM for one type of feature are shown
in Fig. 6. Given K topics β = (β1, . . . , βK ), the log likelihood
of M is defined in

log P(M) =
∑
j∈IM

M j log
K∑

k=1

θkβkj (5)

where IM is the set of term indices of image M, and M j is
the frequency of term j in M. Hence, the inference task is to
search for θd of the dth image to maximize the likelihood of
M. We can obtain

log P(M) =
∑
j∈IM

M j log x j (6)

to set x j = ∑K
k=1 θkβkj and x = (x1, . . . , xV )t . Differing

from the other topic models, FSSTM does not infer θ directly,
but reformulates the inference task of optimization over θ
as a concave maximization problem over the simplex � =
conv(β1, . . . , βK ) of the topic. It can be seen that x is a convex
combination of the K topics β = (β1, . . . , βK ) with

∑
k

θk = 1, θk ≥ 0. (7)

FSSTM uses the Frank–Wolfe algorithm [45] as the infer-
ence algorithm, which follows the greedy approach. For the
lth iteration, we can obtain the topic proportion, as written in

θl+1 : = (1 − α′)θl (8)

where α′ and i ′ are defined by

α′ : = arg max
α∈[0,1] f (αβi ′ + (1 − α)xl) (9)

i ′ : = arg max
i

β t
i ∇ f (xl). (10)

βi denotes the standard unit vectors in �, and α can be solved
by the gradient ascent approach. xl is a convex combination of
at most L + 1 vertices of the simplex � = conv(β1, . . . , βK )
after L iterations, where xl = ∑K

k=1 θlkβk . It implies that at
most l + 1 out of the K -dimension θl are nonzero in FSSTM,
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Fig. 7. Probabilistic graphical model of FSSTM.

which can be shown as the implicit constraint ‖θ‖0 ≤ L + 1.
This provides us with a sparse solution, which is obtained by
converging at a linear rate to the optimal solutions. By finding
x ∈ � that maximizes the objective function (5), we can infer
the latent topic proportion θd of the image M.

Given the topic proportion θd inferred from the inference
task for each image M, the learning task of FSSTM is to learn
the topics β = (β1, . . . , βK ). The log likelihood of the image
data set C can be expressed as logP(C) with the use of Jensens
inequality. The lower bound of logP(C) with respect to β as
written in

g(β) =
∑
d∈C

d j

K∑
k=1

θdk log βkj ,

V∑
j=1

βkj = 1, βkj ≥ 0 ∀k, j

(11)

is then maximized using the Lagrangian multipliers. By forc-
ing its derivatives to be zero, the solutions of the topics are
updated, as written in

βkj ∝
∑

M∈D

d jθdk. (12)

It can be seen that the learning of the topics is simply
a multiplication of the new and old representations of the
training data. In this way, FSSTM is able to undertake the
topic modeling of the image by iterating the inference and
learning task until convergence. The optimal sparse solution
of latent semantic topic proportion θ is obtained for each type
of feature. Then, θ1, . . . , θS are acquired for the representation
of each HSR image, all with the implicit prior λ conforming
to (2). The probabilistic graphical model of FSSTM is shown
in Fig. 7. As can be seen from Fig. 7, when there is one
type of feature and S is equal to 1, FSSTM turns out to
be FSTM, as shown in Fig. 3. FSSTM designs an adequate
feature extraction and fusion strategy to make up for the
shortcomings of CAT-FSTM, and is more appropriate for HSR
scene classification.

