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ABSTRACT
Individual mobility prediction forecasts traveling activities of an individual traveler, and has 
wide applications in location-based services, public health, and transportation planning. 
Whereas, it remains challenging due to the complexity and uncertainty of human mobility. 
Existing methods mainly consider spatiotemporal contexts in current traveling, but overlook 
those in historical trips, as well as relationships between traversed road intersections. These 
issues hinder the model from effectively capturing complex mobility patterns. To fill this gap, 
we propose a novel method that incorporates current traveling features and historical activity 
chain to predict the coordinates of traveling destination. Specifically, (1) we construct current 
traveling features by extracting real-time moving states, and represent spatiotemporal correla-
tions between traversed road intersections using word embedding; (2) we learn travel inten-
tions as a probability vector for each historical trip, and combine it with spatiotemporal 
features to construct historical activity chain; (3) we construct an individual mobility prediction 
model using Long Short-Term Memory (LSTM) network and spatiotemporal scoring mechan-
ism, to capture short-term and long-term dependencies in current trip and historical activity 
chain, respectively. Experiments on 21,890 trajectories over the whole Year 2019 of 20 repre-
sentatives selected from 1916 private car travelers in Shenzhen City, reveal the effectiveness of 
our model. It outperforms four baselines, Random Forest (RF), Distant Neighboring 
Dependencies (DND), Location Semantics and Location Importance (LSI)-LSTM, as well as 
Intersection Transfer Preference and Current Movement Mode (ITP-CMM), by approximately 
10%-15% improvement in accuracy. In addition, we further explore the impact of historical 
activity chain length, and destination visiting frequency on prediction, as well as the relation-
ship between predictability and eight mobility pattern features. This study benefits potential 
applications such as personalized location-based service recommendations and targeted 
advertising, and also provides implications for understanding human mobility.
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1. Introduction

Individual mobility prediction has been extensively 
used in social science, geography, and transportation 
research (Li et al. 2019; Pappalardo et al. 2023). With 
the advancements in satellite navigation and sensor 
technologies, it has become possible to precisely cap-
ture locations of a traveler (Park et al. 2020), providing 
abundant and high-resolution data for studying indi-
vidual mobility behaviors (Sun and Kim 2021). 
Exploring the individual mobility behaviors can reveal 
the spatiotemporal regularities of human activities at 
a micro-level (Liu, et al. 2025; Lucchini et al. 2021), 
identify the migration patterns of population (Sîrbu 
et al. 2021), and reflect the spatial disparities of differ-
ent groups in urban areas (Testi et al. 2024). Among 

them, individual mobility prediction has wide applica-
tions, such as autonomous driving (Mozaffari et al.  
2022), location recommendation (Arain et al. 2017), 
public safety (Luca et al. 2021), and route planning 
(Liu, Jia, et al. 2019a). For example, accurate mobility 
prediction can enhance the success conversion rate of 
business service recommendations (Feng et al. 2022), 
and is crucial for location-based services (LBS); it can 
also facilitate monitoring and early detection of 
anomalies for specific travelers, thus contributing to 
public safety (Miyazawa et al. 2020).

Due to the complexity and diversity of human mobi-
lity (Luca et al. 2021), the accurate mobility prediction 
remains challenging (Xu et al. 2024). The existing 
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methods for individual mobility prediction primarily 
focus on two aspects, location sequence prediction, 
which forecasts a sequence of locations an individual is 
going to visit (Li et al. 2020) and real-time destination 
prediction for an ongoing trip (Gui et al. 2021). The latter 
is specifically emphasized in this study, as it provides 
coordinates of upcoming destination in constantly 
updated manner while traveling forward, thereby 
prompts the timeliness of LBS. Besides, it requires more 
comprehensive views and techniques to learning both 
broad and detailed spatiotemporal contexts in historical 
and current ongoing trips, respectively. Probability mod-
els (Jagannathan et al. 2021; Wang et al. 2021c), were 
initially employed in mobility prediction. However, they 
heavily rely on expert knowledge and are unable to fully 
leverage contextual information from the location 
sequences, thus leading to low prediction accuracy (Li 
et al. 2020). In recent years, deep learning models have 
been widely applied to mobility prediction. It shows 
promising performance and gradually emerges as the 
mainstream approach (Krishna et al. 2018). However, 
existing research primarily focuses on predicting future 
location sequences, with less attention paid to real-time 
traveling destination prediction (Ma and Zhang 2022). 
Besides, the majority of the studies focus on the spatio-
temporal features and moving states of trajectory points, 
but overlook the underlying contextual information 
within trajectories. To enhance the accuracy of real- 
time mobility prediction, both current traveling features 
and statistical features of mobility patterns are extracted, 
e.g. spatial extent and temporal rhythms of traveling 
(Xing, Wang, and Lu 2020). Frequent routes and path 
preferences in mobility patterns of individual travelers 
are also mined to improve the accuracy of mobility pre-
diction (Sevtsuk et al. 2021). Nevertheless, these methods 
primarily pay attention to the current traveling of trave-
lers, but overlook their historical trips and the location 
semantics. By incorporating historical traveling activities, 
it is potential to prompt the prediction, shedding light on 
the underlying mobility patterns of travelers (Wang et al.  
2021b). Moreover, location semantics may imply travel 
intentions, and thereby facilitate precise mobility predic-
tion (Gui et al. 2021). In conclusion, it is imperative to 
fully utilize traveling features from both current and 
historical traveling activities for real-time mobility 
prediction.

Therefore, this study incorporates spatiotemporal 
contexts from both current ongoing trip and historical 
traveling activities to enhance real-time traveling destina-
tion prediction of individual travelers. Specifically, an 
end-to-end model is proposed with a specific focus on 
private car driving scenario. It integrates the real-time 
moving states, spatiotemporal correlations of road inter-
sections in the current ongoing trip, and travel intentions 
of historical trips in the form of an activity chain to enrich 
traveling contexts. The main contributions of this work 
are as follows.

● In current traveling feature construction, besides 
extracting the real-time moving 
states (RMState), we represent the spatiotem-
poral correlations of road intersections 
(STCorrelation) as high-dimensional word vec-
tors to imply path preferences. It enables the 
model to better learn the underlying contextual 
information within current ongoing trip.

● We represent the possibilities of historical travel 
intentions (PTIntention) through Latent 
Dirichlet Allocation (LDA), in turn uncovering 
travel purposes of the traveler. Besides, the pro-
posed model captures crucial long-term spatio-
temporal context from historical activity chain by 
utilizing the spatiotemporal scoring mechanism.

● This paper provides implications for understand-
ing impact factors of predictability, including the 
length of historical activity chain, destination vis-
iting frequency, and other mobility pattern fea-
tures, e.g. average travel distance, spatiotemporal 
mobility entropies.

The structure of the paper is organized as follows. 
Section 2 provides a literature review of relevant stu-
dies. Section 3 introduces the fundamental concepts 
and research objective. Section 4 illustrates the meth-
odology. Section 5 validates the effectiveness of the 
proposed method through experiments. Section 6 
explores impact factors of predictability. Finally, 
Section 7 draws the conclusion and future work.

2. Literature review

2.1. Machine learning in mobility prediction

Machine learning methods developed for mobility 
prediction can be primarily categorized into prob-
ability models and deep learning models (Yin et al.  
2022). Probability models extract features from raw 
trajectories and establish inferential relationships to 
deduce the most likely moving forward direction or 
future anticipated destination. For example, 
Bayesian model is deployed to determine the next 
probable location based on prior probabilities of 
candidate destinations (Hazelton and Najim 2024); 
Random Forest (RF) ensembles multiple decision 
trees based on trajectory features to establish 
a regression or classification model for mobility 
prediction (Díaz-Ramírez, Estrada-García, and 
Figueroa-Sayago 2023); Gaussian regression is also 
used to predict instantaneous movements by divid-
ing trajectories into Gaussian components (Wiest 
et al. 2012). Hidden Markov model (HMM) facil-
itates future location sequence prediction through 
Markov process that contains hidden parameters 
(Tang et al. 2018). Although these methods are 
straightforward and interpretable, they can only 
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predict the next trajectory point or mobility choice 
of next hop. Their accuracy is not satisfying for 
predicting future location sequences and multi-hop 
scenarios (Luca et al. 2021). In general, probability 
models are ideal or oversimplified in structure, and 
they cannot autonomously learn dependencies from 
long-term sequential trajectories (Gui et al. 2021). 
These issues hinder their prediction accuracies.

