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Understanding human mobility’s resilience during extreme rainfall is paramount for enhancing disaster

response and urban resilience. Most studies, however, have overlooked the complexity of resilience patterns

across scales, missing out on the varied spatial anomalies and their underlying causes. To bridge this gap, we

propose a framework using massive individual trajectory data to dissect resilience patterns of human mobility

across scales. By leveraging a dynamic network model, we quantify human mobility flows and employ

resilience curves to determine resilience patterns at urban-agglomeration and regional scales. Our study,

centering on the extreme rainfall from Typhoon Mawar, covers Osaka and Nagoya in Japan. The findings

reveal a marked reduction in human movement, although the structure of mobility networks remains

relatively unchanged. Based on the quadrant distribution of inflows and outflows, we reveal that the ratio of

abnormal to normal resilience patterns in human mobility stands at approximately 3:2, a consistency

maintained across both scales. Interestingly, abnormal resilience patterns are intricately linked to local

geographical settings of the built environment, revealing disparities based on income, gender, and age. These

insights are invaluable for policymakers to improve postdisaster recovery efforts and guide future urban

infrastructure development toward greater resilience. Key Words: extreme rainfall, human mobility, resilience
patterns, trajectory data, urban agglomeration.

T
he Intergovernmental Panel on Climate

Change (IPCC) Sixth Assessment Report

highlights a significant uptick in extreme

weather events, including heavy rainfall, hurricanes,

and floods, since the 1970s (Scott et al. 2024). This

escalation is attributed to the synergistic effects of

climate change, a burgeoning global population, and

rapid urban development (Reichstein, Riede, and

Frank 2021; Mehrabi et al. 2022). Extreme climate

disasters have become a constant risk, causing direct

asset losses averaging over $300 billion annually

(Hallegatte et al. 2016; Smiley et al. 2022). The

most significant proportion of natural disasters con-

sists of floods caused by extreme rainstorms, resulting

in substantial economic losses and severe socioeco-

nomic development impacts (Hino and Nance 2021;

Rentschler, Salhab, and Jafino 2022). Under circum-

stances of rapid global urbanization, the develop-

ment of city clusters has become an essential model

for future urban development. The sustainable and

safe development of urban clusters is a matter of

national future and destiny (Fang, Wang, and Ma

2018; United Nations 2018). Therefore, it is crucial

to understand the resilience of urban agglomeration

systems amid extreme rain and flood disasters, which

can provide references for reducing the economic

losses caused by climate change and supporting the

pursuit of sustainable development goals (SDGs).

Resilient cities emphasize the capacity of complex

urban systems to absorb external disruptions and

either restore their original state or reach a new

equilibrium through processes of learning and
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reorganization (Cutter et al. 2008; Kontokosta and

Malik 2018). External perturbations usually refer to

acute shocks and chronic stresses, such as natural dis-

asters, climate change, environmental pollution, and

public health emergencies (Y. Zhang et al. 2024).

Taking climate disasters as an example, they include

heavy rainstorms, hurricanes, droughts, and floods. In

flood risk research, the concept describes the capacity

to effectively withstand flooding impacts and rapidly

restore essential functions to minimize losses (Liao

2012; Pimm et al. 2019). In recent years, the concept

of resilience has been increasingly integrated into

urban planning and urban disaster management. So

far, several methods have been proposed to measure

urban resilience, including qualitative and quantita-

tive approaches (Rus, Kilar, and Koren 2018).

Qualitative measures explore the components of resil-

ience through empirical research and structured inter-

views. Quantitative assessments encompass statistical

analyses and validation of factors influencing resil-

ience and numerical measures of resilience levels

(RLs; Sharifi and Yamagata 2016; Tong 2021).

Existing studies typically employ classical time-series

performance curves from quantitative assessment

methods to characterize the system response during

preevent, midevent, and postevent phases. This

approach has become the cornerstone of resilience-

related urban studies because its concepts have been

associated quite closely with reliability, flexibility, sta-

bility, and robustness (Cimellaro, Reinhorn, and

Bruneau 2010; Poulin and Kane 2021; Perera and

Hong 2023).
Moreover, extensive human activities within cities

imbue urban systems with heightened complexity and

dynamism, rendering them particularly susceptible

and variable in response to external shocks (Batty

2013; Kraemer et al. 2020). This phenomenon is espe-

cially evident in extreme climate disasters, where the

intricate interplay of human mobility and urban

spaces challenges the resilience capacities of cities

(Ronco et al. 2023). In this situation, accurately

assessing human mobility patterns, both spatially and

temporally, emerges as a pivotal factor in providing

novel insights essential for a wide range of urban plan-

ning, such as traffic prediction, resource distribution,

public health monitoring, and disaster management

(Santana et al. 2023; Yao et al. 2023). Furthermore,

there has been a limited integration of human mobil-

ity data in measuring urban resilience. Previous empir-

ical studies have encountered significant challenges

due to data constraints and the lack of effective resil-

ience indicators (Kontokosta and Malik 2018; Barrett

et al. 2021). The complexity of accounting for spatio-

temporal dynamics in how human mobility adapts to

and recovers from events like extreme rainfall further

complicates the development of effective and robust

measures of resilience.
Existing studies indicate that changes in human

mobility during extreme disaster situations often

adhere to the conventional bathtub-shaped resilience

curve (Panteli et al. 2017; Hossain et al. 2021).

Nevertheless, the majority of these studies are quan-

titative analyses that focus primarily on the adapt-

ability and resilience of urban systems (i.e., the RL)

when confronted with external pressures (Tang et al.

2023), but neglect to explore further diverse patterns

of spatial abnormal resilience. Consequently, they

fall short of accurately portraying the multifaceted

responses of urban systems to diverse pressures and

challenges, leading to an information gap that ham-

pers the development of planning strategies address-

ing these unique resilience patterns. A recent study

underscored significant socioeconomic and racial dis-

parities in resilience and evacuation patterns of

urban populations during hurricane disaster (Hong

et al. 2021). Therefore, scrutinizing these disparities

is crucial for a more comprehensive understanding of

collective responses to urban hazards across different

zoning scales, which can contribute to enhancing a

city’s capacity to resist extreme disasters, expedite

recovery, and minimize damages.

