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Geospatial Big Data: New Paradigm of Remote
Sensing Applications

Xingdong Deng, Penghua Liu , Xiaoping Liu , Ruoyu Wang , Yuanying Zhang, Jialv He, and Yao Yao

Abstract—The rapid development of information technology
and location techniques not only leads to an increasing growth
of massive geospatial big data but also raises the attention of
using these data to complement with remote sensing images. Many
efforts have been made to utilize geospatial big data to identify
human activity patterns and carry out urban and environmental
researches, integrating with remote sensing images. Nonetheless,
there are still many issues, including the representativeness and
locality of geospatial big data, as well as the fusion methods, remain
to be further explored. In this article, we first reviewed the inno-
vation and proceedings of data mining and analyzing techniques,
as well as remote sensing applications driven by geospatial big
data. Besides, two popular concepts, namely, “Social Sensing” and
“Urban Computing,” were briefly introduced. Then, we highlighted
the role of geospatial big data in mining human activity dynamics
and socioeconomic characteristics, and the feasibility of combining
with remote sensing data for various studies. Lastly, we presented
some empirical case studies on the confluence of remote sensing and
geospatial big data in land use extraction, environmental and dis-
aster monitoring, as well as socioeconomic dynamics sensing. The
provided examples and discussion demonstrated the high efficiency
and complementarity of the integration of remote sensing and
geospatial big data, which benefits decision making from multiple
perspectives and scales.

Index Terms—Geospatial big data, integration, remote sensing.

I. INTRODUCTION

R EMOTE sensing and Geographical Information System
(GIS) have always been providing powerful information

for many applications, such as land use mapping [1], change
detection [2], and disaster monitoring [3]. As the main data
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source of earth observation [4], remote sensing images with
different spatial [5], temporal [6], and spectral [7] resolutions,
collected by optical cameras or LiDAR sensors carried on air-
borne or satellite platforms [8], [9] play a significant role in
the monitoring of the surface and atmospheric environment.
However, many problems of utilizing remote sensing images
for earth observation and monitoring have not been solved for
a long time. On the one hand, due to the long orbit revisiting
time of remote sensing satellites, remote sensing images can
hardly be applied for continuous and real-time monitoring such
as disaster monitoring [10]. On the other hand, remote sensing
is powerful in terms of describing and presenting natural and
physical geographical characteristics but is almost unable to
capture patterns of socioeconomic environments such as pat-
terns of human activities or socioeconomic connectivity among
cities [11].

During the recent decades, the rapid development of informa-
tion technology has led to the explosive growth of data originat-
ing from various sensors, driving us into the era of big data [12].
Big data with geographic location information and originating
from sensors such as smartphones and handheld Global Posi-
tioning System (GPS) devices, have already invaded into our
daily life and show great potential in practical applications such
as disaster response and environmental monitoring [13]. Owing
to the development of new technologies such as smartphones and
wireless networks, people can now post and share information
with geographical coordinates, such as check-in, photos, and
shopping comments, with others through the internet anytime
and anywhere [14], which breaks the barrier of face-to-face com-
munication and creates a new form of human activity interaction
[15], [16]. In the context of the rapid growth of social media and
big data, massive geo-tagged big data are generated due to these
spontaneous sharing behaviors and provide possible solutions to
explore and reveal patterns of unobservable phenomenon such
as human activity dynamics [17]. For example, a large amount
of GPS trajectory data, as well as pickup and drop-off location
information with timestamp are produced automatically when
taking taxis [18]. By analyzing the temporal characteristics of
pickup and drop-off activities within geographic units, we can
not only identify the urban functions but also figure out the
job-housing functional patterns much more accurately than by
traditional remote sensing images [19], [20], and the intracity
and intercity spatial interaction can be further explored [21].

