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aSchool of Geography and Planning, Sun Yat-sen University, Guangzhou, Guangdong province, China;
bSchool of Geography and Planning, Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun
Yat-sen University, Guangzhou, Guangdong province, China

ABSTRACT
Fine-scale population distribution data at the building level play
an essential role in numerous fields, for example urban planning
and disaster prevention. The rapid technological development of
remote sensing (RS) and geographical information system (GIS) in
recent decades has benefited numerous population distribution
mapping studies. However, most of these studies focused on
global population and environmental changes; few considered
fine-scale population mapping at the local scale, largely because
of a lack of reliable data and models. As geospatial big data
booms, Internet-collected volunteered geographic information
(VGI) can now be used to solve this problem. This article estab-
lishes a novel framework to map urban population distributions at
the building scale by integrating multisource geospatial big data,
which is essential for the fine-scale mapping of population dis-
tributions. First, Baidu points-of-interest (POIs) and real-time
Tencent user densities (RTUD) are analyzed by using a random
forest algorithm to down-scale the street-level population distri-
bution to the grid level. Then, we design an effective iterative
building-population gravity model to map population distribu-
tions at the building level. Meanwhile, we introduce a densely
inhabited index (DII), generated by the proposed gravity model,
which can be used to estimate the degree of residential crowding.
According to a comparison with official community-level census
data and the results of previous population mapping methods, our
method exhibits the best accuracy (Pearson R = .8615,
RMSE = 663.3250, p < .0001). The produced fine-scale population
map can offer a more thorough understanding of inner city popu-
lation distributions, which can thus help policy makers optimize
the allocation of resources.
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1. Introduction

Fine-scale population distribution data, especially at the building level, play an impor-
tant role in many fields, for example migrant population monitoring, resource allocation
optimization and the analysis of city structures (Wu and Murray 2005, Lu et al. 2006,
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Bhaduri et al. 2007b, Gaughan et al. 2013, Langford 2013, Bakillah et al. 2014, Deville
et al. 2014). As the most populous country in the world, China can only acquire detailed
population maps via national censuses every decade. Their lengthy intervals and high
costs prevent national censuses from reflecting population changes in a timely manner,
especially at fine spatial resolutions (Zhou and Ma 2005). Thus, the use of general
multisource GIS data sets is becoming more important to disaggregate and obtain
fine-scale census data (Ural et al. 2011, Langford 2013, Bakillah et al. 2014, Deville
et al. 2014, Stevens et al. 2015).

Many studies in the 1990s handled the rasterization problems of population mapping
(Jones 1990, Deichmann 1996). The earliest studies focused on the spatial interpolation
of populations, with several data sets and approaches proposed in China, including the
spatial interpolation of population point data and statistical data and the dasymetric
mapping method, which integrates auxiliary data (Langford et al. 1991, Eicher and
Brewer 2001, Mennis 2003, Holt et al. 2004, Langford 2007). This framework has helped
produce some global population data sets from typical data sources.

The Gridded Population of the World (GPW, version 2 and version 3), which offers
gridded population data at a resolution of 2.5 arc-minutes, is a widely used global data
set that adopts a spatially weighted method to refine population census data (Ciesin
2004). Based on the GPW, 30 arc-second resolution data sets called the Global Rural
Urban Mapping Project (GRUMP) were produced and further developed by incorporat-
ing global land use classification data (Ciesin 2005) in 1990, 1995 and 2000. Currently,
Landscan (http://web.ornl.gov/sci/landscan/) is the most prevalent spatial population
data set and is the community standard for global population distributions. Landscan is
updated annually (Bhaduri et al. 2007a). Compared to other large-scale population data
at a global level, the spatial resolution of Landscan population data has increased to
1 km. However, all the population data sets that were mentioned above are at the global
scale and can only be used to measure macroscale population changes. Therefore, the
aforementioned methods are not suitable for studies on population behavior in cities, as
the microscale is needed.

The strong correlation between remote sensing observations and large-scaled popu-
lation distributions has been revealed with the rapid development of remote sensing
and geographical information system (GIS) technology (Zha et al. 2003, Lu et al. 2006).
Currently, the most popular approaches of extracting fine-scale population distributions
still use remote sensing products, such as impervious surfaces and nighttime light data
(Azar et al. 2010, Ural et al. 2011, Gaughan et al. 2013, Stevens et al. 2015, Yao et al.
2016). Azar et al. (2010) built a linear model between impervious surfaces and the
population distribution and then obtained a refined population distribution map by
extracting impervious surfaces in Haiti from Landsat images. Gaughan et al. (2013)
proposed a spatial weighting logistical regression model that was based on Landsat-
derived settlement maps and land cover data to map the population distribution in
Southeast Asia at a spatial resolution of 100 m.

In light of these previous studies, Stevens et al. (2015) then used a random forest
algorithm (RFA) to establish a nonparametric predictive model that could downscale
census data and map fine-scale population distributions in Kenya, Vietnam and
Cambodia. However, these studies were applied to countries with low economic devel-
opment levels and simple urban functional structures. On the other hand, some
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attempts have been made to refine the scales of population distribution maps. For
example, a few studies focused on mapping population distributions at the scale of
buildings by using residential building footprints and census data to build empirical
weighting models (Lwin and Murayama 2009, Ural et al. 2011). However, applying these
approaches to fine-scale urban population mapping in China remains difficult because
of various urban spatial structures and complicated population distributions in Chinese
cities, which are influenced by many social, economic and cultural factors. Under such
circumstances, building population distribution models of Chinese cities with only
remote sensing products as auxiliary data, i.e. a simple combination of building foot-
prints and census data, remains impractical.