The previous work named SAL-LDA [22] also uses
multifeature-based PTM to classify the HSR scenes.
SAL-LDA employs spectral, gray-level co-occurrence matrix
(GLCM)-based TEX, and SIFT features to describe the image,
whereas FSSTM uses wavelets instead of the GLCM as the
TEX feature. Wavelets can provide information about both
the spatial and frequency contents of an image, which makes
them more suitable for analyzing TEX in nonstationary or
nonhomogeneous images, e.g., HSR remote sensing images
[48]. Differing from SAL-LDA, FSSTM reformulates the

inference task as a concave maximization problem, which
improves the fusion of the different types of features. The
number of topics, which make a nonzero contribution to an
image by SAL-LDA, is the same as the topic number, whereas
for FSSTM it is less, and does not change much when the
topic number is manually changed. This results in FSSTM
performing better than SAL-LDA, even with a limited number
of training samples. Furthermore, the semantic information
generated by SAL-LDA is dense, whereas FSSTM with sparse
topic solutions removes the unrepresentative information for
the description of the scenes, and the time consumption is
greatly reduced.

C. Latent Semantic Fusion and Classification

As mentioned in Section III-A, three features, the spectral,
TEX, and structural features, are extracted and clustered to
complementarily describe the HSR images, obtaining H1,
H2, and H3. Hence, the latent semantics of H1, H2, and
H3, denoted as θ1, θ2, and θ3, respectively, are mined by
FSSTM. The semantic features θ1, θ2, and θ3 of all the HSR
images are then fused at the semantic level, thus obtaining the
final semantic feature F2 = {θ1

T , θ2
T , θ3

T }T
, with a sparse

distribution.
Finally, F2 with the optimal discriminative characteristics

is classified by the SVM classifier with an HIK to predict
the scene labels. The HIK measures the degree of similarity
between two histograms, to deal with the scale change, and
has been applied to image classification using color histogram
features [38]. We let Ṽ = (ṽ1, ṽ2, . . . , ṽM ) be the FSSTM
representation vectors of M images, and the HIK is calculated
according to

K (ṽi , ṽ j ) =
∑

k

min(ṽik , ṽ j k). (13)

In this way, FSSTM provides a complementary feature
description, an effective image representation strategy, and
an adequate topic modeling procedure for HSR image scene
classification, even with limited training samples

IV. EXPERIMENTS AND ANALYSIS

A. Experimental Setup for HSR Scene Classification

The commonly used 21-class UC Merced data set and the
12-class Google data set of the scene image data set designed
by the Intelligent Data Extraction and Analysis of Remote
Sensing (RS_IDEA) Group in Wuhan University (SIRI-WHU)
were used to test the performance of FSSTM. The original
large image of the Wuhan IKONOS data set was also used
to test the performance of FSSTM in an image annotation
application. In the experiments, the images were uniformly
sampled with a patch size and spacing of 8 and 4 pixels,
respectively. To test the stability of the proposed FSSTM,
the different methods were executed 100 times by a random
selection of training samples, to obtain convincing results for
the three data sets. A k-means clustering operation with the
Euclidean distance measurement of the image patches from the
training set was employed to construct the visual dictionary,
which was the set of V visual words. K topics were selected
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TABLE I

OPTIMAL K AND V VALUES FOR THE DIFFERENT METHODS WITH THE UC MERCED DATA SET

TABLE II

OPTIMAL K AND V VALUES FOR THE DIFFERENT METHODS WITH THE GOOGLE DATA SET OF SIRI-WHU

TABLE III

OVERALL CLASSIFICATION ACCURACY (%) COMPARISON

WITH THE UC MERCED DATA SET

TABLE IV

OVERALL CLASSIFICATION ACCURACY (%) COMPARISON

WITH THE GOOGLE DATA SET OF SIRI-WHU

for FSSTM. The visual word number V and topic number K
are the two free parameters in the proposed method. Taking
the computational complexity and the classification accuracy
into consideration, V and K were optimally set, as shown
in Tables I and II for the different feature strategies with the
UC Merced data set and the Google data set of SIRI-WHU.
In Tables I–IV, SPE-FSTM, TEX-FSTM, and SIFT-FSTM
denote scene classification utilizing the mean and standard
deviation-based spectral feature, the wavelet-based TEX, and
the SIFT-based structural feature, respectively.

