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Abstract

The proliferation of ride-hailing services has fundamentally trans-
formed urban mobility patterns, making accurate ride-hailing fore-
casting crucial for optimizing passenger experience and urban
transportation efficiency. However, ride-hailing forecasting faces
significant challenges due to geospatial heterogeneity and high sus-
ceptibility to external events. This paper proposes MVGR-Net (Multi-
View Geospatial Representation Learning), a novel framework that
addresses these challenges through a two-stage approach. In the pre-
training stage, we learn comprehensive geospatial representations
by integrating Points-of-Interest and temporal mobility patterns to
capture regional characteristics from both semantic attribute and
temporal mobility pattern views. The forecasting stage leverages
these representations through a prompt-empowered framework
that fine-tunes Large Language Models while incorporating exter-
nal events. Extensive experiments on DiDi’s real-world datasets
demonstrate the state-of-the-art performance.
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Figure 1: Geospatial Heterogeneity and its two principal view
in the context of ride-hailing services.

1 Introduction

With the rapid expansion of the World Wide Web, interconnec-
tivity has induced a profound transformation in the way humans
live. The subsequent emergence and rapid development of mobile
Internet have given rise to a multitude of online services, among
which ride-hailing platforms serve as prominent representatives.
As an exemplary web-data-driven service, the proliferation of ride-
hailing has fundamentally reshaped urban mobility patterns. It
has significantly enhanced transportation accessibility and flexi-
bility, while simultaneously catalyzing innovations in intelligent
transportation systems (ITS) and urban governance. Ride-hailing
forecasting [15, 41, 42, 62] endeavors to predict temporal dynamics
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of key supply-demand indicators, such as Calls and Total Supply
Hours (TSH), by leveraging historical transactional data in con-
junction with exogenous variables including seasonal holidays and
meteorological conditions. Accurate ride-hailing forecasting en-
ables optimization of passenger experience, enhancement of plat-
form operational efficiency, mitigation of traffic congestion, and
advancement of urban intelligent transportation ecosystems.

However, ride-hailing indicators, due to their close relationship
with urban mobility patterns, exhibit unique inherent character-
istics such as significant geospatial heterogeneity, and high sus-
ceptibility to external events [42, 50, 68]. These properties render
the task of achieving accurate ride-hailing forecasting a formidable
challenge. Existing studies [26, 36, 39, 67] commonly formulate ride-
hailing forecasting as a spatio-temporal prediction problem [27],
influenced by both historical time-series patterns and spatial depen-
dencies across regions. However, our empirical analysis of DiDi’s
operational data reveals that temporal dependencies exert a domi-
nant role, driven by human mobility patterns across daily, weekly,
and seasonal cycles. Conversely, given that the spatial hierarchy of
ride-hailing forecasting extends down to the county level, the geo-
graphic distance between counties and variations in their internal
transportation conditions lead to a relatively limited impact on ride-
hailing indicators of adjacent counties. Consequently, we formulate
ride-hailing forecasting as a time series forecasting problem.

As a specific application of time series forecasting, ride-hailing
forecasting possesses a unique and pronounced characteristic: Geo-
spatial Heterogeneity. As illustrated in the left panel of Figure
1, three regions with diverse urban contexts exhibit varying Call
patterns that are correlated with regional factors encompassing
functionality, economics, and demographics. From our industrial
practice, a region’s identity can be characterized by two fundamen-
tal aspects, as shown in the right panel of Figure 1: (1) Semantic
Attribute View. The static identity of a region is characterized by
its semantic attributes, exemplified by the distribution of Points-of-
Interest (POIs), which encapsulate its functional characteristics and
operational purpose. (2) Temporal Mobility Pattern View. The
dynamic essence of a region is captured through temporal mobility
patterns, which delineate its operational rhythm across various
temporal cycles, from intra-day patterns (e.g., morning / evening
peaks) to weekly trends (e.g., weekday / weekend shifts). Effec-
tively synergizing these static and dynamic dimensions is crucial
for achieving accurate ride-hailing forecasting.

In recent years, the advent of Large Language Models (LLMs) [2,
12, 40] has begun to shift the paradigm in time series forecast-
ing [30]. Characterized by their profound generalization abilities 5]
and world-scale knowledge bases [45], LLMs exhibit a distinct ad-
vantage in this domain [30]. Nevertheless, in specialized domains
with a scarcity of open-source data, such as ride-hailing forecasting,
the direct application of these models faces significant challenges
due to their inherent deficiency in specialized domain knowledge.
Therefore, to enhance the adaptability of LLMs for ride-hailing
forecasting tasks, we propose augmenting them with the follow-
ing two types of priors: (1) Geospatial Heterogeneity Prior. As
previously analyzed, geospatial heterogeneity, reflecting intrinsic
disparities in urban functionality, economic profiles, and demo-
graphic composition, underpins the diverse demand patterns across
a region. Consequently, explicitly introducing this factor is crucial
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for developing more precise and context-aware forecasting models.
(2) External Event Prior. Ride-hailing supply-demand dynamics
are shaped not only by the platform’s own operational cycles but
also by exogenous events including weather, holidays, and special
activities (e.g., concerts, sporting events) [42, 50, 68]. The sporadic
and often unpredictable nature of such events makes them notori-
ously difficult to model using methods that rely solely on historical
pattern mining. Therefore, incorporating an External Event Prior
stays essential for enhancing the responsiveness to external events
of ride-hailing forecasting systems.