Current research exhibits a gap in understanding

multiscale resilience, which refers to the capacity of

systems to withstand and recover from adverse events

across different levels, such as country, city, commu-

nity, and individuals (Tong 2021). Theoretical frame-

works for multiscale urban resilience are still

underdeveloped, and this lack of multiscale knowl-

edge further hinders the development of integrated

assessment models. In addition, existing data sets basi-

cally focus on specific scales without integrating data

across multiple levels, posing challenges in analyzing

resilience variations across scales. To enhance urban

resilience to climate hazards, constructing multiscale

assessments has become imperative.
With the emergence of massive spatiotemporal

big data, research on urban resilience based on

human mobility data has become a hot topic (Sarker

et al. 2020). Trajectory data is a type of sequence

data with spatial and temporal characteristics that

2 Yao et al.



can be used to simulate human behaviors in response

to natural disasters. These data can be harnessed to

build more potent and effective models of urban

dynamics, thereby elucidating the unique dynamics

and complexities inherent to urban environments

(Duan et al. 2023). Furthermore, they provide

empirical support to explore the evolution of urban

population dynamics and quantify urban resilience in

the context of natural disasters (Kryvasheyeu et al.

2016). This study leverages extensive individual tra-

jectory data to develop a framework that assesses

urban mobility resilience across different scales in

response to extreme rainstorms. By analyzing human

mobility responses to disasters and the causes of their

impacts, our research is critical in guiding future

urban spatial planning for more sustainable and equi-

table long-term urban development.
This study addresses two critical questions: (1)

What insights can large-scale trajectory data provide

into multiscale human mobility during extreme rain-

storms, including the processes of impact and recov-

ery? (2) How can diverse resilience patterns in

human mobility be further explored and their under-

lying causes explained? This study focuses on the

rainstorm triggered by Typhoon Mawar in Japan,

aiming to dissect human mobility resilience across

scales under rainstorm disasters. We quantify the

human mobility RL and reveal the resilience

response pattern of human mobility behavior to dis-

asters. Subsequently, this research aims to uncover

the associative mechanisms between resilience pat-

terns and sociodemographic factors, providing tar-

geted recommendations for policymakers.
In addition, our contributions are threefold. (1) We

propose an evaluation framework to assess the resil-

ience of human mobility across multiple scales during

rainstorm disasters. Using large-scale trajectory data, we

quantify the level of resilience within human mobility

and analyze the dynamic characteristics of the human

mobility network structure. (2) We uncover distinct

human mobility resilience patterns across various

scales. We find that the ratio of abnormal to normal

resilience patterns in human activities is approximately

3:2, and this proportion remains consistent at both

scales. (3) We explore the relationship between the

resilience of human mobility and sociodemographic

factors. Our findings indicate that exceptional resil-

ience patterns are closely related to the geographical

and built environment context, with noticeable varia-

tions across income levels, genders, and age groups.

Literature Review

The concept of resilience, first introduced by

Holling (1973) to describe an ecosystem’s capacity
to return to equilibrium after external disturbances,

has since evolved into a central framework for urban
disaster prevention (Rus, Kilar, and Koren 2018).

This framework has gained considerable attention,
providing a basis for urban development aimed at
adapting to environmental changes and mitigating

the impacts of natural disasters. Recent studies have
increasingly focused on methodologies to assess and

enhance the ability of urban systems to withstand
and recover from such events.

When assessing urban resilience, both model-based

and metric-based methods are commonly employed to
evaluate system performance (Y. Zhang et al. 2024).

Model-based approaches typically involve scenario-
based techniques and system configuration modeling

to estimate system evolution and its emergent proper-
ties (Linkov et al. 2020). For instance, Li et al. (2022)

developed a resilience assessment model that integra-
tes environmental, socioeconomic, and management-
based indicators to evaluate the resilience of Kunshan

City to flooding disasters. These methods are particu-
larly effective for long-term resilience forecasting and

strategic planning of complex systems. They often
struggle, however, to capture the immediate changes

and short-term fluctuations that occur in urban sys-
tems during disaster events.

In contrast, metric-based methods, which are the

focus of this study, involve the assessment of key infor-
mation metrics related to various system attributes.

Among these methods, the resilience curve illustrates a
system’s capacity to absorb external shocks, recover,

and reach a new equilibrium, depicting its dynamic per-
formance under specific scenarios (Perera and Hong
2023). For example, Y. Zhang et al. (2024) combined

nighttime light data with resilience curves to develop
an evolving urban resilience index that measures global

urban resilience and examines the influence of socio-
economic factors. Similarly, Hong et al. (2021)

employed indicators like impact magnitude and recov-
ery time within resilience curves to dynamically repre-

sent city’s response to disasters, facilitating the
development of targeted interventions. Overall, metric-
based methods offer a more intuitive and responsive

framework for capturing real-time system performance,
making them particularly effective in dynamically

tracking the immediate impacts of disasters and the sys-
tem’s adaptive responses across varying scenarios.

Resilience Patterns of Multiscale Human Mobility 3



When exploring urban resilience in response to natu-

ral hazards, massive individual trajectory data have

proven effective for representing resilience metrics and

modeling human dynamics within resilience curves

(Duan et al. 2023). This study aims to investigate the

impacts of extreme rainfall events on urban human

mobility, offering new insights into behavioral responses

to disasters. In this case, examining human responses

before, during, and after such events is crucial for under-

standing urban resilience and the system’s recovery pro-

cess (Santana et al. 2023), making metric-based

methods well-suited for modeling and evaluating the

performance of urban systems. Therefore, this study

develops a comprehensive urban resilience assessment

framework by using individual trajectory data and resil-

ience curves. This approach allows us to quantify human

mobility resilience and conduct dynamic assessments of

system recovery, effectively capturing resilience patterns

at various scales during extreme rainfall events.

Study Area and Data

The study area is the Osaka and Nagoya metro-

politan areas in Japan, as shown in Figure 1. For our

study, we used boundary vector data sourced from

the Global Administrative Divisions Database

(GADM), renowned for its detailed spatial data on

administrative boundaries. The Osaka and Nagoya

metropolitan areas are located along the Pacific

coast of Honshu Island. This region is frequently

affected by typhoons and heavy rainfall, making it a

high-incidence area for extreme weather events. In

addition, the study area is densely populated and

economically advanced and is a core component of

Japan’s Pacific Coast urban agglomeration. These

geographic, climatic, and economic characteristics

are representative of coastal regions, highlighting the

challenges faced by Japan and other coastal cities in

coping with extreme rainfall.
On 1 June 2023, Typhoon Mawar instigated a pro-

longed period of substantial rainfall along Japan’s south-

ern coastline, triggering landslides, mudslides, and

floods. By 2 p.m. on 3 June 2023, the Japan

Meteorological Agency (JMA) declared that Typhoon

Mawar had transitioned into a temperate cyclone. The

large-scale mobile trajectory data employed in this

study were provided by the Research Center for Spatial

Information Science (CSIS) of the University of

Tokyo. The data span eleven days from 28 May 2023 to

8 June 2023, covering the entire period of Typhoon

Mawar’s impact on Japan. It consists of 35,148,932

Figure 1. Study area: the Osaka and Nagoya metropolitan areas in Japan. The vector map data for the study area was obtained from the

Global Administrative Divisions Database (https://gadm.org/).