To further evaluate the performance of FSSTM, the exper-
imental results obtained with the conventional CAT-FSTM,
spatial pyramid matching (SPM) [39], PLSA [18], LDA [19],
and the semantic allocation level multifeature fusion strategy
based on LDA (SAL-LDA) [22] are shown for comparison.

Fig. 8. UC Merced data set. (a) Agricultural. (b) Airplane. (c) Baseball
diamond. (d) Beach. (e) Buildings. (f) Chaparral. (g) Dense residential. (h)
Forest. (i) Freeway. (j) Golf course. (k) Harbor. (l) Intersection. (m) Medium
residential. (n) Mobile home park. (o) Overpass. (p) Parking lot. (q) River.
(r) Runway. (s) Sparse residential. (t) Storage tanks. (u) Tennis courts.

We also provide the experimental results obtained with the
UC Merced data set, as published in the latest papers
by Yang and Newsam [8], Cheriyadat [9], Yao et al. [21],
Chen and Tian [40], Mekhalfi et al. [41], Zhao et al. [42],
Hu et al. [46], and Zhang et al. [47]. Dense gray SIFT
was employed with SPM, and the spatial pyramid layer was
optimally selected as one. In addition, the experimental results
obtained for the Google data set of SIRI-WHU with the
conventional CAT-FSTM, SPM [39], PLSA [18], LDA [19],
and SAL-LDA [22] are shown for comparison, along with
the experimental results published in the latest paper by
Zhao et al. [42].

B. Experiment 1: The UC Merced Image Data Set

The UC Merced data set was downloaded from the USGS
National Map Urban Area Imagery collection [8]. This data set
consists of 21 land-use scenes (Fig. 8), namely, agricultural,
airplane, baseball diamond, beach, buildings, chaparral, dense
residential, forest, freeway, golf course, harbor, intersection,
medium residential, mobile home park, overpass, parking lot,
river, runway, sparse residential, storage tanks, and tennis
courts. Each class contains 100 images and measuring pixels,
with a 1-ft spatial resolution. Following the experimental
setup published by Yang and Newsam [8], 80 samples were
randomly selected per class from the UC Merced data set for
training, and the rest were kept for testing.

The classification performance of the single-feature-based
FSTM, the conventional multifeature-based FSTM, the pro-
posed FSSTM, and the comparison with the experimental
results of previous methods for the UC Merced data set
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Fig. 9. Confusion matrix of FSSTM with the UC Merced data set.

is reported in Table III. As can be seen in Table III, the
classification results of the single-feature-based FSTM and
CAT-FSTM are unsatisfactory. The classification accuracy for
the proposed FSSTM, 95.71% ± 1.01%, is the best among
all the different methods, and is much better than the result
of the single-feature strategy. This indicates that the com-
bination of the semantic feature fusion strategy and sparse
representation is able to tradeoff the sparsity and the quality
of the inferred semantic information. In addition, it can be
seen that FSSTM performs better than SPM [39], PLSA [18],
LDA [19], SAL-LDA [22], the Yang and Newsam [8] method,
the Cheriyadat [9] method, the Yao et al. [21] method, the
Chen and Tian [40] method, the Mekhalfi et al. [41] method,
the Zhao et al. [42] method, and the Zhang et al. [47] method.
Compared with FSSTM, the Hu et al. [46] method shows a
slight improvement. However, the Hu et al. [46] method is
implemented by transferring features from pretrained CNNs
models, which requires a large number of training samples to
train the model.

An overview of the performance of FSSTM is shown
in the confusion matrix in Fig. 9. As can be seen in the
confusion matrix, most of the scene classes achieve good
classification performances, and the airplane, beach, chaparral,
forest, overpass, parking lot, and runway scenes can be fully
recognized by FSSTM. There is, however, some confusion
between certain scenes. For instance, some scenes belonging
to the baseball diamond are classified as golf course, storage
tanks, and airplane scenes. This may be because all these
scenes are composed of a mixture of vegetation cover and
bare ground.

To allow a better visual inspection, some of the classification
results of CAT-FSTM and FSSTM are shown in Fig. 10.

