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ABSTRACT
Accurate traffic speed forecasting is a prerequisite for anticipating
future traffic status and increasing the resilience of intelligent
transportation systems. However, most studies ignore the involve-
ment of context information ubiquitously distributed over the
urban environment to boost speed prediction. The diversity and
complexity of context information also hinder incorporating it
into traffic forecasting. Therefore, this study proposes a multi-
modal context-based graph convolutional neural network
(MCGCN) model to fuse context data into traffic speed prediction,
including spatial and temporal contexts. The proposed model
comprises three modules, ie (a) hierarchical spatial embedding to
learn spatial representations by organizing spatial contexts from
different dimensions, (b) multivariate temporal modeling to learn
temporal representations by capturing dependencies of multivari-
ate temporal contexts and (c) attention-based multimodal fusion
to integrate traffic speed with the spatial and temporal context
representations for multi-step speed prediction. We conduct
extensive experiments in Singapore. Compared to the baseline
model (spatial-temporal graph convolutional network, STGCN),
our results demonstrate the importance of multimodal contexts
with the mean-absolute-error improvement of 0.29 km/h,
0.45 km/h and 0.89 km/h in 30-min, 60-min and 120-min speed
prediction, respectively. We also explore how different contexts
affect traffic speed forecasting, providing references for stakehold-
ers to understand the relationship between context information
and transportation systems.
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1. Introduction

In high-density cities, the rapid growth of human mobility and daily activities has
caused tremendous pressure on urban traffic, which in turn puts forward new
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requirements for transportation resilience when encountering severe traffic accidents
(Haraguchi et al. 2022). Traffic speed forecasting is a prerequisite for achieving the
resilience goal to anticipate future variations of traffic indicators (Kurth et al. 2020,
Wang et al. 2020). The forecasting information of traffic indicators also enables a more
evidence-based decision-making process in handling traffic congestion (Lana et al.
2018, Yin et al. 2022). Therefore, accurate traffic speed forecasting plays a vital role in
alleviating traffic congestion and establishing intelligent transportation systems (Lana
et al. 2018).

Human mobility occurs in situation-dependent settings that can be affected by
extensive external factors, such as land use, transportation networks and weather con-
ditions (Buchin et al. 2012). These factors belong to the scope of context information
ubiquitously distributed over the urban environment. In the big data era, lots of sen-
sors and platforms provide massive context data from various sources to boost urban
traffic and human mobility research (Li et al. 2016, Tu et al. 2020b). For example, point
of interest (POI) data from crowdsourcing depict the spatial distribution of interesting
locations with attributes to help predict the next locations (Zhao et al. 2020); weather
condition data from weather observation stations provide real-time meteorological
information to help predict traffic information under different meteorological events
(Jiang and Luo 2022). These multiple sources endow context data with multiformity in
modalities (Lahat et al. 2015). Rather than using the traditional modality division, this
study suggests dividing the data into spatial and temporal contexts to better exploit
the spatio-temporal characteristics inherent in context data. POI and weather data are
two representative examples of spatial and temporal contexts, respectively. By virtue
of the ubiquitous distribution of context information, human mobility is simultan-
eously motivated and restricted by these context data anytime and anywhere (Sharif
and Alesheikh 2017, Zhang and Raubal 2022). Hence, it is necessary to explore how to
incorporate multimodal context data into traffic speed forecasting when taking their
spatio-temporal characteristics into account.

Despite the necessity and importance of multimodal context data, two problems
are encountered when using context information to promote traffic speed forecasting,
ie (i) the difficulty of fusing multimodal context data and (ii) the challenge of incorpo-
rating the fused context representations into prediction. The first problem falls into
exploring the mechanism of fusing multimodal context data with different dimensions,
distributions and granularities (Lahat et al. 2015). Although multimodal context data
furnish multifaceted and complementary situation information, there is a lack of effect-
ive tools to fuse these context data to sense the urban environment (Liu et al. 2020).
For example, since POI and land use are distributed in urban areas with different spa-
tial dimensions, the following question is raised: how to combine POI with land use to
generate a fused representation for downstream tasks? In this situation, POI is a point-
based dataset discretely distributed around the road network, while land use is a
plane-based dataset continuously distributed over the urban space, making it chal-
lenging to fuse these two cross-dimensional datasets. A much more complicated scen-
ario would occur when fusing spatial contexts with temporal contexts due to the
involvement of the time dimension (Gao et al. 2020, Li and Zhu 2021). The second
problem focuses on finding a solution to incorporate the fused context
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representations into existing state-of-the-art models of traffic speed prediction. So far,
deep learning techniques have been widely used to improve the performance of traf-
fic forecasting (Jiang and Luo 2022, Yin et al. 2022), such as recurrent neural network
(RNN), graph neural network (GNN) and other variants. However, the exploration of
using context information to boost traffic speed forecasting is still at a preliminary
stage. A previous context-aware attempt proposed by Chen et al. (2020) focuses on
spatio-temporal relationship exploration on graph sequences and utilizes graph convo-
lutional neural networks to capture geographic-semantic-temporal contexts for traffic
flow forecasting. Although this work achieves satisfactory performance in forecasting
traffic flows, they did not explore the mechanism of incorporating external context
factors (eg POIs, land use and weather) into prediction. Therefore, investigating how
to fuse multimodal context data and incorporate them into traffic speed forecasting is
of great significance to advance context-based intelligent transportation (Wang et al.
2018, Dem�sar et al. 2021) and GeoAI research (Janowicz et al. 2020).

In this study, we handle these two problems by proposing a multimodal context-
based graph convolutional neural network (MCGCN) model to fuse multifaceted con-
text information, including spatial and temporal contexts. Then, we utilize the fused
context representations to improve traffic speed forecasting through an attention
technique. Overall, our contributions are four-fold:

� We propose a hierarchical spatial embedding module to organize spatial contexts
from various dimensions and learn spatial context representations, which can
improve prediction accuracy compared to the non-hierarchical method.

� We propose a multivariate temporal modeling module to generate representations
by capturing latent dependencies of multivariate temporal contexts. Using the gen-
erated temporal context representations to predict traffic speed outperforms the
baseline method.

� To fuse multimodal contexts, we design an attention fusion layer to integrate traffic
speed with spatial and temporal context representations for traffic speed forecast-
ing. The experiments justify the feasibility and effectiveness of the proposed
MCGCN model.

� This study reveals the significance of context information and explores how differ-
ent contexts affect traffic speed forecasting.

The remainder of this paper is organized as follows. Section 2 reviews previous
work on traffic forecasting and context-based human mobility research. In Section 3,
we introduce the proposed MCGCN model and its technical details. Data processing
and experimental results are reported in Sections 4 and 5, respectively. Finally, we
conclude the paper and offer insights on future work in Section 6.

2. Related work

2.1. Traffic forecasting and deep learning

Traffic forecasting refers to the prediction of traffic information for a certain period
using historical data, which is an important component of intelligent transportation
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systems (Lana et al. 2018, Kumar and Raubal 2021). The range of traffic information
varies based on the particular prediction task but generally encompasses some com-
monly-used indicators, such as traffic flow, traffic speed and travel time (Yin et al.
2022). The essence of predicting these traffic indicators is to infer their trend, period-
icity and dependency from a spatio-temporal perspective across the transportation
network (Ermagun and Levinson 2018). In actual applications, traffic forecasting is of
great significance to improve the resilience of transportation systems, such as mitigat-
ing traffic congestion and providing foreseeable prediction of traffic accidents in an
emergency (Wu et al. 2018, Jiang and Luo 2022).