4 Yao et al.

https://gadm.org/


high-fidelity geospatial records, including user IDs,

timestamps, latitude, longitude, and so on, sourced

from users’ mobile devices within the study area. In this

study, we aggregated the users’ mobile records to the

1 km � 1 km grid and generated the origin–destination

(OD) records.
In this study, we use point-of-interest (POI) data to

explore the spatial distribution of resilience patterns.

POI data have been proven effective in characterizing

the socioeconomic and functional structure of cities

(Yao et al. 2017). The POI data used were supplied by

the University of Tokyo’s CSIS under the auspices of

the No. 1263 Joint Research Program in collaboration

with ZENRIN Co., Ltd. To analyze the relationship

between resilience patterns and urban functions, we

selected POI data from eight distinct categories: tour-

ism and sightseeing, transportation and logistics, recrea-

tion and entertainment, hotel and accommodation,

food and beverage, commerce, education, and construc-

tion. Subsequently, we calculated the density of each

POI category by enumerating the data points within

each 1 km� 1 km grid.

In addition, we obtained the precipitation data and

early warning systems from the JMA (see https://www.

jma.go.jp/). We also sourced the population data, male-

to-female sex ratio, population ratio by age, and Japan

Community Survey (household economy, insured data)

from the Statistical Bureau of the Ministry of Internal

Affairs and Communications of Japan (see https://www.

stat.go.jp/). Also, we used the Digital Elevation Model

(DEM) data from the General Bathymetric Chart of

the Oceans (see https://www.gebco.net/).

Method

This study proposes a multiscale resilience com-

puting framework on human mobility using trajec-

tory data under extreme rainfall events. The

framework adopts a dynamic network model to

quantify human mobility and calculates the RL at

the urban agglomeration scale through the concep-

tual resilience curve. Then, we define quadrant

charts to analyze the radio and spatial distribution of

the resilience patterns. These patterns are further

analyzed and validated within the subnetwork clus-

ters at the regional scale. We also calculate the RL

at the regional scale through the conceptual resil-

ience curve. Finally, the study employs correlation

analysis and bivariate Moran’s I analysis to elucidate

the relationship between abnormal resilience pat-

terns, RLs, and social factors. The details of this pro-
posed framework are shown in Figure 2.

Quantifying Changes in Human Mobility and
Resilience Level

Given an extreme rainfall event, this study devel-

ops the entire narrative by designating an eleven-day
observation window for resilience analysis, as this
duration adequately encompasses the entire events
from the occurrence of the disaster, its impact on

human mobility, to the eventual return to normal
conditions. The selected time observation window
has been proven to capture the entire cycle of

human mobility pattern changes, thereby allowing
for a comprehensive assessment of the event’s impact
(F. Zhang et al. 2019). The period of peak rainfall is

defined as the during-event phase, with the four pre-
ceding days as the preevent phase and the four fol-
lowing days as the postevent phase. By discretizing
the study area into 1 km � 1 km grids, we construct

the mobility network by using the OD flux of
human mobility data in the preevent, during-event,
and postevent phases. This network features the ori-

gin and destination of the spatiotemporal move-
ments as nodes and the trips as edges.

The network average degree and total edge weight

are important attributes that reflect the structural fea-
tures of networks (Yuan et al. 2018). The degree of a
mobility network node represents the number of edges

or connections the node has with other nodes in the
network. The total edge weight (i.e., average daily
OD flux) represents the average daily flow across all
edges in the network, which is positively correlated

with the flow intensity in the mobility network. In
this study, it represents the overall human mobility on
a daily basis during extreme rainstorm events, with

higher average daily total edge weights indicating
stronger human mobility during the event. The degree
probability distribution of the network is the probabil-

ity distribution or frequency distribution of the degrees
of the nodes within the network, which serves as an
indicator for assessing the importance of network

nodes and the centrality of the network. The degree,
daily average total edge weights, and the probability
distribution of the degree of the mobile network are
calculated as follows.

Degree ið Þ ¼ P
j Aij (1)
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T ¼
XN
i¼1

Degreei (2)

P kð Þ ¼ C�k−a (3)

where Degree(i) represents the degree of node i; Aij ¼
1 if node i and node j are connected by an edge,

otherwise Aij ¼ 0; T represents the total degree or

total edge weight of the network; N is the total num-

ber of nodes in the network; P(k) is the probability of

a node having a degree of k; C is the normalization

constant (ensuring the sum of probabilities is 1); and

a is the power-law exponent.

Figure 2. The proposed multiscale resilience computing framework on human mobility. It includes three interconnected parts: (1)

analyzing spatiotemporal changes in human mobility and quantifying RLs, (2) extracting resilience patterns and their spatial

heterogeneity, and (3) explaining differences in urban resilience through social factors. Note: OD¼ origin–destination; POI¼ point of

interest.
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Afterward, we employ resilience curves to evalu-

ate the RL of human mobility quantitatively. The

resilience curve is composed of preevent, during-

event, and postevent. The shape of the resilience

curve and the duration required to achieve equilib-

rium after an event can measure a region’s ability to

recover from the impact of sudden incidents and

ultimately achieve a new postevent equilibrium

(Kontokosta and Malik 2018). As depicted in

Figure 3, a typical resilience curve reflects the system

behavior and describes continuous system perfor-

mance levels before, during, and after an externally

disruptive event (Meerow, Newell, and Stults 2016).

The shaded regions demarcate the contours of per-

formance loss. Accordingly, the RL can be calcu-

lated using the following equation.

RL ¼
Ð t2
t0
AP tð ÞdtÐ t2

t0
NP tð Þdt (4)

where t0 is the date of maximum impact, t2 is the

time since reaching event equilibrium, RL is the

human mobility resilience score, AP(t) is the actual

score level, and NP(t) is the expected score level;

that is, the total area under the dashed line. A-event

is the maximum depth or maximum height of the

resilience curve (Figure 3) to measure the extent of

the impact of the contingency.

The specific calculation steps are as follows. First,

we calculate the total edge weight of the network

for each hour of the day. There are 264 data points

during the full-length eleven-day observation win-

dow, twenty-four hours per day. It is assumed that

the human activity before the event was not affected

by the rainfall disaster and that the human move-

ment was relatively stable. We take the average

hourly OD flux from 30 May 2023 (hereinafter 5/30)

to 1 June 2023 (hereinafter 6/1) as the preevent

human activity level and set it as the preevent

mobility performance benchmark. Subsequently, we

define the percentage change in OD flux for the

remaining period as the y-axis of the resilience

curve. The formula for calculating this percentage

change is as follows:

Percentage change ¼ pi − p0
p0

� �
�100percent (5)

where pi is the total flux per hour per day and p0 is

the average flux per hour before the event.
Then, this study uses a moving average algorithm

to smooth and denoise the resilience curves.