Deep learning gradually becomes dominant approach 
for mobility prediction (Kothari, Kreiss, and Alahi 2021). 
These techniques utilize neural network structures to 
learn spatiotemporal dependencies in trajectory data, 
and achieve end-to-end mobility prediction (Elman  
1991). Long Short-Term Memory Network (LSTM) is 
a variant of Recurrent Neural Network (RNN). It is 
extensively adopted in mobility prediction as it can 
learn long-term dependencies hidden in trajectory data 
(Hochreiter and Schmidhuber 1997). For examples, 
inferring the future movements of pedestrians can pre-
vent accidents in densely populated scenes (Alahi et al.  
2016; Ma et al. 2019); A pooling-based LSTM model 
forecasts future trajectories of surrounding vehicles to 
support autonomous driving (Deo and Trivedi 2018). 
However, these studies are limited to predicting short- 
term movements within a few seconds. To predict travel-
ing activities on a broader temporal scale, spatial and 
temporal prediction tasks are integrated using an 
extended model structure with two LSTM (Zhou et al.  
2021). It facilitates multi-hop location prediction but 
underutilizes key spatiotemporal contexts in the location 
sequence, e.g. historical origins and destinations (ODs) 
that are highly correlated to the target locations to be 
predicted. To further improve prediction of long-term 
OD sequence, a hierarchical temporal attention mechan-
ism is incorporated with a multi-layer LSTM encoder- 
decoder model (Li et al. 2020), enabling the prediction in 
the upcoming day or week. Nevertheless, existing meth-
ods mainly focus on predicting the next location or future 
location sequences, with limited exploration of real-time 
destination prediction (Ma and Zhang 2022). LSI-LSTM 
is proposed to predict the final destination of an ongoing 
trip (Gui et al. 2021). By integrating location semantics 
and importance, it enhances prediction accuracy com-
pared to three baselines. However, this approach only 
determines the location importance of trajectory points, 
overlooking other trajectory features in traveling beha-
vior. Actually, trajectory feature modeling can also facil-
itate mobility prediction, as it provides the model with 
moving states, transfer preferences, and travel intentions 
of a traveler. Hence, attention should be paid to how to 
effectively construct trajectory features.

2.2. Feature modeling in mobility prediction

The study of trajectory feature modeling mainly 
focuses on two aspects, i.e. spatiotemporal features 
and semantics correlated to trajectory points. 

Regarding spatial feature modeling, grid cells are com-
monly utilized to represent geographical locations 
(Forghani, Karimipour, and Claramunt 2020), espe-
cially for trajectories generated by Call Detail Records 
(CDRs) and check-ins of social media. The spatial 
features are represented by indexes of grid cells 
where the staying points are located (Li et al. 2020). 
This method is concise, yet it confines the mobility 
prediction to a classification task, thus its prediction 
accuracy is restricted by the scale of grid cells. 
Generally speaking, trajectory points recorded by 
GPS have high positioning accuracy. So, their coordi-
nates can be directly encoded as spatial features, 
thereby enhancing prediction accuracy through 
regression model. Given that travelers in urban areas 
typically move along roads, trajectories are organized 
into the structure of transportation networks to better 
learn spatiotemporal context in trajectory segments 
(Wang et al. 2021a; Yu et al. 2019).

Besides trajectory points, modeling spatiotemporal 
contextual information within trajectory sequence can 
also enable the model to better learn movement pat-
terns. Inspired by natural language processing, 
Word2Vec is utilized to embed areas in migration 
activities (Murray et al. 2023). Similarly, the embed-
ding of check-in places is generated using Continuous 
Bag-of-Words (CBoW) to prompt downstream loca-
tion-based prediction tasks (Wan et al. 2022). Besides, 
traveling habits or so-called transfer preferences 
between adjacent road intersections are also consid-
ered in real-time mobility prediction. These beha-
vioral clues are identified for specified traveling 
activities, and thereby provide insights to promote 
prediction (Gui et al. 2024).

Beyond spatiotemporal features, semantic informa-
tion can also provide the model with transportation 
conditions, urban functionality along the route, and 
the purpose of a trip, in turn enhancing prediction 
accuracy (Yao et al. 2023). For example, trajectory 
segments are assigned with moving states (e.g. stops 
and moves) (Bonavita, Guidotti, and Nanni 2021), to 
enrich its semantics for downstream prediction tasks. 
However, such a feature is oversimplified and can only 
provide limited contextual information. Besides, 
multi-hop locations are predicted based on geotags 
of check-in data and regions of interest (ROIs) 
(Chen et al. 2019). However, check-in behavior of 
travelers has selective tendency, e.g. travelers may 
geotag for entertainments and journeys but ignore 
daily routine activities. It leads to partial traversed 
locations missing in the predicted sequences. Besides, 
the contents of a geotagged post often have temporal 
delays, resulting in ambiguous semantic information 
(e.g. posting a hiking activity, while at home). So, 
incorporating external spatial data (Shang et al.  
2021), including geographic entities, point of interests 
(POIs), urban land use data, etc., provides a promising 
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approach for semantic enrichment (Liu, Gui, et al.  
2024). For example, incorporating semantics of geo-
graphic entities (e.g. office, road, and roof) and match 
them with trajectories of workers can reduce accidents 
on construction sites (Arslan, Cruz, and Ginhac 2019). 
However, it is constrained to trajectories within small 
areas, making it difficult to generalize to other scenar-
ios. LSI-LSTM represents urban functionality of areas 
traversed by travelers based on POIs using Term 
Frequency-Inverse Document Frequency (TF-IDF) 
(Gui et al. 2021). It enables the model to leverage 
interaction between a traveler and urban functional-
ities, yet it fails to sufficiently utilize travel intentions 
of historical traveling activities. This limitation 
impedes the model from harnessing the long-term 
spatiotemporal dependency for real-time destination 
prediction.

In summary, existing feature modeling methods 
in mobility prediction mainly focus on the spatio-
temporal features of trajectory points and the urban 
functional semantics of areas traversed by 
a traveler. However, modeling of contextual infor-
mation in trajectory and travel intentions remain 
insufficient. Therefore, this paper proposes an 
LSTM-based individual mobility prediction model 
by considering current traveling features and his-
torical activity chain. Beyond transfer preferences 
between two adjacent road intersections, 

STCorrelation reveals more general path prefer-
ences related to road intersections traversed during 
daily habitual commutes through word embedding. 
Besides, historical activity chain explicitly includes 
the origin to destination sequences of previous 
movements, makes it easier for model to capture 
long-term traveling contexts.

3. Preliminaries

In this section, we introduce the fundamental con-
cepts, including trajectory point sequence, sub- 
trajectory, current traveling features and historical 
activity chain, as well as the research objective of 
traveling destination prediction, as illustrated in 
Figure 1.

Definition 1 Trajectory point sequence. Raw trajec-
tory point sequence is a series of points collected by 
positioning devices from the origin (the starting point 
of a trip) to traveling destination. In this paper, we only 
retain intermediate trajectory points located at road inter-
sections, as road network restricts traveling paths of 
vehicles and implies their future directions. So, trajectory 
is denoted as Tr1:L ¼ origin; rpi; destinationf g

L
i¼1, where 

origin ¼ lngO; latO; timeOh i and 
destination ¼ lngD; latD; timeDh i are the starting and 
terminal points of Tr1:L, respectively. L is the total 

Figure 1. Fundamental concepts and research objective for traveling destination prediction.
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numbers of retained point in a trajectory. Each retained 
point at a road intersection rpi ¼ lngi; lati; timeih i is 
a snapshot of geographic location (latitude and longitude 
coordinates) at timei, where 
time1 < . . . < timei < . . . < timeL.

Definition 2 Sub-trajectory. For a completed trajec-
tory Tr1:L, its sub-trajectory Tr1:s is defined as an unfin-
ished trajectory segment. It starts at the origin and ends at 
an intermediate road intersection rps. 
Tr1:s ¼ origin; rp1; rp2; . . . ; rpsh i; 1< . . . < s< . . . < L, 
where s is the number of traversed intersections, and it 
indicates the completeness of Tr1:s. Based on the defini-
tion of a sub-trajectory, the set of sub-trajectories is 
denoted as ¼ tr1:swf g

jj
w¼1, where jj and w are the total 

number and index of sub-trajectories, respectively.

Definition 3 Current traveling features. It refers to 
properties of all traversed trajectory points in a sub- 
trajectory of current ongoing trip, and encompass two 
parts. The first part is the moving states (e.g. speed, turn-
ing angle) at each traversed intersection rpj, as well 
as day-of-week and time-of-day. The second part, spatio-
temporal correlations, depict the contextual relationships 
between intersections along the trajectory in the form of 
embedding. It represents path preferences of an indivi-
dual traveler, as illustrates in Figure 16.