Many approaches have flourished to forecast short-term or long-term traffic infor-
mation in the last decades, such as statistical, machine learning and deep learning
methods (Tedjopurnomo et al. 2020, Kumar and Raubal 2021). Statistical methods
were initially developed for traffic prediction from a time-series perspective, such as
historical average, auto-regressive integrated moving average and vector autoregres-
sion (Han and Song 2003, Ermagun and Levinson 2018). However, these methods par-
ticularly suit small datasets and require data to meet certain assumptions that are
complex for time-varying traffic information (Yin et al. 2022). Another kind of method
is using machine learning models to predict traffic information through training mas-
sive historical data samples, such as random forest and support vector regression
(Cheng et al. 2017, Liu and Wu 2017). Compared to statistical methods, machine learn-
ing models can process high-dimensional data and handle the nonlinear relationship
of traffic information with better prediction performance (Li and Shahabi 2018). With
the development of deep learning, recurrent neural network (RNN) has become one of
the mainstream methods in traffic forecasting due to its ability to capture long-term
dependencies of sequential traffic data that traditional machine learning methods are
not good at capturing (Ramakrishnan and Soni 2018, Kashyap et al. 2022).
Additionally, the variants of RNN-based models, such as the long short-term memory
(LSTM) and gated recurrent unit (GRU), outperform the typical RNN models in traffic
prediction by introducing the gate mechanism (Fu et al. 2016, Liu et al. 2017).

Although the RNN-based deep learning models show great potential in time-series
prediction, they fail to model the spatial dependency of traffic prediction since the
traffic information of a road segment is also affected by its neighboring road seg-
ments (Lana et al. 2018). To handle this problem, numerous studies have made great
progress in developing models able to simultaneously capture spatial and temporal
dependencies of traffic information, such as hybrid models and graph neural network
(GNN). (Diao et al. 2019, Yin et al. 2022, Zhao et al. 2022). For example, Ren et al.
(2020) proposed a hybrid deep learning model that integrates LSTM and convolutional
neural network (CNN) to exploit their advantages in capturing spatial and temporal
dependencies for citywide spatio-temporal flow prediction, yielding a high accuracy.
Nonetheless, the applicability of CNN-based hybrid models to transportation networks
is constrained by the graph structure inherent to such networks, thereby hindering
their effectiveness in the realm of traffic forecasting (Li and Shahabi 2018, Kashyap
et al. 2022). The emergence of GNN-based models solves this problem by modeling
the spatio-temporal dependencies of traffic information in the transportation network
through a graph structure (Jiang and Luo 2022), such as diffusion convolution
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recurrent neural network (DCRNN) (Li et al. 2017), spatial-temporal graph convolutional
network (STGCN) (Yu et al. 2017a) and multivariate time-series graph neural network
(MTGNN) (Wu et al. 2020). These GNN-based models have become state-of-the-art
methods in traffic forecasting, which constitute the foundation of this study for speed
prediction.

2.2. Context-based human mobility research

Context awareness has attracted considerable attention in human mobility research
due to its ability to provide situation-specific information for transportation applica-
tions (Sattar et al. 2016). Essentially, individual movement distributed in road networks
is simultaneously motivated and restricted by its surrounding context information
(Sharif and Alesheikh 2017, Zhang and Raubal 2022). Therefore, developing context-
based methods possesses potential gains to improve the understanding of human
mobility patterns and the performance of traffic forecasting.

Despite the importance of context information, existing studies mostly use raw traf-
fic information in the prediction task (Lana et al. 2018). This is due to the fact that the
diversity and complexity of context information deepen the difficulty of incorporating
it into traffic forecasting (Tedjopurnomo et al. 2020). Context diversity manifests itself
in multiple modalities, and each modality may have its unique data source, dimension
and distribution (Lahat et al. 2015). After summarizing previous research, this study
proposes to divide context information into two modalities, ie spatial and temporal
contexts. The spatial context pertains to static datasets containing geographical coor-
dinates that describe the surrounding information of targeted entities. This context is
ubiquitously distributed across the urban landscape in various dimensions, for
example, POIs as zero-dimensional points, road networks as one-dimensional lines and
land use as two-dimensional planes. These datasets aid in characterizing individual sur-
rounding environments that may influence travel behaviors and preferences (Buchin
et al. 2012, Lee and Holme 2015). The temporal context, on the other hand, refers to
time-series situational information of targeted entities as it evolves over time. Taking
traffic speed as a target example, time-series features related to the running of trans-
portation systems fall under this context, such as time, traffic jams and weather condi-
tions. Specifically, Huang and Wong (2015) discussed how temporal information
influences individual movement by differentiating between days of the week, hours of
the day and so on. Weather information can also have a significant impact, particularly
during extreme meteorological events (Koesdwiady et al. 2016, Yu et al. 2017b).
Overall, multimodal contexts cover an extensive scope of geographical and transporta-
tion-related factors with different modalities, posing a challenge of effectively exploit-
ing context data in the traffic prediction task.

To handle this challenge, several studies have utilized context information to
improve the performance of traffic forecasting (Yin et al. 2022). These studies provide
a possibility to increase traffic prediction accuracy by integrating traffic indicators with
surrounding context information, such as exploring the impact of land use changes on
predicting traffic indicators (Azad and Wang 2021), improving speed prediction
through exploiting temporal auxiliary information (Lin et al. 2018) and incorporating
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daily weather information into long-term traffic flow forecasting (Belhadi et al. 2020).
However, the above-mentioned studies mainly focus on one kind of context informa-
tion from either the spatial or temporal perspective regardless of their combined
effects on prediction. Exploring the mechanism to fuse multimodal contexts is still an
open problem in GeoAI and transportation research. In addition, the extents of spatial
and temporal contexts are diverse and complicated, which also hinders fusing these
contexts into combined representations for traffic speed forecasting. An early explor-
ation by Ge et al. (2019a) proposed temporal graph convolutional networks to inte-
grate social factors (eg day of the week) and geographical features (eg POI) into traffic
speed prediction, but it still lacks a framework for summarizing and modeling multi-
modal context data. This study aims to solve the problem by proposing a multimodal
context-based model to fuse traffic speed with spatial and temporal contexts and
improve the performance of traffic prediction. Due to the difficulty of covering all con-
text information in the urban environment, we chose several representative spatial
and temporal contexts as an example to verify the feasibility of the proposed model.