C. Experiment 2: The Google Data Set of SIRI-WHU

The Google data set of SIRI-WHU1 was acquired from
Google Earth (Google Inc.), covering urban areas in China,
and SIRI-WHU [14], [42], [43]. The data set consists of 12
land-use classes, which are labeled as follows: agriculture,
commercial, harbor, idle land, industrial, meadow, overpass,

1The Google data set of SIRI-WHU can be downloaded at
http://www.lmars.whu.edu.cn/prof_web/zhongyanfei/e-code.html.

Fig. 10. Some of the classification results of CAT-FSTM and FSSTM. The
first, second, third, and fourth lines correspond to the scene classes of airplane,
dense residential, storage tanks, and tennis court, respectively. (a) Correctly
classified images for all the strategies. (b) Images correctly classified by
FSSTM, but incorrectly classified by CAT-FSTM.

Fig. 11. Google data set of SIRI-WHU. (a) Agriculture. (b) Commercial.
(c) Harbor. (d) Idle land. (e) Industrial. (f) Meadow. (g) Overpass. (h) Park.
(i) Pond. (j) Residential. (k) River. (l) Water.

park, pond, residential, river, and water, as shown in Fig.
11. Each class separately contains 200 images, which were
cropped to 200×200 pixels, with a spatial resolution of 2 m. In
this experiment, 100 training samples were randomly selected
per class from the Google data set of SIRI-WHU, and the
remaining samples were retained for the testing.

The classification performance of the single-feature-based
FSTM, the conventional multifeature-based FSTM, the pro-
posed FSSTM, and the comparison with the experimental
results of previous methods for the Google data set of
SIRI-WHU is reported in Table IV. As can be seen from
Table IV, the classification result of the proposed FSSTM,
97.83% ± 0.93%, is much better than the spectral, TEX, and
SIFT-based FSTM, and the conventional CAT-FSTM method,
which confirms that FSSTM, is an effective approach for
HSR image scene classification. In Table IV, compared with
the other methods, i.e., SPM, SAL-LDA, the LDA method
proposed by Lienou et al. [19], the PLSA method proposed
by Bosch et al. [18], and the method of Zhao et al. [42], the
highest accuracy is acquired by the proposed FSSTM.
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Fig. 12. Examples of scene classification with CAT-FSTM and FSSTM.

Fig. 13. Confusion matrix of FSSTM with the Google data set of SIRI-WHU.

To give a clear comparison of FSSTM and the conventional
CAT-FSTM, examples of scene classification with CAT-FSTM
and FSSTM are shown in Fig. 12, based on the experiments.
The spectral, TEX, and SIFT features are extracted from the
meadow and harbor scenes, respectively. The TEX and SIFT
features of the meadow and harbor scenes are similar, but the
spectral features of the two scene images differ a lot. As the
proportion of the spectral feature is very small among the three
features, by directly concatenating the three types of low-level
features and then quantizing the long vectors by clustering, it
leads to misclassification for CAT-FSTM. On the other hand,
FSSTM fuses the high-level semantics to represent the images,
where the proportion of the spectral feature-based topics is the
same as the TEX and SIFT features, and the meadow scene
can be correctly recognized.

Fig. 13 shows the confusion matrix of FSSTM for the
Google data set of SIRI-WHU. On the whole, most of the
scene classes achieve good classification performances. There
is, however, some confusion between the river scene/harbor
scene and the overpass scene/idle land scene. This can be
explained by the fact that these classes have similar structural
or spectral characteristics, such as both the river scene and
harbor scene featuring water and bank.

To allow a better visual inspection, some of the classification
results of CAT-FSTM and FSSTM are shown in Fig. 14.

Fig. 14. Some of the classification results of CAT-FSTM and FSSTM. The
first, second, third, and fourth lines correspond to the scene classes of harbor,
meadow, overpass, and river, respectively. (a) Correctly classified images for
all the strategies. (b) Images correctly classified by FSSTM, but incorrectly
classified by CAT-FSTM.

