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ABSTRACT
Land-cover mapping in complex farming area is a difficult task
because of the complex pattern of vegetation and ruggedmountains
with fast-flowing rivers, and it requires a method for accurate classi-
fication of complex land cover. Random Forest classification (RFC) has
the advantages of high classification accuracy and the ability to
measure variable importance in land-cover mapping. This study
evaluates the addition of both normalized difference vegetation
index (NDVI) time-series and the Grey Level Co-occurrence Matrix
(GLCM) textural variables using the RFC for land-cover mapping in a
complex farming region. On this basis, the best classificationmodel is
selected to extract the land-cover classification information in Central
Shandong. To explore which input variables yield the best accuracy
for land-cover classification in complex farming areas, we evaluate
the importance of Random Forest variables. The results show that
adding not only multi-temporal imagery and topographic variables
but also GLCM textural variables and NDVI time-series variables
achieved the highest overall accuracy of 89% and kappa coefficient
(κ) of 0.81. The assessment of the importance of a Random Forest
classifier indicates that the key input variables include the summer
NDVI followed by the summer near-infrared band and the elevation,
along with the GLCM-mean, GLCM-contrast.
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1. Introduction

Land-cover mapping and monitoring is significant for sustainable development plan-
ning, rational exploitation of land resources, and climate change research (Bounoua
et al. 2002; Turner Ii, Moss, and Skole 1993; Jung et al. 2006; Liu et al. 2018). It plays an
important role in monitoring sustainable forest management, deforestation, agricultural
planning, and urban growth (Foley et al. 2011; Gong et al. 2013; Liang et al. 2018; Liu et
al. 2017). Remotely sensed data are widely used in land-cover mapping and monitoring.
Remote sensing has the characteristics of rapid, macroscopic, and synchronous
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monitoring, which provides efficient and quick technical means for extracting land-cover
information (Friedl and Brodley 1997). Remotely sensed data have derived many global
and regional land-cover data products, for example, the Moderate Resolution Imaging
Spectrometer land-cover product (MODIS) (Friedl et al. 2010), the global land-cover map
of 2009 (GlobCover2009), the 30 m global land-cover data set (GlobeLand30) (Chen et al.
2015), and finer resolution observation and monitoring of global land cover (Gong et al.
2013). However, there are still several problems with existing land-cover products in
complex land-cover areas. For instance, it is difficult to map multiple classes of land-
cover classifications in complex terrains and landforms. Thus, several area of natural
grassland and improved grassland can be easily classified as forest or cropland without
the vegetation phenology information.

The normalized difference vegetation index (NDVI) data are a common data source
for land-cover mapping that can be used to obtain phenological information of vegeta-
tion (Pittman et al. 2010). Compared with other vegetation types such as grassland and
forests, cropland has its own characteristics in the stages of sowing, growth, and harvest.
However, it is not easy to distinguish cropland from forest and grassland using a single
image. NDVI time series data, including Landsat and MODIS NDVI time series, are of
great importance to land-cover mapping in farming areas. These data are usually used to
extract vegetation information based on the threshold method. Meanwhile, in order to
yield the best accuracy for land-cover classification, not only vegetation phenology
information but also the textural features of each category are significant.

It has become a very common method to obtain textural features of remotely sensed
data by means of the Grey Level Co-occurrence Matrix (GLCM) (Ozdemir et al. 2008). The
textural features obtained by GLCM range from mean to variance and homogeneity, to
contrast and entropy, to correlation and dissimilarity. The GLCM has been widely
accepted and used for vegetation structure modelling (Castillo-Santiago, Ricker, and
de Jong 2010) and land-cover classification (Johansen et al. 2007). However, the selec-
tion of the proper algorithm for land-cover classification depends on the ability of the
algorithm to cope with the problem, including data errors, the complexity of the study
area, and the lack of training data (Rogan et al. 2008).

The classification algorithm is an important part of land-cover mapping, but its effi-
ciency and accuracy are influenced by many factors, such as image resolution and atmo-
spheric conditions during imaging (Rogan et al. 2008). Therefore, there is no general
classification algorithm at present and different research purposes need to choose differ-
ent classification models. For example, unsupervised classification methods including
k-means or Iterative Selforganizing Data Analysis Techniques Algorithm are often used
in low-resolution remote-sensing images (Wagstaff 2001; Dunn 1973). Meanwhile, land-
cover classification based on remote-sensing data and machine-learning algorithms have
been the focus of academic research. Traditional classification algorithms have gradually
been overtaken by machine-learning algorithms, because of their lack of effectiveness and
accuracy, such as decision trees (Breiman et al. 1984), artificial neural networks (Mas and
Flores 2008), support vector machines (Mountrakis, Im, and Ogole 2011), and Random
Forest (Breiman 2001). However, most of the machine-learning algorithms also have their
drawbacks. Artificial neural networks are highly non-linear large-scale systems, and the
complexity of the artificial neural network makes it impossible to analyse its performance
parameters accurately (Foody and Arora 1997). Support vector machines involve the
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calculation of the number of samples, and the storage and computation of the matrix, will
consume a great deal of machine memory and computation time when the number of
samples is large (Mountrakis, Im, and Ogole 2011).