Definition 4 Historical activity chain. Historical activ-
ities refer to past trips that occurred before the current 
ongoing trip. If only focusing on the origin (the starting 
point in Tr1:L) and destination of past trips and without 
considering the intermediate trajectory points, the histor-
ical activities can be represented as a chain: 
Chainhistorical ¼ lngT� h; latT� h; timeT� h; intentT� hh i; . . . ;f

lngT� 1; latT� 1; timeT� 1; intentT� 1h ig, where T is the 
index of current ongoing trip, and h denotes the number 
of previous trips to look back on. Specifically, 
(lngT� h; latT� hÞ denotes the origin of the (T � h)-th 
trips, also indicating the destination of the (T � h � 1)- 
th trips. intentT� h is travel intention of the (T � h)-th 
previous trips.

Definition 5 Traveling destination prediction. Given 
an unfinished sub-trajectory Tr1:s, mobility prediction 
aims to predict destination of the current ongoing trip 
in the form of latitude and longitude. It can be denoted as 

argmin lngpred � lngreal
� �2

þ latpred � latreal
� �2

� �
, 

where lngpred; latpred
� �

and lngreal; latrealð Þ are the coordi-
nates of predicted and real destination, respectively. To 
help the model better learn mobility patterns, current 
traveling features of each point in Trs are extracted to 
enrich the short-term spatiotemporal contexts. While, 
historical activities are structured as a chain to provide 
the model with a broader horizon.

4. Methodology

As illustrated in Figure 2, the framework of the pro-
posed method includes three main parts. (1) Current 
traveling feature extraction: to acquire the current 
movement mode, STCorrelation and RMState in cur-
rent ongoing trip are extracted. (2) Historical activity 
chain construction: to capture long-term spatiotem-
poral dependencies, we learn PTIntention (e.g. go 
home, to work, leisure) and spatiotemporal features 
(ST) for each historical traveling activity (correspond-
ing to a completed trajectory with its origin and desti-
nation), and then concatenate them together for 
a series of consecutive historical traveling activities as 
a chain. (3) Model training and mobility prediction: 
the constructed destination prediction model 
leverages current traveling features and historical 
activity chain to output the location of the predicted 
destination. The working mechanisms of the three 
parts are detailed in the following subsections.

4.1. Current traveling feature extraction

The workflow of current traveling feature extraction 
contains three steps, as shown in Figure 3. First, raw 
trajectories are matched with road network, and only 
these trajectory points located at road intersections are 
retained. This process simplifies and shapes trajectory 
data according to the spatial structure of road net-
work. Second, RMState (e.g. coordinates, timestamp, 
and travel distance) of the retained trajectory points in 
the current ongoing trip are extracted and concate-
nated. These features can indicate how a traveler 
moves forward at each road intersection, such as turn-
ing left and reducing speed, thereby implying potential 
destination choices. Third, STCorrelation is learned 
using word embedding and compressed with dimen-
sion reduction. Incorporating STCorrelation can 
enhance mobility prediction by providing contextual 
information of current ongoing trip.

4.1.1. Real-time moving states
The RMState consists of location, temporal, and other 
features. Location features include the longitude and 
latitude coordinates for each trajectory point at road 
intersections. Temporal features depict the departure 
time of current ongoing trip and timestamp of each 
trajectory point, and are modeled at two granularities. 
The day-of-week is represented as an integer from 0 
for Sunday to 6 for Saturday; while the time-of-day is 
represented as an integer from 0 to 47 by dividing 
a day is into 48 time slots, where each slot being half 
an hour long. However, such a representation over-
looks the continuity of time. For example, Saturday 
and Sunday are temporal adjacent, but the representa-
tions exhibit a noticeable difference (differ by 6), mak-
ing it difficult for the model to learn the temporal 
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dependencies between them. To address this issue, we 
encode the two temporal features using continuous 
Sine and Cosine functions by exploiting their cyclic 
characteristic (Gui et al. 2024). The cyclic encoding is 
shown in Equation (1). 

Other features include average speed of the previous 
road segment, travel distance, turning angle, time 
duration, and acceleration at each road intersection. 
The travel distance disrp

i of trajectory point rpi located 
at the i-th road intersection traversed in a trip is 
defined as the cumulative road network distance 
from the origin to rpi. Since the speeds of rpi are 
transient, the average speed of all trajectory points 
on the previous road segment, speedrp

i , is used to 
depict how fast a traveler moves along on a certain 
road segment. The turning angle anglerp

i at rpi reflects 
the variation in direction of movement at a road inter-
section, and indicates the areas where a traveler is 
expected to proceed. It is defined as the angle between 
the line from the previous trajectory point located at 
road intersection rpi� 1 to rpi and the line from rpi to 
the next point rpiþ1. The time duration denoted by 
timerp

i , is defined as the time period from the origin to 
rpi. It indicates the distance from the origin after 
departure, and traffic conditions along the route. The 
acceleration accerp

i is calculated based on the speed of 
adjacent raw trajectory points pk� 1 and pk of rpi, i.e. 
accerp

i ¼ Δspeed pk� 1; pkð Þ=Δtime pk� 1; pkð Þ. This 

feature quantifies speed reduction or acceleration 
behavior at a road intersection, in turn implying path 
selection (e.g. proceeding straight, turning right), and 
traffic conditions on a road intersection. To ensure the 
features have the same value range across all dimen-
sions, Z-Score normalization is utilized to rescale them 
into the interval of [−1, 1] (Fei et al. 2021).

4.1.2. Spatiotemporal correlation
If we consider the road intersections as words, then 
a trajectory can be regarded as a sentence. Similar to 
word preferences of writers in constructing sentences, 
individual travelers have path preferences and tends to 
choose specific routes when traveling to the destina-
tions. For example, a traveler may consistently traverse 
certain intersections during commuting from home to 
work, and usually turn left or right at specified inter-
sections (e.g. P4 and P11 in Figure 16, Appendix). 
While, the other may proceed straight through the 
same intersections. So, similar to the contextual rela-
tionships between words in a sentence, the implicit 
relationships between different road intersections in 
a trajectory can be captured through natural language 
processing model. To learn these relationships, we 
represent road intersections traversed by a traveler as 
high-dimensional word vectors based on Continuous 
Bag-of-Words (CBoW), i.e. a variant of Word2Vec 
techniques (Xia 2023).

The working mechanism of the model is shown in 
the right section of Figure 3. Specifically, we set 
a context window centered on the m-th road intersec-
tion, with its length C indicates the extent of context 
considered during model training. First, each road 
intersection is converted into a V-dimension vector 
by adopting One-Hot encoding, disregarding its 

Figure 2. Framework of the proposed mobility prediction method.
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latitude and longitude. Here, V is the total number of 
road intersections traversed in all trajectories by 
a traveler. For example, traveler R encounters 2435 
road intersections in all trips, each intersection cpm is 
represented as a binary vector Vm with 2435 dimen-
sions, whose value of the m-th dimension is 1, and 
other dimensions are 0. Then, by multiplying Vm with 
Whidden, a hidden layer vector Nm with N dimensions 
is obtained, and the vector Nm is computed as the 
average of all hidden layer vectors for the intersections 
within the context window C, where Whidden is the 
weight matrix of the hidden layer, scaled by V and N 
dimensions. After that, Nm is multiplied by the Woutput 

to yield a vector that aligns in dimensions with Vm, 
and finally activated by Softmax function to derive ~Vm, 
as calculated in Equation (2). Woutput is the weight 
matrix of the output layer, with dimensions of 

N � V . Through iterative training, the spatiotemporal 
correlations of road intersections traversed and 
expected ahead in current ongoing trip are repre-
sented as �Nm. 

Since the dimension of the word vectors obtained 
through CBoW is much higher than those of other 
features such as locations and timestamps, the model 
tends to neglect other features and hinder learning 
spatiotemporal contexts from them. Therefore, we 
reduce the dimensionality of word vectors using t-dis-
tributed Stochastic Neighbor Embedding (t-SNE) 
(Belkina et al. 2019). Finally, the STCorrelation and 
RMState of a road intersection are input into the 

Figure 3. Illustration of current traveling feature extraction.
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current movement mode learning module of the 
mobility prediction model.

4.2. Historical activity chain construction

To address insufficient utilization of historical travel-
ing features in mobility prediction, we construct his-
torical activity chain by incorporating ODs of 
historical trips prior to the current ongoing trip and 
their travel intentions, as illustrated in Figure 4. Travel 
intentions indicate what a traveler aims to do at 
a certain urban functional zone, and enable the 
model to leverage the interactions between the traveler 
and places from the perspective of social activity. 
Specifically, a grid-based semantic map is constructed 
based on the number of POIs for each POI category in 
each cell to integrate urban functional semantics. 
Then, to explore purposes of a trip, a possibility vector 
of travel intentions is learned based on the semantic 
map using LDA (Chauhan et al. 2021). After that, the 
historical activity chain is constructed based on the 
PTIntention, location, and temporal features to pro-
vide the model with long-term spatiotemporal depen-
dencies in historical trips, in turn enhancing the 
capability of mobility prediction.