3. Methodology

This study proposes a multimodal context-based graph convolutional neural network
(MCGCN) model to fuse multifaceted context information and exploit the fused con-
text representations to improve traffic speed forecasting. The MCGCN model consists
of three modules, including hierarchical spatial embedding, multivariate temporal
modeling and attention-based multimodal fusion. (a) For hierarchical spatial embed-
ding, we construct a three-level tree for each road segment to organize spatial context
data from different dimensions, ie points, lines and planes, and then utilize hierarchical
graph learning to learn spatial context representations for each tree, ie S. (b) To cap-
ture latent dependencies of temporal contexts, the multivariate temporal modeling
module automatically learns subgraphs of multivariate temporal contexts over differ-
ent road segments, then employs graph convolution to produce temporal context rep-
resentations based on the built subgraphs. For each road segment, its temporal
context representations at the time step t can be expressed as Tt: (c) Finally, an atten-
tion-based multimodal fusion module is proposed to integrate traffic speed (Vt) with
spatio-temporal context representations (S and Tt) and then fuse them into a graph
convolutional network for multi-step speed prediction. An overview of this proposed
MCGCN model is shown in Figure 1.

3.1. Hierarchical spatial embedding

Geographical phenomena encounter the scale problem that influences the measure-
ment of their properties across space (Ge et al. 2019b). To mitigate this problem, Tu
et al. (2020a) explored the possibility of using multi-source geospatial data to portray
urban land use from a hierarchical perspective, which can more comprehensively
exploit the spatial and attribute information. Spatial pyramid pooling has also been
developed in convolutional neural networks (He et al. 2015) and applied in represent-
ing spatial scenes (Guo et al. 2022). Accordingly, this study constructs a three-level
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Figure 1. An overview of the proposed MCGCN model for traffic speed forecasting. It consists of
three modules, including hierarchical spatial embedding, multivariate temporal modeling and atten-
tion-based multimodal fusion.

Figure 2. The architecture of the proposed MCGCN model for traffic speed forecasting. (a)
Hierarchical spatial embedding. (b) Multivariate temporal modeling. (c) Attention-based multimodal
fusion.
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tree to associate spatial context data from different dimensions and uses hierarchical
graph learning to learn spatial representations (Ying et al. 2018). The architecture of
hierarchical spatial embedding is demonstrated in Figure 2(a), which consists of (i)
hierarchical tree construction for spatial contexts and (ii) spatial representation
learning.

3.1.1. Hierarchical tree construction for spatial contexts
We start by constructing a three-level tree for each road segment to associate spatial
context data from different dimensions. As the spatial context affecting human mobility
in the urban environment is diverse (Buchin et al. 2012), for simplicity, we choose three
representative spatial contexts as an example to reveal the construction of hierarchical
trees, ie POI, road segments and land use. These three types of spatial contexts have
been widely used in transportation research, indicating spatial contexts from different
dimensions: POIs served as zero-dimensional points to depict spatially-discrete objects,
road segments served as one-dimensional lines to exemplify spatially-linked objects, and
land use served as two-dimensional planes to indicate spatially-continuous objects.
Depending on specific applications, more kinds of spatial context datasets can be inte-
grated into the following construction process of hierarchical trees.

Assuming the set of POIs as Ps ¼ fp1, . . . , pi, . . . , pjPsjg, the set of road segments as
Rs ¼ fr1, . . . , rj, . . . , rjRsjg and the set of land use as Ls ¼ fl1, . . . , lk , . . . , ljLsjg, we con-
struct a three-level tree for each road segment to spatially connect Ps, Rs and Ls hier-
archically. The tree regards road segments as Level 1 (ie root node), land uses as Level
2 and POIs as Level 3 (ie leaf node). The subsequent three steps demonstrate the pro-
cedure of building a three-level tree for a given road segment.

� Step 1: Given a road segment rj, we define it as the root node of a tree, ie Level 1.
The spatial intersecting operation � within a buffer distance distb is operated
between rj and Ls to identify all surrounding land parcels for rj, ie rj � Ls � Ls: The
distb is set to 30 meters to cover the widest road in the research area.

� Step 2: For land parcels in rj � Ls, we define them as nodes at Level 2, connected
with the root node in the constructed tree. Given a land parcel lk in rj � Ls, the spa-
tial containing operation � is operated between lk and Ps to detect POIs within the
land parcel lk, ie lk � Ps � Ps:

� Step 3: For POIs in lk � Ps, we define them as leaf nodes at Level 3, connected
with the corresponding nodes at Level 2. Finally, jRsj three-level trees can be con-
structed through Rs � Ls � Ps, ie p ¼ fg1, . . . , gj, . . . , gjpjg, which provide a separate
tree for each road segment. This tree can be used to generate each road’s spatial
context representation. Meanwhile, the number of trees jpj is equivalent to the
number of road segments jRsj:

3.1.2. Spatial representation learning
After constructing the three-level tree for each road segment, we propose to employ
hierarchical graph learning to learn the spatial context representation of each tree
shown in Figure 2(a). The essence of spatial representation learning is to stack graph
neural network (GNN) layers in a hierarchical fashion (Ying et al. 2018). Given a
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constructed tree gj ¼ ðA, FÞ,A 2 f0, 1gn�n and F 2 R
n�d are its adjacency matrix with n

nodes and node feature matrix with d features, respectively. In other words, A refers
to whether two nodes are spatially associated in the constructed tree, while F provides
feature descriptions for each node to indicate its unique characteristics, eg POIs with
various types, road segments with different lengths and free-flow speeds and land
uses with various types and areas. Assuming that the set of label values for p is / ¼
fe1, . . . , ej , . . . , ej/jg, the goal is to map f : p ! / through minimizing the error
between the predicted value e0j and ej. We achieve this goal by stacking L GNN layers.
For one-layer GNN, we have the node embedding HðkÞ through a message-passing
architecture after k-step computing:

HðkÞ ¼ MðA,Hðk�1Þ; hðkÞÞ (1)

where M is the message-passing function to iteratively computing node embeddings
through the adjacency matrix A and parameters hðkÞ, and Hðk�1Þ is the node embed-
ding from the previous step. We assume the output embedding of L-layer GNN as
tL 2 R

n�d with an adjacency matrix of n nodes.
Then, a differentiable pooling technique is utilized to assign nodes to clusters using

vector embeddings produced from tL: The output embedding of the differentiable
pooling technique is set as tL0 2 R

m�d, which generates a new coarsened graph with
an adjacency matrix of m nodes, where m< n. This new coarsened graph is input to
another L GNN layers to generate new embeddings. This study sets L as 3 to stack
three-layer GNNs; see details in Ying et al. (2018). We can obtain the final representa-
tions of the given tree gj by concatenating all output embeddings. Then, the spatial
context representations for all trees in p are denoted as S ¼ fs1, . . . , sj, . . . , sjRsjg:

3.2. Multivariate temporal modeling

In traffic forecasting, the accurate prediction of traffic speed not only depends on his-
torical speed values but also closely relates to other multivariate time-series features,
ie temporal context factors (Yin and Shang 2016). In this study, the temporal context
pertains to time-varying situational information associated with driving behaviors in
predicting traffic speed, encapsulating a time dimension to capture the dynamic pat-
terns inherent to transportation systems. There are two crucial characteristics of tem-
poral contexts, ie the dynamic property and the relevance to driving. The dynamic
property indicates the real-time change of context factors in traffic-related conditions,
while the relevance to driving reflects how these context factors impact driving condi-
tions. The scope of temporal contexts is broad, including time, traffic jams and wea-
ther conditions. However, multivariate techniques struggle with jointly modeling the
inter-series correlations and dependencies of multivariate time-series features (Cao
et al. 2020). This study solves this problem by designing a multivariate temporal mod-
eling module, including (i) dependency modeling for multivariate temporal contexts
and (ii) temporal representation learning, to capture the latent dependencies of multi-
variate temporal contexts over different road segments. The architecture of multivari-
ate temporal modeling and its details are illustrated in Figure 2(b).
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3.2.1. Multivariate dependency modeling for temporal contexts
As each road segment encompasses various temporal contexts potentially influencing
traffic speed prediction, we begin with modeling their dependencies in the feature
space by graph learning. It can automatically construct subgraphs of road segments
with multivariate temporal contexts and then learn the spatio-temporal adjacency
matrix of each subgraph in the feature space over time (Wu et al. 2020). Given the set
of road segments Rs, we denote Ut ¼ fut1, . . . , utj , . . . , utjRsjg as temporal context data
for Rs at the time step t. For each road segment rj, its multivariate temporal contexts
can be expressed as uj, which comprises d types of variables for the road segment rj.
In this study, we select three representative temporal context variables as the input to
model their dependencies, ie traffic jams factors, passenger volumes of public transit
stations and weather conditions. In detail, traffic jam factors indicate the dynamic sta-
tus of traffic congestion that directly influences road speeds; passenger volumes reflect
time information and resident behaviors that vary by hour on both work and rest
days; weather conditions, a widely acknowledged variable, can enhance traffic speed
prediction due to its substantial impact on driving conditions (Ryu et al. 2020). To
build subgraphs associating multivariate temporal contexts in different road segments,
the similarity between pairs of road segments needs to be measured to identify
whether their multivariate temporal contexts are closely related to traffic forecasting.
Assuming l1t and l2t are two learnable embeddings, we have p1t ¼ tanhðal1t h1t Þ and
p2t ¼ tanhðal2t h2t Þ, where h1t and h2t are model parameters, and a is the hyper-param-
eter for the activation function. Then, the adjacency matrix B of the built subgraph
between pairs of nodes can be computed through the following equation:

B ¼ ReLUðtanhðaðp1t ðp2t ÞT � p2t ðp1t ÞTÞÞÞ (2)

where Bji indicates whether multivariate temporal contexts uj and ui are connected in
the built subgraph. To make the spatio-temporal adjacent matrix sparse and reduce
the computation cost, we choose the top k-closest road segments as neighbors for a
given road segment uj to build subgraphs for multivariate temporal contexts in the
feature space. Different from the adjacency matrix of road networks based on spatial
topology, this subgraph is to find the most associated k road segments in the feature
space that affect traffic speed prediction for uj. The selection of k is illustrated in
Figure 6(a). Then, we can obtain the built subgraphs gB with its adjacency matrix B
that models the dependencies of multivariate temporal contexts in different road
segments.

3.2.2. Temporal representation learning
Based on the built subgraphs, we exploit graph convolution to learn the temporal
context representations of each road segment shown in Figure 2(b). The graph convo-
lution is achieved by two mix-hop propagation layers to process inflow and outflow
information across subgraphs and catch the directional change of multivariate tem-
poral contexts (Wu et al. 2020). The outputs of two mix-hop propagation layers are
then added as the net flow information for the built subgraph gB. The details of mix-
hop propagation can be found in (Wu et al. 2020). This study sets the number of
graph convolution layers as 3 with the residual connection. At the time step t, the

1918 Y. ZHANG ET AL.



output of graph convolution is then concatenated with Ut to generate the final tem-
poral representations for all road segments, denoted as Tt ¼ fst1, . . . , stj , . . . , stjRsjg:
Compared to the original values Ut, the generated temporal context representations
Tt furnish the dependencies of multivariate temporal contexts to boost traffic speed
forecasting.

3.3. Multimodal fusion for traffic speed forecasting

The diversity and complexity of multimodal context data deepen the difficulty of fus-
ing them into traffic speed prediction. The emergence of attention techniques pro-
vides an opportunity to combine traffic speed with multimodal contexts by
dynamically weighting them before being fused together (Liu et al. 2018, Gao et al.
2020). Attention techniques employ the layer of neural networks to weigh the impor-
tance of different parts of the input features, thereby enabling the model to concen-
trate more on significant parts during the prediction phase of traffic speed. Based on
the multimodal context representations obtained from Section 3.1 and 3.2, we exploit
an attention-based fusion layer to fuse raw traffic speed and multimodal context rep-
resentations and then employ the fused representations to predict traffic speed
through graph convolutional networks. The architecture of multimodal fusion to out-
put the predicted traffic speed is shown in Figure 2(c), whose inputs are raw traffic
speed and the spatial and temporal context representations from Figure 2(a) and (b).

At the time step t, the raw traffic speed can be expressed as Vt ¼
fvt1, . . . , vtj , . . . , vtjRsjg, ie traffic speed values for all jRsj road segments. Then, the pur-
pose of attention-based multimodal fusion is to improve the performance of traffic
speed prediction by integrating traffic speed Vt with multimodal context representa-
tions, ie the spatial context representations S ¼ fs1, . . . , sj , . . . , sjSjg obtained in
Section 3.1 and the temporal context representations Tt ¼ fs1, . . . , sj, . . . , sjTt jg
obtained in Section 3.2. Instead of simply concatenating Vt , S and Tt , the attention
fusion layer weighs them based on their importance or relevance to the speed predic-
tion task by dynamically assigning weights to different parts of Vt , S and Tt: In detail,
we have the following equations to implement attention-based multimodal fusion for
traffic speed prediction:

att ¼ softmaxðMðconcatð€V€t , €S, €T tÞQþ bÞÞ (3)

Ft ¼ concatð€V€t , €S, €T€tÞ � att (4)

where concatð�Þ concatenates the raw traffic speed Vt , the spatial context representa-
tions S and the temporal context representations Tt after linear transformations €V

t
, €S

and €T
t
, respectively. M, Q and b are learnable parameters, while att is the learned

attention weight matrix representing the contribution of different input features in the
fusion process. Then, the concatenated representations are multiplied by the learned
attention weight matrix att to generate the final fused representations for traffic
speed and multimodal contexts, ie Ft: Compared to simple concatenation, the gener-
ated Ft obtained from the attention-based fusion layer can prioritize and blend fea-
tures beneficial to traffic speed prediction, yielding potentially better performance.
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Afterwards, the fused representations Ft are input into a graph convolutional net-
work for multi-step traffic speed forecasting. We use traffic speed and multimodal con-
texts in the last a time steps to predict traffic speed in the next b time steps shown in
Figure 2(c). The spatio-temporal graph convolutional network (STGCN) is selected as a
baseline to predict traffic speed; See Yu et al. (2017a) for details of STGCN. Since this
study aims to propose a multimodal context-based model for traffic forecasting and
verify its feasibility, STGCN can be replaced by other graph neural network
architectures.

4. Data processing and models

4.1. Data preprocessing

Before implementing the proposed MCGCN model, we need to collect and preprocess
traffic speed and multimodal context data, respectively. Figure 3 gives an overview of
the traffic speed and multimodal context datasets used in this study.