The Random Forest algorithm is based on multi-classification or regression decision
trees (Breiman 2001). However, the Random Forest has been applied in land-cover
classification in complex region mostly using single-temporal imagery and NDVI
(Chapman 2010), hyperspectral and multispectral remotely sensed data (Pal 2005;
Sesnie et al. 2008), or digital elevation models (DEMs) (Ghimire, Rogan, and Miller
2010). Meanwhile, most studies did not adequately analyse which auxiliary variable
features were most relevant in the classification of complex farming area (Chan and
Paelinckx 2008). In addition, most studies have not further discussed the sensitivity of
the Random Forest model to the training data set reduction (Gislason, Benediktsson, and
Sveinsson 2006).

In this study, our goal was to evaluate the addition of both time-series NDVI and the
GLCM textural variables using the Random Forest for land-cover mapping in a complex
farming region of Central Shandong. We determined the best input variables for the
Random Forest from multi-temporal remotely sensed and auxiliary data by the evalua-
tion of the variable importance. The performance of the Random Forest algorithm was
also evaluated by the number of trees and predictor variables, as well as the sensitivity
of the training data size changes.

2. Study area

Shandong Province is one of the largest agricultural provinces in China. Pingyin County
is selected as the study area, which is located in central Shandong (36° 1′–36° 23′ N,
116° 12′–116° 27′ E) (Figure 1). As a transitional zone between Mount Tai and the West
Shandong Plain, Pingyin County is one of the typical mountainous farming areas in central
Shandong. The county is dominated by hills and mountains, covering an area of 515.16 km2,
approximately 62.3% of the total area. In addition to the area along the Yellow River and the
eastern part of the county, the remainder is the low foothill area. The climate is warm
temperate zone monsoon, characterized by four seasons: dry and windy in spring, hot and
rainy in summer, bright in autumn, and cold and less snow in winter. According to the China
Statistical Yearbook for Regional Economy-2011, the area of cropland increased by 3.89 km2

from 2004 (18.34 km2) to 2010 (22.23 km2). The cropland area is dominated by cinnamon soil
supporting primary crops of corn, soybeans, wheat, and potatoes. Most of these planting
structures are double cropping systems.

3. Data and methods

3.1. Land-cover classes and reference data

To reflect the major land types in this area, the classification scheme used in this project
was based on land-cover maps developed in 2010 by Institute of Geographic Sciences
and Natural Resources Research (Brewster, Allen, and Kopp 1999). Land cover was
classified into six types: cropland, forest, grassland, water, residential land, and unused
land (see Table 1).

INTERNATIONAL JOURNAL OF REMOTE SENSING 3



It was commonly believed that the number of training pixels should at least be equal to
10 times the number of variables used in the classification model (Jensen and Lulla 1987).
To achieve better results, other studies have found that machine-learning algorithms
demanded a large number of training data (Gislason, Benediktsson, and Sveinsson 2006).
However, if the training sample size for each land-cover class is the same, the proportion of
some important classes will be small and some of the less important classes will be
assigned to a high proportion and be prone to over-fitting problems. In this research, we
used a random sampling method that can balance the number of sampling points, which
meant that the number of sampling points of each land-cover class was related to the
proportion of the total pixels. More specifically, a total of 2000 reference training and test

Figure 1. Study area in Pingyin, Shandong. The study area displays the red, near-infrared band and
middle infrared band of the Landsat Thematic Mapper (TM) data with blue, green, and red colour.

Table 1. Land-cover classification schemes.
Classification Description

Cropland The land planted for crops, including cultivated land, newly opened wasteland, fallow land,
fallow land, grass land rotation land

Forest The land grows shrubs, trees, bamboo, and coastal mangrove forest land, covered by natural
or planted forests with a canopy density of over 30% and natural or newly forested or
shrub with a canopy density between 10% and 30%

Grassland Lands mainly covered by herbaceous plants, including the shrub grassland and the grassland
with a canopy density of less then 10%, and the grassland with coverage of more than 5%

Water Reservoirs and ponds, rivers, and flooded lands
Residential land Land used for townships and rural settlements, also including industrial sites and mining
Unused land Land refers to the area that is not put into practical use or difficult to use
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data sets were divided randomly to each land-cover class in accordance with their respec-
tive proportions (see Table 2). A stratified random sample of 70% of the reference point
data for training the Random Forest classifier and 30% of the reference point data for
testing the accuracy of the results was used.