4.2.1. Possibilities of travel intentions
We utilize PTIntention to uncover the purposes of 
traveling activities, e.g. commuting to the work-
place in the morning and returning home in the 
evening. Due to the uncertainty of daily mobility of 
travelers, LDA, a probabilistic topic modeling tech-
nique for extracting latent topics from documents, 
is adopted to model travel intentions and their 
possibilities (see pseudocode in Appendix). By 
modeling the word occurrence in a corpus 

consisting of documents, LDA reveals latent topics 
and estimates their possibility distribution within 
each document (Du et al. 2020). Accordingly, we 
learn the PTIntention based on POI data, which 
can reflect the urban functionality, in turn reveal-
ing the intention behind mobility of a traveler. 
Specifically, we map the destinations of historical 
trajectories into regular grid cells, and then calcu-
late the number of POIs in different POI category 
that fall within each cell. The distribution of var-
ious POI types in a cell can be considered similar 
to the distribution of different thematic words in 
a document. Therefore, the representations of tra-
vel intentions can be learned by LDA, 
where the q-th travel intention 
intentionq ¼ POI0; POI1; . . .h ;POIp; . . . ; POIPi, p is 
the p-th POI type, POIp is the likelihood value of 
the p-th POI type. Besides, a document may belong 
to multiple topics with varying probabilities. 
Similarly, a destination cell has more than one 
travel intentions. So, PTIntention of a destination 
cell of the j-th trip is denoted by 
PTIntentionj ¼ intention0; intention1; . . . ; intentionq;

�

. . . ; intentionQi, where q corresponds to the q-th 
travel intention. After that, the historical activity 
chain is constructed based on PTIntentionj.

4.2.2. Historical activity chain
Since the mobility pattern of a traveler has long-term 
historical regularity, the historical trips can provide 
long-term spatiotemporal context beyond current 
trajectory sequences. For example, if a traveler just 
leaves the origin, the trajectory of current traveling is 
too short for the model to capture the movement 
mode, making it difficult to infer the final destina-
tion. If the historical trips are considered, the 

Figure 4. Flow of historical activity chain construction.
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prediction capability could be prompted by broader 
spatiotemporal context. Therefore, we construct his-
torical activity chain based on ODs to sum traveling 
activities before the current ongoing trip. While 
properties of intermediate trajectory points (e.g. 
speed, turning angle) in historical trips are not 
essential for constructing historical activity chain, 
as they are too detailed for summarizing historical 
trips. So, we filter them out and only retain the ODs 
of historical trips, and integrate the corresponding 
PTIntention. Furthermore, the temporal features of 
historical trips, i.e. the time slot of day and the day 
of week (see section 3.1.1), can reveal temporal 
mobility patterns of a traveler. As the result, 
a historical activity chain consists of the ST and the 
PTIntention of historical trips, denoted as 
Chainhistorical ¼ f PTIntention1; Lng1; Lat1ð Þ;½

day � of � week1; time � of � day1ð Þ�; . . .; PTIntentionj;
�

Lngj; Latj
� �

; day � of � weekj; time � of � dayj
� �

�; . . . ;

PTIntentionT ; LngT ; LatTð Þ; day � of � weekT ; timeð½

� of � dayTÞ�, where T denotes the length of the 
historical activity chain, Lngj; Latj

� �
and 

day � of � weekj; time � of � dayj
� �

denote the 
location and temporal features of the j-th trip, 
respectively.

4.3. Model training and mobility prediction

As shown in Figure 5, the proposed model is com-
prised of three modules, i.e. current movement mode 
learning module, historical movement mode learning 
module, and destination prediction module. The cur-
rent movement mode learning module obtains the 
hidden state sequence from the input current traveling 
features. The historical movement mode learning 
module learns the historical traveling contextual infor-
mation of travelers from the constructed historical 
activity chain. In the destination prediction module, 

the hidden state sequences from the preceding two 
modules are concatenated, and the destination of cur-
rent ongoing trajectory is predicted through the resi-
dual network and fully connected layer. In the input 
features, RMState, STCorrelation, and PTIntention of 
each traveling activity are constructed as 12, 3, and 5 
dimensional vectors, respectively.

4.3.1. Current movement mode learning module
This module represents inputs as a hidden state 
sequence. It consists of two parallel stacked LSTM 
networks, a spatial scorer, and a crossover layer. 
The two parallel LSTM networks learn RMState 
and STCorrelation, respectively. They have two 
layers each as such a structure has a stronger abil-
ity to capture mobility pattern of an individual 
than single-layer LSTM (Wang 2021c). The upper 
stacked-LSTM inputs the RMState of the retained 
trajectory points (i.e. the origin and intermedia 
road intersections), and outputs a sequence 
HRTM ¼ hrtm

1 ; hrtm
2 ; . . . ; hrtm

m ; . . . ; hrtm
n

� �
, where hrtm

m 
refers to the hidden state of the m-th retained 
trajectory point. The lower stacked-LSTM pro-
cesses the coordinates and spatiotemporal correla-
tions of each retained trajectory point, and outputs 
sequence of hidden layer as 
HSTC ¼ hstc

1 ; hstc
2 ; . . . ; hstc

m ; . . . ; hstc
n

� �
, where hstc

m 
refers to the m-th hidden state in the sequence. 
Then, a new hidden state sequence HCurrent is gen-
erated by multiplying the two sequences HRTM and 
Hstc through a crossover layer to enhance critical 
spatiotemporal contexts (Yang et al. 2021). After 
that, each state in the hidden sequence HCurrent is 
scored by turning angle, travel distance, and time 
duration, respectively, in spatial scorer to measure 
its importance for prediction. Finally, all scored 
states are summed together to obtain the represen-
tation of current movement mode.

Figure 5. Framework of mobility prediction model.
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4.3.2. Historical movement mode learning module
This module comprises a bidirectional LSTM layer, 
and a temporal scorer. The LSTM layer captures the 
long-term spatiotemporal dependencies from histor-
ical activity chain, and generates a historical hidden 
state sequence, as shown in Figure 6. The inputs of 
the LSTM layer include coordinates and temporal 
features of the origins, as well as the PTIntention 
for historical trips of a traveler. Due to the regularity 
and cyclical nature of mobility patterns of travelers, 
it is essential for the model to focus more on histor-
ical traveling activities that closely align with the 
current date and time. By assigning greater weight 
to them, the temporal scorer highlights crucial long- 
term spatiotemporal context, thereby enhancing pre-
diction accuracy. Specifically, we calculate the Sine 
and Cosine differences in the day-of-week and time- 
of-day between the current trip and a historical trip, 
respectively, to measure the temporal similarity. The 
temporal scores have four dimensions, 
Scoreday� of � week

Sine , Scoreday� of � week
Cosine , Scoretime� of � day

Sine , 
and Scoretime� of � day

Cosine , denoting the reciprocal of the 
four calculated differences. Ultimately, historical 
movement mode is derived by summing all states 
in the historical hidden sequence across the four 
dimensions, respectively.

4.3.3. Destination prediction module
This module generates location of the predicted desti-
nation in the form of latitude and longitude. 
Specifically, the hidden state sequences of current 
and historical movement modes are concatenated 
and fed into a residual neural network with stacked 
fully connected residual layers. The working mechan-
ism of the residual network is shown in Equation (5). 

where ReLU is an activation function, Wr is the 
weight matrix, br is the bias, and � represents the 
element-wise summing operation on matrices. The 
output of the i-th layer depends on the input xi� 1 
and the output σr xi� 1ð Þ of the (i–1)-th layer, to 
learn the residual of the previous layer. Finally, 
a single neural element adopts a nonlinear mapping 
to output the predicted coordinates. We use the 
mean absolute error (MAE) between the target 
destination and predicted destination shown in 
Equation (6) to measure the effectiveness of the 
proposed model. 

where λ is a regularization hyper parameter, ŷi is the 
predicted destination, yi is the real destination, and n 
is the batch size, i.e. the number of trajectories input 
each batch.

5. Experiment

To validate the prediction performance, we have con-
ducted comprehensive comparison and ablation experi-
ments. The prediction accuracy of our model is 
evaluated by comparing with four baselines, including 
random forest (RF), distant neighboring dependencies 
(DND) (Qian et al. 2019), LSI-LSTM, and ITP-CMM. 
The effectiveness of current traveling feature extraction, 
and historical activity chain construction are validated 
through ablation experiments. Besides, we further 
explore their working mechanism on capturing path 
preferences and long-term temporal regularity.