In recent years, mobile location based service (LBS) technology has developed rapidly
in China and large amounts of multisource geospatial big data can be obtained from
Internet websites or public services, including points of interest (POIs), global position-
ing system (GPS) trajectories of public transportation, mobile communications and
check-in data. These data sets can be combined to identify information about urban
structures, economic vitality and traffic congestion (Ratti et al. 2006, Yue et al. 2009,
Sevtsuk and Ratti 2010, Sun et al. 2011, Jacobs-Crisioni and Koomen 2012, Loibl and
Peters-Anders 2012, Tong 2012, Chang et al. 2014, Hu et al. 2014, Liu et al. 2015) that are
related to various human activities at the microscale and effectively reflect the features
of population distributions and human behaviors. Deville et al. (2014) proposed a power
law fitting model that used mobile phone base station data and census data to obtain
dynamic population distribution maps of Portugal and France at the spatial scale of the
radio coverage of the base stations.

However, mapping populations with mobile phone data has some obvious disadvan-
tages. First, mobile phone base stations have variable effective transmitter powers,
which create inconsistencies between generated Thiessen polygons and actual radio
coverage. Second, a previous study indicated that the low correlation between the caller
volume and underlying population reveals the inadequacy of treating the distribution of
mobile subscribers as a representation of the distribution of an entire population (Kang
et al. 2012). Moreover, collecting mobile phone data in China is nearly impossible
because of the government’s personal privacy policy. To overcome the limits of policies,
Bakillah (2014) used volunteered geographic information (VGI) to map the population
distribution at the building level in Hamburg and produced a satisfactory mapping
result. However, Bakillah’s method only relied on POIs and fine land use/land cover
data (LULC) and did not consider the spatial heterogeneity of the population distribu-
tion when computing the population inside buildings. To our knowledge, different
geospatial big data can capture different aspects of the ground truth, especially for
actual population distributions (Liu et al. 2015). However, none of the above studies
could allocate population distributions at the building level by using multisource
geospatial big data because of a lack of an effective model. We suggest that a model
that can effectively fuse information from multisource geospatial data, including official
survey data and big data, can better reveal the actual population distribution at a fine
scale.

In our study, we designed a framework to map the population distribution at the
building level by integrating multisource geospatial data. The first step was to obtain the
peak points of population density in census units and preliminary population
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disaggregation data by computing the correlation coefficients between each POI and
population density category. In the second step, a nonlinear fitting model was built to
map the population distribution while considering the spatial heterogeneity and several
geospatial big data sets were introduced into the fitting model as auxiliary data sets. In
the last step, the population and nonresidential area in buildings were computed by
using our proposed iterative gravity model. Finally, this model was used to generate
fine-scale population distribution maps at the building level in five central districts in
Guangzhou, which is the largest city in southern China.

2. Study area and data

Our study case was conducted in five central urban districts (Yuexiu, Liwan, Tianhe,
Haizhu and Baiyun) in Guangzhou, Guangdong Province. As the most important districts
over the past two thousand years, these five districts have the highest population
densities in Guangdong Province and serve as the political, cultural and economic
centers of Guangzhou and present complex urban morphologies with a variety of land
use types, including residential, commercial, industrial and education (Liu et al. 2014).
Moreover, the living conditions in our study area vary from urban villages to luxury
housing and working environments also exhibit considerable diversity, which creates
complex patterns among population behaviors. Meanwhile, Guangzhou City, the poli-
tical, economic and cultural center of Guangdong Province and one of the country’s
most important economic development centers, contains a large portion of the migrant
population. As far as we know, the increasing residential and migrant populations will
have environmental and ecological effects on cities and create serious challenges for the
government regarding the configuration of education, transportation, medical facilities
and other resources (Chen et al. 2013, Aunan and Wang 2014).

Based on statistical data from the Sixth National Population Census of China in 2010, the
total area of all five districts in our study area is 984.8 km2, approximately 13.61% of the total
area of Guangzhou. The total number of administrative community-level units is 1278, while
the total number of street-level units is 101, and the recorded permanent resident popula-
tion in 2014 was 6.9496 million (http://data.gzstats.gov.cn/gzStat1/chaxun/ndsj.jsp), com-
prising 58.75% of the total resident population of Guangzhou. In our study area, Yuexiu has
the highest resident population density (approximately 29,600 persons/km2), followed by
Liwan (approximately 16,200 persons/km2), which is the oldest district and the political and
cultural center of Guangzhou. Haizhu has a population density of 13,600 persons/km2

contains multiple universities and factories, serving as both the educational and industrial
district. The population density of Tianhe is ranked fourth among the five districts (approxi-
mately 10,300 persons/km2). Tianhe is home to the Central Business District (CBD) of
Guangzhou and its growth rate has been the fastest over the past 10 years, making this
district the most concentrated commercial zone in Guangzhou. Panyu District has the
smallest resident population density in the study area (approximately 3200 persons/km2).
This district is a mixed zone that contains commercial, industrial and agricultural functions.
The study area, population density and land cover data are illustrated in Figure 1.

Several auxiliary spatial data sets were also applied in this study. In addition to the
basic GIS data sets of Guangzhou, the POIs in our study were provided by Baidu Map
Services (http://map.baidu.com), which is the most used and largest web map service
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provider in China. With the help of the application programming interfaces (APIs) that
were provided by Baidu Map, we extracted the population-related POIs from our study
area, approximately 237,402 records in total, including business establishments, com-
mercial sites, educational facilities (e.g. kindergartens, primary schools, middle schools),
residential communities, clinical facilities and scenic locations. The density of urban road
networks is directly related to the level of urbanization, especially in developing coun-
tries (Poston Jr and Yaukey 2013). Road data from the study area in 2015 were down-
loaded from the OpenStreetMap (OSM) website (http://openstreetmap.org).