To train and validate the land-cover classifications, an extensive reference data set
was gathered in our study area. The reference training and test data sets were collected
from a time series of Landsat TM images and Google Earth high-resolution images by
visual interpretation. Each sample unit was checked according to the common global
land-cover validation database, including GlobeLand30 and FROM-GC (Gong et al. 2013).
There were a total of 2000 sample units in the study area, including 1256 cropland
sample units, 187 forest sample units, 153 grass sample units, and 362 residential land
sample units. We filtered the training points based on field photo interpretation,
GlobeLand30, and FROM-GC to determine whether they were appropriate references
for each class.

3.2. Satellite and ancillary data

3.2.1. Multi-temporal satellite data
To create land-cover maps in complex farming areas, it is common to use not only a single
date of remote-sensing images but also multi-temporal remotely sensed data that is com-
monly used to characterize phenological changes in vegetation cover states (Yuan et al. 2005).
A large number of studies have shown that these multi-temporal remotely sensed data
provide the differences between similar spectral coverage types (Chen et al. 2014).

In the research, it is difficult to distinguish cropland from forest and grassland in the
hilly area of central Shandong by only using the Landsat imagery of single dates.
Therefore, spring, summer, and autumn images have been used for land-cover classifica-
tions because these images contain most of the phenological changes (April, August,
and October, respectively). These three periods represent the most significant character-
istics of the main vegetation types in the study area that are essential for the accurate
classification of land-cover types. According to the spectral characteristics of the images,
cropland (such as corn, soybeans, wheat, and potatoes) can be confused with temperate
deciduous broad-leaved forests in both spring and summer images. In autumn images,
highly reflective surfaces, such as residential land, can be confused with unused land.
The concept of seasons is related to the Northern Hemisphere.

Three Landsat 5 TM images of central Shandong were selected with acquisition dates
corresponding to the 8 April 2009, 30 August 2009, and 17 October 2009, and they were
from Path: 122, Row: 035 of the Landsat Worldwide Reference System. The Band 1, band 2,

Table 2. Summary of reference training data and testing data.
Classification Training points prior to filtering Final points for model training Points for accuracy testing

Cropland 862 789 394
Forest 129 115 58
Grassland 82 71 37
Water 40 36 18
Residential land 250 224 112
Unused land 12 10 6
Total 1375 1245 625
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band 3, and band 4,respectively, denote the blue (B), green (G), red (R), and near-infrared
(NIR) bands of the TM images. Band 5, band 7, and band 6 are twomid-infrared (MIR1, MIR2)
and thermal infrared (TIR) bands from all images. As NIR, MIR1, MIR2, and TIR are suitable for
detecting the water content in plants and soils, we use them for land-cover mapping (see
Table 3) (Baker et al. 2006).

To distinguish vegetation from non-vegetation, we used the brightness, greenness,
and wetness axes of the Tasselled Cap transformation, which has long been estimated to
play an important role in improving assessment of land-cover change, classification
results, and assisting in estimates of vegetation structure (Kauth 1975; Crist and
Cicone 1984). Other indices were also used for land-cover classification, including the
Normalized Difference Built-Up Index (Zha, Gao, and Ni 2003), and the Modified
Normalized Difference Water Index (Gao 1996). All of these ancillary features were
calculated in the ESRI ENVI 5.1 platform.

3.2.2. NDVI time-series data
The seasonal pattern of vegetation provides the foundation for the study of land-cover
mapping through time-series remote-sensing images. Compared with other vegetation
types such as grassland and forests, cropland has its own characteristics in the stages of
sowing, growth, and harvest. At the same time, with one or more narrow peaks, crop-
land is characterized by more irregular NDVI profiles, whose peak values constantly
change substantially compared to the peaks of grasslands and forests.

Our study area has a large number of cloud-free Landsat images, since the rainfall in
central Shandong was relatively small. A total of 10 scenes of the Landsat 5 TM (Path
122/Row 035) to 2009 spanning from 7 March (day 66) to 4 December (day 338) were
atmospherically corrected for surface reflectance by using the Landsat Ecosystem
Disturbance Adaptive Processing System (Masek et al. 2006), then they were used to
generate a time-series Landsat NDVI image. Since we selected Landsat imagery with less
than 15% clouds, some areas of images acquired on days 82, 274, and 338 were partially
contaminated by clouds. However, the cloud-covered areas of these images were not in
the study area, and thus they had little impact on the acquisition of the time-series NDVI.