D. Experiment 3: Semantic Annotation of the Wuhan
IKONOS Image Data Set

The Wuhan IKONOS data set was acquired by the IKONOS
sensor in June 2009, covering the city of Wuhan in China. All
of the images in the Wuhan IKONOS data set were obtained
by Gram–Schmidt pan-sharpening with ENVI 4.7 software.
The spatial resolutions of the panchromatic images and the
multispectral images are 1 and 4 m, respectively. The Wuhan
IKONOS data set consists of eight land-use scenes, namely,
dense residential, idle, industrial, medium residential, parking
lot, commercial, vegetation, and water, as shown in Fig. 15.
Each class separately contains 30 labeled small images, which
were cropped to 150 × 150 pixels, with a spatial resolution
of 1 m. The size of the large image used for the annotation
experiment was 6150 × 8250 pixels, as shown in Fig. 17(a).

In the annotation experiment, the large image was split into
a set of small overlapping images of 150 × 150 pixels. The
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TABLE V

ANNOTATION ACCURACIES (%) WITH THE WUHAN IKONOS DATA SET FOR THE DIFFERENT SCENE CLASSIFICATION METHODS

Fig. 15. Training images of the Wuhan IKONOS data set. (a) Dense
residential. (b) Idle. (c) Industrial. (d) Medium residential. (e) Parking lot.
(f) Commercial. (g) Vegetation. (h) Water.

annotation experiment produced good results when the overlap
between two adjacent small images was set to 50 pixels. The
final label of the overlapping region was decided according to
the majority voting method. For the small images, the spectral,
TEX, and SIFT features performed well when the patch size
and overlap were set to 8×8 pixels and 4 pixels, respectively.

To evaluate the performance of FSSTM, the experimen-
tal results obtained with SPM [39], PLSA [18], LDA [19],
CAT-FSTM, and the method of Zhao et al. [42] are shown for
comparison. The different methods were evaluated using the
evaluation method published in [19], where 80% of the labeled
images were used as training images, and the remaining
images were used for testing to evaluate the model. To annotate
the large image, all the labeled images were used to train
the model. The different methods were executed 20 times by
random selection of training samples. To visually evaluate the
large annotation maps, the annotation maps were overlaid on
the original images with 50% transparency. From Table V,
it can be seen that the accuracy of FSSTM, 95.83%± 1.74%,
is the highest. This confirms the ability of FSSTM to obtain
a sparse but representative representation for remote sensing
images.

One of the confusion matrices for the Wuhan IKONOS
data set was selected from the results obtained by FSSTM,
as shown in Fig. 16. From Fig. 16, it can be seen that all of
the scenes can be recognized by FSSTM, except for the dense
residential and medium building scenes. This is, however,
reasonable as the dense residential, the medium residential,
and the commercial scenes are composed of similar land-
cover objects, such as buildings, trees, roads, and grass. The
annotation results obtained with FSSTM for the large Wuhan
IKONOS image are shown in Fig. 17(b). As can be seen from
Fig. 17(b), there is some confusion between the commercial
scene and the medium residential scene, as the buildings in the
commercial scene are similar to the buildings in the residential
scenes. Due to the fact that the parking lot scene and the

Fig. 16. Confusion matrix of FSSTM with the Wuhan IKONOS data set.

industrial scene are similar in the TEX characteristics, the two
scene classes also show confusion. Some misclassifications
also occur because the large image contains unknown classes
and scenes, such as road, school, and gymnasium with special
features. Reject classes for areas found in the large image
that do not correspond to any of the example images in the
training samples have not been defined. Hence, the road scene
may be classified as commercial scene, the school scene may
be classified as medium residential scene, and the gymnasium
scene may be classified as industrial scene. In addition, there
are obvious patch effects on the edge of the diverse scenes in
the annotated image. This is a result of the sampling method.
In order to avoid such problems, we plan in our future work to
combine the annotation with geographic data. However, from
the perspective of our remote sensing image analysis expertise,
the overall annotation performance is still satisfactory.