In this paper, we propose a Multi-View Geospatial Representation
Learning (MVGR-Net) framework for Ride-Hailing Forecasting. The
proposed framework comprises two sequential stages: a pretraining
stage designed to address the challenge of geospatial heterogene-
ity by learning comprehensive geospatial representations, and a
subsequent forecasting stage that leverages these representations
and further incorporates external events and textual descriptions to
enhance ride-hailing forecast performance. In the pretraining stage,
we incorporate two complementary data modalities — POIs and
temporal mobility patterns — to capture geospatial heterogeneity
across different regions from both semantic attribute and temporal
mobility pattern views. A dual cross-attention mechanism, coupled
with an attentional pooling module, produces the final compre-
hensive geospatial representations. In the subsequent ride-hailing
forecasting stage, through the integration of multi-view geospatial
representation, an elaborated prompt generation network effec-
tively identifies underlying and shared regional properties, and sub-
sequently learns to adaptively utilize these properties to generate
informative prompt features that enhance predictive performance.
Additionally, contextual factors are captured by integrating three
key external variables: rainfall, holidays, and special events.

In summary, our contributions lie in the following aspects:

o Multi-View Geospatial Representation Learning. To the best of our
knowledge, this is the first attempt to conduct pre-trained mod-
eling from both semantic attribute view and temporal mobility
pattern view to enhance ride-hailing forecasting.

o Prompt-Empowered Ride-Hailing Forecasting. We propose a prompt-
empowered framework for fine-tuning LLMs on the task of ride-
hailing forecasting, which simultaneously incorporates both ex-
ternal factors and textual descriptions.

o Extensive empirical studies. We conduct extensive experiments
over DiDi’s real-world datasets. The results demonstrate that
our model achieves state-of-the-art performance with an average
improvement of 1.8% for Call and 1.5% for TSH prediction.

o Practical deployment. Our proposed method has been successfully
deployed on the DiDi platform. We demonstrate the system’s user
interface, geospatial embedding vector library, and an Intelligent
Subsidy Allocation experiment to showcase our practicality.

2 Preliminary

Problem Setting. In ride-hailing forecasting, we are given a his-
torical ride-hailing series X = {x;_r+1.:} € RL*Ne where L is the
look-back window size, N, denotes the number of regions. Our goal
is to learn a forecasting model f(-), which predicts the future T time
steps of the series, X = {xp414047} € RT*Ne, based on historical
observations X.
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Figure 2: The Overall Framework of MVGR-Net.

Ride-hailing indicators can be classified into two categories:
supply-side and demand-side.

o Call: The total number of passenger-initiated ride requests within
a specified time frame, acting as the core indicator of user demand.

o Total Supply Hour (TSH): The aggregate in-service duration
of all drivers on the platform. It serves as a core indicator for
measuring transport capacity supply.

We also incorporate three external variables identified through
operational practice as most impactful on ride-hailing forecast-
ing: Rainfall, Holidays, and Special Events (e.g., concerts and
national examinations). More details can be found in Appendix D.

3 Methodology

In this section, we present details of our proposed MVGR-Net in
Figure 2, which consists of two main stages:

o Stage 1: Our proposed Multi-View Geospatial Representation
Learning framework comprises two complementary branches
that model geospatial heterogeneity from semantic attribute view
and temporal mobility pattern view, respectively. The framework
then facilitates cross-view adaptive interaction through a dual
attention mechanism coupled with gated fusion operations.

o Stage 2: In the forecasting phase, the time series data initially
interacts with external variables and is then augmented with
prompt-empowered geospatial representations from Stage 1. Sub-
sequently, this enhanced representation undergoes cross-modal
interaction with domain-specific text features. Finally, the result-
ing feature is fed into a pre-trained LLM, which is fine-tuned
using Low-Rank Adaptation (LoRA) to generate predictions.

In industrial applications, the DiDi platform’s ride-hailing fore-
casts currently operate fundamentally at the county level. However,
China’s county-level administrative units’ size disparities (hun-
dreds to thousands of square kilometers [1]) hinder fine-grained
geospatial heterogeneity modeling. As a result, we commence our
representation learning at a finer-grained grid level (hexagonal cells
with 600m edge length) and subsequently aggregate incrementally
upward to the county level.

3.1 Multi-View Geospatial Representation
Learning

Semantic Attribute View Modeling. The distribution of POIs

reflects a region’s functional characteristics and operational pur-
pose [56]. To comprehensively model the semantic information be-
hind POIs, we construct a multi-faceted representation by capturing

their features from three diverse perspectives. @ Spatial Proxim-
ity [59]. Leveraging a K-Nearest Neighbors (KNN) approach, we cap-
ture the distributional characteristics of POIs within their local spa-
tial context. For each POI p?, its k nearest neighbors p; € Nk (pf)

are retrieved based on spatial distance. c;] is the corresponding

one-hot category vector associated with pf, which are then passed
through an encoder F(-) to obtain their feature representations.
The encoder consists of an embedding layer followed by a multi-
layer perceptron (MLP). We denote the final spatial proximity repre-
sentation as Zp; = Fs(c}). p; primarily contributes during training,
with details provided in Appendix C.1. ® Hierarchical Category
Semantics [24]. To capture hierarchical semantic relationships

between POI categories, we construct a POI graph where nodes are

POIs and edges are spatially weighted. Random walks [33] are used
to sample spatial co-occurring sequences. For each sequence, the

first node is the target POI pf’, and the rest pﬁ.’ € Nk (pl}.l) form its

context. Each POl is associated with its secondary category one-hot
vector clh, and encoded by Fj(-) to obtain feature representations.
We denote the final hierarchical category semantics representation
as Zp, = Fh(cfl). p;‘ primarily contributes during training, with
details provided in Appendix C.2. ® Textual Semantics. To ex-
tract the semantic characteristics of POI categories from a natural
language perspective, we developed a specialized prompt that ex-
ploits the inherent knowledge embedded within LLMs. The prompt
(Appendix A) is specifically designed to generate comprehensive
descriptions that precisely capture the distinct urban functional
roles of individual POI categories. These generated POI descriptions
are subsequently encoded by the LLM [49] to obtain the feature
representation Zp,. An attentional pooling mechanism [34, 63] is
then utilized to capture complex inter-feature dependencies and
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execute feature aggregation, ultimately yielding the final seman-
tic attribute representation of grid-level region with d-dimension
Zp € RNer, where N, denotes the number of regions:

Zp = AttentionalPooling(Concat(Zp,, Zp,, Zp,))- (1)

Temporal Mobility Pattern View Modeling. Given that daily
cycles constitute the fundamental rhythm of urban activities and
that weekdays exhibit distinct characteristics from weekends, these
temporal factors significantly influence the fluctuation patterns
in ride-hailing indicators. To capture these patterns, we compress
the time series data of ride-hailing indicators within each region
over a given period by computing averages along two temporal
dimensions. @ Aggregating into 24-hour daily cycles to form a
24-dimensional vector; @ Aggregating into weekly cycles to form a
7-dimensional vector. We subsequently construct a joint hour-day
matrix, with each element denoting the average indicator value for a
specific hour within a particular day of the week. This methodology
enables the extraction of fine-grained temporal mobility patterns,
such as the potential differences between Monday morning peak
hours and Sunday morning peak hours. These temporal patterns are
subsequently encoded into feature representations Zy; € RN-*d
through an encoder consist of MLP layers, followed by Multi-Head
Attention [53] to adaptively capture time-dependent patterns.
Cross View Adaptive Interaction & Fusion. Subsequently, we
fuse the semantic attribute features Zp and temporal pattern fea-
tures Zps via a dual cross-attention mechanism [8, 72] to establish
dynamic interactions between complementary domain features,
yielding unified multi-view geospatial representations.

T
Mt = Softmax ( (WoZn) (Wi Zp) ) WrZp), @)
Vd
T
Tgs+ = Softmax ( (WoZp) (W Zpm) ) Wy Zm), (3)
Vd
Zr = Concat(Iass, Mart), (4)

where Wy € R Wi e RI%4 W, € R9%4 are learnable matri-
ces. A multi-view consistency loss is utlized to enforce semantic
consistency between Zr and the single-view features Zp and Zy;.

exp(sim(Zri, Zp+)/7)

exp(sim(Zrs, Zps) + X3 exp(sim(Zri, Zp-)/7)
(5)

where Zp; denotes the Zp representation that resides in the same

region as Zr;, while Zp_ denotes the representation located in

different regions. sim(-) denotes cosine similarity. Ny stands for

the number of negative samples selected from the batch. 7 is the

temperature parameter.

Lyvve, = —log

exp(sim(Zri, Zm+)/T)

exp(sim(Zrs, Zue) + Nk exp(sim(Zri, Zm-) /7).

(6)

where Zyr+ denotes the Zys representation that resides in the same

region as Zr;, while Zys— denotes the representation located in
different regions.

After obtaining the grid-level representations Zr, we derive the

county-level representations through the attentional pooling fusion

Lmvey, = —log
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mechanism:
H = AttentionalPooling(ZF) (7)

where H € RNeXd N, denotes the number of county. The Holistic-
Part Loss is designed to align a county’s feature representation with
those of its constituent grid cells, while simultaneously distinguish-
ing it from the representations of grid cells in other counties:

exp(sim(H;, Zrj)/7)

exp(sim(H;, Zrj) + Ty exp(sim(Hi, Zpi) /7)
®)
where Zg j denotes the Zr representation that resides in H; area,
while Zgy denotes the grid representation located in different coun-
ties, N1 denotes the number of negative samples from the batch.

Lyp =—log

3.2 Prompt-Empowered Forecasting

In Stage 2, we integrate the comprehensive geospatial representa-
tion learned from Stage 1 into the forecasting process, incorporating
county-level heterogeneity prior.

3.2.1 Ride-Hailing Forecasting with Exogenous Factors. In the con-
text of ride-hailing practice, the supply-demand dynamics are gov-
erned by an interplay of endogenous factors, such as the platform’s
operational cycles, and exogenous variables like weather, holidays,
and special events (e.g., concerts, sporting events). Accurately fore-
casting ride-hailing indicators thus necessitates a model capable of
capturing the complex relationships between these two types of
influences. To this end, we leverage the semantic understanding
capabilities of LLMs [23] to interpret and encode the impact of
these endogenous and exogenous factors on ride-hailing patterns.

As illustrated in the right panel of Figure 2, for the ride-hailing
indicator with input length L, X € RNeXI where N, denotes the
number of counties, together with three exogenous variables —
rainfall X, € RNeXL holiday X}, € R, and special events X, €
RNeXL _ we first split the time series into non-overlapping patches,
and then performs self-attention interactions through a [EOS] token
that aggregates global information.

% = 5 (MLP(MSA(x + p))). (9)

where MSA(-) denotes multi-head attention applied to time series,
p represents the position embedding, 7 (-) denotes the projection
operation for selecting the last patch, x € {X,X;, Xy, X}, X €
{)2, Xr,)fh, )fe} € RP, where D denotes feature dimension.

After acquiring time series features X, we proceed to interact
them with textual features and fuse the endogenous ride-hailing
features with geospatial representation priors, then utilizing a pre-
trained LLM [30] to encode the combined representations. The
textual descriptions of the time series data represent a critical com-
ponent in exploiting the prior knowledge embedded within LLMs.
We utilize text generation prompts from [23] to provide compre-
hensive descriptions of both ride-hailing indicators and external
variables from five perspectives: nature attribute, trend, periodicity,
stability, and noise. The generated textual descriptions are encoded
using an LLM encoder [23, 49] to obtain textual features 7.

3.2.2  Heterogeneity-Informed Prompt Learning. As depicted in the
right panel of Figure 2, to integrate the learned geospatial repre-
sentations into the ride-hailing forecasting model, we employ a
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Prompt Generation Network to maintain a globally shared memory
pool, which consists of M Key-Value pairs:

MP = {(ko,vo), (k1,01), ... (km—1,9Mm-1)} (10)

where MP € RM*d, (ki, v;) are all learnable parameters. These are
continuously optimized throughout the entire training process to
store universal geospatial patterns. The keys will ultimately learn
to become various distinct prototypes, with each key representing
a type of urban area that shares similar urban characteristics and
intrinsic rhythms. The values store a set of mobility behavioral
biases tailored to specific spatio-temporal prototypes.