In Figure 2, we demonstrated the NDVI time series profiles of different land-cover
types in an area of central Shandong. Over the time from 7 March to 4 December,
272 days in all including seasons from spring to winter, the NDVI values of cropland
varied greatly from sowing and growth to harvest. Thus, crop phenology in this region

Table 3. Multi-temporal spectral variables (MTS) used in Random Forest classification.
Season Data Source Ancillary features Calculation method

B, G, R, NIR, MIR1,
MIR2, TIR

Summer 8 April 2009 MNDWI (RGreen − RMIR1)/(RGreen + RMIR1)
NDBI (RMIR1 − RNIR)/(RMIR1 + RNIR)

Summer 30 August
2009

Landsat
5 TM

Brightness 0.2937RBlue + 0.2493RGreen + 0.4843RRed + 0.5565RNIR
+ 0.4482RMIR1 + 0.1763RMIR2

Autumn 17 October
2009

Greenness −0.2748RBlue − 0.2235RGreen − 0.5536RRed + 0.7543RNIR
+ 0.0840RMIR1 − 0.1800RMIR2

Wetness 0.1406RBlue + 0.1843RGreen + 0.3659RRed + 0.3306RNIR
− 0.6712RMIR1 − 0.4122RMIR2

6 Y. JIN ET AL.



was divided into three stages: the sowing (March and August), growth (from April to
May and from August to October), and harvest (from June to July and November)
seasons. Figure 2 also indicates that the plant system of double cropping is one of the
significant variables in the region.

3.2.3. GLCM textural data
The use of textural features data in land-cover mapping requires decisions about multi-
ple associated variables, of which each results in different textures that may have
different values. In the research, to introduce texture information into remote-sensing
image classification, we used the GLCM, which has been widely accepted and used for
vegetation structure modelling (Castillo-Santiago, Ricker, and de Jong 2010) and land-
cover classification (Johansen et al. 2007).

The GLCM is a matrix of size N × N where N is the number of levels specified under
quantization, which is the relative frequency of a tabular pair of digital numbers
(Haralick, Shanmugam, and Dinstein 1973). Each band was segmented separately, and
multiple textural variables of Landsat imagery were extracted by GLCM measures (Zhang
et al. 2009). We considered a set of eight textural variables that could be obtained from
the GLCM calculated in the ENVI 5.1 platform (see Table 4): mean, variance, homogene-
ity, contrast, dissimilarity, entropy, angular second moment, and correlation.

3.2.4. Topographic data
Because of the complicated topography and different soil moisture conditions in central
Shandong, topographic variable data are a significant factor affecting land-cover classi-
fication (Chen et al. 2017). The National Aeronautics and Space Administration Shuttle
Radar Topography Mission (SRTM) provides 90 m resolution DEM that can be used to
determine elevation and derive slope and aspect (Moore 1991). We calculated the slope

Figure 2. NDVI time series profiles and crop phenology analysis.
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and aspect information for each pixel based on SRTM and resampled these terrain
attributes to the extent of Landsat TM image for subsequent work, supported by the
ESRI ArcGIS (v. 10.2).

3.3. Random Forest classification

Random Forest has been developed rapidly and has been widely used in many fields
such as medicine, economics, and geography during the past twenty years. Breiman
(2001) proposed Random Forest, which changes the way the classification or regression
tree is constructed. RF can process hundreds of input features without deleting features
and estimates the importance of features in the classification. As demonstrated by many
researches (Dobra and Gehrke 2001; Schroff, Criminisi, and Zisserman 2008), Random
Forest is more robust than a single decision tree, and its generalization performance is
much better than traditional learning algorithms.

Random Forest classification (RFC) is an ensemble classification method consisting of
many decision tree classification models, {h(X,Θk), k = 1, . . .}, where x is the input vector
and {Θk} are random vectors of independent distribution (Foody and Arora 1997). Hence,
some vectors may be trained more than once in a classifier, while other vectors may
never be used. Therefore, as it becomes more robust when it faces slight changes in
input data and increases classification accuracy, better classifier stability is achieved. A k
number of samples was extracted from the original training set using bootstrap sam-
pling, and the sample size of each sample was the same as that of the original training
set. A k number of trees was set up for k samples, and a k number of classification results
were obtained. In other words, in order to classify new data sets, a constant number of k
random variables are used, and each sample of the data set is classified by a k number of
trees. According to the classification results, each record was voted on to determine its
final classification.

Some experiments have shown that Random Forest unlike other methods based
on boosting and bagging is not over-sensitive to overtraining or noise (Briem,
Benediktsson, and Sveinsson 2002; Chan and Paelinckx 2008). Each subset for the
growth of a single decision tree contains approximately 67% of the calibration data
set. Elements not included in this subset are included in another subset called out-
of-bag (OOB). Using these elements to estimate the performance of the model is
called OOB estimation, and the ratio between OOB elements and misclassification
contributes to the unbiased estimation of generalization error (Wolpert and
Macready 1999).