Figure 6. The working mechanisms of historical movement mode learning module.
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5.1. Dataset and preprocessing

The experiments are conducted upon selected 
representative travelers in an anonymous private 
vehicle GPS trajectory dataset. The dataset was 
collected from 1916 travelers commuting within 
Shenzhen, and recorded more than 500,000 trajec-
tories from 1 January 2019 to 31 December 2019. 
Compared with the taxi trajectory data, private 
vehicle trajectories can better reflect the long-term 
individual mobility pattern. Road network data for 
the urban area of Shenzhen in 2018 from Amap 
(https://lbs.amap.com/) is employed for intersec-
tion extraction. A total of 334,831 POIs in 
the year of 2019 are used to represent 
PTIntention. They cover the administrative regions 
of Shenzhen and encompass 8 categories, i.e. din-
ing, medical facilities, residential areas, hotels, life 
services, tourist attractions, educational institu-
tions, and corporate entities.

The representative travelers are selected as follows. 
First, travelers whose traveling duration less than one 
month are excluded because they cannot provide long- 
term trajectory data. Then, the OD entropy (EOD) (Wu 
et al. 2019), average travel distance (TDavg), and ratio 
of infrequently visited locations (RIVL) for each trave-
ler is calculated, as they may influence prediction 
accuracy. Specifically, EOD measures the heterogeneity 
in the probability distribution of OD pairs. TDavg 

quantifies how long the trips of a traveler are on 
average. RIVL emphasizes the traveling tendency of 
a traveler to visit locations beyond the residential, 
workplaces and other frequently visited locations. 
Based on the three metrics, all travelers are clustered 
into 20 clusters using DBSCAN. After that, we ran-
domly select one traveler from each cluster, and then 
categorize the selected 20 travelers into four groups 
using natural breaks by ranking them in descending 
order of RIVL. The four groups, (I), (II), (III), and (IV), 
contain 2, 6, 8, and 4 travelers, respectively. From 
Figure 7 (b), we can find that the three metrics are 
correlated, yet they are not always consistent. For 
example, traveler 11, despite having a high TDavg , 
exhibits a moderate RIVL. It indicates that a long- 
distance trip may have high traveling frequency. 
Based on the four groups, we analyze how prediction 
accuracy is influenced by RIVL across groups 
(Section 5.3), and other mobility pattern features 
(Section 5.4.1 and 6.1).

Due to factors such as multipath effect and cycle 
slip of satellite signal, the raw trajectories may contain 
errors. Before experiments, data cleaning is con-
ducted. (1) Trajectory points with speeds exceeding 
120 km/h are omitted; (2) trajectories containing 
points located outside the study area are excluded; 
(3) raw trajectories with fewer than 10 points are 
disregarded. After that, we extract the raw ODs from 

each trajectory. As a traveler may park at nearby dis-
tinct locations around the same destination on differ-
ent trips, we then generate unique coordinates for raw 
ODs by clustering them using DBSCAN. The obtained 
cluster centroids and noise points correspond to the 
frequently and infrequently visited destinations, 
respectively. Finally, we match the remaining inter-
mediate trajectory points with the road network and 
retain these located at road intersections by employing 
HMM-based fast map matching (C. Yang and 
Gidófalvi 2018), as it can process trajectory data with 
vast spatial range efficiently.

To prevent the model from prematurely learning 
contexts of trajectories in the testing set while training, 
trajectories of an individual traveler are randomly 
partitioned into two parts, Ptrain and Ptest in a ratio of 
3:2. Then, sub-trajectories are generated from 
a completed trajectory by incrementing 3% of trajec-
tory points at each step. Sub-trajectories generated 
from Ptrain are totally allocated to the training set. It 
enables the model to learn spatiotemporal contexts of 
a completed trajectory. Besides, to ensure the model 
can capture traveling patterns that are absent in Ptrain, 
those generated from Ptest with completeness below 
60% are incorporated into the training set, while the 
remaining sub-trajectories are allocated to the test-
ing set.

5.2. Evaluation metrics and experimental settings

5.2.1. Evaluation metrics
In order to evaluate the prediction performance, this 
study uses mean absolute error (MAE), root mean 
square error (RMSE), and mean relative error (MRE) 
as evaluation metrics of accuracy (Ke et al. 2021). The 
calculations are shown as formula (7). 

where distotal is the total travel distance of 
a trajectory. MAE and RMSE measure the 
Euclidean distance between the predicted destina-
tion and the real destination. They are calculated 
by averaging the absolute and squared root differ-
ences between the predicted and real coordinates, 
respectively. MRE measures the error on a per-unit 
distance basis by dividing each prediction error by 
the total travel distance.

5.2.2. Experimental settings
Based on relevant studies and our experiments, we 
have set the hyperparameters as follows. The 
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dimension of the features in the hidden layer is 128. 
Adam optimization algorithm is adopted to train the 
model, and the learning rate is 0.001; the training 
epochs are 80, and the batch size is 32 (Gui et al.  
2021). The dimension of hidden layer in CBoW is 

256, and that of spatiotemporal correlations of an 
intersection is 3. For OD extraction, the eps and min_-
samples of DBSCAN clustering are set as 200 meters 
and 10 points, respectively. The resolution of grid cells 
is 1000 meters. The experiments were conducted on 

Figure 7. All OD flows in the whole Year of 2019 for the selected 20 travelers.
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a 64-bit operating system of Ubuntu 18.04, with 16 GB 
memory capacity and an Intel (R) Core (TM) i7–7700 
CPU with a clock speed of 3.60 GHz. The versions of 
CUDA, Python, and Pytorch are 11.4, 3.9.13, and 
1.13.1, respectively.

5.3. Comparison of overall prediction accuracy

To verify the performance, we have conducted 
a comparative analysis of overall prediction accuracy 
with four baselines. RF is an ensemble learning tech-
nique widely used in prediction tasks that promotes 
the decision-making capability through multiple deci-
sion trees. So, we select it as a representative possibility 
model to compare with our model. Besides, it would 
be more convincing to compare the proposed model 
with other deep learning baselines dedicated for mobi-
lity prediction. Similar to our model, DND also 
embeds road intersections as high-dimensional vec-
tors, but it overlooks moving states (e.g. travel dis-
tance, timestamp). So, we select this model to validate 
the value of current traveling feature extraction, espe-
cially real-time moving states. LSI-LSTM considers the 
urban functional semantics of trajectory points based 
on POIs, while ITP-CMM represents transfer prefer-
ences between adjacent road intersections. So, we 
compare them to assess the effectiveness of 
PTIntention and STCorrelation in our method, 
respectively.

To ensure the fairness of the comparison, the same 
preprocessing was implemented for the baselines and 
our model, i.e. data cleaning, intersection extraction, 
sub-trajectory generation, dataset partitioning. The 
prediction results of our model and baselines are 
shown in Table 1.

Table 1 illustrates that our model achieves the high-
est prediction accuracy compared to the four baselines 
in term of the mean values of the three metrics. Deep 
learning baselines outperform RF across all metrics, 
because they can capture spatiotemporal contexts 
more effectively. Among four deep learning models, 
the prediction accuracy of DND is the lowest, as it 
underutilizes moving states and long-term historical 
traveling activities; while LSI-LSTM and ITP-CMM 
exhibit much better accuracy. Because they explore 

the mobility pattern from the perspective of urban 
functionality and transfer preferences, respectively. 
Our model furtherly achieves an approximate 10% 
improvement than LSI-LSTM and ITP-CMM by 
introducing historical activity chain to leverage long- 
term spatiotemporal dependency. Besides, the MRE of 
LSI-LSTM is lower than ITP-CMM, and slightly 
higher than our model. It indicates that LSI-LSTM 
can predict destinations of long-distance trips more 
accurately than ITP-CMM. In addition, our model 
demonstrates relatively robust stability. Its standard 
deviations (SD) of the three metrics across different 
batches ranks the second and closely approaches the 
first place. This is because our model excels in predict-
ing the majority of destinations; while, for a few desti-
nations that are not visited recently, the historical 
activity chain may introduce noise and decrease accu-
racy, thus yielding an increased SD. To further inves-
tigate the variance in prediction accuracy among 
travelers, we categorize them in the abovementioned 
four groups. The prediction accuracies of the four 
deep learning models for the four groups are pre-
sented in Figure 8.

As shown in Figure 8, our model excels in travelers 
with high RIVL, but performs modestly for travelers 
with low RIVL. Compared to three deep learning base-
lines, our model surpasses them for travelers in groups 
(I), (II), and (III), especially in MAE and RMSE. ITP- 
CMM achieves accuracy close to our model, ranking 
the second. It further emphasizes the value of transfer 
preferences and path preferences. While, prediction 
accuracy of our model is slightly lower than that of 
LSI-LSTM for group (IV). It may be because irrelevant 
trips in long-term spatiotemporal context may inter-
vene the model to learn mobility patterns of travelers 
with low RIVL, as their mobility patterns have higher 
regularity. Besides, from group (I) to (IV), MAE and 
RMSE are gradually reduced. It indicates that a high 
level of RIVL leads to low predictability. However, the 
MRE in the four groups is relatively similar. It is 
attributed to low accuracies of partial short-distance 
trips, and their impacts on average accuracy are mag-
nified on a per unit distance basis. This indicates that 
the effectiveness of mobility pattern learning is related 
to frequency and regularity of trips, rather than tightly 

Table 1. Comparison of mobility prediction accuracy.