4.1.1. The traffic speed dataset and preprocessing
The traffic speed dataset was collected from HERE technologies.1 In Singapore, HERE
API provides traffic speed data for each road segment. This study takes Singapore
Core Central Region (CCR) as the research area, ie the downtown area of Singapore,
due to the close relationship between context information and traffic flows in the
downtown (Zhang and Raubal 2022). Using the API, we accessed traffic speed data (in

Figure 3. An overview of the traffic speed and multimodal context datasets in the study area. The
subfigure provides an example of traffic speed values in Singapore’s downtown area. For simplicity,
the legend for 28 kinds of land use is represented by three paralleled color-coded boxes.
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km/h) every 2min from 12:00pm 14 March 2022 to 12:00pm 28 March 2022, lasting
for 14 days, ie twoweeks. An example of traffic speed for each road segment is dem-
onstrated in the subfigure of Figure 3. In addition, we resampled traffic speed data
every 10min by averaging all available data samples within this period to mitigate
potential noise and errors. Finally, we obtained the traffic speed dataset for each road
segment in Singapore CCR with a temporal resolution of 10min.

For the road network, we used the shape information provided by the API, which
contains the start point, endpoint and many intermediate points, to construct all road
segments in Singapore CCR. The dataset used to construct this road network was col-
lected on 14 March 2022. After manually removing road segments with an incorrect
topology, there are a total of 1,606 available road segments.

4.1.2. The spatial context datasets and preprocessing
The spatial context influencing human mobility is diverse in the urban environment
(Buchin et al. 2012). This study selects three typical types of spatial contexts from vari-
ous dimensions, ie point-based POI, line-based road segments and plane-based land
use. An overview of these three types of spatial contexts is shown in Figure 3. We use
the road network in Section 4.1.1 as line-based road segments, which also provide their
lengths and free flow speeds. The dataset details of POI and land use are as follows.

� POI: We integrated multisource POI data to generate a complete POI dataset in
2022, including Singapore OneMap,2 Singapore DataMall,3 and OpenStreetMap.4

From OneMap, we obtained 13 classes, ie community, culture, education, emer-
gency, employment, environment, family, government offices, health, national ser-
vice, recreation, sports and others. From DataMall, we obtained one class, ie public
transit stations. From OSM POI data, we obtained two classes that other sources
ignore, ie commercial and hotel. From OSM building data, we extracted the
center of each building as a POI point and obtained one class, ie residential. After
integrating multiple sources, we attained a complete POI dataset with 17 classes
containing 85,647 points in the whole of Singapore. Each POI has its category and
sub-category information.

� Land use: The land use used in this study is from Singapore’s Urban
Redevelopment Authority provided in 2019. After reclassifying land use types, we
obtained a land use map in Singapore with 28 categories, including business, civic
and community institution, commercial, educational, health and medical care, hotel,
open space, park, residential, sports and recreation, transport facilities, etc. Figure 3
simplifies the legend of land use data and more details can be found at https://
www.ura.gov.sg/maps/.

When using hierarchical graph learning to generate the spatial context representa-
tion of each road segment (with a distance buffer of 30 meters), we propose to
include the following attribute information to model the value variations of these
three spatial contexts: POIs (category and sub-category), road segments (length and
free flow speed) and land use (area and category). The method of using them to gen-
erate the three-level tree has been introduced in Section 3.1.
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4.1.3. The temporal context datasets and preprocessing
Compared to spatial contexts, the available temporal context data are scarce due to
the limitation of temporal resolutions and simultaneity. This study employs traffic jam
factors, passenger volumes of public transit stations and weather conditions as the
representatives of multivariate temporal contexts.

� Traffic jam factor: The dataset was also collected through HERE API from 12:00pm
14 March 2022 to 12:00pm 28 March 2022. According to the official explanation,5

the jam factor is a value between 0.0 (free flow) and 10.0 (road closure) represent-
ing the expected quality of travel congestion status for each road segment. As the
collection time interval is 2min, we resampled jam factors every 10min by averag-
ing all available data samples within this period.

� Passenger volume: The dataset provide in-volume and out-volume passengers of
each public transit station from Singapore DataMall.6 The public transit stations are
the same POI used in the spatial context. The distribution of public transit stations
is demonstrated in Figure 3, including 5,065 bus stations. For each station,
DataMall furnishes tapping-in and tapping-out passenger volumes per hour by
weekdays and weekends in a month. Since the traffic speed dataset is within
March 2022, we employed passenger volumes in March 2022 to specify the tem-
poral information for each road segment. Also, we assigned passenger volumes to
each road segment by finding its closest public transit station. Each road segment
is represented through a 96-dimensional vector to describe its temporal passenger
volumes, ie 24-h workday in-volumes and out-volumes and 24-h rest-day in-vol-
umes and out-volumes. A resampling was implemented to ensure the consistency
of the temporal resolution of passenger volumes with the traffic speed dataset.

� Weather condition: Singapore provides real-time weather readings from weather
stations through an open-access API.7 This study collected three types of weather
data that may influence human mobility behaviors, ie air temperature (14 stations
with a 1-min resolution), rainfall (67 stations with a 5-min resolution) and wind
speed (13 stations with a 1-min resolution). The spatial distribution of weather sta-
tions is illustrated in Figure 3. For each road segment, we identified its weather
conditions by finding its closest weather stations and then resampled the weather
dataset into 10min from 12:00pm 14 March 2022 to 12:00pm 28 March 2022.

4.2. Baseline models

To verify the importance of context information and compare the performance of our
proposed MCGCN model with existing methods, we selected several kinds of baseline
models to predict multi-step traffic speed for comparisons.

� SVR (Wei and Liu 2013): Support vector regression. As a traditional machine learn-
ing model, SVR is to process time-series data based on the support vector machine
in a regression task. The experiment applies SVR with a radial basis function kernel
to predict traffic speed.
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� RNN (Ramakrishnan and Soni 2018): Recurrent neural network. RNN enables to cap-
ture long-term dependencies in time-series data that traditional methods fail. We
utilize the bidirectional RNN with a fully connected layer by setting the hidden
layer number as 5 and the hidden state size as 64.

� Seq2Seq (Karatzoglou et al. 2018): Sequence to sequence. Seq2Seq adopts the
encoder-decoder framework based on gated recurrent units. The encoder produces
a matching internal representation of the input, and the decoder uses this internal
representation to estimate the correct output sequence in an iterative process. We
set the hidden layer number as 5 and the hidden state size as 64.

� DCRNN (Li et al. 2017): Diffusion convolution recurrent neural network. DCRNN mod-
els traffic flow in the road network as a diffusion process in a directed graph. It cap-
tures spatial and temporal dependencies using bidirectional random walks and the
encoder-decoder architecture with scheduled sampling, respectively. We set the dif-
fusion step as 2, the GRU layer number as 2 and the hidden state size as 64.

� STGCN (Yu et al. 2017a): Spatial-temporal graph convolutional network. STGCN for-
mulates the prediction problem on graphs with complete convolutional structures.
Its architecture consists of several spatio-temporal convolutional blocks and an out-
put layer. The block enables to capture spatial and temporal dependencies by com-
bining graph convolutional layers and convolutional sequence learning layers. The
number of ST-Conv blocks is set as 2 in the experiment.