Within this network, the learned geospatial representation func-
tions as the query, which is used to match all Keys in the prompt
memory pool, selecting the k, highest-scoring candidates, yielding
a set of attention weights. The computed attention weights are then
used to perform a weighted summation of all corresponding Values
in the memory pool. Specifically, for the geospatial representation
H, corresponding to region r, we have:

kp—1
kp—1
Pr= Z ajvj, {a;};?, " = argmax y(H, k), (11
Jj=0 1 c [0, M—1]

where y(H, k) calculates cosine similarity. Hereby, we establish a
dynamic mapping from geospatial representations to model mobil-
ity behavioral heterogeneity, enabling the model to flexibly adapt to
the ever-changing urban spatio-temporal scenarios, thus achieving
exceptional generalization capability.

Finally, we concatenate the obtained prompt features P € RNeXd
and ride-hailing time series features to get U € RNexd , and then
interact them with text features.

(WoT) (Wxt)T
vd

where W, Wi, Wy are learnable matrices. Since the fusion of pre-
trained geospatial representations with time series features differs
from pure temporal feature distributions and semantic structures,
unlike [23, 29], we adopt LoRA [21] to perform efficient fine-tuning
in a parameter-efficient fine-tuning manner, thereby better lever-
aging the introduced spatiotemporal prior knowledge to enhance
prediction performance. LoRA facilitates the adaptation of Large
Models (LMs) by injecting trainable, low-rank matrices into their
Transformer layers to approximate weight updates. For a given
pre-trained weight matrix W € R%*¥ its update AW is represented
by a low-rank factorization: W + AW = W + W g4y Wyp. Here,
Wiown € R¥*" and Wyp € R" Xk are the trainable low-rank matri-
ces, with r < min(d, k). This method is specifically applied to the
query (Wp), key (Wk) and value (Wy) projection matrices in the
multi-head attention sub-layer, modifying the output projection h
for any given input x.

F = Softmax ( ) Wy U), (12)

h=h+g xWaownWups (13)

where ¢ > 1 is a tunable scalar hyperparameter.

4 Experiments

In our experiments, we aim to address the following research ques-
tions (RQs):
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e RQ1: Can MVGR-Net outperform prior approaches under DiDi’s
real-world oper- ational datasets? = Sec. 4.2.

RQ2: What are the individual contributions of the various com-
ponents of MVGR-Net to its overall effectiveness?= Sec. 4.3.
RQ3: What does qualitative analysis reveal about the perfor-
mance and interpretability of MVGR-Net? = Sec. 4.4.

RQ4: How is the practical application of MVGR-Net in real-world
business? = Sec. 4.5.

4.1 Experimental Setup

4.1.1 Datasets. We study our problem on DiDi’s real-world op-
erational datasets encompassing two ride-hailing indicators: Call
and TSH. We focus on two core service categories: C1 (Regular
Express) and C3 (Economy Express). The data is collected from 392
key counties of business interest across China, with records taken
at 30-minute intervals. To ensure broad temporal span coverage,
we select data spanning from 2023, 2024 and 2025. The division of
the dataset into train, val, and test sets is shown in Table 2. The
effective time window for evaluation is from 6:00 to 22:30 each day.
We also incorporate external variables including rainfall, holidays,
and special events, with temporal coverage consistent with the ride-
hailing indicators in the dataset. Specifically, rainfall and special
events are county-specific, while holidays are nationally uniform.

The dataset employed for pre-training consists of 93,441,589
POI entries with nationwide coverage across China. These entries
are classified according to a two-tiered categorical system, which
includes 18 primary and 218 secondary categories. Figure 3 demon-
strates the proportional distribution and geographic distribution of
POI primary categories. More details can be found in Appendix B.

Ride-hailing forecasting faces an inherent data insufficiency prob-
lem. Given that COVID-19’s unprecedented impact [14] induced
highly irregular consumption patterns during 2020-2022, data from
this pandemic period proves unsuitable for operational forecasting
applications. Additionally, earlier data from before 2019 represent
outdated economic environments incompatible with present-day
conditions. Consequently, the effective volume of applicable histor-
ical data remains severely constrained.

50,
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Figure 3: The proportional distribution of top-10 and geo-
graphic distribution of top-5 POI primary categories.

4.1.2  Baselines. We compare MVGR-Net with the following base-
lines on our dataset: deep learning based models like PatchTST [46],
DLinear [66], CrossFormer [71] and LLM-based model ExoLLM [23].
In addition, we also compared the traditional statistical learning
method: XGB [10], ARIMA [51] and Weekly Counterpart. Weekly
Counterpart utilizes the value from the corresponding day of the
preceding week, serving as a common baseline in industrial appli-
cations, as ride-hailing time series data characteristically exhibit
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Table 1: Ride-hailing indicators prediction results. The best results are in bold and the second-best results are underlined.

