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ABSTRACT
This paper reviews representation learning for geospatial data, focusing on methods for 
automatically extracting meaningful features from diverse data types. By simplifying 
tasks and improving accuracy, representation learning has emerged as a powerful tool 
for geospatial analysis. Due to its generalizability and scalability, representation learning 
provides an effective approach to processing geospatial data, which is inherently diverse 
and unstructured. We summarize the representation learning methods for different 
geospatial data types, including locations, points of interest (POIs), trajectories, spatial 
interactions, remote sensing imagery, and street view imagery. Treating each data type 
as a distinct modality, we emphasize the potential of multi-modal representation learn
ing to advance the understanding of geographical phenomena and propose an LLM- 
guided framework as a potential solution. The review concludes by highlighting the 
need for further research to improve multi-modal data alignment and enhance the 
interpretability of feature representations, particularly in complex and dynamic geogra
phical environments.
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1. Introduction

Representation learning is the process of automatically uncovering meaningful and effective feature repre
sentations from raw data. This approach addresses a fundamental challenge in machine learning: raw data, 
such as images and text, often contain complex and entangled features that are difficult for models to 
process directly (Bengio, Courville, and Vincent 2013). By automatically extracting and transforming raw data 
into useful representations, it simplifies the learning task for predictive models, enhancing their performance 
and accuracy. Compared with traditional feature engineering that requires manual feature design, repre
sentation learning offers two key advantages – generalizability and scalability – making it a foundational 
pillar of contemporary artificial intelligence systems. This field has been transformed by two major break
throughs: (1) the Transformer architecture, which employs self-attention mechanisms to capture contextual 
dependencies and enhance feature representation (Vaswani et al. 2017), and (2) scalable self-supervised 
learning (SSL) techniques, which extract transferable knowledge from large-scale unlabelled datasets (T. 
Chen et al. 2020; Devlin et al. 2019; He et al. 2020). These innovations have laid the groundwork for 
foundational models (Bommasani et al. 2021) – large-scale, pre-trained models capable of learning universal 
representations for a wide range of tasks. Notable examples include GPT-4, which demonstrates advanced 
language understanding (OpenAI et al. 2024); CLIP, which aligns visual and linguistic modalities (Radford 
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et al. 2021); and AlphaFold2, which achieves groundbreaking performance in protein structure prediction 
(Jumper et al. 2021).

Geospatial data are unique for several reasons. First, they encompass diverse data types that are often 
unstructured. Traditional manual feature extraction methods struggle to capture complex features and 
implicit patterns (Du et al. 2019). Second, they are influenced by various spatial effects (Y. Liu et al. 2024), 
including: (1) spatial dependence (Tobler 1970), the principle that nearby things are more related; (2) spatial 
heterogeneity (Goodchild 2004), which reflects the non-uniform distribution of geographic forms and 
processes; (3) distance decay (Fotheringham 1981), the reduction in interaction strength as distance 
increases; and (4) scale effects (Openshaw 1984), where spatial patterns vary across analytical scales. 
Lastly, they cover both physical and human phenomena, which follow different laws but are coupled tightly 
(Goodchild and Li 2021). Representation learning offers a promising approach by enabling the automatic 
discovery of hidden geographic patterns and spatial effects within observed data, which are crucial for 
constructing meaningful and high-quality representations of geographical units.

Given that locational information is essential to geospatial data, the features to be learned are in general 
associated with particular geographical units (or places). Therefore, the inputs for geospatial representation 
learning consist of heterogeneous raw data related to geographical units. Such raw data describe physical 
geographical attributes (e.g. terrain and land cover), human behaviours (e.g. movement trajectories), and 
built environmental elements (e.g. buildings and streets). Each data type can be viewed as a modality and 
corresponds to certain representation learning methods. In this manner, geospatial representation learning 
forms a foundation for geospatial artificial intelligence (GeoAI). In this review, we systematically summarize 
representation learning methods for heterogeneous geospatial data, categorizing them along two key 
dimensions: (1) spatial (geometric locations) and (2) semantic (including POIs, trajectories, spatial interac
tions/flows, and remote sensing/street view imagery), with further differentiation based on their static/ 
dynamic nature and physical/human-oriented attributes (Figure 1). These data types capture complementary 
spatiotemporal phenomena and are fundamental to geographic analysis in GIS. Developing specialized 
representation learning methods for each data type while modelling their interrelationships is therefore 
critical. We argue that multi-modal representation learning, by integrating diverse modalities into a unified 
embedding space, has the potential to enhance geographic understanding and improve downstream 
applications. When combined with large language models (LLMs) for cross-modal alignment and fusion, it 
offers a promising framework for analysing geographical units characterized by multiple data sources.

Figure 1. Framework for multi-modal geospatial representation learning. (a) Input modalities include spatial data 
(geometric locations), human-oriented data (POIs, trajectories, flows), and physical observations (remote/street-view 
imagery), processed separately for each modality. (b) Cross-modal alignment transforms heterogeneous data sources 
(data 1,. . .,n) from their native feature spaces into a unified representation space. (c) Multi-modal fusion integrates 
complementary spatiotemporal phenomena, enabling information fusion from diverse data sources.
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The contributions of this survey are as follows. First, we systematically review the representation learning 
for typical data in geospatial data, including locations, POIs, trajectories, spatial interaction networks, 
remotely sensed imagery, and street view imagery (Sections 2.1-2.6). Second, we discuss the general 
principles for multi-modal representation learning in the LLM era in Section 3.1. Lastly, to our knowledge, 
this is the first survey to discuss multi-modal representation learning for geospatial data with the language- 
centred interactive paradigm, which we call multi-modal interactive representation (MMIR) (see Section 3.2). 
This survey aims to bridge two key audiences: geospatial researchers entering machine learning and 
machine learning experts exploring the geospatial domain. For the former, it demonstrates how representa
tion learning addresses geospatial-specific challenges while highlighting practical applications. For the latter, 
it clarifies unique opportunities for innovation through spatially aware architectures and evaluation metrics. 
Readers will gain an overview of the methods, a roadmap for multi-modal learning with LLMs, and insights 
into open challenges for future research.

2. Single-modal representation learning

In the traditional paradigm, representation learning for different types of geospatial data typically involves 
learning representations for each geospatial modality separately and then fusing them into a unified 
representation. In Sections 2.1–2.6, we review representation learning methods for individual geospatial 
modalities (Figure 1 (a) and Table 1).

2.1. Representation learning for locations

Location representation learning focuses on encoding a location within a manifold space into a high- 
dimensional vector (so-called location embedding) or decoding a high-dimensional vector back into 
a location in the manifold space. We usually refer to the former models as location encoders (Cole et al.  
2023; Klemmer et al. 2025; Mac Aodha, Cole, and Perona 2019; Mai et al. 2022; Mai, Janowicz, Yan, et al. 2020; 
Mai, Lao, et al. 2023) and the latter as location decoders (Dufour et al. 2025; S. Luo and Hu 2021; Mai et al.  
2024; Z. Wang et al. 2025). The manifold space may be a 2D Euclidean space (e.g. a 2D space defined by 
a projection coordinate system), a 3D Euclidean space, a spherical surface (e.g. the Earth’s surface), or any 
other space defined by a manifold.