As discussed, the real-time positioning and sharing of data
generated by human activity interaction which are collected
by ground equipment provide new possibilities for solving
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the above problems in the context of geospatial big data [22].
Thus, the geospatial big data we mentioned here do not include
remote sensing images collected by satellite or unmanned
aerial vehicles which may be regarded as traditional geospatial
data. As a matter of fact, many studies have integrated remote
sensing and geospatial big data mentioned above to solve various
problems [3], [23]. For example, in [24], Shi et al. combined
microblogging data and nighttime light remote sensing to reveal
the pattern of human activities and light pollution. In their study,
two types of big data originating from social media and remote
sensing were coupled to complement each other, which provide
a new approach to understand and discover spatiotemporal
patterns [25]. It was suggested that data from remote sensing
and social media both contain multisensor, multiresolution,
and multitemporal information, but remote sensing data reflect
more dynamic change of natural elements while social media
reflects more human activities [11]. Therefore, the emergence of
geospatial big data brings an opportunity to make up for remote
sensing images in excavating human activities at a fine scale [26].

However, the vast amount of data brings both opportuni-
ties and challenges [27]. The growth of disordered and mixed
data makes higher demands for acquisition, storing, manag-
ing, processing, visualizing, and verifying [13]. For example,
geo-computing [28], spatiotemporal data mining [29], parallel
computing [30] methods and techniques are required to discover
knowledge from geospatial big data. Besides, how to properly
integrate remote sensing images and geospatial big data is still
worth to be further studied. Specifically, some studies integrate
remote sensing and geospatial big data at the feature level [31],
while others fuse at the decision-making level [32].

Many previous studies did not consider the integration of
remote sensing and geospatial big data, which may lead to biased
or unelaborated description of geographic environment. Thus,
in recent years, more and more studies have been carried out to
integrate them together, but few articles systematically review
and summarize the applications and development trend of the
integration of remote sensing and geospatial big data. In this
article, we attempted to provide an overview of the integra-
tion of remote sensing and geospatial big data in improving
application performance. The rest of the contents of this article
are organized as follows. Section II described the innovation
brought by the emergence of geospatial big data. At the same
time, we introduced the proceedings of data mining and analysis
techniques driven by geospatial big data and gave an overview
of applications of geospatial big data in GIS and remote sensing.
Besides, we presented two popular concepts including “Social
Sensing” and “Urban Computing” in urban studies of geospatial
big data. In Section III, the integration of remote sensing and
geospatial big data were first discussed. We have focused on
analyzing the complementarities of these different types of data
in terms of temporal characteristics, spatial heterogeneity, and
geographical representativeness, and then discussed the feasi-
bility and necessity of data fusion. To support the discussion,
we have categorized and discussed some application examples
of integrating remote sensing and geospatial big data to high-
light the outstanding performance in improving environmental
studies. Section IV concludes the article.

II. PROCEEDINGS OF GEOSPATIAL BIG DATA

In this section, we introduced the improvements and progress
brought about by geospatial big data in remote sensing and urban
applications. In this case, from the generation of geospatial
big data, we discussed the paradigm shift of data mining and
analysis methods driven by geospatial big data, as well as new
think on research. We listed some current research examples
on the environment and cities based on geospatial big data
and introduced two popular and new concepts, that is, “Social
Sensing” and “Urban Computing,” which were proposed in the
context of the increasing popularity of geospatial big data in
spatial analysis studies.

A. Progress in Geospatial Big Data Technologies

The past two decades has witnessed the fast development of
information technology, which not only brought massive big
data but also drove the innovation of related disciplines [33]. The
emergence of big data attached with spatial location information,
that is, geospatial big data, brings us new opportunities to
understand the urban environment in an unprecedented way
[34]. Benefited from the popularization of sensor devices with
GPS, we can collect, share, and analyze hundreds of billions
user behavior data with location information every day, which
makes the possibility to promote the development of novel
concept and analytic skills of spatial analysis technologies
[35]. Considered as “sensors,” people can help capture human
mobility–related information and enrich geographic data in the
aspect of socioeconomic attributes [13].