Methods

MAE (m) RMSE (m) MRE (%)

MEAN SD MEAN SD MEAN SD

RF 8399.702 6904.124 11053.489 17553.287 411.57% 1993.09%
DND 2726.059 1119.194 4193.545 4139.467 111.51% 185.36%
LSI-LSTM 1224.925 856.028 2188.102 2617.243 20.99% 23.14%
ITP-CMM 867.609 360.435 1637.270 1740.398 41.22% 79.46%
Our model 760.362 439.973 1438.317 1786.882 20.86% 26.76%
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coupled with travel distance. In conclusion, our model 
exhibits accuracy improvements for different groups 
compared to baselines, and the diverse complexity of 
mobility patterns among groups leads to variations in 
capturing spatiotemporal context, consequently yield-
ing variances in prediction accuracy.

5.4. Effectiveness of constructed features

Ablation experiments are conducted to validate the 
effectiveness of constructed features. We compare pre-
diction accuracy between a model only using coordi-
nates and models using current traveling features or 
historical activity chain independently. Same para-
meter configurations are employed to ensure the fair-
ness of comparison. In addition, we explore the path 
preferences revealed by spatiotemporal correlation 
between road intersections in the current ongoing 
trip, and analyze the working mechanism of historical 
activity chain in improving prediction accuracy.

5.4.1. Effectiveness of current traveling features
To validate the effectiveness of current traveling fea-
tures, including RMState and STCorrelation, we 

designed three feature combination schemes: (1) only 
using coordinate (COOR), (2) integrating the RMState 
with COOR, and (3) further integrating the 
STCorrelation. The results are shown in Table 2 and 
Figure 9.

As shown in Table 2, schemes (2) &; (3) yield 
enhanced prediction accuracy compared to COOR. It 
indicates the effectiveness of both RMState and 
STCorrelation. RMState depicts moving states of 
each trajectory point located at road intersection, so 
it enables the model to capture the mobility patterns of 
a traveler from the origin to the intermediate intersec-
tion, thus enhancing its prediction capability. 
Nonetheless, RMState of each trajectory point is iso-
lated. Therefore, the model can only capture spatio-
temporal context using the LSTM structure. The 
inclusion of STCorrelation reduces the MRE more 
dramatically than RMState. That is because 
STCorrelation provides the model with contexts by 
inferring the potential path preferences. It enables 
the model to guess the upcoming road intersections 
to be traversed. Furthermore, as RIVL decreases 
(Figure 9), prediction accuracies of the travelers gra-
dually improve, which confirms that RIVL has 

Figure 8. Comparison of prediction accuracy for the four traveler groups. The pentagon denotes the average evaluation metrics for 
a group of travelers, and the line depicts the median value of them.
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a negative correlation with predictability to a certain 
extent. However, RIVL is not the dominant factor for 
predictability. For instance, travelers 05, and 10 exhi-
bit higher RIVL compared to travelers 06 and 11, 
respectively, yet achieve lower prediction errors. This 
could be due to smaller TDavg or EOD of travelers 05 
and 10 making their mobility patterns easier to learn.

We further explore the path preferences revealed by 
STCorrelation and elucidate its mechanisms in 
improving the prediction accuracy. To investigate 
this phenomenon, we visualize the road intersections 
in four selected trajectories of traveler 05, and label 
partial intersections that were frequently traversed by 
at least two of the four trajectories in Figure 10 (a), i.e. 
frequent sets of road intersections. Then, we compute 
the similarity between word vectors of the labeled 
intersections in Figure 10 (b).

Figure 10 (a) illustrates three frequent sets I, II, and 
III. For examples, road intersections 910, 911, 912, 
913, 914, 915, 916, 228, and 229 traversed by both 
trajectories 3 and 4 belong to frequent set III. From 
the similarity matrix in Figure 10 (b), we can find that 
road intersections in the same frequent sets have rela-
tively high similarities, e.g. 485, 496 and other inter-
sections in frequent set I. By contrast, the similarities 
between road intersections from different frequent 
sets are quite low (shown in red color), e.g. the inter-
sections 484 in I and 906 in II, as well as intersections 
902 in II and 910 in III. This is because the traveler 
does not pass through these intersections simulta-
neously on the daily route, making their word embed-
dings different a lot. This observation indicates that 
STCorrelation can effectively capture the path prefer-
ences and provide the model with spatiotemporal con-
texts corresponding to daily routine traveling habits to 
facilitate prediction.

5.4.2. Effectiveness of historical activity chain
To verify the effectiveness of historical activity 
chain, we conducted three feature combination 
schemes: (1) only using latitude and longitude in 
current trip as inputs (i.e. COOR, the same as 
scheme (1) in the previous section), (2) incorporat-
ing ST in historical activity chain with COOR, i.e. 
coordinates and timestamps of the origins, and (3) 
further introducing PTIntention on the basis of 
scheme (2). The results are shown in Table 3 and 
Figure 11.

Table 3 demonstrates the effectiveness of ST and 
PTIntention, the highest accuracy is achieved when 
both of them are integrated. MAE and RMSE signifi-
cantly improved for scheme (2) compared to (1). That is 
because ST includes coordinates and timestamps in 
historical trips. These contexts can imply transitions 
between different locations in historical trips and depict 
mobility patterns on a broader spatiotemporal scale. It 
allows the model to capture long-term spatiotemporal 
dependencies, leading to higher prediction accuracy. 
However, the enhancement of MRE is limited. It may 
be due to ST overlooking the purposes of historical trips. 
After incorporating PTIntention, MAE and RMSE are 
further reduced, and MRE exhibits a greater decrease. 
The reason is that PTIntention implies the interaction 
between a traveler and urban functional zones, and 
inspires the model to learn long-term spatiotemporal 
context beyond coordinates and timestamps.

The effectiveness of incorporating ST or 
PTIntention varies among different travelers, as 
demonstrated by the changes of the three metrics in 
Figure 11. Specifically, MAE for all the 20 travelers in 
scheme (3) shows improvement compared to COOR. 
Among them, nine travelers show decreased MAE 
when both features are integrated, while five and six 
of them achieve the highest accuracy by solely incor-
porating ST and PTIntention, respectively. This could 
be attributed to historical activity chain introducing 
irrelevant information that influences predictions for 
travelers with high traveling entropies. For seven out 
of the 20 travelers (i.e. 01, 06, 07, 09, 10, 11, 15), both 
MAE and RMSE exhibit significant improvements. It 
highlights that historical activity chain can enhance 
prediction accuracy for travelers with high or moder-
ate levels of RIVL. In addition, the MRE for half of the 
20 travelers (e.g. 06, 09) decrease by over 5% after 
including PTIntention, highlighting its effectiveness 
in enhancing prediction accuracy.

To explain why historical activity chain 
improves prediction accuracy, we further explore 
the working mechanism of temporal scorer and 
mobility patterns revealed by PTIntention. We 
visualize the historical activity chain spanning six 
days before a current trip by displaying each his-
torical trip in the form of an OD arc, and depict 
PTIntention and departure time associated with 
each trip to explore temporal regularity in mobility 
patterns, as shown in Figure 12. In addition, the 

Table 2. Overall effectiveness of current traveling features.

Schemes

MAE (m) RMSE (m) MRE (%)

MEAN SD MEAN SD MEAN SD

COOR 1398.025 642.919 2684.803 2754.096 45.61% 69.96%
COOR + RMState 1032.979 460.046 1887.246 2124.168 41.72% 66.00%
COOR + RMState + 

STCorrelation
879.745 457.747 1722.694 2044.872 31.54% 51.35%

GEO-SPATIAL INFORMATION SCIENCE 15



values of temporal scores for each trip are repre-
sented by colors.

As the OD arcs shown in Figure 12 (a), traveler 
05 has previously visited the destination to be pre-
dicted in trips 15, 18, 20, 24, 28, 30 and 32. They 
provide the model with prior knowledge to extract 
relevant hidden state features from these ODs. 
However, not all of them are assigned with higher 
temporal scores in Figure 12 (b), as departure times 

of day or days of week for trips 15, 18, 20, 28, 30 do not 
align closely with those of the current ongoing trip. 
While, trips 24 and 32 occurred on the same date or in 
the same time slot as the current ongoing trip, so they 
are more critical for real-time destination prediction 
compared to others. Besides, PTIntention learned 
through LDA exhibit temporal regularity, where the 
same departure times are linked to specific travel 
intentions. For instances, both historical trip 17 and 

Figure 9. Effectiveness of current traveling features for each traveler. The error bars on the chart denote the SD of the three 
metrics.
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31 occurred at night, which have values of 0.480 in the 
fifth travel intention, may be strongly associated with 
returning home; trip 22 and trip 26 occurred at noon-
time around 1 pm, both have high values in travel 
intention 1; The trips 19 and 33 happening in early 
afternoon between 1:30 pm and 2 pm, also have simi-
lar PTIntention, higher in intentions 2 and 4 while 
lower in others.