Until now, different location representation learning models have been developed for different manifold 
spaces. However, several properties are expected to be satisfied regardless of the nature of manifold 
spaces: 1) Distance preservation: The distance between two location embeddings in the representation 
space should be proportional to their corresponding locations’ distance in the original manifold space (Mai 
et al. 2022; Mai, Xuan, et al. 2023); 2) Bijection: A one-to-one mapping must exist between locations in the 
original manifold space and their corresponding representations in the embedding space; 3) Learning- 
friendly space: The location embedding space should be more learning-friendly to downstream machine 
learning models (e.g. neural networks); 4) Direction awareness: Locations oriented in similar directions 
should have more similar embeddings than those facing markedly different directions (Mai et al. 2022); 5) 
Inductive encoder: Location encoders should employ inductive learning through neural network models. 
Unlike transductive approaches that memorize fixed embeddings for specific locations (as in word embed
dings (Mikolov, Sutskever, et al. 2013) or knowledge graph embeddings (Bordes et al. 2013; Cai et al. 2019; 
Schlichtkrull et al. 2018), these models should learn a mapping function capable of representing arbitrary 
locations in the embedding space, which enables generalization to unseen locations (Cole et al. 2023). 
Among these properties, distance preservation is the most important, as it ensures that neural architectures 
incorporating distance-preserved location representations can capture spatial dependence across geo
graphic entities. Similarly, direction-aware location representations are critical when the underlying geo
graphic distribution exhibits anisotropic patterns (R. Zhu, Janowicz, and Mai 2019). Note that many location 
representation learning models can satisfy some but not all properties listed above.

Location encoders aim to represent a location within a manifold space as a high-dimensional vector. 
According to the nature of the manifold space, we can classify the current location encoders into two 
categories: 2D location encoders and 3D location encoders. 2D location encoders operate in 2D projected 
spaces, such as projected coordinate systems. Examples are Wrap (Cole et al. 2023; Mac Aodha, Cole, and 
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Perona 2019), RBF (Mai, Janowicz, Yan, et al. 2020), Space2Vec (Mai, Janowicz, Yan, et al. 2020), SpaBERT (Z. Li 
et al. 2022, Z. Li et al. 2023), and GeoCLIP (Vivanco Cepeda, Nayak, and Shah 2023). In contrast, 3D location 
encoders handle locations defined in 3D space. Several location encoders like XYZ (Mai, Lao, et al. 2023) and 
NeRF (Mildenhall et al. 2022) operate directly in unrestricted 3D Euclidean space, while others such as 
Sphere2Vec (Mai, Xuan, et al. 2023) and Spherical Harmonics (Rußwurm et al. 2024) are specifically designed 
for spherical surfaces embedded within 3D space. These location encoders share a common neural 
architecture: 

where x is the input location, which can be a 2D projection coordinate, or geographic coordinates, or 
coordinates in a 3D space used by XYZ and NERF. PEðÞ is a deterministic function that transforms the location 
into a high-dimensional vector. NN ; θð Þ is a learnable neural network which is usually implemented as a fully 
connected layer or a multilayer perceptron with θ denoting the learnable parameters. Note that there is no 
location encoder as a global winner for all tasks, i.e. different location encoders are suitable for different 

Table 1. Summary of data, model architecture, learning paradigm and major applications for single-modal representation 
learning.

Data Model architecture Learning paradigm Major applications

Location ● Encoder: e ¼ NN PE xð Þ; θð Þ
● PEðÞ : a deterministic function that trans

forms the location into a high-dimensional 
vector

● NN ; θð Þ : a learnable neural network which 
is usually implemented as a fully connected 
layer or a multilayer perceptron (MLP) with 
θ denoting the learnable parameters

● Decoder: no common neural architecture

Supervised/Self- 
supervised

● Species fine-grained recognition (Mac Aodha, 
Cole, and Perona 2019 Mai, Janowicz, Yan, 
et al. 2020; Mai, Lao, et al. 2023)

● Satellite image classification (Klemmer 
et al. 2025; Rußwurm et al. 2024)

● Geographic question answering (Mai, 
Janowicz, Cai, et al. 2020)

● Environmental variable prediction, sustain
ability index prediction (N. Wu et al. 2024)

● Image geolocalization (Vivanco Cepeda, 
Nayak, and Shah 2023; Z. Wang et al. 2025)

POIs ● POI sequence: Word2Vec, LSTM, MLM
● POI graph: GNNs

Supervised/ 
Unsupervised

● Personalized recommendation systems (Lai 
et al. 2024; J. Zhang and Ma 2024)

● Urban functional distribution identification 
(J. Fan and Thakur 2023; K. Liu et al. 2020)

● Socioeconomic analysis (Bai et al. 2023; 
Chen, Zhao, et al. 2022; F. Huang, Lv, and 
Yue 2024)

Trajectory ● Sequences: RNNs/LSTM, Transformer
● Graphs: GNNs
● Textual descriptions: Word2Vec, LLMs

Supervised/ 
Unsupervised

● Trajectory similarity computation (Y. Chang 
et al. 2023; X. Li et al. 2018; D. Yao et al.  
2022)

● Trajectory prediction (Alahi et al. 2016; 
Y. Yao, Guo, et al. 2023; Y. Zhang et al.  
2024)

● Pattern mining (Y. Chen et al. 2021; 
Haydari et al. 2024; P. Wang et al. 2019)

Spatial 
interaction 
network 
(flow 
matrix)

● Spatiotemporal context: Word2Vec, GNN
● Flow allocation modelling: MLP

Supervised/ 
Unsupervised

● Land use classification (N. Kim and Yoon  
2025; Z. Yao et al. 2018; Y. Zhou and Huang  
2018)

● Socioeconomic status prediction (N. Kim 
and Yoon 2025; Y. Luo, Chung, and Chen  
2022; H. Wang and Li 2017; X. Wang, Chen, 
and Liu 2024; M. Zhang et al. 2020)

● Flow prediction (N. Kim and Yoon 2025)
Remote 

sensing 
imagery

● CNN, Transformer Supervised/Self- 
supervised

● Land cover classification (Hong et al. 2019)
● Change detection (P. Chen et al. 2022)
● Scene recognition (C. Luo, Jin, and Sun  

2019)
● Socio-demographic variable estimation 

(Neal et al. 2022; Rolf et al. 2021)
Street view 

imagery
● CNN, Transformer Supervised/Self- 

supervised
● Building style and age identification (Sun 

et al. 2022)
● Road quality assessment (Chacra and Zelek  

2018)
● Street store-type classification (Noorian, 

Psyllidis, and Bozzon 2019)
● Socioeconomic indicator prediction (Li 

et al. 2025)
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geospatial tasks. Please refer to Mai et al. (2022) for a comprehensive survey about location encoders and 
TorchSpatial (N. Wu et al. 2024) as a Python library of their implementations.