The realtime Tencent user density (RTUD) is the most important data type in this
study and was provided by Tencent (http://www.qq.com), one of the largest Internet
companies in both China and the world. The RTUD records the locations of smart
phone users who were using Tencent applications, such as Tencent Mobile App QQ (a
messenger-like software), WeChat (a mobile chat software), Soso Maps (a web map-
ping services and navigation software) and some other mobile applications that
provide LBS services. According to the Tencent Data Report of WeChat Users (Co.
2015), the average daily number of total activities from WeChat accounts has reached
approximately 570 million, more than one-third of the total population in China.
Furthermore, the total number of Tencent users has reached 808 million, and 60%
of Tencent users range in age from 15 to 29 years old. According to ‘Big data white
paper of Tencent Co. in 2016 (http://bigdata.qq.com), the ratio of Tencent users to
the total population has exceeded 93% in China’s first-tier cities, such as Beijing,
Shanghai and Guangzhou. Figure 3 shows that the average per-hour number of
online users among the total population of the study area is approximately 28.99%
during the day. The Tencent Company is the most important Internet service portal in
China, so the distribution of Tencent users can be seen as a type of bias sampling of

Figure 1. Case study area: Liwan district, Haizhu district, Yuexiu district, Tianhe district and Baiyun
district, Guangzhou, Guangdong province, PRC. (a) Population density (unit: person/km2) in the five
central districts of Guangzhou within the street level census unit (data source: China’s Sixth National
Population Census). (b) Land cover data at a spatial resolution of 30 m (data source: Chinese
Research Institute of Surveying and Mapping).
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the general population dynamic distribution. Recently, easy go, a public map service
of Tencent WeChat, offered a public query service of a location’s congestion degree.
We designed a web crawler to fetch RTUD data from the study area from 14 June to
28 June 2015. After coordinate correction and rasterization, we produced Multi-band
RTUD data at a spatial resolution of 25 m (Figure 2).

Figure 3(a) shows the temporal changes in the average total number of RTUDs in
the study area in one week. (1) Obvious periodic oscillations of 24 h occurred for the
temporal RTUD data. (2) The total number of active Tencent users steadily ranged
from 1.6 million to 2.0 million during daytime hours (9:00 am to 18:00 am).
Additionally, we observed a slight difference between rest days and work days during
the daytime: the previous population density was likely greater that the migrant
population from outside, who usually enter the city over the weekend. (3) During
the night on work days and rest days (21:00 pm to 01:00 am the next day), the
number of users was steadily distributed between 1.2 million and 1.8 million (Figure 3
(b)), which had the strongest correlation with census data at the community level
(Figure 3(c)). Therefore, we introduced a time series-based data compression method
from a previous study (Liu et al. 2015) to pre-process the RTUD data. We smoothed
and compressed the entire RTUD time series and performed mean filtering on the
work day and rest day data to reduce the data size and computational work without
missing too much information. Additionally, we only applied the nighttime RTUD to

Figure 2. Real-time Tencent user density data (RTUD, unit: person, spatial resolution: 25 m) on 16
June 2015 (Thursday) in the study area of Guangzhou: (a) 00:00 am, (b) 04:00 am, (c) 08:00 am, (d)
12:00 pm, (e) 16:00 pm and (f) 20:00 pm.
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build the population distribution model because of the huge amount of outside
population during the daytime.

Moreover, the spatial distribution of buildings has a relationship with the urban
inhabitant distribution (Ural et al. 2011). The Guangzhou Urban Planning Bureau pro-
vided 579,112 building-attribute records in the study area, including residential com-
munity, urban village, government, educational, commercial, shopping, enterprise and
public institution classes, with attribute information such as property type, location, area
and floor height. Then, we split the building data into residential and working classes
(Figure 4).

Figure 3. Temporal changes over hours (x axis) in the study area: (a) average total number of
Tencent users in one week (y axis), (b) average total number of Tencent users on work days and rest
days (y axis) and (c) Pearson’s correlation coefficient between the number of Tencent users and
census data at the community level (y axis).
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3. Methodology

The purpose of our study was to downscale census data into population distributions at
the building level while considering the spatial heterogeneity of population distributions
(see flowchart in Figure 5). In this study, we took three steps to estimate the population
distribution in every building. (1) We selected POIs that could indicate high population
density and map the preliminary population disaggregation in each census unit. (2) We
built a nonlinear population model by integrating the RFA and several sources of
geospatial big data to indicate the spatial heterogeneity in the study area. (3) We
calculated the population distributions at the building level by using the proposed
iterative building-population gravity model and compared the reliability of the results
with census data and results from other state-of-the-art methods.

The models described below were implemented by our research team using C++ on
Windows 8.1 (×64), linking with open-source libraries including GDAL (http://www.gdal.
org), CGAL (http://www.cgal.org/) and Shark (http://image.diku.dk/shark/).

3.1. Extracting peak points of population density

‘High-density indicator’ (HDI) points are POIs that have strong correlations with population
density (Bakillah et al. 2014). In previous studies, HDIs were determined by calculating the
correlation between the population size and the POI counts in each census unit (Bakillah
et al. 2014). This straightforward method can provide convenient HDI points but does not
consider the existence of meaningless high-frequency POIs, such as the name tags of roads
and districts. To tackle this problem, we used term frequency-inverse document frequency
(TF-IDF) values as a better alternative to POI counts. TF-IDF is a statistical method that is
extensively used in natural language processing. By evaluating the significance degrees of
different words, TF-IDF can filter out common words and retain the most important and
distinct words as the subject classification criteria. In our study, we took census data as the

Figure 4. Extracted (a) residential and (b) working building footprints in the study area of
Guangzhou.
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corpus data D, which comprised statistical units d. The total number of d in D was K . Thus,
the TF-IDF values of the ith type of POI in the jth census unit could be specified as:

TFij ¼ ni;jP
k
nk;j

IDFi ¼ log Dj j
j:POIi 2 djf gj j

TF � IDFij ¼ TFij � IDFi

8>><
>>: (1)

Where TFij denotes the term frequency of the ith type of POI in the jth census unit
and IDFiis the implementation result of the document frequency inversion of the ith
type of POI. Dj jrepresents the total number of census units and j : POIi 2 dj

� ��� ��is the
number of census units that contain the ith type of POI.

After computing TF-IDF vectors for each type of POI, the Pearson correlation coeffi-
cient between theith type of POI and population density could be obtained as:

Figure 5. Flowchart of the proposed method for mapping populations at the building scale.
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ρPOIi:PD ¼ N
P

j TIij � PDj � P
j TIij �

P
j PDjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
P

j TI
2
ij � P

j TIij
� �2

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
P

j PD
2
ij �

�P
j PDij

� �2
r (2)

Where TIij is the TF-IDF value of the ith type of POI in the jth census unit and
PDjdenotes the population size of the jth census unit.