V. SENSITIVITY ANALYSIS

A. Sensitivity Analysis in Relation to the Topic Number K

To investigate the sensitivity of CAT-FSTM and FSSTM in
relation to the topic number K , the values of the patch size,
the patch spacing, and the visual word number V were kept
constant at 8, 4, and 2800, respectively. The topic number K
was then varied over the range of [400, 600, 800, 1000, 1200]
for the UC Merced data set and Google data set of SIRI-WHU.
As shown in Fig. 18, with the increase of the topic number K ,
the overall accuracies (OAs) of FSSTM and CAT-FSTM both
become higher and then tend to decline. FSSTM obtains the
highest accuracy when K is 800, while CAT-FSTM demands
more than 1000 topics. This indicates that FSSTM can obtain
a better performance with fewer topics.

B. Sensitivity Analysis in Relation to the Visual Word
Number V

To study the sensitivity of CAT-FSTM and FSSTM in
relation to the visual word number V , the values of the
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Fig. 17. Annotated image obtained by FSSTM. (a) False-color image to be annotated. (b) Annotated image.

Fig. 18. Sensitivity analysis of CAT-FSTM and FSSTM in relation to the
topic number K . (a) UC Merced data set. (b) Google data set of SIRI-WHU.

Fig. 19. Sensitivity analysis of CAT-FSTM and FSSTM in relation to
the visual word number V . (a) UC Merced data set. (b) Google data set
of SIRI-WHU.

patch size, the patch spacing, and the topic number K were
kept constant at 8, 4, and 840, respectively. The visual word
number V was then varied over the range of [1300, 1800,
2300, 2800, 3300] for the UC Merced data set and the Google
data set of SIRI-WHU. Comparing Figs. 18 and 19, it can be
seen that the OA curves of FSSTM and CAT-FSTM display
a greater fluctuation in relation to the visual word number V ,
and they are less sensitive to the topic number K . It is notable
that FSSTM is superior to CAT-FSTM over the entire range
for the two data sets, which infers that the proposed FSSTM
can outperform the traditional fusion strategy.

Fig. 20. Classification accuracies with different numbers of training samples
per class. (a) UC Merced data set. (b) Google data set of SIRI-WHU.

C. Sensitivity Analysis in Relation to the Number of
Training Samples

By modeling the large collection of images with only a
few latent topic proportions of nonzero values, we addressed
the situation of HSR imagery with limited training samples,
employing FSSTM and SAL-LDA [22], respectively. The
training number was varied over the range of [80, 60, 40, 20,
10, 5] for the UC Merced data set, and the training number for
the Google data set of SIRI-WHU was varied over the range
of [100, 80, 60, 40, 20, 10]. The OAs obtained with different
numbers of training samples for the UC Merced data set and
the Google data set of SIRI-WHU are reported in Fig. 20.

As can be seen from Fig. 20, when compared with
SAL-LDA, the proposed FSSTM performs the best, and is
relatively stable with the decrease in the number of training
samples per class for the two data sets. When the training
samples are under 20%, or even 10% or 5%, FSSTM displays
a smaller fluctuation than SAL-LDA, and can obtain a satis-
factory and robust performance with limited training samples.

D. Sensitivity Analysis of the Topic Modeling Sparsity
in Relation to the Topic Number K

In order to investigate the sparsity of the latent semantics for
FSSTM and SAL-LDA in relation to the topic number K , the



5536 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 55, NO. 10, OCTOBER 2017

Fig. 21. Sensitivity analysis of the latent semantic sparsity for FSSTM and
SAL-LDA in relation to the topic number K . (a) and (b) UC Merced data
set. (c) and (d) Google data set of SIRI-WHU.