Ultimately, we normalize the data and calculate

resilience scores using the definition of resilience

scores in Equation 4.

Figure 3. The demonstration of a typical resilience curve that reflects the temporal variation in the measurement of performance before,

during, and after an externally disruptive event.

Resilience Patterns of Multiscale Human Mobility 7



Extracting Resilience Patterns and Their Spatial
Heterogeneity

Because human mobility behavior under the clus-

ter perspective is full of uncertainty and contingency,

when confronted with extreme events, the travel

behavior will show significant differences (Jia et al.

2019). These variances encompass route selection,

the time they decide to travel, and their destinations.

Consequently, the concept of human mobility resil-

ience patterns delineates the adaptability and resil-

ience exhibited by individuals amidst natural

disasters, extreme weather phenomena, or emergent

crises. In this study, it refers to the response of human

mobility behavior to extreme rainstorm disasters. The

paradigm of the resilience pattern is the classical

bathtub-shaped resilience curve (or “drawdown-

drawup” curve), also widely known as the resilience

triangle model. This “down and up” view is the cor-

nerstone of resilience-related research (Tang et al.

2023). As the performance level of a time series

decreases when a disaster occurs, the difference

between the preevent and during-event levels should

be positive. Conversely, the performance curve rises

gradually during the recovery process, and the differ-

ence between the levels during and after the event

should be negative. By analyzing the drawdown-

drawup performance of average daily flows in all spa-

tial units, however, we find a large number of outliers

in the falling and rising processes in both the outflow

and inflow cases based on OD flux.
We employ a four-quadrant distribution plot to

quantify various resilience patterns, analyze their

spatial distribution, and extract outliers during the

contraction and expansion phases. Initially, we cal-

culate the daily average outflow and inflow in each

1 km � 1 km grid for all phases. The differences in

flow volume from the preevent to the during-event

phase and from the during-event to the postevent

phase are used as the x and y coordinates. Based on

the difference in the flow on the x-axis and y-axis,
we convert the continuous values into right-angled

coordinates to generate the four-quadrant distribu-

tion maps and to analyze the number and spatial dis-

tribution of each type of resilience pattern.

The complexity and large scale of urban agglom-

erations make it challenging to study and analyze

them comprehensively and in-depth. Modularity

algorithm is commonly used for optimizing the

detection of community structures in networks.

Nodes are categorized according to the connectivity

of the network, and nodes of the same type are

added to the same clusters of subnetworks, which

can be used for community discovery (Guo et al.

2022). Therefore, to analyze the changes in human

mobility patterns at multiple spatial scales, this study

uses a modularity algorithm to detect subnetwork

clusters in a mobility network under normal condi-

tions. We divide the spatial grids into different clus-

ters to analyze the changes in urban resilience scores

at the urban agglomeration scale and regional scales,

respectively. These clusters also facilitate the explo-

ration of variations in mobility patterns at smaller

spatial scales, as calculated below:

Q ¼ 1

2m

X
ij

Aij −
kikj
2m

� �
sisj þ 1

2
(6)

where the number of edges between nodes i and j of

the network is Aij;
kikj
2m is the desired number of edges

between nodes i and j; ki and kj are the vertex

degrees; and m ¼ 1
2

P
iki is the total number of

edges in the network.
The Kolmogorov–Smirnov (K–S) distribution test

is employed to assess the statistical significance of

differences between clusters. It aids in inferring

whether the two distributions are from the same

source by comparing the frequency distributions of

two samples or the magnitude of the difference

between a sample’s frequency distribution and a par-

ticular theoretical distribution. In this study, we con-

struct empirical frequency distribution functions by

comparing outflow data across cluster grids.

Subsequently, we compare these distributions to test

whether the differences among clusters are statisti-

cally significant.

Explaining Differences in Resilience Patterns
through Social Factors

POI data link human activities with locations by

portraying the dynamics and real-time nature of

urban land use (Gong et al. 2020), which provide a

new research perspective in terms of intracity spatial

structure and functional division, intercity interac-

tions, and so on. The spatial distribution of POIs

can reflect an area’s functional characteristics and is

closely related to the behavioral patterns and life-

styles of the population. It can also provide insights

into how well different areas are equipped to support

humans during crises, thereby directly linking

8 Yao et al.



resilience patterns to urban functionality and service

provision. Thus, this study uses a bivariate-based spa-

tial autocorrelation approach to analyze the mutual

influence and nuanced relationships of these two

spatial phenomena. The bivariate-based local spatial

autocorrelation has high applicability in describing

the spatial correlation and dependence characteris-

tics of two geographical elements. The Moran’s I
(Iab) value ranges from −1 to 1, with positive, nega-

tive, and 0 values indicating positive, negative, and

no correlation, respectively. The larger the absolute

value, the stronger the spatial autocorrelation

(Shi et al. 2023). We first build fishing nets within

each subnetwork cluster in the study area. After

that, we spatially correlate the POI data with each

subnetwork cluster, enumerate the density of each

type of POI in each subnetwork cluster, and estab-

lish the spatial distribution of the POIs. Then, we

use Geoda software to conduct a bivariate Moran’s I
analysis based on empirical Bayesian ratios for the

spatial distribution of resilience patterns and POIs.

Based on the distance relationship, we create a spa-

tial weight matrix and calculate Moran’s I. This ena-
bles us to investigate the relationship between the

distribution of resilience patterns and the spatial dis-

tribution of POIs.

EBIab ¼ Xa
i

Pn
j¼1, j6¼i wijXb

j (7)

where Xa
i and Xb

j are the values of variables a and b
at positions i and j, respectively; EBIab is the local

Moran’s I based on empirical Bayesian ratios at posi-

tion I; and wij is a spatial weight matrix weighted

based on the distance between positions i and j.
Furthermore, income level serves as a key indica-

tor of economic capacity, and insurance coverage

reflects residents’ risk management abilities. Both are

commonly used in urban resilience research as core

measures of economic resilience (Yu et al. 2024).

The proportion of the elderly population highlights

social vulnerability, and the gender ratio reflects

demographic resilience. Collectively, these indicators

offer a more comprehensive assessment of urban

resilience (Petraroli and Baars 2022; Yu et al. 2024).

Therefore, we select per-capita income (PCI), age

65þ (percentage of the population over age sixty-

five), males (percentage of male population), females

(percentage of female population), and insured (per-

centage of insured individuals) to investigate the

relationship between human mobility resilience and

urban social factors. The results are presented in the

form of correlation coefficient matrix heat maps.