With the rapid advancement of Location Based Service (LBS),
the Information Service and Application Provider (ISAP) can
easily get access to the locations of users or mobile phones
and provide related services from anywhere at any time if
authorized [36]. For instance, based on the location of users
shared through the internet, the ISAP can recommend hotels,
cinemas, libraries, and gas stations within 1 km for users. It is
such LBS mode that promotes the generation of endless user
behavior data with spatial location and time information [37].
Another major source of geospatial big data is the Volunteered
Geographical Information (VGI) [38], or a similar form, that is,
the crowdsourcing geographical information [39]. As its name
suggests, VGI is the geographical data provided voluntarily by
individuals [38]. To be more detail, VGI refers to geographical
data uploaded via the internet by citizens, who acts like active
sensors in remote sensing [11]. In this way, only an internet-
enabled device is needed to allow users all around the world
to contribute to the construction of data and information, which
greatly reduces the cost of data manufacturing and speeds up the
time of data collection and update [39], [40]. For example, Flickr
offers online services for storing and sharing digital photos with
geographic locations based on social network. OpenStreetMap
(OSM) allows for the editing and updating of basic geographic
information, making it more convenient to collect and update the
map information with users’ native experience and knowledge
[41]. Ubiquitous sensors make the acquisition and utilization of
geospatial data more convenient, thus generating various kinds
of formats of geospatial big data [13].
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Fig. 1. Examples of geospatial big data. (a) POIs distribution in Guangzhou,
China. (b) GPS positioning points in Germany. (c) Bus trajectories in Beijing,
China. (d) Street view images in Shenzhen, China.

While the volume of data has increased dramatically, the
computing power and data storage performance of hardware
and software have also been greatly improved and evolved.
Traditional computing infrastructures are no longer suitable to
handle such an enormous volume of complex data with diverse
data formats like texts, images, videos, so it puts forward new
requirements for the processing, management, and storage of
massive data that grow day by day [42]. High-performance com-
puting architectures, most notably cloud computing platforms,
are characterized by excellent parallel computing capability
and large-scale scalability and flexibility in big data processing
through virtualization applications, automated deployment, and
distributed computing [43]. Big data storage techniques, such as
distributed storage systems [44] and NoSQL [45], provide more
flexible, high-performance and parallelizable storage solutions
for massive redundant and complex data storage, and make full
use of hardware resources by adopting distributed and clustered
methods. Moreover, big data have caused a paradigm shift to
data-driven researches [46]. That is to say, traditional rule-based
or conventional statistical methods may not be able to rapidly and
efficiently mine hidden rules from data with unpredictable size
and noise, therefore more advanced data mining and processing
techniques are further required [17]. Especially in recent years,
with the development of the graphics processing unit, deep
neural network, that is, deep learning, has been highlighted in
mining massive data such as text, image, and voice [47]. On
the other hand, deep learning algorithms are also promoted
by the emergence of big data due to the characteristic of
data-driven.

B. Progress in Geospatial Big Data Applications

At present, the emergence of various spatial–temporal big
data, such as the GPS trajectories of taxis, mobile phone signals,
check-in data of social media, smart card records of urban public
transport facilities, points-of-interests (POI), and geo-tagged
photos in Fig. 1, provides many different observation and per-
ception methods for urban environmental researches and urban
policymakers.

For example, Yao et al. [48] abstracted POIs and traffic
analysis zones (TAZ) into words and documents in the field
of natural language processing, respectively. The Word2Vec
model [49] was employed to represent POIs with vectors and
thus TAZs are quantitatively characterized for land use classi-
fication. In [50], the authors constructed a synthesized vector

of mobile phone activity to sense urban land use patterns by
using a semisupervised clustering method. In the literature of
Tu et al. [51], a new approach was proposed to identify urban
functions by integrating mobile phone signals and check-in data.
Based on timing distribution characteristics of mobile phone
data, in-home and working activities were recognized and the
remaining uncertain activities were annotated by the hidden
Markov model with the knowledge mined from social media
check-in data.