Table 4. GLCM textural variables (TXT) used in Random Forest classification.
Type Source Ancillary features Calculation method

Texture features (TXT) Landsat 5 TM GLCM-mean Calculated in the ENVI 5.1 platform
GLCM-variance
GLCM-homogeneity
GLCM-contrast
GLCM-dissimilarity
GLCM-entropy
GLCM-angular second moment
GLCM-correlation
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To estimate the importance of variables, the OOB error of each decision tree in the
Random Forest et needs to be calculated from the OOB data. A new OOB error eit is
calculated by randomly changing the values of the variable Xi. The mean decrease in
accuracy (MDA) score can be expressed as Equation (1).

VðXiÞ ¼ 1
N

Xt¼1

N

ðeit � etÞ (1)

In addition to the OOB error-based approach MDA, another method of calculating the
importance of the variable is based on the mean decrease Gini measure, which is frequently
used as one of the important ways for selecting the best split in an RF and measures the
impurity of a specified variable. In these two methods, the more reduction in OOB accuracy
and Gini index caused by variable changes, the more important the variable is (Foody and
Arora 1997).

RFC improves the classification model by constructing different training sets to increase
the differences among the classification models, and the sequence {h1(X), h2(X),. . ., hk(X)} is
obtained through a k number of training times and then used to form a multi-class model
system. Thus, the application of RF in remote sensing has many advantages.

● It performswell. It provides top-level accuracy among current popular similar algorithms.
It can process big data without feature selection and feature deletion and maintain the
classification error balance when the class size distribution is unbalanced.

● It requires little manual intervention. It can determine the characteristics of the data
by itself, thus simplifying the Random Forest design process.

● It provides a variety of data characterizations. We can calculate the importance of each
classification feature by estimating the generalization error in the process of forest
growth.

● It has very fast computing speed. Since the amount of computation in a Random
Forest is proportional to the depth of a tree, classification or regression is very rapid
on a growing tree. The amount of computation for a Random Forest training is
proportional to the number of all its trees, which makes it easier for Random
Forests to be parallelized.

4. Results and discussion

4.1. Influence of the number of trees and predictive variables

Random Forest is a classification tree-based algorithm considering one or several vari-
ables. RF can be divided into single variable algorithms or multiple variables, if the
decision is made from a single variable or is coordinated by a great many variables
(Breiman 2001). Hence, the additional parameter n represents a subset of n predictive
variables, which does not appear in the traditional classification tree. The parameter
affects the intensity and the correlation of each tree and affects the accuracy of the
classifier and the generalization error.

Breiman proposed that generalization errors always converged and over-training was
not a problem when the number of trees was increased. Meanwhile, the reduction in the
number of predictive variables (n) decreased the correlation between decision trees,
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thereby increasing the accuracy of the model. Therefore, the optimization of the number
of trees (k) and predictive variables (n) played a significant role in improving the
classifier’s accuracy.

Figure 3 shows that the OOB error of the model depends on the number of trees and the
predictor variables. As seen from the figure, when the number of trees was 100 and the
predicted variables were equal to the minimum and maximum (1 and 6), the OOB error
converges to 10% and 11%, respectively. By contrast, the OOB errors of the RF models of
1000 trees composed of n different predictor variables converged to 9% and 10%. Thus, in
Random Forest, it led to lower classification accuracy when the number of trees was very
small, but the generalization error did not increase or decrease if we added more trees
infinitely, and a larger number of trees led to more stable classification.

When the value of k is 1000, the OOB error difference between the minimum and
maximum of the predictive variable was approximately less than 1%. Therefore, we can
deduce that Random Forest was not sensitive to the number of predictive variables (n)
once the error convergences were reached.

4.2. Variable importance

The information on the importance of the variables in the classification of each category
was provided by the distribution of variables in the decision tree (Pal 2005). However,
the integration of classifiers based on multiple decision trees was hardly possible for this
interpretation. Thus, Random Forest was used to evaluate the importance of variables
through the OOB error and the Gini index (Section 3.3).

Meanwhile, as seen in Figure 4, in order to classify the land-cover types in the study
area, multi-temporal spectral variables (MTS), topographic variables (DEM), GLCM tex-
tural variables (TXT), and NDVI time-series variables (NDVI) were used in Random Forest

Figure 3. OOB error index of the RF models for different numbers of trees (k) and predictive
variables (n).
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and the experiment was divided into four models: MTS + DEM, MTS + DEM + TXT,
MTS + DEM + NDVI, MTS + DEM + TXT + NDVI (Section 3.2).