By sorting ρPOIi:PD in descending order, the correlation strengths between different
types of POIs and population density could be clearly shown. The HDI points were
already produced, so the peak points (PPs) of the point density in every census unit were
calculated in the next step:

(a) In a given unit, if a specific POI category had the highest correlation with the
population density, then the peak point could be defined as the centroid of this
category. For example, the most relevant category in our study was the clinical
facility category, so if clinical facility POIs were present in the unit, the centroid
would be designated as the unit’s PP.

(b) Otherwise, if the most relevant POI category was absent in a given unit, then we
would assign its PPs based on the centroid of a following category.

(c) If no POIs were located in a unit, we would define the centroids of the artificial
surfaces in land cover data as replacements of PP.

3.2. Preliminary population disaggregation

Insufficient sampling can lead to over-fitting problems in model construction. To pre-
vent such sample problems, Deville (2014) proposed a buffer method that establishes a
disc-sampling zone that is centered at PPs to ensure adequate samples in census units.
Although Deville’s method ensures sample abundance, it does not consider the spatial
heterogeneity of the population distribution, which means that the sampling error can
easily accumulate. With this understanding of the spatial heterogeneity, we assumed
that the population number in every census unit satisfied a Gaussian distribution, whose
peak lay at the PPs. In our model, the population aggregation data were first adjusted to
support the hypothesis. In the next step, the sampling procedure was performed. The
calculations of the population distribution probability funiti x; yð Þ are specified in Equation
(3). In particular, funiti x; yð Þ denotes the population distribution probability at location (x,
y) in the ith census unit.

funiti x; yð Þ ¼ 1
2πσXσY

ffiffiffiffiffiffiffiffi
1�ρ2

p exp � vuniti x;yð Þ
2 1�ρ2ð Þ

n o
vuniti x; yð Þ ¼ x � μX

σX

� �2
þ y�μY

σY

� �2
� 2ρ x�μXð Þ y�μYð Þ

σXσY

8><
>: (3)

In Equation (3), both X and Y obey a normal distribution, in which X~N μX ; σ
2
X

� 	
and Y~N μY ; σ

2
Y

� 	
. ρ is the correlation coefficient between X and Y. μXand μY are set to

the location of a PP in the ith census unit. σX and σY are equal to
argmax

x;yð Þ
Dist loc x; yð Þ; PPið Þ½ �, while Dist loc x; yð Þ; PPið Þ is the distance from location (x, y)
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of a PP in the ith census unit. Thus, the estimated population size PD x; yð Þ at location (x,
y) can be calculated as:

PDi x; yð Þ ¼ PDi � funiti x; yð Þ
PD x; yð Þ ¼ P

i
PDi x; yð Þ

(
(4)

3.3. Mapping the HSR population distribution with an RFA-based fitting model

In the kernel density analysis, the search radius was set to 500 m (Chen et al. 2016,
Hu et al. 2016). Buildings can be categorized into two groups based on the building
floor number data and used to produce two auxiliary grids. One group is residential
buildings and the other is work buildings. The number of building floors can provide
valuable insight into actual buildings and their usable areas based on the grid size. In
our study, OSM data were applied to generate the distance to roads, which could be
input into the nonlinear fitting model to simulate the population distribution. We
utilized a bilinear interpolation for data whose spatial resolutions did not perfectly
correspond to others.

After pre-processing all the data, a training data set D was generated. First, a buffer
zone was drawn to define the sampling range, setting the PPs in every census unit as
buffer centers and producing the corresponding buffer discs (radius =rs). Second,
mathematical statistics were calculated based on the buffers to obtain the total size of
the population y, the summation of each spatial variable X ¼ x1; x2; . . . ; xn½ �, and the
total area of residential buildings ABu, where n denotes the total number of spatial
variables, followed by saving the produced sample variables (location, buffer size, X , ABu,
y) and building data in a training data set D. The final step was recursion. The sampling
process was repeatedly executed by increasing the buffer radius rs until the threshold
radius re was reached. The growth size was set to a fixed length Δr. Finally, the sample

size of the training data set D was increased to K ¼ re�rsð Þ
Δr þ 1

� �
� Nu, where Nu is the

total number of census units.
Because of the existence of the Collective Household (Hukou) Policy in China, the

Hukous of some individuals are registered in accordance with their work unit (Danwei)
instead of their household. Thus, in some areas with numerous government organiza-
tions and state-owned enterprises, census population estimates greatly outweigh the
actual inhabitant population (Chan and Zhang 1999, Zhu 2007, Fan 2008). We employed
the three-sigma rule to avoid fitting errors from these outliers (Grafarend 2006), assum-
ing that the per capita housing area of each sample is λ ¼ y=ABu, the average per capita

housing area of all the samples in training data set D is �λD, and the standard deviation is

σλ. If λi of the ith sample does not fall into the range �λD � 3σλ;�λD þ 3σλ

 �

, the ith sample
is regarded as an outlier and removed. The training data set was thoroughly refined
through this process.

To address the spatial correlation variables, a RFA-based nonlinear and nonparametric
fitting model was introduced in this study to fit spatial variables and population density.
We assumed that Xij i 2 1;M½ �; j 2 1;N½ �ð Þ and Yi i 2 1;M½ �ð Þ are the average values of each
spatial variable and population density in the training data set, respectively. M is the
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total number of training samples, and N denotes the total number of spatial variables.
Then, an RFA-based nonlinear fitting model was built to fit these spatial variables X to
the population densities Y. RFA is a nonlinear and nonparametric fitting model (Breiman
2001, Biau 2012, Fakhraei et al. 2014). RFA randomly takes m � n-dimension
(m � M; n � N) samples depending on the training data’s spatial dimensions through
the bagging method. C trees are trained by these selected sample data without pruning
operations. RFA does not use all the variables to split nodes; instead, only some of the
variables are randomly selected to make decisions. With this approach, the correlation of
each decision tree can be reduced, enhancing the classification accuracy of each
decision tree. During the node-splitting process, log Mþ 1ð Þ variables were randomly
selected to participate in the calculation, satisfying the randomness requirement and

forming the random forest. After averaging the results ~Yi from every decision tree based
on the total tree number C, we obtained the fitted result �Y, which was calculated

according to the equation �Y ¼ Pc
i¼1

~Yi=C.