� MTGNN (Wu et al. 2020): Multivariate time-series graph neural networks. MTGNN can
exploit latent spatial dependencies of multivariate time-series data through graph
learning and convolution. Graph learning aims to extract the directed relations
among multi-variables, while the convolution module is to capture their spatial and
temporal dependencies. We set the number of layers as 3 in convolution modules.

In summary, SVR belongs to the traditional machine learning method; RNN and
Seq2Seq are typical models of recurrent neural networks that perform well in time-ser-
ies prediction; DCRNN, STGCN and MTGNN are the state-of-the-art graph deep learning
models able to capture the spatial and temporal dependencies in traffic speed
forecasting.

5. Experiment and results

In this part, Section 5.1 presents the performance comparison between baseline mod-
els and the proposed MCGCN model. Following the comparison results, we analyze
the effects of spatial and temporal contexts on speed prediction in Sections 5.2 and
5.3, respectively. To verify the effectiveness of our proposed modules in learning multi-
modal context representations, we also develop two baseline context methods to gen-
erate the corresponding baseline context representations: the baseline spatial context
representations without hierarchical learning in Section 3.1.2; the baseline temporal
context representations without dependency modeling in Section 3.2.2. We then util-
ize these context representations derived from our proposed context modules and
baseline methods to predict multi-step traffic speeds and compare their performance.
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5.1. Performance results

We implement the proposed MCGCN model and baseline models based on the LibCity
library via Python (Wang et al. 2021). To measure and evaluate the performance of dif-
ferent models, mean absolute error (MAE) and root mean squared error (RMSE) are
adopted as evaluation metrics. Each model is run five times, and we use the average
and standard deviation of evaluation metrics to compare the performance. The experi-
ments set the input window as 12 and the output windows as 12, which means using
traffic speed in the last 12 time slots to predict traffic speed in the next 12 time slots.
To be representative, we select various prediction horizons (30-min, 60-min and 120-
min) that cover both short and long terms to compare the performance of different
models. Except for SVR, the experiments set the epoch number as 300, and the batch
size as 8, then use the Adam optimizer to guarantee the same experiment environ-
ment. The ratios of train, validation and test datasets are set as 0.7, 0.1 and 0.2,
respectively. Table 1 demonstrates the average and standard deviation of evaluation
metrics for multi-step traffic prediction using different models, including 30-min, 60-
min and 120-min.

In Table 1, the proposed MCGCN model using multimodal context information to
boost traffic speed forecasting achieves the best performance compared to existing
state-of-the-art models. When predicting 30-min traffic speed, the MAE and RMSE of
the proposed MCGCN model achieve 3.47 ± 0.02 and 4.96 ± 0.04 km/h, respectively,
which show absolute advantages over other GNN-based models in 30-min speed pre-
diction, ie DCRNN (MAE: 3.83 ± 0.00, RMSE: 5.56 ± 0.00), STGCN (MAE: 3.76 ± 0.01, RMSE:
5.37 ± 0.03) and MTGNN (MAE: 3.69 ± 0.02, RMSE: 5.42 ± 0.01). For RNN-based models,
RNN and Seq2Seq fail to capture the spatial dependency across the transportation net-
work, leading to dissatisfactory outcomes in 30-min speed prediction with the MAE of
5.51 ± 0.07 and 4.26 ± 0.17 km/h, respectively. As a traditional method, SVR performs
the worst due to its limitations in modeling the non-linear relationship and the long-
term dependency.

In long-term traffic speed forecasting, we find the proposed MCGCN model is also
superior compared to other baseline models in Table 1. In 60-min speed prediction,
the MAE of MCGCN using context information is 3.48 ± 0.02 km/h, with an average
MAE improvement of 0.50, 0.45 and 0.26 km/h compared to DCRNN, STGCN and
MTGNN, respectively. This comparison also achieves a good performance in 120-min

Table 1. The performance comparisons of multi-step traffic speed (km/h) prediction between the
proposed MCGCN model and baseline models for various prediction horizons (30-min, 60-min and
120-min).

30min 60min 120min

MAE RMSE MAE RMSE MAE RMSE

SVR 15.03 ± 0.00 17.49 ± 0.00 15.04 ± 0.00 17.51 ± 0.00 15.07 ± 0.00 17.57 ± 0.00
RNN 5.51 ± 0.07 7.83 ± 0.09 5.51 ± 0.07 7.83 ± 0.09 5.49 ± 0.07 7.80 ± 0.09
Seq2Seq 4.26 ± 0.17 6.18 ± 0.14 4.30 ± 0.16 6.25 ± 0.13 4.52 ± 0.13 6.54 ± 0.09
DCRNN 3.83 ± 0.00 5.56 ± 0.00 3.98 ± 0.01 5.81 ± 0.01 4.22 ± 0.01 6.11 ± 0.01
STGCN 3.76 ± 0.01 5.37 ± 0.03 3.93 ± 0.03 5.65 ± 0.05 4.36 ± 0.08 6.22 ± 0.09
MTGNN 3.69 ± 0.02 5.42 ± 0.01 3.74 ± 0.02 5.54 ± 0.01 3.84 ± 0.03 5.64 ± 0.04
MCGCN 3.47 ± 0.02 4.96 ± 0.04 3.48 ± 0.02 4.96 ± 0.05 3.47 ± 0.02 4.95 ± 0.05

The row with boldface refers to the best performance in traffic forecasting.

1924 Y. ZHANG ET AL.



speed prediction, ie with an average MAE improvement of 0.75, 0.89 and 0.37 km/h
for DCRNN, STGCN and MTGNN, respectively. Focusing on the change of evaluation
metrics from 30-min to 120-min speed prediction, most models are in an increasing
trend due to error accumulation, such as Seq2Seq, DCRNN, STGCN and MTGNN.
However, this error accumulation can be mitigated in our proposed MCGCN model.8

After integrating multimodal context information into traffic speed prediction, the
MCGCN model can exploit spatial and temporal context information provided by sur-
rounding environments to achieve good performance in long-term speed prediction.
For example, POIs enable the model to distinguish road segments with different levels
of attractiveness to vehicles from a spatial perspective; traffic jam factors can benefit
long-term speed prediction by considering the traffic congestion status of each road
segment from a temporal perspective. Generally, multimodal context information takes
great effects on traffic speed prediction, especially long-term speed prediction.