Location decoders can be considered as the reverse operation of location encoders which receive much 
less attention from the GeoAI community. Although in some pioneering works, a simple multi-layer 
perceptron is used to regress one pair of coordinates as the initial implementation of location decoders 
(Rao et al. 2020) in city-scale tasks, this regression-based approach has proven ineffective for global-scale 
applications like image geolocalization (Seo et al. 2018; Vo, Jacobs, and Hays 2017; M. Wu and Huang 2022; 
Z. Zhou et al. 2024). Instead, one common way is to change the location prediction task into a location cell 
classification task – dividing the Earth into non-hierarchical/hierarchical grid cells and predicting cell IDs 
instead of raw coordinates (Izbicki, Papalexakis, and Tsotras 2020; Seo et al. 2018; Vo, Jacobs, and Hays 2017; 
M. Wu and Huang 2022). An alternative way is a retrieval-based approach. Researchers established a gallery 
of locations (or image-location pairs) to find the location (or image-location pair) in the gallery that matches 
the input query image most and return the corresponding locations (Tian, Chen, and Shah 2017; Vivanco 
Cepeda, Nayak, and Shah 2023; H. Yang, Lu, and Zhu 2021; Z. Zhou et al. 2024; S. Zhu, Yang, and Chen 2021). 
Several recent works also use diffusion models to decode locations either for predicting the next location of 
a trajectory (Y. Zhu et al. 2023) or for image geolocalization (Dufour et al. 2025; Z. Wang et al. 2025). Currently, 
there is no common neural architecture shared by different research, making it one of the most promising 
research directions in spatial representation learning.

Location representation learning models can be trained in both supervised and self-supervised man
ners. Many pioneering works in this domain train location encoders in a supervised learning manner for 
specific downstream tasks. Recently, one promising research direction in location representation learning 
is conducting self-supervised learning (SSL) between location and other data modalities. For instance, CSP 
employs a CLIP-like self-supervised learning objective to contrast location embeddings with image embed
dings using geo-tagged data (including species occurrence records and satellite imagery). This approach 
has demonstrated effectiveness across multiple downstream tasks, including fine-grained species recogni
tion and satellite image classification (Mai, Lao, et al. 2023). SatCLIP uses a similar contrastive learning 
objective between location embedding and satellite image embedding and shows promising perfor
mances on multiple geo-aware image classification and regression tasks such as air temperature predic
tion, elevation prediction, socio-economic factor prediction, species image classification, etc (Klemmer 
et al. 2025). Similarly, GeoCLIP employs this location-image contrastive learning framework for geolocaliza
tion tasks (Vivanco Cepeda, Nayak, and Shah 2023). GAIR, a recent geo-foundation model, expands this idea 
by conducting contrastive learning across three data modalities – locations, remote sensing images, and 
street view images – to achieve state-of-the-art performance on 10+ downstream tasks (Z. Liu et al. 2025). 
How to leverage location representation learning to form a spatially explicit SSL objective for geo- 
foundation model pre-training has consequently emerged as a crucial direction for future research 
directions.

Since locations are the fundamental georeference for all geospatial data, location representation 
learning has been widely used in various downstream tasks, including species fine-grained recognition 
(Mac Aodha, Cole, and Perona 2019; Mai, Janowicz, Yan, et al. 2020; Mai, Lao, et al. 2023), satellite image 
classification (Klemmer et al. 2025; Rußwurm et al. 2024), geographic question answering (Mai, Janowicz, 
Cai, et al. 2020), environmental variable prediction, sustainability index prediction (N. Wu et al. 2024), 
image geolocalization (Vivanco Cepeda, Nayak, and Shah 2023; Z. Wang et al. 2025), health outcome 
prediction (J. Zhang et al. 2025), trajectory imputation (Yang, Yao, Whalen and Mai, 2025), traffic violation 
prediction (Yang, Yao, Roozkhosh, Liu and Mai, 2025), among others. Despite these successes, several 
challenges remain. First, while the distance preservation property enables the learned location repre
sentations to effectively capture spatial dependencies among geographic features, how to use these 
representations to capture spatial heterogeneity remains an ongoing research direction. Second, 
although advanced location encoders like Space2Vec and Sphere2Vec already use inductive multi-scale 
representations to capture spatial patterns across different scales, designing effective inductive multi- 
scale location decoders remains a challenging and open research problem. Lastly, while many current 
location representation learning methods achieve strong in-domain performance, they often generalize 
poorly to new geographic areas. Developing models with better spatiotemporal generalizability thus 
remains a key challenge for future GeoAI research.
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2.2. Representation learning for POIs

POIs serve as geographic space mappings of urban functions and human activities, reflecting socioeconomic 
vitality and complex human behaviour patterns. POI representation learning involves quantifying and 
abstracting the inherent deep semantic information to transform POIs into high-dimensional vectors 
(Figure 2). The vectors effectively capture complex characteristics, such as functional distribution, spatio
temporal relationships, and social interaction patterns among POIs (Bing et al. 2023; X. Liu, Andris, and 
Rahimi 2019). As such, POI representation supports a wide range of tasks, including urban functional area 
identification (Bing et al. 2023; X. Liu, Andris, and Rahimi 2019), land use change detection (Y. Yao, Zhu et al.  
2023), and personalized recommendations (Lai et al. 2024; J. Zhang and Ma 2024).

To incorporate POI data into deep learning models and capture their spatial characteristics, existing 
studies commonly employ sequence-based and graph-based structures to model relationships among POIs. 
Sequence-based methods draw inspiration from natural language processing (NLP) by treating POIs as 
‘words’ and constructing meaningful POI sequences. These sequences encode geographic proximity or user 
behaviour patterns, allowing models to implicitly learn spatial and temporal dependencies. Graph-based 
methods represent POIs as nodes in a graph, with edge weights typically defined by geographic distance and 
interaction features. These structured approaches provide richer contextual information and spatial con
straints, enhancing the modelling of spatial distribution patterns and semantic features.

The sequence-based method proposed by Y. Yao et al. (2017) was an early example of POI representation 
(Niu and Silva 2021). They generated POI sequences by considering the shortest path and then inputted 
these sequences into the Word2Vec model to produce category representation vectors. As shown in 
Figure 2, the sequence-based approach focuses on two core elements: (1) how to construct effective 
sequences and (2) how to extract POI representations using sequence models. Strategies for sequence 
construction typically consider the shortest path (Y. Yao et al. 2017), geographic proximity (B. Yan et al. 2017; 
Zhai et al. 2019), and users’ historical visits to POI locations (Cao et al. 2020) to generate sequence data with 
spatiotemporal semantics. The sequence data reflects the direct relationships between POIs and introduces 
information on users’ spatial behaviour and temporal changes. To extract meaningful representations from 
these sequences, models such as Word2Vec (B. Chang et al. 2018; T. Li et al. 2025), LSTM (F. Yu et al. 2020), 
and the masked language model (MLM) (J. Huang et al. 2022) are employed to uncover spatiotemporal 
dependencies and implicit semantic information.

Although sequence-based POI representation methods are effective, they face inherent limitations in 
capturing complex spatial structures and interactions among POIs. To address these shortcomings, graph- 
based POI representation methods have emerged as a more robust solution. Graph-based POI representation 
learning treats POIs as nodes in a graph and uses features such as distances and interactions between POIs as 
edge weights (Gong et al. 2024; W. Huang et al. 2022) to construct the graph structure. Graph Neural Networks 
(GNNs) are then applied to capture spatial dependencies and relationships between POIs in two-dimensional 
geographic space. GNNs also aggregate neighbourhood information to enhance the ability to express both 
local and global features of POI representations (Xu et al. 2022). A recent study (W. Huang et al. 2023) shows 
that graph-based POI representation methods not only consider the category information of POIs but also 
integrate geographic neighbourhood information to achieve single POI representation learning.