Methods ‘ Ours ‘ ExoLLM ‘ iTransformer ‘ PatchTST ‘ DLinear ‘ CrossFormer ‘ XGB ‘ Weekly Counterpart ‘ ARIMA
Metric |WMAPE MAE |WMAPE MAE |WMAPE MAE |WMAPE MAE |WMAPE MAE |WMAPE MAE |WMAPE MAE |WMAPE MAE |WMAPE MAE
can|C| 0114 48.158| 0141 59377| 0192 74621| 0210 81321] 0213 81389| 0178 69.042| 0165 70.155| 0293 124262 | 0191 81085

9 C3| 0.089 50.762| 0.105 60.244| 0127 67.520| 0.139 73.903| 0.139 73.751| 0122 64.676| 0127 78.937| 0170  97.263 0125 71359
(=3
N ropr|Cl| 0027 14.419] 0043 22664] 0061 29.447| 0070 34509 0070 33966| 0062 29.976| 0.057 29.908| 0075 39583 0.059  30.869
C3| 0.039 15.414| 0.055 21.773| 0.089 32.592| 0.092 33.804| 0.091 33.434| 0.085 31.390| 0.089 34.879| 0.124  48.844 0.090 35.239
can| G| 0104 42762] 0122 50083| 0153 55924| 0166 60587| 0170 60.680| 0.137 49.932| 0190 80643| 0194 82507 0193  81.462
3 C3| 0.078 47.662| 0.089 54.230| 0.111 61.956| 0.119 66.266| 0.118 66.069| 0.106 59.056| 0.124 71.126| 0.142  88.115 0.135 80.278
(=3
N ropg|C1| 0028 14.196| 0029 14403| 0052 23505 0059 26388| 0057 25593| 0055 24866 0055 27.721| 0053 26501 0.057 26.283
C3| 0.032 13.122| 0.050 20405| 0.070 26.384| 0.075 28.275| 0.074 27.820| 0.070 26.220| 0.077 31306 0.083  33.886 0.075  30.740
canf |C1| 0097 44.548| 0116 53.154| 0157 63.842| 0168 68462 0.167 68.333| 0151 61462| 0.178 76432| 0217 100558 | 0.183 83225
Q C3| 0.088 41.611| 0.103 48.673| 0136 58.143| 0.145 62.200| 0.147 62.112| 0128 54.916| 0.145 64.902| 0.175  82.709 0.158 71324
(=3
N rop|Cl| 0028 13.520| 0049 23.847| 0076 33.250| 0083 36.357| 0.082 35887| 0074 32418| 0084 37514] 009 44740 0.087  41.256
C3| 0.040 13.583| 0.057 19.395| 0.097 29.342| 0.099 30.101| 0.098 29.814| 0.092 27.984| 0.102 33.070| 0.131 44.168 0.114 36251
1% Count | 24 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0

strong daily and weekly seasonality. Building upon the original
models, we also introduce external variables as supplementary
input features.

Table 2: Dataset Division across training, validation, and test
sets by time period.

Date Train Val Test Frequency # Counties
2023 01/01-05/15 05/16-05/31 06/01-06/30  half-hour 392
2024 07/01-11/15 11/16-11/30 12/01-12/30  half-hour 392
2025 01/01-05/15 05/16-05/31 06/01-06/30  half-hour 392

4.1.3  Metrics and Implementation. To assess the prediction perfor-
mance, we adopt two commonly used evaluation metrics: Weighted
Mean Absolute Percentage Error (WMAPE) and Mean Absolute Er-
ror (MAE). The parameter initialization follows the setting from [23].
Adam [32] optimizer is chosen to minimize the training loss during
parameter learning. All experiments are conducted on Tesla P40
and RTX A6000 GPUs. In our experiments, we set the batch size to
128, number of prompt pairs to 512 with k;, set to 128. We set the
look-back window L to 336, corresponding to the past week, and
the future timestep M to 48. We utilize DeepSeek-R1 [16] in POI
category description generation.

4.2 RQ1: Overall Performance

To evaluate the effectiveness of our MVGR-Net framework, we con-
duct a comparison with existing state-of-the-art methods in Table 1.
As can be seen, our model outperforms the other baselines across all
years and in both categories. The performance gain is 1.7%,1.5%,2.2%
for Call and 1.9%,1.0%,1.6% for TSH in 2023,2024,2025, respectively.
Among the baseline methods, the LLM-based model (ExoLLM)
demonstrates a clear advantage. Traditional deep learning methods
(iTransformer, PatchTST, DLinear, CrossFormer) slightly outper-
form machine learning and statistical models (XGB, Weekly Coun-
terpart, ARIMA). This progression indicates the evolutionary path
and potential of model architectures for time series forecasting.

4.3 RQ2: Ablation Studies

As shown in Figure 4, we conduct ablation studies to examine each
component in MVGR-Net on C1 category on our proposed dataset,

including the Prompt Generation Network (PGN), LoRA adapta-
tion, and External Variables (EV). The ablation study reveals that
all three components are integral to the performance of MVGR-Net.
Specifically, without the Prompt Generation Network (PGN), the
integration of geospatial representations becomes rigid and static,
failing to capture dynamic spatial contexts. Without LoRA, the LLM
cannot adapt to the specific variations introduced by regional het-
erogeneity, thereby constraining its expressive capability for local
patterns. Without external variables, the model is unable to respond
to the impact of external events in a timely manner. Quantitatively,
the inclusion of external variables consistently yields the most sig-
nificant performance gain across all three years. Meanwhile, the
relative contributions of the PGN and LoRA fluctuate, with their
importance varying between different years.

We further investigate the impact of key hyperparameters, in-
cluding the number of prompt pairs in the Prompt Generation
Network (PGN) and the learning rate, with the results presented
in Figure 5. The experimental findings reveal a positive correla-
tion between the number of prompt pairs and model performance,
with performance gains plateau at 512 pairs. Further increasing the
number of prompt pairs to 1024 yields no additional performance
improvement, suggesting that 512 pairs are sufficient to capture
the essential patterns for our forecasting task. The learning rate
experiments exhibit a similar trend. This analysis validates the
effectiveness of our chosen hyperparameter settings.

0.13 = ous 52.00 77 =3 ous

=3 Ours wio PGN {1 2T OurswoPGN 4=y

m B2 Ours wio LoRA | 23 OuswoLoRA {1}

< B Ours wio EV % | [ Ours wio EV '

§ 0.11 s 46.00 ] i ]
0.09 2025 2024 2023 40.00 2025 2024 2023

Figure 4: Results of ablation studies on both WMAPE and
MAE metrics. PGN stands for Prompt Generation Network,
EV denotes External Variables.