In addition to pattern recognition of land use, geospatial big
data are gradually found to play an increasing role in mining
patterns of socioeconomic factors such as human mobility.
For instance, Noulas et al. [52] used online LBS data named
Foursquare to study urban mobility patterns of residents in
several central cities all over the world by analyzing Foursquare
users’ sharing behaviors. Liu et al. [53] adopted check-in data set
collected from a location-based social network service provider
and gravity model to identify patterns of interurban trip. As for
studies related to urban spatial structure, Li et al. [54] proposed
a framework for identifying and evaluating Live-Work-Play
centers using available POIs which can be regarded as a proxy for
identifying urban functions. The results successfully identified
urban subcenter for 23 cities in 2009 and 35 Chinese cities in
2014. Gao et al. [16] successfully used mobile phone data to
find the spatial clustering structures and interaction patterns of
communities.

Compared to POI and mobile phone positioning data, Street
View (SV) images [see Fig. 1(d)] depict urban street landscape
in the format of images rather than texts, thus are getting more
and more popular in various urban studies [55], especially for
assessing urban built environment including urban walking in-
dex evaluation [55], urban street green quantity evaluation [56],
[57], and urban land use classification [58]. For instance, Long
and Liu [57] proposed an automatic method using Tencent online
SV service to determine how green streets are in most Chinese
cities. Also, SV images can also be applied to assess residents’
subjective feelings to urban space [59], [60]. For example, Zhang
et al. [61] employed a fully convolutional network to conduct
semantic segmentation of SV images, and obtained synthesized
features by extracting the pixel proportion of various segmented
objects. They trained a classifier using synthesized features and
proved that the landscape features presented by SV images can
well reflect human perceptions of the city.

C. Social Sensing and Urban Computing

As mentioned above, the spatiotemporal characteristics of
human activities become observable and measurable, which
leads the widespread usage of geospatial big data in social
studies, especially urban studies. In the context of the availability
of applying geospatial big data to mine the human activity
dynamics and socioeconomic characteristics within the city, two
new concepts, that is, “Social Sensing” and “Urban Computing,”
are proposed, providing new methodologies and systems for
urban sensing. The two concepts, proposed by Liu et al. [11] and
Zheng et al. [62], [63], respectively, have attracted significant
interests in urban sensing.
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Fig. 2. False color composition of three social sensing data source during
different times: (a) 8:00 A.M.–9:00 A.M.; (b) 8:00 P.M.–9:00 P.M. in [11].

Social sensing refers to a kind of geospatial big data, which
provides an observation platform for human behaviors, high-
lighting the concept of “crowd sensing” [64]. Regarded as a com-
plement of remote sensing, social sensing data are intended to
detect economic dynamics of human beings such as human mo-
bility, travel behaviors, urban communities, and urban land use
patterns [65]. For example, Fig. 2 presents two false color com-
posite images at 8:00 A.M.–9:00 A.M. and 8:00 P.M.–9:00 P.M.,
respectively. The red, green, and blue channels are characterized
and rendered by check-ins, pickups, and drop-offs, respectively.
Spatiotemporal characteristics of human behaviors can be easily
identified from the false color composite images. In addition
to spatiotemporal behavior mining, social sensing provides a
new approach and perspective to explore the interaction between
human and environment and can applied to address the problem
of inferring land use from land cover information [11], [66].

Urban computing aims to mine knowledge from massive and
heterogeneous data generated by diverse sources and apply these
powerful information to tackle the major problems that cities
are faced with [62], [67]. It has an interdisciplinary field that
combines computing science with transportation, ecology, and
sociology to help us understand the nature of urban phenomena
patterns. As presented in Fig. 3, compared to social sensing
mentioned above, urban computing pays more attention to in-
tegrating basic geographic data, traffic data, mobile signaling
data, social media big data, environmental monitoring data, and
other data into the urban sensing system for service provision
and problem-solving [62].