POI representation learning has demonstrated significant application potential across various fields. In 
personalized recommendation systems, POI representation leverages users’ historical behaviours and the 
spatial relationships of POIs (E. Wang et al. 2023; Zheng and Zhou 2024) to provide accurate recommenda
tion services. In urban functional distribution identification, POI representation analyses the spatial distribu
tion of POIs (Qin et al. 2022) and scene categories (Chen, Zhu, et al. 2022), enabling the effective 
identification of urban functional zones and potential development trends. When combined with multi- 
modal data, such as remote sensing images (Bai et al. 2023) and human movement (Chen, Zhao, et al. 2022; F. 
Huang, Lv and Yue 2024), POI representation provides richer information support for socioeconomic analysis. 
Additionally, POI representation plays a crucial role in large geographic models. POI representation provides 
spatial context information, including spatial location, function type, and the relationships between POIs and 
their surrounding environment (P. Li et al. 2024), thereby supporting model training. The rich semantic 
information provided by POI representation enhances the capabilities of geographic models in spatial 
analysis and intelligent geographic reasoning.
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Despite the critical role of POI representation, current evaluation frameworks lack standardized criteria. 
Most mainstream approaches rely on dimensionality reduction visualizations for qualitative assessments or 
indirectly evaluate representation quality through customized downstream tasks. Such practices limit 
comparative analysis and compromise the objectivity and generalizability of evaluations. To advance the 
research and improve comparability, it is crucial to establish standardized and quantifiable evaluation 
systems for POI representations.

2.3. Representation learning for trajectories

Trajectory data extend beyond static spatial coordinates by incorporating temporal dynamics and spatial 
transitions, reflecting complex interactions between moving objects and their surrounding environments 
(Hägerstrand 1970). This information, encompassing ‘where’, ‘when’, and ‘why’, emphasizes the goal of 
trajectory representation learning: encoding spatiotemporal relationships and contextual semantics into 
high-dimensional vector embeddings (F. Huang, Lv, and Yue 2024; Rao, Gao, and Zhu 2023). Trajectories 
present heterogeneity, correlation, and irregularity across space and time. Mainstream approaches tackle 
these challenges by imposing distinct structural assumptions on the data, thereby conceptualizing trajec
tories primarily as sequences, graphs, or textual descriptions. Each of these frameworks imposes unique 
assumptions about the organization of features and relationships, ultimately influencing the learned 
representations.

Viewing trajectories as temporally ordered location sequences, i.e. T ¼ l1; t1ð Þ; l2; t2ð Þ; . . . ; ln; tnð Þh i, prior
itizes the temporal progression where the location and state at any point are influenced by preceding ones. 
This perspective models the temporal correlation of movement, framing it as a time-series problem. Early 
studies often employed manual feature extraction (e.g. time intervals, speed, visit frequency) followed by 
sequence models like seq2seq (Damiani et al. 2020; D. Yao et al. 2017), but this heavily relied on predefined 
features. Modern methods directly process ordered timestamp-location pairs using models such as RNNs or 
Transformers, automatically capturing non-linear dependencies (see Figure 3(a)). RNNs naturally model the 
Markovian assumptions (and their extensions) inherent in movement patterns through their recurrent states, 
making them effective at capturing properties like travel time and distance (Alahi et al. 2016; X. Li et al. 2018; 
H. Zhang et al. 2020). This ‘process-first’ viewpoint excels at modelling inertia in spatial sequences T lð Þ

(X. Jiang et al. 2017) but struggles with capturing long-range dependencies, especially in sparse data. 
Transformers address these limitations through self-attention mechanisms that explicitly model non- 
adjacent relationships. For instance, TrajFormer (Liang et al. 2022) enhances position encoding by consider
ing continuous spatiotemporal intervals between tokens to capture the irregularity of trajectories. Similarly, 

Figure 2. Methods for learning representations from POIs. The upper part uses a sequence-based approach, where the 
sequence is constructed and fed into a feature extraction module. The lower part uses a graph-based approach, where 
a graph is constructed and input into a GNN. Both methods output representation vectors.
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TrajBERT (Si et al. 2024) employs Transformer encoder to learn mobility patterns bi-directionally with 
temporal refinement. The primary training objective of Transformer-based frameworks is focused on self- 
supervised learning tasks, such as next-token prediction or masked token reconstruction, to uncover the 
underlying structural (Y. Chang et al. 2023; Fang et al. 2022; J. Jiang et al. 2023). As a result, effective 
tokenization of spatial and temporal dimensions is essential. This involves encoding spatial structures (e.g. 
road networks) into spatial tokens T lð Þ and discretizing continuous and periodic temporal dimensions into 
temporal tokens T tð Þ.

Trajectories within relational structures (graphs) shift focus to the spatial context and connectivity. In 
graph-based methods (see Figure 3(b)), trajectories are constructed as, or projected onto, graphs G that are 
then fed into models like GNNs. These models address spatial heterogeneity and correlation, encoding 
relationships between disparate locations (e.g. POIs and road intersections) and leveraging network topol
ogy to define spatial proximity. The specific graph construction determines which spatiotemporal contextual 
elements are explicitly represented: (1) Trajectory Matching on Road Networks: Matching trajectories onto 
road networks emphasizes the modelling of hierarchical spatial structure, constraining movement and 
informing path choices (Y. Chen et al. 2021; Fu and Lee 2020; S. Zhou et al. 2023). In this approach, GNNs 
learn representations sensitive to network topology and reachability. (2) Individual Trajectory Graphs: 
Constructing individual trajectory graphs captures personal mobility preferences in space (P. Wang et al.  
2019; D. Yao et al. 2022). Here, nodes represent attributes of locations or regions (e.g. POI categories or place 
functions), while edges encode learned transition weights, such as travel frequency or distance between 
locations. (3) Dynamic Spatial Graphs: Dynamic Spatial Trajectory Graphs account for the temporal evolution 
of spatial relationships (e.g. traffic flows, land-use changes). Frameworks like (Dai et al. 2021) and (W. Yu and 
Wang 2023) model this through time-varying graph structures PðG1;G2; . . . ;Gnjt1; t2; . . . ; tnÞ, explicitly 
capturing spatiotemporal interactions. Furthermore, combining GNNs and Transformers is an intuitive 
strategy: GNNs can learn spatial embeddings (e.g. from road networks) associated with trajectory points, 
which then serve as input for temporal modelling by Transformers (J. Jiang et al. 2023; Zhang, Yu, and Zhu  
2024). However, it is worth noting that spatiotemporal dependencies might remain implicitly encoded, 
particularly in conditional modelling approaches (F. Huang, Lv, and Yue 2024).