Figure 5 shows that the 10 most important variables of the models, the MTS + DEM, the
MTS + DEM + TXT, the MTS + DEM + NDVI, and the MTS + DEM + TXT + NDVI, are listed in
terms of the OOB error and the GINI index. MTS variables and NDVI time-series variables
(NDVI) are expressed in the form of a combination of seasonal abbreviations and band
names, which spr, sum, and aut represent spring, summer, and autumn, respectively, when
expressing seasonal abbreviations. As seen in Figure 5, according to both OOB error and the
GINI index, the multi-temporal texture of the NIR band, the elevation, and the summer
greenness were the three most important variables in the MTS + DEM model. For the
MTS + DEM + TXT model, among the eight textural variables used for land-cover classifica-
tion, mean was the most important, followed by contrast, variance, and entropy. In the
terrain variables, elevation played a major role, followed by the slope, and the remaining
variables were less significant. Compared to the previous two models, the NDVI time-series
variables were used in the MTS + DEM + NDVI model, and they had the most important
influence on class-separability. According to the OOB MDA, the NDVI variables of three

Figure 4. Ancillary variables in models.
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seasons have a significant contribution to land-cover classification, with values equal to 0.27,
0.16, and 0.11. Finally, although the OOB and Gini approaches in the
MTS + DEM + TXT + NDVI model showed slightly different variable importance, regardless
of the order in which the importance of variables appears, the most important variable was

Figure 5. Variable importance based on OOB and Gini measures.
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the summer NDVI, followed by the summer NIR band and the elevation, with values greater
than 0.9 in the OOB approach and greater than 1800 in the Gini index. In addition, the most
important GLCM textural variables were themean and contrast (OOBMDA equal to 0.18 and
0.14). The brightness, and greenness derived from the Kauth–Thomas transform also have
important influence.

After an assessment of the importance of a Random Forest classifier for land-cover
classification, the 10 variables that contributed most to the classification were selected in
each of the 4 models. Through the evaluation of the importance of variables, unim-
portant variables were eliminated to reduce variable dimensions, model computation
time, and improve efficiency.

4.3. Map accuracy

The confusion matrix was used to evaluate classification accuracy. The overall accuracy
and the two measures of quantity disagreement and allocation disagreement were
useful to summarize a confusion matrix (2011). The confusion matrix was calculated
by the classification results of different models after the evaluation of the importance of
variables, and the overall accuracy, quantity disagreement and allocation disagreement
statistic were obtained. The difference between the results of the four models is shown
by the accuracy contrast table (see Table 5).

Table 5 compared the overall accuracy, the quantity disagreement, and allocation
disagreement of the MTS + DEM, the MTS + DEM + TXT, the MTS + DEM + NDVI, and the
MTS + DEM + TXT + NDVI models and concluded that the overall accuracy was
increasing gradually with the addition of different types of variables. Meanwhile, the
addition of variables was able to decrease both QD and AD value.

The MTS + DEM + TXT and the MTS + DEM + NDVI models had overall accuracies of
80.2% (total disagreement = 19.8%) and 84.1% (total disagreement = 15.9%), respec-
tively. The MTS + DEM + TXT model incorporated multi-temporal bands, topographic
variables, and the GLCM variables. Compared with the overall accuracy of the
MTS + DEM model, the result of this model revealed that addition of textural variables
increased the accuracy of the model by approximately 7%. On the other hand, instead of
adding textural variables, the MTS + DEM + NDVI model incorporated all available multi-
temporal bands, topographic variables, and the NDVI time-series data, which greatly
increased the accuracy of the model by over 10%. Thus, it can be seen that the influence
of the NDVI time-series variables on classification accuracy is greater than the influence
of textural variables.

To search the model with the highest accuracy, both textural variables and NDVI
time-series variables were added to the MTS + DEM + TXT + NDVI models. As seen in the
Table 5, adding not only multi-temporal bands and topographic variables but also
textural variables and NDVI time-series variables achieved the highest overall accuracy

Table 5. Comparison of different classification accuracy.
MTS + DEM MTS + DEM + TXT MTS + DEM + NDVI MTS + DEM + TXT + NDVI

OA (%) 73.9 80.2 84.1 88.9
QD (%) 6.4 4.5 3.1 1.5
AD (%) 19.7 15.3 12.8 9.6
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of 88.9%, and the disagreement percentage mainly due to the allocation disagreement,
of 9.6%, rather than the quantitative disagreement, of only 1.5%. Compared to the
absence of textural and NDVI variables, the addition of the GLCM variables and NDVI
time-series variables made the overall accuracies significantly increase, with values equal
to 15.0%. Moreover, they led to a reduction of the QD and AD value by 4.9% and 10.1%.
These findings show that the Random Forest model improved the overall accuracy and
the kappa coefficient (κ) using textural variables and NDVI time-series variables based on
MTS and DEM variables.

4.4. Comparison of different classification

To test the classification results after variable selection and discuss the influence of different
auxiliary variables on the land-cover classification in central Shandong, the MTS + DEM, the
MTS + DEM + TXT, the MTS + DEM + NDVI, and the MTS + DEM + TXT + NDVI models were
selected for the comparison of different classification results. After the evaluation of the
importance of the variables, the 10 most significant variables were selected in each of the
MTS +DEM, theMTS +DEM+ TXT, theMTS +DEM+NDVI, and theMTS +DEM+ TXT +NDVI
models (Section 4.2).