Furthermore, RFA is an aggregation of decision tree classifiers. A new sub-data set is
generated by extracting random samples from the original training data set via the
bagging method (Biau 2012). During random feature selection, individual decision trees
are constructed from each training sub-data set and these decision trees are not pruned
during the growth process, so we can obtain an out-of-bag (OOB) based estimation error
report for each decision tree. The generalization error of RFA can be calculated by
averaging the errors of the decision trees via OOB estimation. The RFA-based fitting
model from previous studies overcame the multiple correlative problems among spatial
variables, especially in higher-dimensional fitting situations (Palczewska et al. 2014). To
obtain the contribution weights wi i 2 1;N½ �ð Þ of each spatial variable during the training
process, random noise was added to each type of normalized spatial training variable
over time.

During the next step, these noisy training data sets were input into the previously
trained fitting model with statistical population densities. The average errors
Ei i 2 1;N½ �ð Þ can still be calculated even when the random noise is added to spatial
variables of the ith type. Assuming that �E is the original training error without any noise,
the contribution weights wi i 2 1;N½ �ð Þ of the ith spatial variable can be computed by
Equation (5) (Fakhraei et al. 2014, Palczewska et al. 2014):

wi ¼ var Ei � �Eð ÞPN
i¼1 var Ei � �Eð Þ (5)

After creating the RFA-based fitting model, a spatial-differentiation-sensitive
population distribution map was finally produced. The Chinese government only
updates the total population number annually but without providing detailed
information at the administrative distribution scale, but we can utilize these
model-generated data for population adjustment. Suppose that the RFA simulation
result of the total population is popRFA and that the real population from official
data is popreal; then, the adjustment coefficient of the simulation result would be
c ¼ popRFA=popreal. The fine-scale population distribution can be fitted by adjusting
the simulation result.
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3.4. Mapping population distributions at the building level

The final step was to allocate the population at the building level and calculate the
vacancy rate of housing. The iterative-gravity model was the core of this step. In our
study, a seed-growing algorithm was applied in the gravity model. First, we set the
centroids of residential buildings as the initial growing seed positions. The correspond-
ing entities of growing seeds were not buildings but pixels in the population distribution
map. These initial growing seeds were the first parameters that were input into the
gravity model. Assuming that the kth pixel of the ith census unit is denoted by
locik xik; yikð Þ, the jth residential building in the ith census unit is denoted by its centroid
location locij xij; yij

� 	
. Then, the gravity force between locik xik; yikð Þ and locij xij; yij

� 	
can be

specified mathematically by:

Gravity i; j; k; t þ 1ð Þ ¼ Fij �Aij � popij tð Þþpopik½ ���A�ciffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xij�xikð Þ2þ yij�yikð Þ2

q� �β j; k 2 i

j0 ¼ argmax
j

Gravity i; j; k; t þ 1ð Þ½ �

8>><
>>: (6)

Where Aij and Fij denote the floor surface area and the total floors of building
locij xij; yij

� 	
, respectively. popij tð Þ is the residential population in building locij xij; yij

� 	
after t iterations. The constant �A is the per capita housing area of the census unit. In this
study, we specified �A as 34.4m2 according to the government statistical data of
Guangzhou. The variable ci is the simulated value of the average area of housing
vacancies in the ith census unit and an adjustment factor. The initial value of ci, marked
as ci initð Þ in Equation (7), was set as:

ci initð Þ ¼
P

n Fij � Aij � poptotal � �A
ni

(7)

ci is mainly an adjustment factor. The existence of ci. is indispensable to judge
whether the population allocation result is satisfactory. β is the distance decay para-
meter. The power law form of distance decay functions may better reveal the effect of
the inherent distance of spatial interactions (Palczewska et al. 2014). Liu et al. (2015)
suggested that β should be within [1, 2] based on his studies on individual movements
at the urban scale. After consulting related studies, we set 1.5 as an appropriate value
of β.

Thus, the population at location locik xik; yikð Þ was allocated to building j0, which had
the maximum attraction. After assigning the current seed, the allocation process of the
neighboring seed was initiated.

As mentioned above, we had to validate that the population allocation result was
reasonable. An initial value ci was established to calculate the per capita housing area in
the ith census unit and compared to �A. Assuming that the total number of residential
buildings in the ith census unit is ni and the total population is popij, the per capita

housing area of the jth residential building in the ith census unit �Hij and the per capita

housing area in the ith census unit �Hi can be calculated as:
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�Hij ¼ Fij�Aij � ci
popij

�Hi ¼ P
n

�Hij=ni

8<
: (8)

The iteration precision is denoted as α. If the deviation between �Hi and �A is beyond α,
the allocation results during this time are considered failures. The iteration would
continue until reaching the threshold precision. In this study, we adopted the
Dichotomy Method of numerical approximation, and the optimal population allocation
in each region was reached through repeated adjustment of ci. Finally, fine-scale
population distributions could be estimated at the building level, and the densely
inhabited index (DII) could be simultaneously calculated with Equation (9), which can
reveal the development of the real estate market and the status of the regional
economy.

DII ¼ ci � niP
j Fij � Aij

(9)

3.5. Accuracy assessment

The accuracy of our proposed model was assessed using the Pearson correlation
coefficient (Rp), coefficient of determination (R2) and root mean square error (RMSE)
statistics (Bhaduri et al. 2007a, Azar et al. 2010, Aunan and Wang 2014, Deville et al. 2014,
Stevens et al. 2015), comparing the predicted values with community-level census and
official household survey data.

4. Results

4.1. Population disaggregation with POIs and census data

Table 1 lists the Pearson’s correlation coefficient between each POI and population
density category in descending order, where the top three categories are clinical facil-
ities, residential communities and education. The peak points of the population density
were produced using the approach described in section 3.1. Preliminary population
disaggregation data were obtained with the above normally distributed spatial prob-
ability model. During the next step, the population disaggregation data were used as
input training data to map the population distribution.