Given samples x1; x2, :::xn from a normal population

Npðl, r2Þ of capacity n, calculate the correlation

coefficients rij between the two samples, respectively:

rij ¼
P

x − xð Þ y − yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x − xð Þ2P y − yð Þ2

q (8)

where rij is the correlation coefficient, and x is the

sample mean.

Results

Assessment Results of Resilience Levels of
Population Groups

Extreme rainfall events simultaneously reduce the

overall intensity of population movement and the

number of critical nodes in the mobility network

during the event. We construct the mobility network

based on human mobility data. As shown in

Figure 4, the number of network edges and the total

edge weights initially decrease, then increase, and

eventually stabilize, illustrating that human mobility

during the rainfall event showed an overall trend of

decreasing and then increasing. According to JMA,

on 2 June 2023 (hereinafter 6/2), the maximum

rainfall occurred in the study area under the influ-

ence of Typhoon Mawar, which directly led to a

decrease in foot traffic. Consistent with the fluctua-

tion in Figure 4, the number of network edges and

the total edge weight plummeted on 6/2. On 6/2,

some trains on the Tokaido Shinkansen were sus-

pended for the day, and some other interdistrict

trains were delayed to varying degrees. This event

suggests that the overall intensity of human mobility

was reduced, which might have been due to factors

such as traffic disruption, waterlogged roads, and the

suspension of public transport as a result of the

heavy rainfall.
As shown in Figure 5, the network’s distribution

degree is affected by the apparent spacing in the tails

between the distribution during the event and the

distributions of the other two phases. When the

nodes have the same degree, the probability distribu-

tion of the during-event phase has smaller values

and fewer larger nodes. This result also indicates a

reduction in the number of larger critical nodes in

the network, which suggests that the functioning of

essential human-gathering places or key transport

hubs was limited during the disaster. Nonetheless,

Resilience Patterns of Multiscale Human Mobility 9



Figure 4. Temporal changes in the total edge weights and the edge numbers of the network within the observation window. Here, the

total edge weights represent the total origin–destination flux, and the edge numbers represent the degree of connectivity between the grids.

Figure 5. Probability distribution of the network degree for the three phases of the event. The horizontal axis represents the network

degree, the vertical axis represents the exceeding probability distribution of the network nodes, and the tails are apparently spaced

between the distribution during the event and the other two phases.
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the slopes of the curves in the power law distribu-

tion did not change drastically in the different event

phases, suggesting that the primary nodes within the

network maintain relative stability. This phenome-

non means that rainfall disasters primarily lead to a

decrease in the overall intensity of mobility rather

than radically reducing the connectivity of periph-

eral areas in the network.

We calculated the mobility resilience score using

the resilience curve definition and statistical tests.

We set the average hourly OD flux from 5/30 to 6/1

(i.e., three consecutive days prior to the disaster) as

the preevent mobility performance baseline and con-

verted the mobility flux to a percentage change.

Owing to the curve’s rebound during the event, we

employed linear interpolation to segment the area

between the curve and the axes. We then calculated

and obtained a quantitative score of 0.59 for the

resilience of human mobility for the entire urban

agglomeration, in contrast to the regional resilience

score afterward. This result suggests that despite the

short-term impacts of disasters on urban mobility,

human mobility networks remain quite resilient and

gradually recover their functions after disasters. The

findings hold significant implications for compre-

hending urban resilience and refining disaster

response strategies (Figure 6).

Multiple Resilience Patterns for Disaster Response

The classic resilience curves show a drawdown-

drawup pattern of human flows, but we found many

abnormal patterns during this rainfall event. We

mapped the pattern of human mobility onto a quad-

rant map, revealing four different types of resilience

patterns (Figure 7). The typical resilience pattern is

a bathtub-shaped resilience pattern, which is located

in the fourth quadrant, accounting for about 42 per-

cent of the total. Conversely, the other three abnor-

mal types of resilience patterns are the decreasing

pattern, reversed bathtub-shaped pattern, and

increasing pattern, which are located in the first,

second, and third quadrants, accounting for about 14

percent, 31 percent, and 8 percent of the total pat-

terns, respectively. The ratio of these four resilience

patterns from the first to the fourth quadrant is

approximately 1:4:1:4. It is noteworthy that the

prevalence of these abnormal resilience patterns is

unexpectedly high, with the ratio of classical to

abnormal resilience patterns standing at approxi-

mately 2:3. This observation suggests that our tradi-

tional understanding of resilience patterns might be

insufficient in capturing the complexity of humans’

adaptive responses when faced with sudden-onset

disasters.

Figure 6. Urban agglomeration resilience metric. The total flux is defined as the total edge weight of the network at each hour, with

the dotted and solid lines representing moving averages based on the normalized percentage change in mobility performance from the

preevent baseline. Note: RL¼ resilience level.
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In Figure 8, there are only minor differences in

the spatial distribution of OD inflows and outflows,

which are approximately equally distributed.

Classical recovery patterns (i.e., blue spots) are uni-

formly dispersed across the study area. In contrast,

increasing and decreasing resilience patterns are

located around the periphery of the reversed bathtub

recovery patterns (i.e., red spots), forming narrow

corridors and minor agglomerations. In Figure 7B

and C and Figure 8, in the case of outflows, the

bathtub-shaped resilience pattern (�42 percent) sug-

gests that the high mobility inflow of humans dimin-

ishes to lower levels during the preevent impact

phase, potentially reflecting people’s disaster avoid-

ance behavior and returning to these locations or

regular routes after the event. It is also possible that

people moved to shelters for survival and safety and

returned to their place of residence after the disaster.

The increasing pattern (�8 percent) suggests that

population inflows to these places were stimulated

during the rainfall, and the increasing trend contin-

ued during the recovery phase after the event. One

possible explanation is that individuals established

and maintained new habits after the disaster. In

addition, in areas that were heavily affected, fre-

quent interactions between relief workers and

affected residents might have occurred, which led to

an increase in foot traffic over an extended period.

Conversely, a decreasing pattern (�14 percent) sug-

gests that the rainfall dampened inflows to the

region and that this trend of decreasing continues

after the disaster. This observation indicates that

disaster events lead to tourists’ persistent avoidance

of affected areas in the postdisaster period. This

behavioral pattern is likely influenced by considera-

tions of personal safety and the extent of infrastruc-

tural damage.
In addition, we have found that the greater the

human flow intensity at a location before rainfall,

the higher the likelihood of an unusual recovery pat-

tern during a disaster. Figure 8 (A1, A2,B1, B2)

illustrates Osaka City and Nagoya, both of which

are essential administrative, economic, and transpor-

tation hubs with a vast number of daily commuters.