4.4 RQ3: Qualitative Analysis

4.4.1 Case Study for Predicted Results. To intuitively illustrate the
performance of our proposed model, we present a visualization in
Figure 6 that compares its predicted call volumes against those of
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Figure 5: Performance comparison for different hyperparam-
eter setting on 2025.

several baseline models. To aid in understanding the fluctuations
in the time series, the plot also includes recorded precipitation and
indicates weekend periods. As depicted, our method’s predictions
most closely align with the ground truth curve, accurately capturing
both the underlying periodic trends (highlighted in pink) and the
abrupt spikes (highlighted in orange). This result highlights the
superior capability of our model to effectively integrate geospatial
heterogeneity with external variables.
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Figure 6: Results of Region A210, Category C1 in 2025. GT
denotes Ground Truth.

4.4.2  Geospatial Representation Visualization. In this section, to
intuitively demonstrate the effectiveness of the geospatial repre-
sentation learned in MVGR-Net, we map the representation into
two-dimensional space using the T-SNE algorithm [44] in Figure 8.
Subsequently, we employed the K-Means algorithm [3] to parti-
tion the region representations into 10 clusters. As we can see, the
results reveal a high degree of clustering coherence, demonstrat-
ing that counties with similar attributes are effectively grouped
together. For an intuitive and illustrative analysis, we highlight
four representative clusters in detail. These clusters correspond
precisely to key geo-economic archetypes within China: (1) Primar-
ily Agricultural Counties, (2) Underdeveloped and Ethnic Minority
Inhabited Regions, (3) Remote, High-Altitude Cold Regions, and (4)
Economically Strong Counties. It is noteworthy that the model suc-
cessfully isolated the remote, high-altitude cold regions—areas em-
pirically characterized by a significantly low volume of ride-hailing
orders—as a unique and well-separated cluster. This indicates that
the learned geospatial representations successfully encapsulate the
intrinsic attributes of the regions, functioning effectively as robust
digital profiles for regional analysis.
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Figure 7: Geospatial Representation Visualization.

4.4.3  Visualization of Prompt Memory Pools. We visualize the fea-
tures learned by the prompt memory pool in Stage 2 to gain an
intuitive understanding of its functionality in Figure 7. We selected
three regions, Region X, Y, and Z, where X and Y are economically
similar, developed regions located in China’s coastal provinces,
while Z exhibits a relatively lower level of economic development
and is situated in the central inland area. The upper right panel
displays the Call volume trends for these regions. The bottom right
figure illustrates the similarity scores between the geospatial rep-
resentations of the corresponding regions and the 512 learnable
Keys in the Prompt Generation Network, which we reshape into
matrix form. As shown, the visualization matrices for Region X and
Y exhibit similar distributions, which differ from the visualization
matrix of Region Z. This indicates that the learnable keys adaptively
capture distinguishable socioeconomic characteristics.
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Figure 8: Visualization of Prompt Memory Pool.

4.5 ROQ4: Practicality

4.5.1 Deployment. Our proposed MVGR-Net has been deployed
in DiDi’s operational environments, supporting multiple business
scenarios such as demand-supply forecasting, resource allocation,
smart subsidies, and dynamic pricing. To illustrate its practical use,
we present a dashboard interface demonstration in Figure 11 in
Appendix. The dashboard helps analysts and engineers visualize,
monitor, and interactively analyze spatio-temporal mobility pat-
terns. The data presented in the figure has been anonymized to
protect sensitive information.

4.5.2 Geospatial Embedding Vector Library. The geospatial repre-
sentation we developed has been operationalized within DiDi as a
production-ready geospatial embedding vector library. To date, it
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has undergone development across two generations, culminating in
seven released versions. Figure 9 illustrates our internal web portal
for the library, which provides key information such as the project
overview, data structure, usage guidelines, and version history. The
line chart in the bottom-left corner plots the growth in the number
of visits that our embedding vector library has received since its
release in April of this year.

- @GP Intranct Link

Geospatial Embedding Vector Library User Guide (English Version)

25 cooper.didichuxing.com/k e/ 3 ™ L . S

~ # Project Overview

Core Features # Project Overview

~ H Data Structure i I supports mul-evel geospata et . ty. The Rorar

& Data Warehouse
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& References
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Figure 9: Demonstration of internal document for Geospatial

Embedding Vector Library.
4.5.3 Online A/B Test. Our proposed MVGR-Net has been success-

fully deployed in live production environments to generate ride-
hailing forecasts, thereby supporting downstream operational deci-
sion making processes. We follow [22, 47, 75] to conduct online A/B
testing to validate the effectiveness of MVGR-Net. We report daily
forecasting results conducted in August 2025. MVGR-Net achieves
average WMAPE improvement of 3.6% and 2.3% in Call perfor-
mance for C1 and C3 categories respectively; 2.7% and 2.8% in TSH
performance for C1 and C3 category respectively.

To further validate the practical utility of our model, we report
its performance in a significant downstream task: Intelligent Subsidy
Allocation. Ride-hailing platforms commonly offer user subsidies to
improve retention and operational efficiency. This task focuses on
allocating subsidies based on demand forecasts to enhance overall
efficiency and conversion performance. More details are provided
in Appendix E.2.

5 Related Work

5.1 Urban Region Representation Learning.

Learning representations of urban regions [19, 77] targets the cre-
ation of highly transferable region embeddings via the incorpora-
tion of regions alongside their attributes. Existing literature has
leveraged various data modalities to capture the characteristics of
regions, including visual imagery [17, 18, 76], POI [57], human mo-
bility [74], and knowledge graphs [43]. Pre-trained region features
can be further adapted to various downstream tasks through fine-
tuning, such as economic [9, 17, 58], environmental [11, 70], and
demographic applications [69]. In this work, rooted in ride-hailing
forecasting contexts, we combine POI data and temporal mobility
patterns to model regional representations, infusing spatiotemporal
heterogeneity into downstream applications.