4.2. Spatial sampling and population mapping

As we built the RFA-based population-fitting model, we selected 26 categories of spatial
variables as inputs, including Tencent RTUD, Baidu POIs, OSM roads and basic GIS data.
The buffer radii of the sampling discs were set from 50 to 1000 m in steps of 25 m, and
the centers of the discs were assigned to the locations of PPs when sampling spatial
data. During this process, 4000 training samples were selected, 207 of which were
outliers, which were excluded in the following data-cleaning step. We implemented
the RFA-based fitting model with 100 decision trees, and the percentages of the training

14 Y. YAO ET AL.



data set and out-of-bag data set were set to .6 and .4, respectively, for cross-validation.
Additionally, we examined the influences of different sampling methods, including
Deville (2014)’s method, random sampling method and proposed method, Table 5
shows the comparison results. And we analysis the meaning of the sampling radius
sizes set in the proposed method, as illustrated in Figure 9.

Next, the fitting model of the spatial variables and census population was generated,
in which the OOB average error was 1.5911. Figure 6 shows the mapping result of the
simulated population distribution when downscaled from statistical data at the street
level and Table 2 illustrates the respective contribution weights of all 25 spatial input
variables. Significance statistics, including Pearson correlation coefficients and a stan-
dard coefficient of determination analysis, were used to compare the simulated popula-
tion distribution and government census data within each unit.

Table 2 demonstrates that the average nighttime Tencent user density was most
similar to the actual population distribution (13.80%), which indicates that Tencent RTUD
can be well applied to simulate nighttime population distribution and population
dynamics. The POI densities of life services, educational facilities and clinical facilities
were also three important factors in the population down-scaling model via RFA,
comprising more than one third (34.67%) of the contribution to the simulated result.
This result was similar to the correlation between POIs and population (Table 1).
Residential buildings considerably influenced the inhabitant distribution, with up to a
9.85% contribution. Conversely, working buildings contributed almost nothing (0.55%).
In addition to the above-mentioned spatial variables, the distance to roads from
Opensteetmap.org had a strong relationship with the inhabitant distribution, comprising
4.64% of the contribution. The road density had a close relationship with human activity
because it affects the accessible range. Thus, the distance to each district center
obviously played an important role.

Furthermore, the densities of life services and educational facilities had much
stronger effects on the population density among the Baidu POIs, comprising
13.66% and 12.40%, respectively. Meanwhile, the density of corporations comprised
0.90% of the density distribution, which indicates that areas with high densities of
commercial and business facilities may have a low correlation with nighttime popula-
tion densities (from 21:00 pm to 1:00 am the next day; Figure 6(d)). Moreover,
Guangzhou, which developed from a southern trade port, is now a metropolis
because of rapid economic development, in which fisheries and port-based trade

Table 1. Pearson correlation coefficient between the TF-IDF of POIs and population density
(The top 3 most important factors are rendered in bold).
Categories of POIs Correlation Categories of POIs Correlation

Clinic facility .7874 Entertainment .5309
Residential community .6756 Government .5077
Education .6561 Hotels .3765
Restaurant .6536 Virtual landmark .3535
Automobile service .6396 Scenic spots .3512
Traffic Facility .6262 Financial network-point .1977
Life service .6261 Business Building .0719
Road label .6215 Location label .0323
Shopping .5539 Mountain −.0049
Corporation .5425 Greenland −.3814
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Figure 6. Simulated population distribution map at a local scale of 25 m via RFA. (a) Zhongshan
Seventh Road (old city center), (b) Jiangnan Road (shopping center), (c) Dongshan Lake Park (north,
leisure park) and Sun Yat-sen University (south, university), (d) Tianhe Sports Center (CBD), (e)
Tangxia Village (urban village) and (f) Guangzhou Railway Station and Sanyuanli Village (urban
village).

Table 2. Contributions of different spatial variables.
ID Type Data source Spatial variables Weights

1 User Density Tencent RTUD Average night-time user density (21 pm – 1am +1day) 13.80%
2 Density Baidu POIs Life service 13.66%
3 Density Baidu POIs Education facility 12.40%
4 Floors and Area Official statistics Residential building 9.85%
5 Density Baidu POIs Clinic facility 8.61%
6 Density Baidu POIs Residential facility 8.46%
7 Distance Openstreetmap Road 4.64%
8 Density Baidu POIs Hotel 3.90%
9 Density Baidu POIs Business building 3.26%
10 Density Baidu POIs Restaurant 2.50%
11 Density Baidu POIs Government facility 2.48%
12 Density Baidu POIs Location label 2.45%
13 Density Baidu POIs Financial network-point 2.21%
14 Distance GIS data Railway 2.15%
15 Distance GIS data Waterway 1.49%
16 Distance GIS data Slope 1.21%
17 Density Baidu POIs Virtual landmark 1.21%
18 Density Baidu POIs Shopping 1.07%
19 Density Baidu POIs Automobile service 1.03%
20 Density Baidu POIs Road tag 1.02%
21 Density Baidu POIs Corporation 0.90%
22 Density Baidu POIs Entertainment 0.79%
23 Density Baidu POIs Working building 0.55%
24 Density Baidu POIs Scenic spot 0.27%
25 Density Baidu POIs Greenland 0.07%
26 Density Baidu POIs Mountain 0.00%
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matter much less than in the past. Thus, the distance to waterways and railways was
not strongly related to the inhabitant distribution, comprising only 1.49% and 2.15%
of the contribution, respectively.