III. INTEGRATION OF REMOTE SENSING AND

GEOSPATIAL BIG DATA

In this section, we focused on the superiority of the integration
of remote sensing and geospatial big data. We first analyzed
the bottlenecks in researches using traditional remote sensing
images and methods, demonstrating the necessity and feasibility
of the integration of remote sensing and geospatial big data.
To this end, we categorized some typical case studies that use
the combination of multisource geospatial big data and remote
sensing data, in order to clarify the general fusion framework in
current works.

A. Remote Sensing and Spatial Big Data Fusion

Due to ever-advancing technologies, remote sensing is ex-
periencing unprecedented development in recent years, driven

Fig. 3. General framework of urban computing (adapted from [62]).

by sensor advances and an ever-increasing information infras-
tructure [9]. As one of the main tasks of remote sensing, the
interpretation, and extraction of surface information is the basis
and prerequisite for the investigation, detection, monitoring, and
analysis of resources, environment, disasters, and cities [68]. In
recent years, identifying land use and land cover information
on the surface from High Spatial Resolution (HSR) and hyper-
spectral remote sensing images by using advanced and forefront
algorithms has always been a popular research topic in remote
sensing [69]–[74].

Basically, according to the spatial analyzing units, studies of
land use are conducted with three types, among which the pixel
and object units are commonly introduced to evaluate land cover,
while scenes are usually used to infer urban functional zones
and extract urban land use patterns [75], [76]. Several studies
utilized the object-oriented classification models to accurately
mine urban land use patterns by using the physical features (such
as spectral, shape, and texture features) of ground objects [77].
Whereas, these models mainly focus on mining the low-level
semantic land cover information of ground, so that the models of
object-oriented classification generally ignore the spatial distri-
bution of ground elements and semantic features, which causes
the so-called “Semantic Gap” [76], [78]. Being mindful of these
problems, some recent studies adopt scene classification method
by using the bag-of-words modeling methods and integrating the
physical features of ground by the probabilistic topic models to
increase identification accuracy of urban land use with the high-
level semantic information [79], [80]. For example, Zhang and
Du [81] used the linear Dirichlet mixture model to integrate the
HSR images and road data to explore the proportion of land use
in per land parcel. Huang et al. [82] proposed an ensemble SVM
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method with the integration of the multisource geospatial data
(including grid population, grid GDP, nightlight time data, etc.)
to map the regional-scale urban area. Nevertheless, the features
of remote sensing images can only stand for the natural-physical
properties of ground, whereas land use of zonal types often relate
to the human socioeconomic activities, which are very difficult
to be acquired from HSR images [75], [76].

From the above discussion, it can be seen that only the land
cover information (such as forest land, grassland, built-up area)
can be effectively extracted from the spectral information of
remote sensing images, while the land use information (such as
residential land, commercial land, and industrial land) cannot be
distinguished due to its complexity and the similarity of physical
properties [31]. The surface physical information obtained from
remote sensing images can be used to accurately distinguish
among different land cover information, but the identification
ability of complex functional zones in urban areas is poor.
Fortunately, the emergence of geospatial big data provides a
new observation data source for precisely mining urban land use
patterns. Similar to remote sensing data sets, current geospatial
big data abstract people into sensors and thus can capture human
activities better and are more sensitive to our dynamic socioe-
conomic environments [11]. Besides, it is suggested that the
land use information extracted from geospatial big data is more
reliable than those obtained from remotely sensed data [83].

Even so, there are still some inevitable questions waiting to
be considered and solved. To be first, according to the research
conducted by Jendryke et al. [84], there is quite high coherence
between social media big data and urban built-up environment,
that is, most big data representing human activities mainly
distribute in the urban built-up areas. By the way, the inten-
sity of human activities varies among different types of urban
functional areas. Then the question arises, that is, geospatial
big data perform poor in representing and measuring the human
activity characteristics in rural areas with low population and
activity density [11]. Second, knowledge mined and learned
from massive spatial big data in a certain research area is difficult
to migrate to other areas, and different time periods, as well as
special events, have a great impact on the spatial and temporal
patterns of human activities [11]. Third, geospatial big data are
massive, disordered, and heterogeneous and can only represent
the activity characteristics of a certain group of people but rather
all, which makes it very difficult for knowledge mining and
effective integration with other source of data [85].