5.2 Ride-Hailing Forecasting

In recent years, Ride-Hailing Forecasting [7, 15, 25, 26, 28, 36, 39,
42, 48, 54, 61, 62, 67] has received widespread attention due to

Xixuan Hao et al.

its alignment with practical industry demands. [61] integrates
CNNs, LSTMs, and graph embeddings to capture spatial, temporal,
and semantic regional dynamics. Regarding multi-relational learn-
ing, Geng et al. [15] utilizes multi-graph convolution to represent
inter-regional spatial, functional, and connectivity dependencies.
For adaptive modeling, CCRNN [62] enables dynamic learning of
location-specific adjacency matrices. To address noise mitigation,
ADFormer [54] employs differential attention mechanisms at the
architectural level for spatial correlation refinement. In this work,
we formulate ride-hailing supply-demand forecasting as a time
series forecasting problem, with detailed discussion in Section 1.

5.3 Prompt Learning

Prompt Learning [6, 13, 37, 38, 64, 65] suggests a methodology
for efficiently adapting large-scale pre-trained models to down-
stream tasks by introducing a small number of trainable prompt
parameters, and its influence has rapidly expanded from Natural
Language Processing (NLP) [35] to Computer Vision (CV) [52, 73]
and even multi-modal learning [31]. Furthermore, researchers have
explored dynamic mechanisms that go beyond static prompts, such
as leveraging a shared prompt pool to facilitate continual learning
without rehearsal buffer [55]. HimNet [13] extracts spatio-temporal
heterogeneity-informed prompt features through a query-pool par-
adigm. In this work, we deeply integrates dynamic prompts with
the problem of spatio-temporal heterogeneity by proposing a novel,
retrieval-based adaptive prompt framework.

6 Conclusion and Future Work

Accurate ride-hailing forecasting plays a pivotal role in the ad-
vancement of operational efficiency, the improvement of user expe-
rience, and the optimization of traffic management. To tackle the
geospatial heterogeneity challenge inherent in ride-hailing demand
forecasting, this work proposes learning comprehensive geospa-
tial representations through two complementary viewpoints: se-
mantic attributes and temporal mobility patterns. In subsequent
ride-hailing forecasting, we integrate the geospatial representa-
tion into the time series forecasting through a dynamic prompt
generation network, and combine it with external variables and
domain-specific textual descriptions to enhance the prediction of
ride-hailing indicators. Experiments on DiDi business data demon-
strate the effectiveness of our method. Future directions include
exploring the application of other types of data such as origin-
destination (OD) in ride-hailing forecasting, as well as applying
novel backbones such as TabPFN [20].
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Appendix

A POI Prompt

We provide a detailed POI Category Description generation prompt
below, which comprehensively explores POI semantic features from
five perspectives: Core Function, Hierarchy, Target Demographics,
Temporal Pattern, and Spatial Context.

ﬁrompt: POI Category Description \

# Role and Goal
You are an urban sociologist and data scientist. Your task is to write
a descriptive paragraph for a given POI category.

# Instructions

In your description, you must incorporate POI’s category, location and
administrative district, weave together the following aspects naturally in a
paragraph format:

(1) Core Function: What is its primary purpose?

(2) Hierarchy: What broader category does it belong to? What are some
specific examples?

(3) Target Demographics: Who are the primary customers or users?
(4) Temporal Pattern: When is it most active (e.g., daytime, nighttime,
weekday, weekend)?

(5) Spatial Context: What other types of places is it often found near?

8

# POI Information
[POI Category] [Location] [County&City Name]

Figure 10: Detailed prompt template for POI category descrip-
tion generation.

B More Details about Dataset

More information about POI secondary categories. For the POI data
utilized in Stage 1: Multi-View Geospatial Representation Learning
of our model, beyond the content introduced in the main text,
we also introduce information about POI secondary categories
here. POI secondary categories provide a finer-grained functional
breakdown of primary POI categories. The top-10 POI secondary
categories include: Door Number Information, Building Numbers,
Administrative Places, Companies & Enterprises, Passage Facilities,
Snacks & Fast Food, Furniture & Building Materials, Beauty & Hair
Salons, Government Agencies, Chinese Restaurants.

Special events data types. Special events data encompasses 12
distinct types: International Women’s Day, Teacher Qualification
Examination, Public Institution Recruitment Examination, Provincial
Civil Service Examination, Self-taught Higher Education Examina-
tions, Chinese Valentine’s Day, Art College Entrance Examination,
Concert, Sports Event, Marathon, Beer Festival and Large-scale Ex-
hibition. Some non-statutory holidays are also classified as special
events.

C More Details about POI Representation
C.1 Spatial Proximity

Here we introduce the training process of POI representation learn-
ing from spatial proximity. For each POI p7, and its k nearest neigh-
bors p; € Ni(p}) are retrieved based on spatial distance. c* is the

corresponding one-hot category vectors associated with p°,
Zps :FS(C?)’ ij = FS(C;)- (14)

The objective is to maximize the similarity between the central POI
and its neighbors:

-
exp (z 3 ZP?)
=1
Bty e (¢] 7

where n. is the total number of POI categories, e; denotes the feature
representation of the [-th POI category after encoding through F;.

Lp=- > (log ), (19

5 € Ne(py)

C.2 Hierarchical Category Semantics

Here we introduce the training process of POI representation learn-
ing from hierarchical category semantics. To capture hierarchical
semantic relationships between POI categories, we construct a POI
graph where nodes are POIs and edges are spatially weighted. Ran-
dom walks [33] are used to sample spatial co-occurring sequences.
For each sequence, the first node is the target POI pf’, and the rest
p;’ € N (plh) form its context. Each POI is associated with its sec-
ondary category one-hot vector cl}.’, and encoded by Fy(+) to obtain
feature representations:

h h
z,n = Fp(ci), Zph = Fp(cj). (16)

The hierarchical semantic representations are optimized via the
following joint objective:

Lycs = - Z

PleN(ph)
2
SN
1,

while the first term models spatial co-occurrence between cate-
gories using a skip-gram objective, the second regularization term
enforces embedding smoothness for POIs within the same pri-
mary category, n. denotes the number of POI secondary categories,

-
exp(zpyzp?)

log o =
25 exple; zp?)