In Figure 6, wide misclassifications were observed in the MTS + DEM and the
MTS + DEM + TXT, especially in cropland, forest, and grassland. Some pixels of natural
grassland and improved grassland were classified as forest and other pixels were misclassi-
fied as cropland, such as residential land and grassland. In contrast to Figures 6(b) and (c),
cropland actually occupied most of the areas that might be occupied by residential land in
the MTS + DEM. Having added the GLCM variables, the MTS + DEM + TXT extracted textural
information from the study area much more accurately, including traffic roads, urban land,
and rural residential areas. In Figure 6(d), with the introduction of NDVI time-series variables,
the wide confusion of forest and grassland observed in Figures 6(b) and (c) was greatly
reduced, and forest and grassland were distinctly delineated. In addition, several areas were
originallymisclassified as cropland that had been divided into grasslands or forest. However,
the MTS + DEM + NDVI cannot classify the roads accurately in the absence of textural
variables. Thus, Figure 6(e) shows that the MTS + DEM + TXT + NDVI that with added GLCM
textural variables (TXT) and NDVI time-series variables (NDVI) into the MTS + DEM was the
most accurate Random Forest model, and most of the areas corresponding to cropland,
forest, grassland, and residential land had been correctly classified. Water and unused land
were still in good agreement with testing data.

As illustrated in Section 4.3, the MTS + DEM + TXT + NDVI model using MTS variables,
topographic variables (DEM), and GLCM textural variables (TXT) and along with NDVI
time-series variables (NDVI) had the highest classification accuracy.

In Table 6, the user’s accuracy for different classes was higher than 80%, and the
cropland and the unused land had a higher accuracy (>90%) than other land-cover
classes, which were also higher than the overall accuracy (89%). Compared to the
accuracy of the cropland, the user’s accuracy of the forest and grassland was lower,
with values equal to 82% and 81%. The confusion of grassland, forest, and cropland is
the main cause of their accuracy errors. Since the grasslands were usually associated
with forests, especially in the low foothill area, it was more difficult to accurately
distinguish between grasslands and forests. Therefore, the accuracy of grasslands and
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forests in the MTS + DEM + TXT + NDVI model was acceptable because the grassland
was confused with the forest less than 8% for the time. In addition, water and testing
data showed good consistency, with a user’s accuracy of 88%. The residential land was
accurate in terms of the user and producer (82% and 85%, respectively), which was
confused with cropland by approximately 11%.

Table 7 shows McNemar test results with the number of pixels correctly or wrongly
classified by the MTS + DEM, the MTS + DEM + TXT, the MTS + DEM + NDVI, and the
MTS + DEM + TXT + NDVI classification models. The symbol, f11, denotes the number of
cases wrongly classified by both maps while f22 denotes the number of cases correctly
classified by both maps, while f12 and f21 are the cases that are correctly classified by one

Figure 6. Comparison of different classification results.

Table 6. Comparison of accuracies of different classes.
Ground truth (pixels)

Classification Cropland Forest Grassland Water
Residential

land
Unused
land Total

User’s accuracy
(%)

Cropland 365 6 4 3 15 1 394 92.6
Forest 5 48 5 0 0 0 58 82.8
Grassland 4 3 30 0 0 0 37 81.1
Water 2 0 0 16 0 0 18 88.9
Residential land 13 2 2 3 92 0 112 82.1
Unused land 1 0 0 0 0 5 6 83.3
Total 390 59 41 22 107 6 625
Producer’s accuracy (%) 93.6 81.4 73.2 72.7 86.0 83.3

Overall accuracy (%) = 88.9; quantity disagreement (%) = 1.5; allocation disagreement (%) = 9.6.
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classifier but wrongly classified by the other. The table indicates the classifiers agree on
f22 and f11 cases but disagree on f12 and f21 cases. The McNemar test clearly shows
significant improvement of the MTS + DEM classification model over MTS + DEM, the
MTS + DEM + TXT, the MTS + DEM + NDVI classifications models (Table 7).

4.5. Effect of reduction in the training data

It was a time-consuming and laborious task to acquire large-scale training data to train
the RF classifier in the classification of complex regions with a great many categories. A
large number of studies have shown that the number and area of training data samples
were as large as possible to better contain variable conditions in each category (Breiman
2001). However, if the training data were not representative, then the accuracy could be
reduced (Ghimire, Rogan, and Miller 2010). Thus, it was necessary to design a scheme to
select training a sample that was feasible both in time and economic terms and could
also achieve acceptable accuracy (Rogan et al. 2008).