It also depicts Kyoto (A3, B3), a significant tourist

destination in Japan with a substantial daily influx

of people. In such high pedestrian traffic areas, we

observe that human behavior undergoes more pro-

nounced change during disaster occurrences. People

could exhibit more urgent, chaotic behavior, leading

to a higher probability of abnormal resilience pat-

terns. This finding inspires us to explore further the

causes and impacts of this abnormal resilience pat-

tern at regional scales to guide managers in develop-

ing more effective disaster management strategies.

Analysis of Subnetwork Clustering Based on
Different Resilience Patterns

We employed a modularity algorithm to detect

ten clusters (subnetwork clusters) in the human

mobility network during the preevent phase at reso-

lution ¼ 2, categorizing the spatial grid into different

clusters. As shown in Figure 9, the administrative

boundaries of the regions within the city cluster are

roughly similar to the boundaries of the subnetwork

clusters obtained by the community detection

method. This significant spatial coupling indicates

Figure 7. Quadrant distribution of origin–destination inflow and outflow resilience patterns. (A) Definition of the four different types of

resilience patterns found within urban agglomerations. (B, C) Quadrant distribution of inflow and outflow resilience patterns.
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that most human mobility activities are localized

within administrative boundaries, with relatively few

movements across clusters.
We employed the K–S test to delineate disparities

in outflow distributions across the ten clusters. The

results show the difference distribution within clusters

is statistically significant, as detailed in Table 1. The

A-event column is the maximum depth value of

the resilience curve, indicating the degree to which

the disaster event influenced human mobility. The

A-event values for Clusters 3, 6, and 10 are −0.199,
−0.168, and −0.146, respectively, with larger absolute

values, indicating that Clusters 3, 6, and 10 are the

most affected on average by this extreme rainfall

event. As per the data released by Japan’s Ministry of

Internal Affairs and Communications Statistics

Bureau, Clusters 6 and 10 registered casualties of

three and five individuals, respectively. Furthermore,

Cluster 6 reported damage to approximately 1,180

households, marking an extremely severe impact of

the rainstorm. Additionally, the resilience scores of

each cluster range from 0.30 to 0.70, with an average

resilience score of 0.49. The RL differs from the resil-

ience score of 0.56 for the whole city cluster derived

in the previous section, which could be related to the

population density, infrastructure, and economic level

of each region among the clusters.
As depicted in the first row of Figure 10, the

ratios of the four resilience patterns, namely the

decreasing pattern, reversed bathtub-shaped pattern,

increasing pattern, and bathtub-shaped pattern, in

the four quadrants of Clusters 1, 2, 4, 5, 6, 8, and 9

are primarily close to the ratio of 1:4:1:4 on the

scale of urban agglomerations. The ratio of the nor-

mal resilience pattern (i.e., Quadrant 4) to the

abnormal resilience pattern (i.e., Quadrants 1, 2,

and 3) in each cluster is about 2:3. This observation

suggests the stability of a resilience pattern at both

the urban agglomeration scale and the regional scale.

As shown in the second row of Figure 10, the spatial

distribution of each resilience pattern is roughly con-

sistent with the urban agglomeration scale. The nor-

mal resilience pattern is evenly distributed, whereas

abnormal patterns show narrow corridors and a small

agglomeration distribution. Based on the obtained

spatial distribution results of each cluster resilience

pattern, we also explore its relationship with the spa-

tial distribution of POI in the following study. Using

Figure 8. (A) Spatial distribution of inflow resilience patterns of origin–destination (OD) movement. (B) Spatial distribution of outflow

resilience patterns of OD movement. A1 through A3 and B1 through B3 are the spatial distributions of inflow and outflow resilience

patterns in Osaka City, Nagoya, and Kyoto, respectively.
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the resilience curves of each cluster (the third row

in Figure 10) and the definition of the resilience
score formula, we calculated the RLs for all ten clus-
ters, with the results presented in Table 1. The resil-

ience curves for the individual clusters reveal that

each cluster experienced significant or slight

decreases in normal activity levels during and after
the event. Until the end of the observation period,
none of the ten clusters had fully reverted to its pre-

event levels.

Table 1. Description of the outflow mobility

Description Test of normality (Kolmogorov–Smirnov)

Cluster Basic attribute size (grid count) Resilience level A-event Statistic df Significance

1 5,691 0.46 −0.114 0.343 5,542 0.000

2 2,891 0.55 −0.102 0.307 3,291 0.000

3 1,253 0.56 −0.199 0.328 1,704 0.000

4 5,000 0.49 −0.106 0.306 2,804 0.000

5 5,030 0.49 −0.091 0.265 1,244 0.000

6 6,286 0.59 −0.168 0.297 4,817 0.000

7 3,161 0.37 −0.107 0.261 4,812 0.000

8 3,663 0.42 −0.062 0.298 6,131 0.000

9 3,401 0.45 −0.077 0.275 3,028 0.000

10 1,836 0.57 −0.146 0.281 3,559 0.000

Figure 9. Cluster detection for mobility networks in the preevent phase. Different colors mark the ten different main clusters.
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Analysis of Social Factors Influencing Abnormal
Resilience Patterns

The spatial distribution of POIs can reflect the

functional characteristics of an area and is closely

related to the behavioral patterns and lifestyles of

the population. Table 2 presents the EBI estimates

(bivariate Moran’s I calculated using empirical

Bayesian ratios, as defined in Equation 7) of the spa-

tial distribution of various types of POIs and resil-

ience patterns and their significance test results.

None of the EBI estimates is zero, and the absolute

values are large. Meanwhile, all Z values surpass the

acceptance threshold of 1.96 at the 95 percent confi-

dence level of the normal distribution. This suggests

that there is a better spatial correlation between POI

and the distribution of resilience patterns in the

study area. The various resilience patterns are closely

related to the built environment with different geo-

graphical contexts.
The EBI values between the decreasing resilience

patterns and POIs’ distribution for tourism, recreation,

food and beverage, commerce, construction, education,

transportation and logistics, and hotel accommodation

are all greater than 0.40, with a high positive correla-

tion. There is a decreasing trend in the observation

window, indicating that all types of industries have

been affected by rainfall for a longer period and have

not recovered. For the reversed bathtub-shaped resil-

ience pattern, the EBI value with the recreation POI

distribution is −0.013, whereas the EBI values with

other POIs’ distributions are all positive. These results

indicate an absence of increased foot traffic in the rec-

reation areas during disaster events. The bathtub-

shaped resilience pattern exhibits positive EBI values in

relation to all types of POI distributions, consistent

with earlier findings that normal resilience patterns are

uniformly distributed within the study area.
Moreover, recreation, tourism, and other areas

with high daily foot traffic all have high correlations

with the distribution of abnormal resilience patterns.