Human mobilities signify activities, goals, and interactions with meaningful places. From this perspective, 
trajectories are treated more as narratives of activity rich with semantic content that links to POI types, 
activity labels, or social comments. Early NLP-inspired methods treated trajectories as sequences of ‘place 
words’ (e.g. POI categories), using techniques like Word2Vec to learn semantic embeddings (Murray et al.  
2023; Yao, Guo et al. 2023; F. Zhou et al. 2019). The advent of LLMs, with their vast world knowledge and 
sophisticated language understanding, has significantly advanced this view. As shown in Figure 3(c), by 
translating trajectory data into textual descriptions, LLMs can be employed to generate deep semantic 
representations, capturing nuanced activity understanding, contextual reasoning, and even inferring intent 
(Haydari et al. 2024; Li et al. 2024; Zhang , Amiri, Liu, Zhao, and Zuefle 2024). However, scaling diverse 
spatiotemporal information into a purely semantic space presents challenges. The key lies in accurately 

Figure 3. Trajectory representation learning across three data structures: sequences, graphs, and semantic text.
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transforming continuous spatiotemporal data into discrete textual tokens compatible with LLMs, while 
addressing inherent model biases and minimizing potential ‘semantic gaps’ (Vafa et al. 2024).

In summary, although advanced deep learning models have significantly propelled trajectory representa
tion learning, a fundamental challenge remains: achieving a deeper understanding of the intrinsic spatio
temporal structure and semantic meaning of trajectories, as this foundation ultimately determines the 
quality of representations. From a data epistemology perspective (Kitchin 2013), revisiting foundational 
questions is pertinent: how do human activities unfold across time and space, and how do trajectory 
representations help us understand this implicit process (Couclelis 1986; S. Gao 2024; Tuan 1979)? The 
path forward thus hinges on unified frameworks that not only align spatial, temporal, and semantic 
information but are, more importantly, grounded in the definition of space-time units (tokens) and their 
linkages that fully respect the data’s intrinsic irregularity, correlation, and heterogeneity. Such integration is 
key to developing more holistic representations and achieving deeper insights into complex processes like 
human-environment interactions.

2.4. Representation learning for spatial interaction networks

Spatial interactions represent the supply–demand relationships between places, driven by people’s decision- 
making processes and manifested through flows of people, goods, ideas, and more (Anderson 2011; 
Fotheringham and O’Kelly 1989; Simini et al. 2012; J. Wang 2017; Wilson 1967). The characteristics of 
a place determine its ability to generate (nodal propulsiveness) or attract (nodal attractiveness) bi- 
directional flows, while spatial impedances – such as distance and travel costs – acts as a barrier to flows 
between places (Anderson 2011; Fotheringham and O’Kelly 1989; J. Wang 2017; Wilson 1967). These flows 
form weighted networks embedded in geographic space, with places as nodes and flow volumes between 
them as edge weights (Barthélemy 2011; Batty 2013; Louail et al. 2015). Spatial interaction networks are 
essential for understanding places, as they capture inter-place relationships and connect distant locations 
(Batty 2013; Y. Liu et al. 2024). Many GeoAI tasks, such as socioeconomic prediction (Z. Fan et al. 2023; Rolf 
et al. 2021) and flow generation (Simini et al. 2021), rely on a comprehensive characterization of places (S. 
Gao 2024), with spatial interaction data offering a promising path forward. However, traditional feature 
engineering faces significant challenges, particularly due to the distance-decay effect (M. Zhang et al. 2020; 
Fotheringham 1981), where interactions weaken as the distance between places increases. Accurately 
quantifying the effective distance (e.g. spatial impedance parameters) and modelling appropriate decay 
functions remain complex and unresolved tasks.

Representation learning for spatial interaction networks offers distinct advantages by automatically 
addressing the complexities of the distance-decay effect and generating multi-scale, multi-faceted embed
dings that capture diverse flow semantics aligned with varying place characteristics. For instance, commut
ing flows can encode fine-grained income variations (Kreindler and Miyauchi 2023), while trade flows reflect 
macroeconomic indicators such as regional GDP (Helpman, Melitz, and Rubinstein 2008). Typically, repre
sentation learning for spatial interaction networks employs static flow matrices (e.g. origin-destination data) 
as input observations, with the core objective of inferring latent driving factors. These factors may be derived 
explicitly by modelling the underlying interaction mechanisms or implicitly through data-driven techniques 
such as network embedding methods. Given a spatial interaction network among N places, representation 
learning generates two distinct embeddings for each place: one as an origin and the other as a destination 
(Figure 4). The origin embedding captures information related to nodal propulsiveness, while the destination 
embedding encapsulates nodal attractiveness. For example, in trade flow networks, the origin embedding 
may reflect exporter-specific factors such as firm productivity, while the destination embedding incorporates 
importer-related features like market size (e.g. GDP, population) or consumer preferences (Helpman, Melitz, 
and Rubinstein 2008).

Existing approaches to learning representations from spatial interaction networks can be categorized into 
two paradigms based on their incorporation of domain knowledge: process-agnostic methods that rely 
exclusively on data-driven patterns, and process-explicit methods that incorporate domain knowledge. 
These approaches generally operate under two fundamental assumptions: (1) places exhibiting similar 
interaction patterns should possess similar representations, and (2) place representations can be derived 
by modelling flow allocation probability distributions. The first assumption is inspired by word and network 
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representation learning, where words or nodes with similar contexts are assumed to have similar representa
tions (Mikolov, Chen, et al. 2013; Mikolov, Sutskever, et al. 2013; Tang et al. 2015). By constructing 
spatiotemporal contexts from spatial interaction networks, place representations can be inferred similarly. 
Research has demonstrated the usefulness of representations learned from these methods, such as using 
representations learned from taxi flows to perform various downstream tasks like land use classification and 
crime rate predictions (N. Kim and Yoon 2025; Y. Luo, Chung, and Chen 2022; H. Wang and Li 2017; Z. Yao 
et al. 2018; M. Zhang et al. 2020; Y. Zhou and Huang 2018). The second assumption builds upon single- 
constrained spatial interaction models (Fotheringham 1983; Fotheringham and O’Kelly 1989), where out
flows from a given origin are allocated to destinations based on destination attractiveness and impedance, 
while inflows to a destination are determined by origin propulsiveness and impedance. The representation 
learning framework inverts this logic: it derives (1) destination attractiveness and spatial impedance from 
observed outflow allocation probability distributions and (2) origin propulsiveness and spatial impedance 
from inflow allocation probability distributions. This approach has been validated through experiments on 
synthetic flow data and has demonstrated empirical effectiveness in predicting income levels, housing 
prices, and inter-place distances across multiple scales in commuting datasets (X. Wang, Chen, and Liu 2024).

Integrating the objective functions derived from these two assumptions enables effective incorporation 
of flow semantics into geospatial multi-modal representation learning. However, existing methods still 
exhibit limitations. As (X. Wang, Chen, and Liu 2024) have demonstrated, applying generic network repre
sentation learning techniques to spatial interaction networks is equivalent to optimizing only outflow 
allocation objectives, thereby neglecting origin propulsiveness. Furthermore, while the second assumption 
is grounded in domain knowledge, current implementations oversimplify spatial interaction mechanisms by 
relying solely on inner product operations. Empirical evidence suggests that modelling interaction dynamics 
through non-linear modules could yield significant performance improvements (Simini et al. 2021) – 
a direction meriting deeper exploration. Moreover, current research has decomposed the impedance 
variable into place representations, complicating the interpretation of the distance decay effect. Last but 
not least, the inherent multi-scale nature of spatial interactions, where different interaction types typically 
manifest at distinct geographic scales, presents an additional fundamental challenge for robust representa
tion learning.