Therefore, we believe that the coupling of remote sensing
and geospatial big data can greatly improve the recognition
performance of land use patterns and thus assist other appli-
cations from multiple perspectives and scales. Specifically, on
the one hand, the detailed characterization of human behaviors
of geospatial big data provides representative indicators with
finer spatiotemporal scales [86] and thus can make up for the
shortcomings of remote sensing in complex urban functions
identification and real-time continuous dynamic monitoring.
On the other hand, remote sensing images own a wide-field
view and comprehensive observations [9], presenting a more
general understanding in areas that geospatial big data do not
significantly work. Practically, many studies have combined

remote sensing images and geospatial big data together for urban
functional area identification, housing price mapping, disaster
warning, etc.

B. Examples

This section introduced some successful cases of integrating
remote sensing and geospatial big data in a variety of applica-
tions. These examples enable us to generalize and summarize
the general perceptions and methodologies used to integrate
these different but fairly complementary data and to foresee their
future trends. In general, we classify these examples into three
categories, namely, land use and land cover extraction, environ-
mental and disaster monitoring, and socioeconomic dynamics
sensing.

1) Land Use and Land Cover Extraction: As mentioned in
previous sections, land use and land cover have always been an
essential issue in remote sensing and GIS. There has long been
an endure trend in the exploitation of geospatial big data and
remote sensing data for land use and land cover extraction [87],
[88]. To our knowledge, the integration of remote sensing and
geospatial big data in land use and land cover identification can
be summarized in the following two ways: feature fusion and
decision fusion. Examples are given below.

Feature fusion for land use and land cover classification is
commonly and frequently used. In these methods, features are
extracted from multisource geospatial big data, and then data
fusion is achieved through an integration of feature concatenat-
ing. For example, Hu et al. [89] proposed a parcel-based urban
land use classification framework by fusing Landsat remote
sensing images and POIs. In their study, land parcel units were
segmented by trimmed OSM roads and labeled by adopting
a similarity assessment based on the features extracted from
remote sensing images and POIs. In addition to considering
remote sensing images and POI features, Zhang et al. [90] also
integrated the density of Weibo (a social media software like
Facebook) posts to further improve the accuracy of classifica-
tion. Their method shows significant performance in identifying
open space and residential space since Weibo posts contain more
individual details.

Fig. 4 presents the urban scene land use classification
flowchart by fusing multisource geospatial big data in [31]
proposed by Liu et al. They combined the spectral, texture,
GIST features of high-resolution remote sensing images, POI
categorical features, as well as spatiotemporal characteristics of
real-time Tencent user density (RTUD) data for land use scene
classification. Latent Dirichlet Allocation (LDA) topic model
was applied to extract latent high-level semantic information
that can represent land use patterns from the low-level features of
multisource data. After the above feature engineering, an SVM
classifier was adopted to accurately identify land use patterns.
Instead of simply concatenating low-level features of multi-
source big data, high-level semantic features of these hetero-
geneous data were extracted, respectively, and integrated in the
high-level semantic space. In the study of Zhang et al. [91], 13
parcel features, including building characteristics derived from
LiDAR data set, normalized difference vegetation index (NDVI)
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Fig. 4. Urban scene land use classification flowchart by fusing multisource
geospatial big data in [31].