Furthermore, Figure 4 demonstrates the spatial distribution of prediction errors
between the predicted speed and the observed speed for each road segment. We
visualize 30-min, 60-min and 120-min prediction error maps and boxen plots with
three representative models, ie Seq2Seq (RNN-based model), STGCN (GNN-based
model) and MCGCN (context-based model). From a vertical view of Figure 4, the pre-
diction error ranges of these three models differ a lot, with Seq2Seq performing the
worst and MCGCN performing the best shown in Figure 4(d1–d3). For Seq2Seq, several
road segments in red hold high prediction errors compared to their neighboring road
segments in Figure 4(a1–a3). This problem gets solved when using STGCN and
MCGCN to predict speed, especially for 30-min STGCN prediction in Figure 4(b1) and
all MCGCN-based prediction in Figure 4(c1–c3). Essentially, Seq2Seq fails to capture
spatial dependencies of traffic speed information in the road network, while STGCN
can take advantage of the neighboring information of each road segment to reduce
prediction errors. For MCGCN, it outperforms the above-mentioned two models in
reducing high prediction errors of particular road segments by exploiting situation-
dependent information. From a horizontal view of Figure 4, the prediction error maps
of Seq2Seq and STGCN present an apparent increase from Figure 4(a1) to (a3) and
from Figure 4(b1) to (b3), respectively, revealing the error accumulation process in
multi-step traffic speed prediction. This accumulation is consistent with their MAE and
RMSE values in Table 1. In contrast, the proposed MCGCN model performs well in
multi-step traffic speed prediction, with little accumulation of prediction errors from
Figure 4(c1) to (c3), which can also be observed from Figure 4(d1) to (d3). This phe-
nomenon further emphasizes the importance of context information in long-term traf-
fic speed prediction by mitigating prediction errors and improving performance.

5.2. Spatial context embedding and analysis

The spatial context exerts influence on human mobility by simultaneously enabling
and limiting individual movement in the urban space (Buchin et al. 2012). To quantify
the influence, we organize the spatial context data from various dimensions, namely,
zero-dimensional POIs, one-dimensional road segments and two-dimensional land use,
into a three-level tree. Then, we employ the proposed spatial embedding method in
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Section 3.1.2 to learn the spatial context representation of each tree in a hierarchical
manner, which can encode the local and global structural information in the built
tree. To evaluate the effectiveness of this hierarchical method, its performance on rep-
resentation learning and speed prediction is compared with a baseline method with-
out hierarchical learning. We leverage the traffic congestion status of each road
segment to supervise the learning process of spatial context representations. This traf-
fic congestion status is extracted from averaging traffic jam factors of each road seg-
ment per 10min during the period.

Figure 4. Prediction error maps of road segments between the predicted speed and the observed
speed for various prediction horizons (30-min, 60-min and 120-min) with three representative mod-
els. (a1–a3) Seq2Seq. (b1–b3) STGCN. (c1–c3) The proposed MCGCN model. (d1–d3) Boxen plots of
the above three models to illustrate their error distribution of 30-min, 60-min and 120-min speed
prediction. The columns from left to right represent different horizons, ie 30-min, 60-min and 120-
min. The color bar below shows the prediction error range for a1–c3.
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Figure 5 illustrates MAE values of learning spatial context representations using the
hierarchical method and their differences from the non-hierarchical baseline method.
When the MAE difference is above zero, the hierarchical method performs better than
the non-hierarchical one and vice versa. First, we found that the overall tendency of
MAE curves exhibits similar patterns to human traveling behaviors, ie high values dis-
tributed over morning and afternoon peak hours due to residents’ commuting activ-
ities during work days, and high values distributed over noon hours due to residents’
entertainment activities during rest days (Tu et al. 2017). According to the MAE differ-
ence between the two methods, we found that hierarchical learning performs better
than the non-hierarchical baseline method in most of the time slots for both work and
rest days. Among 144 time slots, there are only 18 workday time slots in Figure 5(a) and
23 rest-day time slots in Figure 5(b) that the non-hierarchical method has lower MAE val-
ues. This phenomenon implies that the hierarchical learning method can better model
spatial contexts to understand the patterns of traffic congestion status.

To further test the performance of hierarchical learning, we employ the spatial con-
text representations generated by the hierarchical and non-hierarchical methods to
predict traffic speed, respectively. Table 2 demonstrates the results of 30-min, 60-min
and 120-min speed prediction using these two methods, which can verify the advan-
tage of hierarchical learning. In 30-min speed prediction, the hierarchical and non-hier-
archical methods hold the same performance with an average MAE of 3.74 ± 0.01 km/h.
However, the hierarchical method performs better than the non-hierarchical method in
60-min and 120-min speed prediction, with an average MAE improvement of 0.02 and
0.13 km/h, respectively. This outcome reveals the superiority of the proposed

Table 2. The performance of multi-step traffic speed prediction for various prediction horizons
(30-min, 60-min and 120-min; km/h) using the hierarchical and non-hierarchical methods to learn
spatial context representations.

30min 60min 120min

MAE RMSE MAE RMSE MAE RMSE

No hierarchy 3.74 ± 0.01 5.35 ± 0.01 3.85 ± 0.03 5.54 ± 0.04 4.04 ± 0.13 5.82 ± 0.15
With hierarchy 3.74 ± 0.01 5.35 ± 0.01 3.83 ± 0.02 5.52 ± 0.02 3.91 ± 0.02 5.66 ± 0.03

Figure 5. MAE values of learning the spatial context representations using the proposed hierarch-
ical learning method and their differences from the non-hierarchical method every 10min (ie non-
hierarchical MAE – hierarchical MAE). (a) Workday. (b) Rest day.
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hierarchical method in learning spatial context representations, which can benefit
long-term speed prediction more than the non-hierarchical model. Using the hierarch-
ical method also leads to more stable performance in traffic speed forecasting. The
standard deviation of MAE for multi-step prediction maintains lower values than those
of the non-hierarchical method, especially for 120-min speed prediction.

5.3. Temporal context modeling and analysis

Multivariate time-series techniques play a crucial role in exploiting latent dependencies of
multiple temporal contexts and improving the performance of time-series prediction (Cao
et al. 2020). However, previous research ignores the dependencies hidden in multivariate
temporal contexts and their influences on traffic speed prediction. This study proposes a
temporal context modeling module in Section 3.2 to overcome this problem by constructing
subgraphs that associate multivariate temporal contexts over different road segments. To
justify the effects of the proposed method on learning temporal context representations, we
compare its performance in context-based traffic speed prediction with a baseline method
that also learns temporal context representations without dependency modeling.

Table 3 displays the performance of traffic speed prediction using the
temporal context representations learned by two methods, ie the dependency and
non-dependency methods. An important phenomenon is that the error accumulation
process can be mitigated using both two methods, without obvious MAE and RMSE
increases from 30-min to 120-min speed prediction. In detail, the MAE values using
the non-dependency method are within the range of 3.52–3.55 km/h, while the MAE
value for three prediction horizons using the dependency method is 3.50 ± 0.02 km/h.
This phenomenon suggests that long-term speed prediction can be greatly improved
by temporal contexts regardless of the method used to learn their representations.
The other important observation is that the dependency method consistently outper-
forms the non-dependency method across all prediction horizons. The MAE values of
the dependency method are lower than the corresponding values of the non-
dependency method for each prediction horizon, with an improvement of 0.02, 0.05
and 0.04 km/h. This outcome reveals that the proposed temporal context modeling
module can better advance the performance of traffic speed prediction by capturing
latent dependencies of multivariate temporal contexts.

When using the proposed dependency method to learn temporal context represen-
tations, a crucial parameter is to identify a suitable subgraph size that balances the
ability to model dependencies and computation cost. Figure 6(a) illustrates the valid-
ation loss of multi-step traffic speed prediction using different subgraph sizes, eg k
mentioned in Section 3.2. The validation loss achieves the lowest value when the

Table 3. The performance of multi-step traffic speed prediction for various prediction horizons
(30-min, 60-min and 120-min; km/h) using the dependency and non-dependency methods to
learn temporal context representations.