In conclusion, we can derive the following findings. 
Overall, our feature design is effective, as it can enhance 
the prediction accuracy. Tables 2 and 3 reveal varying 
degrees of prediction accuracy improvements when cur-
rent traveling features or historical activity chain are 
included. Specifically, the inclusion of current traveling 
features leads to a substantial improvement of over 20%. 
By contrast, the contribution of the historical activity 
chain to improving prediction accuracy is relatively lim-
ited. The probable reason is that trajectory points in the 
current ongoing trip provide the model with more real- 
time and high-resolution spatiotemporal contexts than 

historical activity chain. Moreover, the transitions 
between ODs introduce irrelevant information, as dis-
cussed in Section 5.4.2. In terms of the potential effica-
cies, the STCorrelation in current traveling features 
would enable us to personalize route planning for in- 
car map users, as it implies path preferences of individual 
travelers. Meanwhile, the historical activity chain would 
foster location-based amenity recommendation. For 
example, different travelers may explore various types 
of places, and visit the same place with differing frequen-
cies. Based on historical activity chain, map service pro-
viders can recommend places of interest tailored to 
distinct mobility patterns of each individual user.

6. Further discussion

6.1. Impact of historical activity chain length on 
prediction accuracy

The length of the historical activity chain input into 
the model can affect the effectiveness of mobility 

Figure 10. Illustration of word embedding of road intersections. (a) depicts four trajectories with different colors. (b) demonstrates 
the cosine similarity between the selected road intersections, where a greener color indicates greater similarity in their word 
vectors.
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Table 3. Overall effectiveness of historical activity chain.

Schemes

MAE (m) RMSE (m) MRE (%)

MEAN SD MEAN SD MEAN SD

COOR 1398.025 642.919 2684.803 2754.096 45.61% 69.96%
COOR + ST 1221.113 541.159 2364.756 2440.096 44.59% 82.50%
COOR + ST + 

PTIntention
1164.468 530.031 2278.339 2453.924 42.10% 67.59%

Figure 11. Effectiveness of historical activity chain for each traveler. The error bars on the chart denote the SD of the three metrics.
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prediction, as differences in mobility patterns exist 
among travelers. It influences the historical spatiotem-
poral context the model can capture. If the historical 
activity chain is too short, the model may fail to 
capture key spatiotemporal contexts. In contrast, if it 
is too long, it increases the training cost and intro-
duces irrelevant noise. Therefore, determining the 
appropriate length of the historical activity chain is 
crucial. In this section, we set the length of the histor-
ical activity chain to 5, 10, 15, 25, 30, and 40, respec-
tively, and analyzed the prediction accuracy. The 20 
travelers are grouped using the same method as 

Section 5.3. The changes of accuracy as the length of 
the historical activity chain increases are shown in 
Figure 13.

As shown in Figure 13, the accuracy fluctuates 
with the length of historical activity chain; neither 
longer nor shorter chains always yield higher pre-
diction accuracy. According to the average accuracy 
of each group, the changes show varying trends. For 
the length of 25, the mean value of MAE for the 
group (I) reaches its maximum (1706.047 m), while 
that of group (II) is the second lowest (887.899 m) 
among different lengths, it may be attributed to 

Figure 12. Illustration of a six-day historical activity chain of the traveler 05 and the corresponding PTIntention and temporal 
scores. (a) demonstrates the two of the four temporal scores for each OD point in the chain using the color of the dots, 

Scoreday� of � week
Sine and Scoretime� of � day

Cosine . Blue to red indicates the scores of the historical ODs from low to high. (b) shows temporal 
regularity of PTIntention, and also illustrates the mechanism of temporal scores in capturing critical historical contexts.
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variations of their historical traveling rhythms. From 
RMSE, we can find that group (II) with the second 
highest RIVL, achieves higher prediction accuracy 
with shorter historical activity chain; In contrast, 
the group (III) has the second lowest RIVL, attain 
higher accuracy with longer historical activity 
chain. This could be due to only a small proportion 
of destinations for travelers in group (II) appearing 
in their historical activity chains, while travelers in 
group (III) have higher likelihood of revisiting des-
tinations of their historical trips. However, group 
(IV) does not exhibit the same pattern as group 
(III). It may be because the transitions between 
ODs of historical trips introduce irrelevant informa-
tion. Besides, RIVL is not the dominant factor influ-
encing accuracy within a group of travelers. For 

example, traveler 02 demonstrates the highest pre-
diction errors, despite having a lower RIVL compared 
to traveler 01. It could be attributed to a large spatial 
range of traveling activities and low temporal regu-
larity of traveler 02, reflecting by a larger radius of 
gyration (rg) and lower day-of-week entropy 
(Eday� of � week). In general, when the lengths range in 
[5, 15], the averages of the three metrics for the 20 
travelers reach relatively small values, MAE and 
MRE reach their smallest (i.e. [747.263 m, 760.234  
m], and [20.178%, 23.375%]), and RMSE is 
the second lowest (i.e. [1388.127 m, 1407.478 m]). 
Consequently, to improve prediction accuracy, in 
practice, the historical activity chain length can be 
adjusted based on the statistical features of mobility 

Figure 13. Length of historical activity chain affects predication accuracy.
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patterns (Cai et al. 2016). In the following two sec-
tions, we further discuss the correlation between 
destination visiting frequency and prediction accu-
racy, as well as relationship between mobility pattern 
features and predictability, respectively.

6.2. Correlation between destination visiting 
frequency and prediction accuracy

Travelers tend to visit specific locations frequently, 
such as residential and workplace areas, while the 

visiting frequencies of other locations are relatively 
low. Based on the variance in visiting frequencies, all 
destinations can be divided into frequently and infre-
quently visited destinations. Figure 14 shows the pre-
diction accuracy of our model and two baselines, LSI- 
LSTM and ITP-CMM, for the two types of 
destinations.

As shown in Figure 14, our model outperforms the 
two baselines, especially for infrequently visited desti-
nations. Besides, based on Figure 14 (a,b), we can find 
that the three models all demonstrate higher accuracy 
in predicting frequently visited destinations; while the 

Figure 14. Correlation between destination visiting frequency and prediction accuracy. (a) depicts the accuracy for the frequently and 
infrequently visited destinations, respectively; the box within violin plots represents quartiles (the 25th and 75th percentiles), while the 
pentagon denotes the mean value of MAE. (b) depict the relationship between MAE and the visiting times of destinations for the 
selected four travelers. The curve in each subplot illustrates the fitted correlation between MAE and visiting times of destinations.
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accuracy is lower for infrequently visited destinations. 
That is because the accuracy of deep learning models 
highly relies on the adequacy of data. For infrequently 
visited destinations, the limited data results in low 
prediction accuracy. Nevertheless, our model demon-
strates lower discrepancies in predicting two types of 
destinations compared to the two baselines. It indi-
cates that our model can better capture mobility pat-
terns of low-frequency trajectories, in turn improving 
its stability for predicting infrequently visited 
destinations.

To further explore how the prediction accuracy of 
each destination is affected by its visiting frequency, 
we select four travelers 01, 02, 11, and 18. The results 
indicate a negative correlation between their visiting 
frequency and MAE, as shown in Figure 14 (b). We 
find that only a few destinations are visited repeatedly, 
while the majority of them have low visiting times. 
Besides, the MAE follows a skewed normal distribu-
tion, with most destinations achieving moderately 
high prediction accuracy. This reflects the capability 
of our model in capturing mobility patterns for most 
trips. In general, destinations with higher visiting fre-
quencies have better predictability. Therefore, data 
augmentation via duplicating trajectories whose desti-
nations are infrequently visited could help address 
data scarcity issues and enhance predictability. This 
technique can promote the driving experiences of 
intelligent and connected vehicles (Mozaffari et al.  
2022). When a traveler is driving to an infrequently 
visited place, our model can proactively predict the 
destination using augmented trajectories. It would 
enable the map and LBS providers to recommend 
nearby public facilities, such as parking lots, restau-
rants, and entertainments. This capability not only 
reduces the time users spend searching for nearby 
amenities, but also increases the success rates of ser-
vice recommendations. Consequently, it could yield 
a more seamless and enjoyable traveling experience.