In Table 8, the Random Forest classifier had a low sensitivity to the reduction in
training data size. The impact of the reduction of training data size on the Random
Forest performance was evaluated in terms of overall accuracy in the classification
results of the RF model. The training data size was changed by 5% increments and
the training data were reduced from 5% to 70%, while the overall classification accuracy
decreased by less than 5%. Then, from the threshold equal to 70%, the accuracy was
reduced more abruptly to achieve an overall accuracy equal to approximately 60%,
when the training data had been reduced by 95%.

The results show that the classification accuracy of the Random Forest classifier
decreased with the reduction in training data set size, but not in a linear pattern. As

Table 7. McNemar test showing the improvement of the MTS + DEM + TXT + NDVI classification
over the MTS + DEM, the MTS + DEM+ TXT, the MTS + DEM+ NDVI classifications models.
Classification 1 Classification 2 f11 f12 f21 f22 Chi-square (χ²) p-Value

MTS + DEM + TXT + NDVI MTS + DEM 60 15 103 447 64.5 <0.001
MTS + DEM + TXT + NDVI MTS + DEM + TXT 56 23 81 465 32.3 <0.001
MTS + DEM + TXT + NDVI MTS + DEM + NDVI 48 25 64 488 17.1 <0.001

f11: Number of cases with wrong classification in both maps; classification 1 and classification 2.
f12: Denotes number of cases that are wrongly classified by classification 1 but correctly classified by classification 2.
f21: Number of cases that are correctly classified by classification 1 but wrongly classified by classification 2.
f22: Number of cases with correct classification in both maps.

Table 8. Impact of training data size reduction in the classification accuracy.
Reduction (%) Overall accuracy (%) Reduction (%) Overall accuracy (%)

0 88.96 50 86.54
5 88.80 55 85.69
10 88.89 60 86.10
15 88.63 65 85.71
20 88.18 70 85.03
25 88.42 75 81.52
30 87.96 80 76.70
35 87.73 85 71.36
40 87.21 90 69.82
45 87.69 95 61.30
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the overall accuracy was decreased abruptly after reaching a threshold of 70% in this
study, we could draw a conclusion that a multivariate Random Forest classifier did not
have too much sensitivity to the reduction of training data.

5. Conclusions

The objective of this study was to evaluate the addition of both time-series NDVI and
the GLCM textural variables using Random Forest for land-cover mapping in a
complex farming region of Central Shandong. Furthermore, we determined the
best choice from various sources of multi-temporal remotely sensed and ancillary
data to accurately identify the land-cover map. By incorporating multi-temporal data
and auxiliary variables, including MTS variables, topographic variables (DEM), GLCM
textural variables (TXT), and NDVI time-series variables (NDVI), the Random Forest
model performed well in diverse land-cover classes. We achieved the goal by testing
the classification results of models from four data sets and discovered the key
variables that contributed most to the classification, including the NDVI, NIR, and
MIR bands, greenness and brightness, mean and contrast, elevation and slope. The
specific targets of the research were to evaluate the importance of variables through
and the OOB error and the Gini index. The results of different classifications and the
effect of the reduction of training data set size on the Random Forest performance
were evaluated in terms of testing data accuracy.

The over-training was not a problem in the Random Forest model because of the
Strong Law of Large Numbers, and the number of trees (k) and predictive variables (n)
were two significant parameters it needed to set. The number of trees is proportional to
the accuracy of the Random Forest until the number is 100 and the generalization error
converges to approximately 10%. Once the error reaches the convergence, the accuracy
of the RF model is no longer affected by the number of variables, thus the Random
Forest model hardly requires guidance.

In addition, the RF could evaluate the importance of variables for the different land-
cover classifications through the OOB error and the Gini index. This assessment was
significant for the classifications of complex regions, because a large amount of training
data sources with varying variables were needed in farming and mountainous areas. The
assessment indicated how the summer NDVI became the most important variable in the
Random Forest model in the central Shandong, followed by the summer NIR band and
the elevation. In addition, the GLCM textural variables, brightness, and greenness
derived from the Kauth–Thomas transform were also of great importance in the land-
cover classification.

While the Random Forest model used MTS variables, topographic variables (DEM),
GLCM textural variables (TXT), and NDVI time-series variables (NDVI), the results show
that it had higher classification accuracy than the classifier without added textural and
NDVI time-series variables. Meanwhile, a high user’s accuracy for cropland, forest, and
grassland was obtained, with values equal to 92%, 82%, and 81%, which verified the
feasibility of an effective solution for the confusion of cropland, forest, and grassland in
complex farming areas.

In the RF model, the reduction in training data led to a relative increase in overall
classification error, but not in a linear pattern. The reduction of the size of the training
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data had no significant effect on the accuracy of the classifier prior to the threshold of
70%, which represented that a multivariate Random Forest classifier is not sensitive to
the reduction in the training set. Some of the reasons for the situation might be because
there were some classes of redundant training data, although the training data were
decreased.
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