Figure 4. Representation learning for spatial interaction networks. Input: spatial interaction networks represented by static 
flow matrices (e.g. origin-destination data). Objective: infer latent driving factors through either (1) implicit pattern 
extraction via data-driven approaches (e.g. word or network embedding techniques) or (2) explicit modelling of interaction 
mechanisms. Output: two representations for each place (origin and destination embeddings) capturing latent driving 
factors.
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2.5. Representation learning for remote sensing imagery

Remote sensing imagery is characterized by high spatial resolution, high temporal resolution, and spatio
temporal continuity, with diverse and heterogeneous ground objects. While remote sensing data provide 
rich temporal, spatial, and spectral information, such information is typically challenging to utilize directly 
without proper processing (Xue et al. 2025). Representation learning enables the automatic extraction of 
features from high-dimensional and complex remote sensing data. The features extracted from representa
tion learning could not only encompass the information captured by traditional handcrafted features but 
also reveal underlying coordination patterns and deep semantic structures, thereby enhancing the perfor
mance of downstream tasks (Tao et al. 2023).

Supervised feature learning (SFL) is a classic approach in remote sensing representation learning, relying 
on large-scale annotated datasets. Its performance on downstream tasks heavily depends on the quantity 
and quality of the labels. To address this need, several high-quality annotated datasets have been developed, 
such as DOTA for object detection (Xia et al. 2018), RS5M for matching remote sensing imagery with text (Z. 
Zhang et al. 2024), and SatlasPretrain for various tasks (Bastani et al. 2023). Advances in architectures such as 
convolutional neural networks (CNNs), recurrent neural networks (RNNs), and Vision Transformers (ViTs) have 
further enabled SFL to achieve remarkable performance in downstream tasks, including land cover classifica
tion (Hong et al. 2019), change detection (P. Chen et al. 2022) and scene recognition (C. Luo, Jin, and Sun  
2019). However, most representations learned by SFL are directly related to the labels, which limits their 
generalization ability. Typically, it requires re-labelling the data and retraining the model to adapt to new 
tasks.

Compared to SFL, self-supervised feature learning (SSFL) reduces reliance on labelled data by extracting 
feature representations from large volumes of unlabelled remote sensing imagery. Existing SSFL methods 
can be broadly categorized into three types: generative, predictive, and contrastive, each suited for different 
tasks (Y. Wang et al. 2022). Figure 5 illustrates the general structures of the three main types of SSFL models. 
The core objective of generative methods is to reconstruct the input from a compressed representation. To 
achieve this goal, the model is compelled to retain the understanding of spatial continuity and local texture 
consistency within geographic data, thereby enabling the extraction of hidden geographic patterns and 
spatial effects. Generative models, represented by autoencoders (Bank, Koenigstein, and Giryes 2023) and 
their variants (He et al. 2022; Kingma and Welling 2013), focus on reconstructing input data to derive 
meaningful features, which have demonstrated strong performance in low-level visual tasks such as 
denoising (X. Wang et al. 2022), unmixing (Hong et al. 2022), and image fusion (Rajaei, Abiri, and 
Helfroush 2024).

Predictive methods emphasize learning semantic context features, such as spatial and spectral relation
ships, making them well-suited for tasks like remote-sensing image rotation prediction (Ji et al. 2022) and 
multispectral feature prediction (X. Yang et al. 2022). DeepCluster (Caron et al. 2018) is a representative 
predictive method. The core idea is to iteratively perform feature extraction and clustering. It uses a neural 
network to extract image features, applies K-means clustering to assign pseudo-labels, and then trains the 
network using these pseudo-labels as supervision, progressively enhancing the quality of feature represen
tations. This approach has been applied to estimate socio-demographic variables, such as population, from 
remote sensing imagery, providing frequent and reliable local population estimates (Neal et al. 2022).

Contrastive methods in remote sensing can address different geographic tasks by designing specific types 
of positive and negative sample pairs. For example, using images from nearby locations as positive pairs 
encourages spatial dependency, making neighbouring regions more similar in representation and better 
reflecting the spatial structure of geographic space. Studies have applied classic contrastive models like 
SimCLR (T. Chen et al. 2020) and Moco (He et al. 2020) to remote sensing tasks such as scene interpretation 
and classification (Tao et al. 2022). Some approaches leverage the unique spatiotemporal attributes of 
remote sensing imagery. They construct spatial location-based contrasts (Jean et al. 2019) and time series- 
based contrasts (H. Huang et al. 2022) to support tasks such as semantic segmentation (H. Li et al. 2022) and 
image classification (Guan and Lam 2022). Multi-modal contrastive methods compare positive samples from 
multi-modal data of the same scene against negative samples from different scenes. Notable studies have 
explored cross-modal matching, such as remote sensing imagery with text (Yuan et al. 2022), audio (Heidler 
et al. 2023), and Synthetic Aperture Radar (SAR) images (Jain, Schoen-Phelan, and Ross 2022). These 
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approaches produce feature representations rich in implicit information, thereby enhancing the perfor
mance of downstream tasks.

In summary, remote-sensing image representation learning based on SFL and SSFL has witnessed rapid 
development in recent years, showing great potential in handling complex and diverse data. SSFL, with its 
low reliance on labelled data and strong generalization, has gradually become the main trend for future 
development. Among the three categories of SSFL models, contrastive models have shown superior 
performance in recent years. Their ability to directly learn highly discriminative features makes them well- 
suited for a wide range of downstream tasks. Compared to generative models, contrastive approaches 
typically offer stronger generalization capabilities, and they also exhibit greater training stability than 
predictive methods. Additionally, the emergence of LLMs has also spurred interest in Large Remote 
Sensing Models (Hu et al. 2025; F. Liu et al. 2024; Z. Zhang et al. 2024). The multi-modal learning and cross- 
modal understanding capabilities of large models enhance the feature representation of remote sensing 
images. This results in representations that are richer in information and better suited for various down
stream tasks. This creates unprecedented opportunities for remote sensing pretraining and alignment with 
cross-modal data, advancing representation learning in remote sensing towards greater intelligence.

2.6. Representation learning for street view imagery

Street view imagery is captured along urban road networks using either dedicated vehicles or crowdsourced 
devices, providing high-resolution images from a pedestrian’s perspective (Biljecki and Ito 2021; F. Zhang 
et al. 2024). Compared to the macro-level depiction of the urban physical environment provided by remote 
sensing imagery (Y. Huang, Sanatani, et al. 2025), street view imagery offers detailed representations that 
enable fine-grained analyses, such as identifying building styles and ages (Sun et al. 2022), assessing road 
quality (Chacra and Zelek 2018), and classifying types of street stores (Noorian, Psyllidis, and Bozzon 2019). To 
effectively extract meaningful information from such complex, multidimensional pixel data contained in 
these images for subsequent analysis and decision-making, robust representation learning methods are 
essential (see Figure 6). Deep learning has emerged as the core methodology for representation learning in 
street view imagery. By employing multi-layer neural network architectures as feature extractors, such as 
CNNs and Transformers, deep learning methods can progressively extract visual information − from low-level 
edges and textures to high-level semantic features, such as street layouts, street furniture, and human 

Figure 5. Representation learning for remote sensing imagery, illustrating the general structures of the three main types of 
self-supervised learning models: generative, predictive, and contrastive models.
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activity (Y. Huang et al. 2023; Y. Huang, F. Zhang et al. 2025). Specifically, similar to representation learning 
for remote sensing imagery, representation learning for street view imagery can also be categorized into 
supervised and self-supervised approaches.