6.3. Relationship between mobility pattern 
features and predictability

The prediction accuracy varies among travelers with 
different mobility patterns, and the relationship 
between their mobility patterns and predictability 
remains to be explored. To analyze it, we extract 
eight statistical features of mobility patterns of an 
individual traveler, including TDavg , RIVL, radius of 
gyration (rg), top N rg , and four spatiotemporal- 
related entropies. rg highlights spatial range of travel-
ing activities, and top N rg is defined by focusing only 
the N most frequently visited places to emphasize 
transitions among them (Pappalardo et al. 2015). 
Specifically, we set the N as 2, taking residential and 
workplace as two anchor points in traveling. Random 

entropy (Erand) assesses the regularity of a traveler 
when visiting each location with equal probability. If 
we consider the frequency of a traveler visiting differ-
ent locations, location entropy (Eloc) is obtained (Song 
et al. 2010). Day-of-week entropy (Eday� of � week) 
reveals variations in traveling temporal rhythms 
throughout a week. To distinguish travelers with dif-
ferent predictability, we rank them in a descending 
order according to MAE. The relationships between 
predictability and these statistical features are illu-
strated in Figure 15.

The result reveals that all these features have posi-
tive correlations with predictability in general, and the 
prediction accuracy is collectively determined by them 
rather than any single feature. Among them, TDavg 
and rg exhibit the highest correlations with predict-
ability. For example, travelers 01, 02, 03, 06, and 12 
with high values in the two features, demonstrate the 
highest MAE. These travelers occasionally venture far 
from their residential areas, and their infrequently 
long-distance trajectories pose challenges to predict-
ability. While, traveler 11 is low in all the three accu-
racy metrics despite the rg and TDavg exceeding 10. 
This could be attributed to high frequency of long- 
distance trips reducing prediction error. By contrast, 
the correlation between the Top 2 rg and predictability 
is relatively weak. Travelers 01 and 08 with low rank-
ings in Top 2 rg , have high MAE and RMSE; while 
travelers 09 and 17 who have high values on that show 
moderate predictabilities. It may be because traveling 
activities between residential and workplace have 
highest frequency of occurrence and are easy to be 
captured regardless of their distances. Meanwhile, 
the predictability of a traveler is closely related to 
spatial regularity of their mobility. For instances, tra-
velers 01, 02, and 06 exhibit greater MAE than all the 
other travelers due to their higher spatial entropies, 
including EOD, Erand, and Eloc. However, travelers 05 
and 10 whose spatial entropies are high, display top 
50% predictabilities, and the three accuracy metrics of 
traveler 01 are lower than those of traveler 02, it 
reveals that a lower Eday� of � week, rg , or TDavg may 
mitigate the impact of spatial entropies on predictabil-
ity. Moreover, a higher Eday� of � week does not necessa-
rily decrease prediction accuracy. For instance, 
travelers 15, and 18 have relatively high Eday� of � week, 
highlighting the inherent uncertainty in their daily 
traveling schedules. Nevertheless, their prediction 
accuracies are not lower than other travelers whose 
MAE below the median, i.e. 09, 14, 16, 17, 19, and 20. 
This finding emphasizes that our approach can cap-
ture irregular mobility patterns over time because of 
weak correlations between Eday� of � week and accuracy 
metrics. Therefore, capturing the temporal dependen-
cies of travelers and assigning greater weights to des-
tinations of relevant historical trips through attention 
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mechanisms may be two potential approaches to 
enhancing predictability (Guo et al. 2020; Xu et al.  
2022). Our discussion could benefit location recom-
mendation by building user profiles. For instance, 
service providers could categorize travelers into differ-
ent groups and then construct distinct user profiles 
based on their mobility pattern features. User profiles 
could empower various application scenarios, such as 

personalized location recommendations and person-
ality analysis (Liu, et al. 2025). For example, a traveler 
who often visits recreational places could receive more 
recommendations about entertainments. Similarly, 
a driver who drives aggressively, often exhibiting 
rapid acceleration and sudden braking, could receive 
safety alerts and be advised to adjust car insurance. 
Meanwhile, for those with few historical trajectories, 

Figure 15. The correlation between mobility pattern features and predictability. It depicts the relationship between eight 
statistical features and the three metrics of prediction accuracy. The purple line depicts the median value of MAE.

Figure 16. Preferences of traveling path and departure time for two individual travelers.
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data from other travelers with similar profiles could 
help mitigate the cold start issue in retail service 
recommendations (Liu, et al. 2019b).

7. Conclusions

In this paper, we propose an individual mobility pre-
diction method by considering the current traveling 
features and historical activity chain. Especially, in 
current traveling feature modeling, besides RMState, 
our method captures the path preferences of travelers 
using the spatiotemporal correlation of road intersec-
tions represented by CBoW. Meanwhile, it learns the 
long-term spatiotemporal dependencies from histori-
cal activity chain. The results of the comparative 
experiment have validated that our method outper-
forms the four baselines when applied to one-year 
individual vehicle trajectories of 20 travelers. 
Moreover, the contributions of current traveling fea-
tures and historical activity chain to enhancing pre-
diction accuracy are confirmed through ablation 
experiments. We also find that factors such as length 
of historical activity chain, and visiting frequency of 
destination have impacts on the prediction accuracy, 
whereas RIVL is not the only determinant factor. 
Further analysis reveals the relationship between 
mobility patterns and predictability. Specifically, the 
traveling spatial entropies heavily influence prediction 
accuracy. Our destination prediction method and 
aforementioned findings would enable personalized 
location-based services and targeted advertising 
strategies.

In future, this work could be extended in several 
directions. First, we can improve predictability of 
travelers with higher RIVL using data augmentation. 
For example, replicating low-frequency trajectories 
can augment samples for model training, and enables 
the model to learn such traveling activities more 
efficiently. Second, while this work focuses on desti-
nation prediction, future work could integrate other 
objectives through multi-task learning to enhance 
prediction accuracy. For instance, both the trip pur-
poses and anticipated routes may aid in accurate 
destination prediction. Meanwhile, individual mobi-
lity patterns can be disaggregated into different pro-
files, thereby leverage trajectories from similar 
profiles to facilitate individual destination prediction.
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Appendix

Figure 16 illustrates the preferences of traveling path and departure time for two individual travelers. They 
frequently visit similar places (i.e., O and D in the figure), but their departure times, traveling paths, and turning 
behaviors at intermediate road intersections differ along the way. For example, traveler A always leaves for home at 
8 PM, turning right at road intersection P4, and going straight at P11. While traveler B tends to depart before 6 
PM, then goes straight and turns left at the abovementioned two intersections, respectively. To imply their path 
preferences, the spatiotemporal correlations of road intersections traversed by each traveler are independently 
embedded as word vectors.

The pseudocode for travel intention representation is shown in Algorithm below. It utilizes Latent Dirichlet Allocation 
(LDA) to learn travel intentions as well as their possibilities in each trip.

Algorithm: LDA-based Travel Intention Representation

Input: 
- α; η: Prior parameters for the Dirichlet distribution  

- K : Number of POI categories  

- Q: Number of travel intentions  

- G: Number of grid cells  

- epochs: Number of iterations 

Output: 
- θg;q : Travel intention distribution for grid cells  

- βq;k : POI category distribution for a kind of travel intention 

//Initialize number of POIs in the g-th grid cell assigned to intention q, number of times the k-th POI category is assigned to intention q, and total number 
of POIs assigned to intention q.  

Ng;q ¼ zero g; qð Þ; Nq;k ¼ zero q; kð Þ; Nq ¼ zero qð Þ

//Main loop for updating travel intention and POI category distribution in the grid cell.  

For epoch in 1:epochs do  

For g in 1:G do  

For k in 1:K do  

//Loop for updating travel intentions.  

For q in 1:Q do  

//compute the probability of k-th POI category in intention q.  

PðqjkÞ ¼ comp prob Ng;q; Nq;k ; Nq; η
� �

//compute the probability of q-th travel intention in grid cell g.  

PðgjqÞ ¼ comp prob Ng;q; Nq;k ; Nq; α
� �

//Sample the q-th travel intention from this distribution.  

intentionq ¼ Sample K; prob ¼ PðqjkÞð Þ

//Sample the possibilities of travel intentions for the g-th grid cell.  

PTIntentiong ¼ Sample Q; prob ¼ PðgjqÞð Þ

//Update Ng;q, Nk;q, and Nq with the q-th travel intention.  

Ng;q[g][q] + = 1; Nq;k [q][k] + = 1; Nq[q] + = 1  

//Update travel intention distribution for each grid cell.  

For g in 1:G and q in 1:Q do  

θg;q g½ � q½ � ¼ Ng;q g½ � q½ � þ α
� �

= K þ Q � αð Þ

//Update POI category distribution for each travel intention.  

For q in 1:Q and k in 1:K do  

βq;k q½ � k½ � ¼ Nq;k q½ � k½ � þ η
� �

= Nq q½ � þ K � η
� �

return θg;q, βq;k
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