Figure 6 shows the fine-scale population distribution. The population census data
were downscaled from street-level statistical data to the pixel level at a spatial resolution
of 25 m. The center of the old city at the intersection of the Liwan District and Yuexiu
District (Figure 6(a)) had the densest population, with 0.22 persons/m2; the density in
the shopping center of Haizhu District was also dense (Figure 6(b)). Dongshan Lake Park
(Figure 6(c)) is a scenic spot that is surrounded by numerous residential communities.
These populated centers with high resident densities are sparsely distributed around the
park. Luxury communities in the eastern CBD (Figure 6(d)) had a residential population
density of only 0.13 persons/m2, which was only half of that in old cities. Figure 6(e,f)
shows that the city villages with the largest scales (Tangxia Village and Sanyuanli Village)
had the highest population densities, with means of 0.16 and 0.21 persons/m2, respec-
tively. Thus, the population map from the RFA-based fitting model had a reasonable
performance and expressed the spatial heterogeneity in the population distribution.
Additionally, the map demonstrated the diverse attractions in different urban areas in
the context of urban functions. Moreover, we took some photos in these areas and
uploaded them to a website (http://www.geosimulation.cn/gis4win/doc/sta_pop.pdf)
because investigating these areas’ inner spatial structures with only satellite images
was difficult.

4.3. Mapping population distributions at the building level

The study area contained 460,960 residential buildings in the ‘residential community’ or
‘urban village’ categories. The total residential area was 67,419,427 m2. Figure 7, for
which the building-population gravity model specified by Equation (6) was used, shows
the estimated housing area per capita of all the residential buildings at the center of the
old city in Guangzhou, and Table 3 shows the estimated housing area per capita of each
building category in different districts. The results indicate that residents who lived in
Yuexiu and Liwan, the centers of the old city, had the smallest average housing areas,
while residents in Baiyun had the largest housing area because of a number of new
residential buildings in the suburban Baiyun District. By repeatedly adjusting ci in
Equation (6), we produced a reasonable population distribution at the building level
and computed the densely inhabited index.

Figure 8 shows the densely inhabited index (DII) in each administrative unit at the
street level. In the city center of Guangzhou, the DII was much higher than that in other
regions (Figure 6(a), DII = 0.56), which suggests that the average housing area of
residents in the old district was substantially smaller. This observation can be attributed
to the commixture of old residential buildings and dense populations. Old residential
buildings in this region were generally built as public houses by enterprises (Danwei)
during the past century, and their design was usually low and narrow. With these dense
populations, these old residential buildings were largely responsible for the high DII
values in this region. Meanwhile, some emerging residential areas near city centers had
much lower DIIs because of the high housing prices in busy regions (see Figure 8(b),
DII = −0.22 and 8 C, DII = −0.01). Moreover, a large number of migrant laborers have
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flocked to Guangzhou for job opportunities because of this city’s rapid development. To
seek cheap and affordable residences, these transit populations inhabit villages both on
the outskirts and in the downtown portions of the city, forming a unique phenomenon
that is known as an ‘urban village’ (Liu et al. 2010).

As the largest urban village in Guangzhou, Tangxia Village is heavily populated by the
local population and a migrant, low-income population who are also registered as a
portion of the permanent resident population in the census data. The DII of this area was
relatively high (DII = 0.19). Notably, the DII values in Taihe Town (Figure 8(e), DII = 3.68)
and Xiaozhou Village were considerably higher than the normal value (Figure 8(f), DII =
7.00). The DII values of Taihe and Xiaozhou were both exceptionally larger than 1.00. The
migration of labor-intensive enterprises from downtown to the outskirts of cities and the
poor residential buildings and infrastructure may explain these outliers. Exorbitant rent
in urban Guangzhou drove labor-intensive enterprises to relocate to suburban areas,
resulting in significant increases in the number of registered residents because of the
household registration system of the People’s Republic of China. Meanwhile, the

Figure 7. Housing area per capita at the building level from the proposed population-building
gravity model. (a) Guangdong Province’s government (city center of Guangzhou), (b) Er-sha Island
(luxury residential area), (c) Flower City Square (CBD), (d) Tangxia Village (urban village), (e) Taihe
Town (satellite town) and (f) Xiaozhou Village (rural area).

Table 3. Estimated housing area per capita (unit: m2 per capita) in the study area.
Districts\building type Residential community Urban village Whole buildings

Yuexiu district 18.8469 9.3940 16.5331
Liwan district 24.0715 15.9917 17.3849
Haizhu district 29.8832 20.6783 21.9969
Tianhe district 37.1856 28.2310 30.1035
Baiyun district 55.1041 35.2407 36.3031
Whole area 34.9973 30.5654 31.0923
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construction of infrastructure and residential buildings in these areas contrasted with
the development in urban districts, which was also one of the main reasons for the large
DII values.

According to the simulated results, 73.23% of the total population had a per capita
living area no greater than that listed in official housing statistical data for the study area
(34.4 m2). Additionally, the per capita housing area in the suburban areas of each census
unit increased significantly with lower population density and the appearance of new
buildings. The average per capita housing area of residents in urban villages was 12.66%
less than that of individuals in residential communities; in Yuexiu district, this proportion
reached 50.16% (Figure 8 and Table 3). Based on housing statistical data, the estimated
housing area per capita was generally in good agreement with the actual living condi-
tion of each administrative district. Our proposed gravity model thus provides reason-
able simulation results at the building level..

4.4. Accuracy evaluation by a comparison with community-level census data

Our proposed method had the highest population mapping accuracy of the methods
assessed (Table 4, Table 5). As expected, the areal weighting method performed poorly
based on populationmapping. Themulticlass dasymetric mappingmethod achieved better
results than binary dasymetric mapping, since the former is more realistic in considering the
multiclass patterns of population distributions. The estimated accuracies of the binary
dasymetric mapping and interpolation with cokriging were nearly identical, consistent

Figure 8. Densely inhabited index (DII) in each administrative unit at the street level from the
simulated population distribution at the building level. (a) Guangdong Province’s government
building (city center of Guangzhou), (b) Er-sha Island (luxury residential area), (c) Flower City
Square (CBD), (d) Tangxia Village (urban village), (e) Taihe Town (satellite town) and (f) Xiaozhou
Village (rural area).
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with previous studies (Langford 2013, Bakillah et al. 2014). Landscan data yielded the lowest
accuracy at the local scale. During the process of building the POI-based population model
of Bakillah et al. (2014), we tuned the non-linear parameter q to .3 and set the PPs of census
units as control points. The results showed that the POI-based model obtained the second
best population mapping accuracy after our proposed method.