(17)

wi = 1if plh and category [ belong to the same primary category
group. A controls the trade-off between the two objectives.

D More Details about External Variables

o Rainfall. We incorporate rainfall data, measured as precipita-
tion in millimeters (mm), as the sole weather variable due to
its high impact. The forecasted rainfall over a prediction hori-
zon of length S is represented by the vector P € RS> where
P = (pr+1, Pr+2s - Pr+s) - Datais sourced from the China Weather
Network (https://www.weather.com.cn).

e Holiday. To capture the impact of public holidays on travel pat-
terns, we incorporate holiday data as a categorical feature. We
consider Ny, distinct types of public holidays known to signifi-
cantly influence travel demand. This information is encoded as a
vector for the forecast period:

H = (hist1, hrsa . hees) € Z5%0 by € [0,Ny],


https://www.weather.com.cn
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where S is the prediction horizon, N}, correspond to the number
of holiday types. The data is based on official holiday schedules
announced by the Chinese government.

e Special Events. Special events meta data accounts for non-
periodic external events that can significantly impact travel de-
mand. Examples include major concerts, sporting events, and
national examinations.

E = (ers1, €142, ..., €148) € ZSXl,ei € [0, Ne],

where N, represents the number of special events. Data is sourced
from Damai (https://www.damai.cn/).

E More Details for Deployment
E.1 Deployment System Demonstration

As introduced in the main text, the interface allows flexible spatial
and temporal exploration. Users can enter a grid ID in the top-left
map to query the most similar grids from the embedding database.
It also supports analysis of POI functions within the grid, helping
to understand regional functionality and potential travel demand.
For prediction, users can select any province-level, city-level, or
county-level region to monitor future CALL, TSH and other relevant
indicators such as ASP (Average Selling Price). This helps guide
resource allocation, pricing strategies, and operational planning.

O DiDi Ride-Hailing Supply-Demand Dashboard

Similar Grid Analyss

Figure 11: Deployment system demonstration of our
MVGR-Net framework.

E.2 Intelligent Subsidy Allocation Experiment

To evaluate the transferability of the geospatial representations
learned by MVGR-Net across multiple tasks, we additionally intro-
duce an Intelligent Subsidy Allocation Experiment [60]. To
enhance operational efficiency and economic benefits, ride-hailing
platforms typically provide subsidies to users in order to improve
user retention. Intelligent Subsidy Allocation aims to effectively al-
locate subsidies and improve overall operational efficiency and con-
version performance. This task is formulated as a multi-treatment
causal inference problem (i.e., multiple subsidy strategies). The ob-
jective is to estimate the heterogeneous impact of different subsidy

Xixuan Hao et al.

strategies on user conversion behavior. We adopt a neural network
architecture with multiple output heads, which allows the model to
predict potential outcomes under all treatment conditions within a
unified framework.

Let the strategy setbe 7~ = {STo, STi, . .., STn,, -1}, Where Ns; de-
notes the number of strategies such as 10% discount, fixed-amount
reduction. STy denotes no strategy. For input feature xg of order
and user interaction data, the model outputs the predicted conver-
sion probability (the probability of a user taking a ride, conditional
on receiving a subsidy) under each treatment: Y(ST; | xst). Each
prediction is generated by a separate output head corresponding to
one treatment. During training, the model learns from historical
samples Q = (xst;, ST, f’i), where ST; is the observed treatment and
Y; € {0, 1} indicates whether the user converted. The cross-entropy
loss function is used to optimize prediction accuracy under each
treatment. During inference, the model computes the uplift effect
of any treatment ST; relative to the strategy ST = 0 as follows:

U(ST; | xst) = Y(ST; | xst) = Y(STo | Xst)- (18)

In business practice, user responses depend not only on order fea-
tures but also on the spatial context, regional supply-demand con-
ditions, and functional attributes. Therefore, we incorporate our
proposed geospatial representations as features to capture these
influences. We augment the feature vector for each order by con-
catenating it with the pre-trained geospatial representation of its
originating region, yielding the final model input. The experiment
results are demonstrated in Table 3. The online baseline model em-
ploys a neural network with multiple output heads. Based on this,
the enhanced model Exp; utilized our city-level region representa-
tions, while Exp, utilized our county-level region representations.
QINI coefficient [4] and WMAPE are utilized to measure how well
the model identifies high-response users. Results demonstrate that
the enhanced model almost significantly outperforms baselines on
both QINI coefficient and WMAPE metrics. Notably, optimal per-
formance varies by strategy, with Exp; excelling in some scenarios
and Exp, in others. These results confirm the effectiveness and
transferability of our learned geospatial representations.

| 2025/ 05
Treatment ‘ QINT| ‘ WMAPE |

‘ Exp_1 Exp_2  Online ‘ Exp_1 Exp_2  Online
85%-x 0.239 0.220 0.239 0.167 0.192 0.248
80%-x 0.233 0.232 0.229 0.110 0.152 0.307
75%-X 0.241 0.238 0.239 0.063 0.126 0.126
70%-x 0.243 0.252 0.249 0.115 0.111 0.142
60%-x 0.247 0.245 0.245 0.038 0.086 0.121

Table 3: Geospatial representation enhanced intelligent sub-
sidy experiment results for May 2025. Treatment name’s first
number represents the discount percentage, x stands for a
direct reduction discount of x yuan. We set x to 5 here.
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