The availability of large-scale annotated, scene-centric datasets, such as Places and Place Pulse, has greatly 
facilitated the supervised learning of street view imagery (Hou et al. 2024; F. Zhang et al. 2018; B. Zhou et al.  
2018). While these datasets are labelled for specific tasks, such as scene classification in Places and human 
perception evaluation in Place Pulse, the representation vectors learned from them encode rich and diverse 
information about the urban physical environment, extending beyond the scope of their original annota
tions. For instance, the work of (Y. Huang et al. 2023) demonstrates that leveraging a model pre-trained on 
the Places dataset for feature extraction effectively captures the semantic information of urban scenes, 
thereby enabling a comprehensive representation of urban areas.

The advent of self-supervised learning, combined with vast quantities of unlabelled street view imagery, 
has provided new vitality into the field of representation learning (Stalder et al. 2024). Without requiring 
manual annotations, self-supervised methods rely on carefully designed pretext tasks to automatically 
extract representation vectors, while maintaining flexibility for adaptation to downstream tasks (Z. Wang, 
Li, and Rajagopal 2020). In the context of street view imagery, most current approaches adopt contrastive 
learning frameworks. A fundamental component of these frameworks is the construction of positive and 
negative sample pairs, which has traditionally been guided by principles like self-transformations. To capture 
the unique characteristics of geographic space more effectively, recent approaches have begun to integrate 
geographical principles. For example, the principle of spatial autocorrelation is utilized to refine positive 
sampling, based on the premise that geographically proximate images are more likely to be semantically 
similar. A recent study (Y. Li et al. 2025) systematically compares these three self-supervised strategies and 
reveals their applicability to different urban tasks. ‘Self-contrast’ emphasizes global information and is thus 
suitable for tasks involving abundant dynamic elements and human perception; ‘temporal contrast’ focuses 
on static features, facilitating stable representations for tasks such as place recognition; and ‘spatial contrast’ 
captures the socioeconomic and cultural ambiences shared by neighbouring scenes, making it especially 
beneficial for macro-level analyses like socioeconomic indicator prediction.

In sum, as annotated data accumulate and self-supervised learning methods develop, street view imagery 
representation learning has established a clear methodological continuum from traditional supervised 
models to flexible and varied self-supervised approaches, thereby laying a robust and enriched theoretical 
groundwork for a wide range of urban environment analysis.

3. Multi-modal representation learning

3.1. The development phase

Multi-modal representation learning aims to integrate geospatial data from various modalities, such as 
trajectory, imagery, and spatial network data. Facing challenges inherent in geospatial data, such as its 
heterogeneity, high dimensionality, and complex interconnections, the main purposes of this approach are 
as follows: a) Enhancing Robustness and Generalization: By combining information from multiple sources, 
the model can improve its robustness and generalization capabilities in geospatial analysis tasks. This means 
that the model can perform better across a variety of different situations and data types, reducing overfitting 
to a single data source. b) Enriching Understanding of Geographical Entities and Processes: Multi-modal 
learning allows for a richer interpretation of geographical objects and processes by providing multiple 
perspectives on the same object. This can lead to deeper insights into the dynamics and characteristics of 
geographical features. Supported by self-supervised representation learning techniques, multi-modal learn
ing has become a hot research topic in the field of geospatial sciences. The development of this field can 
generally be divided into three stages (Figure 7):

3.1.1 Independent Modal Modelling
In this stage, feature extraction neural networks for different modalities operate independently, often 
aligning modalities through contrastive learning. For instance, models like CLIP (Radford et al. 2021) use 
separate visual and textual encoders, learning semantic consistency across modalities via a contrastive loss, 
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achieving cross-modal alignment. In geospatial applications, models like UrbanVLP (Hao et al. 2024) and 
UrbanCLIP (Y. Yan et al. 2024) utilize contrastive learning between street view and remote sensing images to 
enhance urban scene analysis capabilities. These methods, by employing independent encoders and con
trastive learning, effectively address challenges like geospatial data heterogeneity, sparsity, and specific 
modal feature extraction, thereby improving the accuracy of fine-grained classification and economic 
assessment in complex urban environments. For example, UrbanCLIP has been applied to urban land use 
classification and street-level socioeconomic status estimation in major Chinese cities, demonstrating sig
nificant improvements in accuracy compared to unimodal baselines. GeoJEPA (Lundqvist and Delvret 2025) 
uses masked learning to pretrain on a large dataset of OpenStreetMap attributes, geometries, and aerial 
images to generate multi-modal representations for geospatial data.

3.1.2 Unified Modal Modelling
At this stage, a shared network architecture is employed to extract features from multiple modalities, 
deepening modal alignment through a combination of contrastive and masked learning. Models like BLIP 
(J.Li et al. 2022) introduce masked learning into the contrastive framework, enhancing the interaction and 
alignment between modalities. Models such as FLAVA (Singh et al. 2022) and ViLT (W. Kim, Son, and Kim  
2021), based on a shared Transformer backbone, perform modal alignment and integration within a unified 
structure, significantly enhancing the representation of cross-modal features. Unified modal modelling, 
through shared architectures and multi-task learning, more deeply fuses multi-modal geospatial informa
tion. It excels at capturing complex correlations between geospatial features of varying scales and granula
rities, thereby improving performance in tasks such as urban understanding and environmental monitoring. 
Unified Modal Modelling methods have demonstrated the potential of unified multi-modal architectures for 
a range of GeoAI tasks, including urban scene understanding, cross-modal geospatial representation, and 
environmental monitoring. For example, PDFM (Agarwal et al. 2024) has been applied in real-world scenarios 
such as public health monitoring, retail site selection, climate risk assessment, and socioeconomic indicator 
mapping, demonstrating the practical value of multi-modal GeoAI frameworks.

3.1.3 LLM Enhancement
With the rise of LLMs, the latest multi-modal learning frameworks utilize LLMs as core modules, implement
ing transformation alignment through adapter layers (Yin et al. 2024). This method maps features from 
different modalities to a unified textual latent space, leveraging the large-scale parameters of LLMs to learn 
efficient mappings and alignments between modalities. Models like Flamingo (Alayrac et al. 2022) and 

Figure 6. Methods for learning representations from street view imagery. Representation vectors can be extracted either 
through supervised learning based on large annotated datasets, or through self-supervised learning that leverages the 
intrinsic properties of the image itself or associated metadata.
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LLaMA-Adapter (R.Zhang et al. 2024), by combining the generative and reasoning capabilities of LLMs, 
strengthen the alignment and interaction between modalities. LLM enhancement frameworks leverage the 
powerful reasoning and knowledge integration capabilities of LLMs to bridge the semantic gap between 
modalities. They utilize pre-trained knowledge to interpret complex geospatial semantics (i.e. detailed 
meanings) and analyse spatiotemporal dynamics with higher precision. For example, AllSpark (Shao et al.  
2025) integrates spatiotemporal information, supporting more modalities and handling complex spatiotem
poral scenarios. In the geospatial domain, this transformational alignment not only improves cross-modal 
synergy but also facilitates real-world applications. For example, Hu et al. (2025) contribute a high-quality, 
human-annotated remote sensing captioning dataset (RSICap) and a comprehensive benchmark (RSIEval), 
enabling the development and evaluation of large vision-language models specifically tailored for remote 
sensing image understanding. These advances have significant potential in practical GeoAI applications, 
including disaster monitoring, land use mapping, and environmental change detection, where the integra
tion and reasoning of multi-modal data are essential.