The accuracy of the population distribution first increased and then decreased with
increasing sampling radius (Figure 9), and the accuracy peaked when the sampling
radius was between 500 m and 750 m.

5. Discussion

As shown in the results (Table 5), our proposed method achieved the highest accuracy.
The method of (Deville et al. 2014) yielded the lowest Pearson correlation coefficient

Table 4. Accuracy comparison of different population mapping methods.
Methods Pearson R Standard R2 RMSE

Areal weighting .4396 .1932 873.6086
Binary dasymetric mapping .5783 .3344 745.1776
Multiclass dasymetric mapping .6224 .3874 644.3877
Interpolation with cokriging .4913 .2413 751.2791
ORNL Landscan data (2010) .1062 .0113 1047.2822
POIs-based population model .7015 .4921 703.5676
Proposed method .8615 .7422 663.325

Table 5. Accuracy assessment of the estimated population distributions among different sampling
methods.
Sampling methods Pearson R Standard R2 RMSE

Spatial sampling on population disaggregation map (Proposed method) .8615 .7422 663.3250
Random sampling on population disaggregation map .8141 .6558 726.2745
Spatial sampling on original census data
(Deville’s method)

.2931 .0859 1101.7862

Figure 9. Changes in the accuracy indices (y axis) for the mapping population distribution according
to different sampling radii (x axis, unit: kilometers).
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among the methods assessed (.2931). This is because it does not include the spatial
heterogeneity of the population distribution in each census unit. The second method
assessed also exhibited lower mapping accuracy than the proposed method. This
method assumed that people generally dwell in regional centers, when in reality some
census units might have complicated spatial structures in which the population spatial
distributions do not correspond to an idealized distribution.

Clearly, our proposed method had the highest population mapping accuracy because
of the utilization of multisource geospatial big data. In future studies, sources of some
official GIS data, such as more detailed building data and population data, will be
considered to improve the model. State-of-the-art methods of semiautomatic land use
classification and building extraction from high-spatial-resolution stereo image pairs can
be introduced into our proposed model for dynamic population mapping at the build-
ing level. Finally, more case studies should be conducted in the future because popula-
tion mapping results are likely to differ in different cities with varying urban spatial
structures.

The decreasing trend in the fitting accuracy of the proposed method gradually
declined when the sampling distance was larger than 750 m (Figure 9) because the
data cleaning process in the sampling method enhanced the reliability of the proposed
population-fitting model. These fitting accuracy variations with the sampling radius
suggest that the majority of the population was mainly concentrated within 1 km of
the PPs in the current census units.

Errors in land use classification can cause some imperfections in population estima-
tion, so we only used artificial surfaces in LULC data sets to estimate preliminary
population disaggregation data, eventually resulting in estimation errors for two rea-
sons: (1) artificial surfaces are not the only locations where populations are located; and
(2) the spatial heterogeneity is more complex on artificial surfaces, which extends
beyond our hypothesis that population distributions obey a normal spatial distribution.
Therefore, much finer LULC data are required to build a more complex distribution
model and disaggregate census data. Moreover, massive geospatial big data could be
input as auxiliary spatial variables and could be easily obtained from the website while
building the RFA-based population model. A previous study showed that geospatial big
data can reflect the characteristics of the ground surface, such as urban land use types
and human activity preferences (Liu et al. 2012). However, the computational cost
significantly increases with increasing spatial variable inputs, and noise in geospatial
big data create instability in the fitting model. A future study should calculate the RFA-
based contribution weights of these vast spatial variables. Thus, we can introduce more
multisource geospatial big data sets into the proposed population distribution model,
explore the driving forces of China’s urban population distribution at different scales,
and select effective geospatial variables from huge geospatial big data sets via RFA,
which is a state-of-the-art feature selection approach that has been recently applied in
remote sensing (Ghosh and Joshi 2014).

An iterative gravity model of residential buildings and population was proposed here for
the first time. This model efficiently estimated a reasonable population density in every
building and study area. The correction factor in the proposed gravity model can be used to
estimate reasonable average nonresidential living areas in census units (community level)
and reflect the vacancy rate in each unit. However, population accuracy evaluation is
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difficult at the building level because of a lack of accurate statistical data regarding popula-
tion density at certain levels. Thus, the accuracy evaluation was chiefly conducted through a
comparison of existing models at the minimum scale (community level) with sufficient
statistical data. As seen in Table 4, our method produced the highest accuracy (Pearson R =
.8615, RMSE = 663.3250, p < .0001) among all the models. Moreover, our building-level
population distribution result fit the official per capita housing area reasonably and accu-
rately according to a comparison with official statistical housing data. In future studies, finer
statistical population data will be required to calibrate the proposed gravity model.
Moreover, the building types are actually related to various preferences that are associated
with human activity destinations. Thus, the attractive factors of different building types
should be considered in the proposed gravity model to obtain a more accurate population
distribution at the building level.

6. Conclusion

To our knowledge, no previous studies could allocate population distributions at the
building level by using multisource geospatial big data because of a lack of effective
models. In this study, we developed a proper framework that was powered by multi-
source geospatial big data to tackle this problem and thus successfully perform the fine-
scale mapping of urban population distributions. By fusing multisource information from
official survey data to geospatial big data, this study built a multiscale population model
to downscale census data and obtained a high-precision population map at a fine spatial
resolution of 25 m. A gravity model between residential buildings and populations was
proposed to generate reasonable population distributions at the building level for the
first time. According to a comparison with several popular population mapping meth-
ods, the proposed method achieved the highest accuracy (Pearson R = .8615, RMSE =
663.3250, p <.0001) at the community level. Moreover, the estimated housing area per
capita obtained via proposed model was in good agreement with that of the study area.
In future studies, finer population census data and more practical factors will be
introduced into our method to validate and improve the gravity model. Additionally,
we will combine fine-scale population maps and practical social issues, which can help
policymakers optimize resource allocation and determine a more scientific development
path in the future.
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