values of the patch size, the patch spacing, and the visual word
number V were kept constant at 8, 4, and 2800, respectively.
The topic number K was then varied over the range of [200,
400, 600, 800, 1000, 1200] for the UC Merced data set and
Google data set of SIRI-WHU. The latent semantic sparsity
is used to determine the sparsity level of the latent semantics
mined by the topic model when conducting the inference and
learning task. From Fig. 21, it can be seen that SAL-LDA
is unable to discover the sparse latent semantics in both the
inference and learning phases for the two data sets. In contrast,
FSSTM is able to discover very sparse latent semantics in
both the inference and learning phases. The latent semantic
sparsity of FSSTM decreases with the increase of the topic
number K . For example, when 1000 topics are set to be mined,
only about 22 topics make a nonzero contribution to the HSR
image, and about 20 topics make a nonzero contribution to
the image when 800 topics are set. This is consistent with the
fact that a specific image usually contains only a few specific
topics, which contribute a lot to the semantic understanding of
the image. Accordingly, FSSTM can robustly model the HSR
images with sparse latent semantics, as well as adequate latent
semantics.

E. Sensitivity Analysis of the Topic Modeling Time
in Relation to the Topic Number K

To investigate the time efficiency of the proposed FSSTM
and the conventional CAT-FSTM and SAL-LDA, the values
of the patch size, the patch spacing, and the visual word
number V were kept at the optimal parameter settings, respec-
tively. The topic number K was then varied over the range
of [100, 300, 500, 700, 900] for the UC Merced data set
and the Google data set of SIRI-WHU. As can be seen from
Fig. 22, the topic modeling time of SAL-LDA far transcends
the modeling time of CAT-FSTM and FSTM. With the increase
of the topic number K , the time curve of SAL-LDA displays

Fig. 22. Time efficiency of the different methods in relation to the topic
number K . (a) UC Merced data set. (b) Google data set of SIRI-WHU.

TABLE VI

TIME EFFICIENCY (MINUTES) OF THE DIFFERENT METHODS IN

RELATION TO THE TOPIC NUMBER K WITH THE

UC MERCED DATA SET

TABLE VII

TIME EFFICIENCY (MINUTES) OF THE DIFFERENT METHODS IN

RELATION TO THE TOPIC NUMBER K WITH THE GOOGLE

DATA SET OF SIRI-WHU

linear growth, and the time curves of SAL-FSTM and FSSTM
stay relatively smooth. From Tables VI and VII, it can be seen
that the modeling time of FSSTM is the shortest among the
three methods. For example, even when the topic number is
900 for the Google data set of SIRI-WHU, SAL-LDA requires
3528 min to discover the semantics, CAT-FSTM requires
33 min, while FSSTM needs only 12 min to discover the
semantics for the data set. This indicates that FSSTM is an
efficient PTM compared with the classical nonsparse PTMs,
such as SAL-LDA, and the conventional sparse PTM.

VI. CONCLUSION

In this paper, we have designed an effective approach the
FSSTM for HSR imagery scene classification. FSSTM is
proposed to address the scene classification and annotation
problem in sparse topic modeling, and is able to ensure that
the discovered semantics are both sparse and adequate. The
proposed approach fuses the distinct sparse semantics at the
semantic level and makes full use of the complex character-
istics of HSR images. As a robust approach, FSSTM obtains
satisfactory performances, even with a limited number of train-
ing samples. Evaluations of the classification and annotation
experiments undertaken in this paper showed that the proposed
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FSSTM method can discover sparser and more discriminative
semantics in a shorter time than the conventional PTM.

Nevertheless, image patches obtained by the uniform grid
sampling method may be unable to preserve the semantic
information of a complete scene. It would, therefore, be desir-
able to combine image segmentation with scene classifica-
tion. The clustering strategy, as one of the most important
techniques in remote sensing image processing, is another
point that should be considered. HSR images with different
resolutions from diverse remote sensing sensors are often
processed together in practical use. As future extensions, we
plan to consider data sets acquired from different sensor
types or with different resolutions. The design of appropriate
features is also a significant problem for HSR image scene
classification. Hence, in our future work, we plan to explore
more representative features, based on the analysis of multi-
source data sets.
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