Fig. 5. Procedure of functional-zone classification by using HSC in [82].

extracted from High-Resolution Ortho (HRO) images, and text
information detected from Google Street View (GSV) images,
are chosen as input variables in a random forest classifier for
land use classification. The results indicated that the introduction
of GSV images has a positive effect on improving the overall
classification accuracy. Besides, the feature importance analysis
revealed that the main factors influencing land use classification
are the features derived from LiDAR and HRO images. Features
extracted from GSV images were not significant but played
an important role in improving the classification accuracy of
commercial and residential mixed building parcels.

As shown in Fig. 5, Zhang et al. [87] proposed a novel
method, that is, hierarchical semantic cognition, and integrated
four semantic layers, that is, visual features, object categories,
spatial object patterns, and zone functions, as well as their hier-
archical relations, for land use classification, which outperforms
traditional methods like SVM and LDA. A great innovation is
that a hierarchical structure instead of roughly stacking feature
vectors was put forward to characterize function zones, which
might be a potential and expectable trend in future studies.

Decision fusion refers to the comprehensive analysis and
determination of results derived from multisource big data in
the final stage of land use classification. For instance, Jia et al.

Fig. 6. The structure of the CNN architecture for Weibo message classification
in [26].

[32] obtained land cover map and initial land use map, respec-
tively, based on remote sensing images and real-time population
positioning data. After implementing preliminary results, com-
prehensive land use interpretation was conducted to generate the
final land use map based on rule-based decision fusion methods.

2) Environmental and Disaster Monitoring: In addition to
fundamental geographic features such as land use and land cover,
geospatial big data and remote sensing data can be well inte-
grated to map and forecast natural disasters such as floods and
typhoons [3], [92], which are rather important for researchers
and policymakers.

For example, Wang et al. [93] developed a method for de-
tecting and predicting weather-driven natural hazards (such as
floods, hurricanes, and other severe weather) by integrating
remote sensing and social media data. Their method presented
a novel solution to address the inherent limitations and showed
valuable capability when large areas were affected. Rosser et
al. [94] proposed a rapid flood inundation mapping framework
by using social media, remote sensing, and topographic data. In
their study, geo-tagged photos with keywords of “flood” were
retrieved from Flickr to preliminarily determine the cumulative
viewshed. The Landsat 8 remote sensing images were used for
water detection and DTM was used for aiding flood monitoring.
After that, the above-mentioned data were fused and the results
showed that the combination of these data sources together
enables effective and rapid generation of floodwater inundation
mapping at the pixel level. This is a good example to illustrate
that real-time and reliable ground observation can be achieved
by combing social media big data with complementary remote
sensing data set, which is of great significance for real-time
monitoring and early warning of disasters.

In the experiment of Li et al. [26], social media data were
collected to assist in timely emergency monitoring and response.
In their work, Weibo messages related to rainfall were ac-
quired and input into a Convolutional Neural Network (CNN)
architecture. The structure of the proposed CNN classifier was
illustrated in Fig. 6. For each of these Weibo messages, all the
segmented words were first embedded into distributed encoding
vectors, then the sequences were feed into a CNN architec-
ture to train a discriminating model. The trained model per-
formed well in distinguishing whether a Weibo message was
related to heavy rainfall events. By doing so, real-time extreme
weather and natural disasters information can be obtained for
monitoring, which can further help for decisive and rational
response.

3) Socioeconomic Dynamics Sensing: Due to the human ac-
tivity attributes of geospatial big data, they can be well used to
monitor social and economic dynamics [11], which can make
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Fig. 7. The proposed UMCNN network used to fuse multisource data sets
in [91].

up for the deficiency that remote sensing images can only ob-
serve the physical characteristics of the land surface [31], [95].
Socioeconomic factors, such as poverty and house price, can
now be quantitatively estimated by adopting remote sensing and
geospatial techniques. In fact, there have been studies that iden-
tify poverty in the developing world from HSR satellite imagery
using deep learning techniques [95]. However, geospatial big
data provide more representative information and more timely
response compared with remote sensing data sets.