30min 60min 120min

MAE RMSE MAE RMSE MAE RMSE

No dependency 3.52 ± 0.02 5.05 ± 0.04 3.55 ± 0.02 5.08 ± 0.04 3.54 ± 0.01 5.06 ± 0.03
With dependency 3.50 ± 0.02 5.03 ± 0.04 3.50 ± 0.02 5.04 ± 0.04 3.50 ± 0.02 5.03 ± 0.03
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subgraph size is 50. Therefore, we utilize k¼ 50 for all the experiments in this study
when modeling the dependencies of multivariate temporal contexts. After identifying
the suitable subgraph size, one question arises of how different combinations of multi-
variate temporal contexts affect traffic speed prediction. As shown in Figure 6(b), we
observe that the jam factor occupies the dominant position compared to passenger
volumes and weather conditions. For the first two combinations involving jam factors,
their boxen plots of prediction errors for various prediction horizons are all obviously
lower than the third combination (without using jam factors). In addition, the error
accumulation process from 30-min to 120-min prediction is not obvious for the first
two combinations, while the third combination presents an evident increase of predic-
tion errors. Essentially, the jam factor reflects the traffic congestion status of each road
segment, which can significantly improve the predicted speed variations in the subse-
quent time slots. However, passenger volumes are more likely regarded as a time
proxy indicating the morning and afternoon peak hours of urban residents’ commute
on work and rest days. Thus, this dataset is not intended to impact road speeds dir-
ectly but to imply the association with fluctuations in public transit usage over time.
As to weather data, it can also greatly boost traffic speed prediction under different
meteorological conditions, but its benefits are limited in daily speed prediction.

6. Conclusion

Context information plays a vital role in understanding human mobility patterns and
boosting traffic forecasting (Sharif and Alesheikh 2017, Tedjopurnomo et al. 2020).
However, the diversity and modalities of context information hinder utilizing it to
advance traffic forecasting. To solve this problem, this study proposed a multimodal
context-based graph convolutional neural network (MCGCN) model to incorporate dif-
ferent context information into traffic speed forecasting, which achieved state-of-the-
art performance compared to baseline models. For the spatial context, we utilized a
hierarchical spatial embedding module to generate representations by organizing

Figure 6. Performance analysis of multivariate temporal context modeling using different subgraph
sizes and temporal context variables. (a) Validation loss of speed prediction when modeling multi-
variate temporal contexts with various subgraph sizes, ie k. (b) Prediction errors of speed prediction
when using three different combinations of temporal contexts, ie (1) jam factors and weather con-
ditions, (2) jam factors and passenger volumes and (3) passenger volumes and weather conditions.
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spatial context data from different dimensions, which outperforms the non-hierarchical
method in modeling spatial contexts. The experiment verified its effectiveness in traffic
speed forecasting. For the temporal context, we designed a multivariate temporal
modeling module to capture latent dependencies of temporal context data and pro-
duce representations for traffic speed forecasting. We also found that the jam factor
can dominantly affect the prediction performance compared to other temporal con-
texts. Finally, we employed an attention-based multimodal fusion layer to integrate
traffic speed with the spatial and temporal context representations for traffic speed
forecasting. The outcomes justify the feasibility of the proposed MCGCN model and
demonstrate the significant role of context information in GeoAI research.

So far, traffic congestion has substantially impacted social capital and environmental
protection for urban areas worldwide. Based on our model’s obtained speed prediction
results, stakeholders can acquire accurate traffic speed information and understand what
factors most affect the prediction performance. Also, there are some other potential
applications, such as improving traffic signal optimization to reduce congestion and
assist in dynamic route planning for individual drivers, public transportation and emer-
gency services. Overall, urban planners can better manage the urban transportation sys-
tem to decrease the adverse influence of traffic congestion on economic activities. On
the other hand, the proposed MCGCN model can potentially attract GIS researchers to
pay more attention to context information ubiquitously distributed over the urban envir-
onment, which can benefit downstream applications. This study proposes to divide con-
text information into two types, ie spatial and temporal contexts, and accordingly
developed two embedding modules to capture their characteristics. This division and
the proposed modules can also be transferred to other GIS studies when context infor-
mation takes effect on their research, such as land use modeling and population distribu-
tion mapping. In detail, land use recognition can utilize the hierarchical spatial
embedding module to generate more comprehensive spatial representations that con-
sider its surrounding environment to classify land use, while population distribution
mapping can benefit from the multivariate temporal modeling module to capture
dynamic information of passenger volumes in nearby public transit stations.

However, this study still encounters several unsolved problems. First, we ignored
the correlated information of context data amongst multiple modalities, ie cross-
modality relations, which can help better fuse multimodal context data from various
sources. Second, although this study investigated how different contexts affect traffic
speed forecasting, the causal relationship is still unclear due to the lack of explainabil-
ity of deep learning models, which deserves further exploration. Third, although we
considered several representative contextual factors as the input for traffic speed fore-
casting, these factors are still a small part of all kinds of context information due to
their ubiquitous distribution over the urban environment. For example, temporal con-
texts contain more than the time-varying variables mentioned in this study. They also
include features associated with hourly, weekly, or other factors related to duration or
time of day, all of which fall within the realm of temporal contexts and deserve further
investigation in traffic forecasting (Tedjopurnomo et al. 2020). In practice, incorporat-
ing additional contexts into the MCGCN model is feasible and potentially beneficial for
improving its predictive power, but each additional context comes with its own
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challenges, eg data completeness, availability and reliability. Nevertheless, these chal-
lenges can be managed with appropriate data processing and feature embedding.
Meanwhile, weather data have influential effects on traffic speed forecasting under
various weather conditions (Ryu et al. 2020), but this study is mainly focused on daily
traffic speed prediction, limiting its ability to improve prediction accuracy. Finally,
while this study evaluates the MCGCN model’s predictive performance within a 2-h
window, a technical expansion of this prediction window, for instance, to 10 h, is feas-
ible. However, such a substantial extension in the prediction horizon may introduce
complexities in preserving the existing level of prediction error, considering the vast
array of unpredictable factors that can influence traffic conditions. In future studies,
we will include more context datasets and research how to effectively integrate them
into context-aware traffic studies.

Notes

1. See https://www.here.com/.
2. An authoritative national map of Singapore with the most detailed and timely updated

information developed by the Singapore Land Authority. See https://www.onemap.gov.sg/.
3. A wide variety of land transport-related datasets provided by the Singapore Land Authority.

See https://datamall.lta.gov.sg/content/datamall/en.html.
4. An open-source crowdsourcing data platform. See https://www.openstreetmap.org/.
5. See https://developer.here.com/documentation/traffic/dev_guide/topics/common-acronyms.

html.
6. See https://datamall.lta.gov.sg/content/datamall/en/dynamic-data.html.
7. See https://data.gov.sg/dataset/realtime-weather-readings.
8. The error accumulation still exists in our proposed MCGCN model. Its MAE value in 10-min

speed prediction is 3.13 ± 0.02 km/h, which increases to 3.44 ± 0.02 and 3.47 ± 0.02 km/h in
20-min and 30-min speed prediction, respectively.
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