3.2. Multi-modal interactive representation (MMIR)

Geospatial data originate from diverse spatiotemporal processes, offering complementary multi-modal 
information. While fusing these modalities into a unified representation for each geographical unit could 
theoretically support various geospatial tasks, conventional fusion approaches (e.g. simple concatenation of 
representations) often fail to capture the nuanced relationships between modalities. A more promising 
direction involves developing frameworks that enable dynamic, context-aware interactions between mod
alities – where each modality adaptively aligns and contributes its strengths based on the specific task 
requirements. This paradigm mirrors the behaviour of complex adaptive systems, where components 
interact organically while maintaining their distinct identities. For instance, in geographic question answer
ing, the relevant modalities and their interactions may vary significantly depending on whether the question 
concerns urban infrastructure, environmental patterns, or socioeconomic factors.

A fundamental challenge in multi-modal fusion lies in establishing a unified feature space that 
effectively accommodates all modalities (Baars 1993; Huh et al. 2024). To address this, we propose 
Multi-modal Interactive Representation (MMIR), a novel paradigm that maps each modality’s represen
tation into a shared language space via LLMs (Figure 8). Unlike traditional fusion approaches that 
merge modalities into a single representation, MMIR enables: 1) Dynamic inter-modal communication 
through intrinsic semantic links, 2) Maximal preservation of each modality’s distinct features, and 3) 
Task-driven reasoning where LLMs selectively leverage modalities based on contextual needs. The 
rationale for using language as the unifying modality stems from two key reasons. First, language 
inherently encapsulates vast amounts of geospatial and human experiential knowledge – from quali
tative descriptions of places to subjective perceptions of space (Adams and McKenzie 2013; Tuan  

Figure 7. Developmental stages of multi-modal representation learning.
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1979). This makes it uniquely capable of providing semantic grounding for abstract concepts across 
modalities through shared meanings. Second, recent advancements in large language models (LLMs), 
such as GPT-4 (OpenAI et al. 2024) and DeepSeek R1 (DeepSeek-AI et al. 2025), have endowed these 
systems with the technical capability to decode and systematically organize linguistic knowledge. 
Simultaneously, they function as adaptive interfaces for cross-modal alignment and contextual reason
ing. A growing body of evidence suggests that pretrained LLMs exhibit surprising versatility across 
other modalities. For instance, Sharma et al. (2024) demonstrated that LLMs trained exclusively on 
language data possess a rich understanding of visual structures. Similarly, Pang et al. (2024) found that 
LLMs trained solely on text data can serve as effective representations for purely visual tasks using 
a simple yet effective approach: leveraging a frozen transformer block from pretrained LLMs as 
a constituent encoder layer to process visual tokens directly. In the domain of visual generation, 
LLMs have shown remarkable capabilities to enhance captions with visual structures (e.g. bounding 
boxes) and improve generation quality (Betker et al. 2023; Lian, Shi et al. 2023; Lian, Li et al. 2023). 
Ngo and Kim (2024) further demonstrated that auditory models can achieve approximate alignment 
with LLMs through a simple linear transformation, while Ng et al. (2023) highlighted the effectiveness 
of pretrained LLMs in tasks such as facial motion prediction.

Practically, our MMIR framework extends the Language as Reference Framework (LaRF) (Shao et al.  
2025) by using linguistic structures to unify spatiotemporal modalities in a shared representation space 
while preserving their distinct features. MMIR’s key strength lies in its potential for generalization, 
especially for spatial and temporal knowledge transfer across different geographic regions and time 
periods. This is enabled by the language’s inherent capacity to abstractly represent and recompose real- 
world knowledge, along with its interpretability that allows precise control over contextual specifications. 
For instance, when predicting flood risks in a data-scarce region, the system can specify conditions such as 
‘low-lying urban area near river systems during monsoon season’ and retrieve similar patterns in real-world 
knowledge. Language models can further leverage reasoning capabilities (DeepSeek-AI et al. 2025) to not 
only better analogize similar scenarios but also demonstrate the rationale behind model predictions. For 
example, the system might explain that ‘elevated flood risk arises from factors such as topographic 
vulnerability, urban impermeability, and hydrological proximity, as observed in similar metropolitan 
areas’. By utilizing linguistic structures as a cross-modal bridge, combined with knowledge abstraction 
and reasoning capabilities, the framework can generalize to novel scenarios beyond its training distribu
tion. This enables it to overcome data limitations through compact yet expressive semantic encoding. 
While this approach shows promise in addressing spatial-data challenges – including modality imbalance, 
cross-region transfer, and temporal shifts – its practical efficacy awaits further validation in real-world 
implementations.

Figure 8. The MMIR framework: language-space based dynamic interactive representation for multi-modal fusion.
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4. Conclusions

Geographical representation learning has emerged as a powerful approach to addressing fundamental 
challenges in spatiotemporal systems. By leveraging diverse data sources and advanced algorithms, it 
facilitates a comprehensive understanding of geographical phenomena. Recent research has made signifi
cant strides in geographical unit representation learning, particularly in single-modal feature extraction and 
multi-modal fusion. Through the integration of heterogeneous data sources, such as satellite imagery, 
mobility patterns, and POI distributions, these methods enable richer and more holistic representations of 
geographical units. However, critical challenges remain, including (1) achieving effective cross-modal data 
alignment and (2) modelling relationships between inter-dimensional features.

Current approaches typically generate geographical unit representations through non-interactive fusion 
(e.g. late concatenation) of unimodal features, rather than performing semantically aligned fusion. While 
existing representations demonstrate effectiveness in applications like land-use classification and urban 
morphology analysis, they often inadequately capture the intricate spatial relationships between geographical 
units. Current models successfully extract discrete features of individual units, yet they still struggle with two 
key limitations: (1) cross-modal data alignment challenges and (2) limited interpretability of their high- 
dimensional feature representations. Addressing these challenges will enable geographical unit representa
tion learning to better cope with the dynamic and multi-scale nature of complex geographical environments.

Building upon recent advances in LLMs, we have proposed the MMIR framework as a promising new paradigm 
for multi-modal geospatial intelligence. By harnessing the language’s inherent abstraction capabilities to dyna
mically connect and compose across modalities, MMIR offers a potential pathway towards more generalizable 
and data-efficient systems – enabling reasoning about novel scenarios through semantic recombination while 
working within practical data constraints. Though challenges like modality imbalance and temporal shifts require 
further investigation, we believe this language-anchored approach may open new directions for developing 
more adaptable and interpretable multi-modal architectures that better capture the complexity of real-world 
environments.
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