These findings are consistent with previous results,

suggesting that abnormal resilience patterns are more

likely to be concentrated in grids with higher pree-

vent daily average fluxes. These findings help us

understand the relationship between different resil-

ience patterns and urban functions and various sec-

tors, as well as how the human flow in various urban

functional areas changes during disasters and post-

disaster recovery. Tailored emergency strategies and T
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disaster risk management can be proposed for each

sector, thereby improving the adaptive capacity dur-

ing disasters.
This study uses correlation analysis to explore the

relationship between the levels of mobility resilience

(as shown in the resilience level in Table 1) and

urban social factors across various population clus-

ters. As illustrated in Figure 11, a robust positive

correlation is evident between PCI and RL, with a

correlation coefficient of 0.42. This finding suggests

that regions with higher income levels might possess

a better capacity to handle assorted challenges and

pressures. The correlation coefficient between the

proportion of individuals age sixty-five and above

and the level of resilience is approximately −0.18,
indicating that a higher percentage of older individ-

uals corresponds with a lower level of resilience.

The correlation coefficients between gender

differences (males/females) and RLs are the smallest,

at 0.16 and −0.16, respectively, suggesting that gen-

der exerts a relatively minor influence on RLs. The

higher proportions of males are associated with rela-

tively higher levels of resilience, whereas the oppo-

site is true for females. Furthermore, the coefficient

of correlation between the number of insured and

the level of resilience is 0.50, which implies that in

areas with a greater number of insured persons, the

social and economic system is more likely to provide

support and security, thus increasing the level of

resilience.

The positive correlation between the level of PCI

and insurance coverage and the level of resilience is

the most significant, suggesting that economic devel-

opment and the improvement of the social security

system are the keys to enhancing urban resilience.

The effects of population aging and gender

Figure 11. Matrix of correlations of resilience levels (RLs) of population groups. Note: PCI¼ per-capita income; age (65þ) ¼ share of

population older than sixty-five; Males¼ share of male population; Females¼ share of female population; Insured¼ share of number of

insured persons.
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differences on the RL, although relatively small,

should not be ignored and need to be dealt with

through comprehensive measures.

Discussion

This study comprehensively assesses the resilience

levels and patterns of multiscale human mobility

within two major urban agglomerations in Japan dur-

ing extreme rainfall events. It solves the problem of

the lack of exploring the distribution rule of mobility

resilience patterns and its causes in the existing

studies at multiple scales. Furthermore, it provides a

new reference for better understanding the complex-

ity of collective movement behavior of high-density

populations under extremely hazardous weather

conditions.

Interpretation of the Findings

Based on a mobility network generated from large-

scale trajectory data, the constructed urban agglomera-

tion resilience assessment system accurately assesses the

ability of regions to withstand and recover from

destructive events. Sudden disasters and shocks can sig-

nificantly alter human travel behavior (Haraguchi

et al. 2022; Yao et al. 2023). For example, human activ-

ity levels shown in the cluster resilience curves have

decreased, highlighting the challenge of returning resil-

ience to preevent disaster levels. X. Zhang and Li

(2022) found that extreme disasters cause movement

perturbations among individuals to show significant dif-

ferences. Similarly, our study also found a large number

of abnormal resilience patterns in human mobility, and

the ratio of abnormal to normal resilience patterns is

about 3:2. Heavy rainfall does not occur simulta-

neously, at identical locations, or with uniform inten-

sity across the study area, resulting in varied response

times and uneven infrastructure damage throughout

the built environment. This variability prompts indi-

viduals to react differently to events across diverse geo-

graphic environments, thereby manifesting different

mobility resilience patterns. This finding suggests that

the actual impacts of this heavy rainfall event might

exhibit greater variability at the microlevel. For policy-

makers, it is crucial to pay attention to areas exhibiting

abnormal resilience patterns, as these could indicate

potential long-term changes in land use. Emergencies

can cause a sudden surge in resource demand to accom-

modate population gatherings. Disasters could damage

roads, bridges, and other transportation facilities, dis-

rupting normal transportation patterns and forcing peo-

ple to find new routes or modes of transportation. In

such emergencies, governments should implement rea-

sonable contingency measures to maintain critical

infrastructure functioning and provide emergency serv-

ices to meet essential population needs.

With further global warming and rapid urban

development, urban rainfall patterns are changing,

leading to an increase in the frequency and intensity

of rainfall events. Extreme precipitation is becoming

the norm, posing significant challenges to built and

natural environments. This study provides a method-

ology to quantify urban resilience under different

rainfall patterns by analyzing the changes in human

mobility. By exploring the relationship between dif-

ferent POI categories and resilience patterns, this

study can capture whether urban functional areas or

industries face sudden increases, decreases, or no

change in human mobility during extreme weather

events. These insights are instrumental in formulat-

ing targeted disaster prevention and mitigation strat-

egies, including optimizing evacuation routes or

developing specialized recovery strategies for specific

areas. In addition, the method proposed provides

valuable insights into the vulnerability and potential

risks faced by the built environment. It can help cit-

ies to better adapt to changing climatic conditions

and reduce the impact of extreme weather events on

the lives and property safety of urban residents.

Analysis of Factors Affecting Urban Resilience and
Recommendations for Disaster Management

Previous research has highlighted considerable dis-

parities in disaster response behaviors and resilience

among communities distinguished by demographic

and socioeconomic characteristics (Hong et al. 2021;

Smiley et al. 2022). In this study, we propose to use

the spatial distribution of POIs for the first time to

elucidate the relationship with the distribution pat-

tern of resilience patterns. Our findings indicate a

close correlation between the spatial distribution of

resilience patterns and local geographical settings

within the built environment. Additionally, we

observe different behaviors of population groups with

different demographic and socioeconomic character-

istics, highlighting pronounced disparities and

inequalities. Inequality is more severe and pro-

nounced among socially disadvantaged groups, such
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as those with low economic levels and an aging pop-

ulation. Hence, this research can equip government

policymakers with novel insights into the disparities

among various groups across different geographies,

enabling them to take action to support disadvan-

taged areas. Priority should be given to the equitable

distribution of resources and the optimization of

urban infrastructure to accommodate the needs of

different population groups; reducing inequalities

and increasing the urban population resilience as a

whole, especially in communities with lower socio-

economic status, more advanced aging, and so on;

optimizing shelter locations and evacuation routes;

conducting outreach to at-risk populations; and

assisting more vulnerable areas or population groups.
It is noteworthy that our findings indicate the

probability of abnormal mobility resilience patterns

during a disaster is higher in areas with high daily

human flow, such as Osaka, Nagoya, and Kyoto.

This finding underscores the importance of tailored

disaster management strategies for different regions.

For the tourist city of Kyoto, special evacuation

plans need to be developed, considering the unfamil-

iarity of tourists with local evacuation routes and

shelters. For instance, creating easily accessible evac-

uation maps and ensuring the presence of emergency

kits at major tourist sites like Kinkakuji and

Kiyomizu-dera can significantly enhance prepared-

ness. Regular drills and training sessions for local

personnel and volunteers are also crucial for ensuring

efficient evacuation procedures. In central cities like

Osaka and Nagoya, effective traffic control is

required during the disaster. Depending on the disas-

ter type and the extent of its impact, multilevel traf-

fic diversions are implemented to ensure the rapid

movement of rescue teams and the orderly evacua-

tion of residents. For commercial areas, encouraging

adaptive building designs, such as adjustable drainage

systems, can help mitigate the impact of varying

rainfall levels. In addition, public safety and disaster

education need to be strengthened to ensure that

residents and visitors alike understand how to

Figure 12. Heat maps of demographic density without warning and after disaster warning. Aichi Prefecture and Osaka City were

selected for in-depth study. (A) and (C) are heat maps in Aichi Prefecture and Osaka City at 12:00 a.m. on 5/26. (B) and (D) are heat

maps in Aichi Prefecture and Osaka City at 12:00 a.m. on 6/2, respectively.

20 Yao et al.



protect themselves in an emergency. Meanwhile,

cross-sectoral collaboration between government

agencies, the private sector, nongovernmental organ-

izations, and community-based organizations should

be strengthened to help ensure that disaster response

plans are comprehensive and coordinated.
In addition, we found that early warning data

can influence human mobility behavior in the face

of extreme rainfall events. We collected data on

early warning systems regarding the issuance of

rainstorm, flood, and fog warnings in the study area

at 10:52 a.m. on 6/2. Subsequently, using large-

scale individual trajectory data, we conducted a sta-

tistical analysis and mapped the demographic heat

distribution in the study area, comparing the

situation on Friday, 26 May 2023 (hereinafter 5/

26), with Friday, 6/2, at 12:00 a.m. The results,

depicted in Figure 12, indicate a 14 percent (Table

3) average reduction in population activity follow-

ing the warnings. This suggests that rainstorms and

flood warnings can influence human travel behav-

ior, although the extent of the change is not par-

ticularly large. This exploration can assist decision

makers in optimizing the design and implementa-

tion of early warning systems for disaster prepared-

ness and response strategies.
The study area’s topography features higher eleva-

tions in the northeast and south, with plains and

hills dominating the landscape. The central region is

flatter and crossed by several rivers, and the

Figure 13. (A) Digital Elevation Model elevation map of the study area. (B) Rainfall distribution on 6/2 during the stimulated rainstorm

event.

Table 3. Magnitude of change in population movements without warning and after disaster warning

Flash flood warning

(1 hour after warning)

Without warning

(same moment)

Magnitude of change

(percent)

Population heat value 156,218 178,088 −14.00
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southeastern region borders the coastline. The

diverse topographies influence rainfall distribution.

The varying relief significantly affects atmospheric

dynamics, affecting air movement patterns and mois-

ture ascent, thereby affecting cloud formation and

precipitation processes. Analysis of the DEM topo-

graphic map and rainfall distribution map, achieved

through hierarchical rendering and visual compari-

son of the two maps, reveals higher rainfall in the

elevated hilly areas and southeastern coastal regions

due to monsoon influence in June. These findings

align with intuitive expectations (Figure 13).

The diverse topography of the study area affects

human mobility patterns. Our examination of the

distribution of human mobility resilience patterns,

depicted in the DEM topographic map and Figure 8,

indicates minimal human activity in the higher ter-

rain and hilly areas. It is important to note, how-

ever, that during heavy rainfall and flooding events,

the undulations and slopes of the terrain play a cru-

cial role in directing and slowing water flow, conse-

quently affecting inundation levels and evacuation

routes. Low-lying areas are prone to waterlogging,

leading to disruption of transportation and stranding

of residents. Conversely, elevated regions can serve

as temporary refuges due to their reduced susceptibil-

ity to flooding. Furthermore, the terrain influences

the access routes for rescue teams and the distribu-

tion of rescue supplies. Future studies can take topo-

graphical factors into account when planning the

site for emergency resource allocation points and

places of refuge.

Limitation

Although data-driven and complex systems-based

approaches are important for studying resilience, it is

crucial to acknowledge the limitations of trajectory

data, which are often derived from cell phones

or Global Positioning System (GPS) devices. Only

a portion of the entire population with selected

demographic labels is covered, and there might also

be issues of imbalance and representativeness.

Furthermore, these data can only cover the people

who use these devices and do not give a complete

picture of everyone’s mobility. Future research could

benefit from incorporating multisource trajectory

data to provide a more comprehensive understanding

of overall mobility patterns.

Conclusion

In coping with the complexity of urban systems,

large-scale trajectory data and resilience curves have

been used as a vital methodology to study urban

resilience during extreme disasters. We propose a

framework for studying multiscale human mobility

resilience patterns under extremely hazardous condi-

tions, aiming at the problem of fewer studies on mul-

tiscale resilience patterns and the lack of

investigation on the distribution pattern and causes

of resilience anomalies. We construct a dynamic net-

work based on large-scale trajectory data to analyze

human mobility during rainfall events. We also eval-

uate urban resilience by resilience curve definition

and quantify resilience patterns using quadrant plots.

Furthermore, we explore the relationship between

urban RLs, resilience patterns, and social factors.

Our findings disclose that extreme disasters reduce

human mobility level but do not radically reduce

connectivity with many peripheral areas in the net-

work. Additionally, we find numerous abnormal

resilience patterns in human mobility, which are

closely related to the local geographical settings of

the built environment. Populations with different

demographic and socioeconomic characteristics

behave differently. This study provides valuable

insights into the vulnerability and risks faced by the

built environment. It equips decision makers with

crucial information to enhance postdisaster recovery

efforts and inform urban infrastructure planning. By

aiding cities in adapting to shifting climatic condi-

tions, the study mitigates the adverse impact of

extreme weather events on the safety and well-being

of urban residents and their property. Our findings

can serve as a reference for emergency management

decisions and long-term urban agglomeration plan-

ning and preparedness.

Future studies can focus on enhancing urban resil-

ience and human mobility recovery during extreme

storm events through improved urban planning and

disaster risk management. Given the influence of

early warning data on human mobility found in this

study, examining the impact of various rainstorm

warning strategies on human mobility resilience is

crucial. This analysis will help decision makers opti-

mize the design and implementation of early warning

systems, thereby improving disaster preparedness and

response. In addition, assessing and optimizing the
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spatial distribution of emergency resource points

could ensure that support reaches affected areas

swiftly and efficiently during disasters. Overall,

enhancing early warning systems, improving resource

allocation, and refining urban planning and disaster

management practices are essential for cities to effec-

tively manage and withstand extreme weather

events.
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