For example, an interesting case study of fine-grained house
price mapping in Shenzhen, China was presented in [96]. A
total of 4331 sets of valid residence price data in ten dis-
tricts were obtained from the internet. In addition to the HSR
remote sensing image, the POI density images of the study
area were obtained by kernel density estimation, and the traffic
advantage images were obtained by distance analysis of OSM
road network. As previously described, these images produced
based on geospatial big data can act as remote sensing images
collected through crowd sensors. As illustrated in Fig. 7, taking
advantage of HSR remote sensing images and geospatial big
data, the authors integrated them together and inputted them to
a deep neural network, that is, UMCNN, for training to extract
deep features. After multiple times of feature combination, the
results suggested that the introduction of geospatial big data can
improve the mapping accuracy and robustness effectively. In
addition, this research also emitted messages that deep learning
models make it possible for continuous mapping of discretely
distributed urban environmental elements.

More often, geospatial big data and remote sensing data sets
are combined or verified with each other to dig out invisible
patterns. In the research of [97], the visible infrared imaging
radiometer suite (VIIRS) nighttime light data and human dy-
namics were used to analyze the nationwide depopulation in
urban areas during the Chinese New Year. This study explored
the correlation between nighttime light data and social media
human mobility data and indicated that the geospatial big data
show great potential in observing socioeconomic dynamics at
fine-grained timescales.

C. Example Summary

Table I summarizes some cases mentioned in this article that
integrate remote sensing images and spatial big data to improve
application and service capacity. It is not difficult to find the
current researches pay more attention to extracting features from
static geo-tagged point-like data and combining them with fea-
tures extracted from remote sensing images. In fact, there are still

TABLE I
EXAMPLES OF INTEGRATING REMOTE SENSING AND GEOSPATIAL BIG DATA

that is,

many different types of geospatial big data, especially dynamic
or more expressive data, such as trajectory data, crowd profiles,
which can be further explored in remote sensing applications. In
addition to data sources, fusion strategy might be improved by
transforming the linear combination of features into hierarchical
structures. Moreover, popular deep learning technologies such
as CNN, recurrent neural network, and generative adversarial
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network, according to the characteristics and application scenar-
ios of the algorithm itself, may play a role in the integration of
remote sensing images and geospatial big data for environmental
monitoring, evaluation, and prediction [98].

IV. LIMITATION AND FUTURE RESEARCH

Although the integration of remote sensing and geospatial
big data has great potential for overcoming the limitation of
each single source of data, it may also create new problems. For
example, remote sensing data and spatial big data usually have
different spatial and temporal resolutions, so the process of data
fusion is usually time-consuming and it is hard to ensure that the
results are both satisfactory in spatial and temporal resolutions.
Also, due to the difference in data structure, remote sensing data
and geospatial big data are also different in data magnitudes.
Geospatial big data are usually much larger than remote sensing
data, so it is also hard to collect and preserve it. Last, remote
sensing data have wider cover ranges than geospatial big data
since the latter usually concentrates in areas of intense human
activities. Thus, the range of data fusion can only cover the area
where both data ranges overlap.

Despite the limitation, the fusion of remote sensing and
geospatial big data still has great potential. For instance, data
fusion can help us have a better understanding of the interaction
between human activities and natural elements, so how to make
the best of the advantages of each data is worth to being further
studied. Also, most of the existing studies simply fuse both data
and ignore some potential difference, so how to fuse both data
when they are in great difference also needs more attention.

V. CONCLUSION

In this article, we focused on the progress of remote sensing
and geospatial big data and the potential that they can fuse with
each other to provide more information. We first provided an
overview of the research and technological innovation brought
by the explosive growth of geospatial big data. Two popular
concepts, “social sensing” and “urban computing” were in-
troduced to highlight the important role of social media big
data in the study of urban sensing. After that, based on their
respective strengths and weaknesses, we analyzed the feasibility
and application trends of the integration of remote sensing and
geospatial big data. Finally, some examples of combining remote
sensing and geospatial big data to solve practical problems
including land use and land cover extraction, environmental
and disaster monitoring, and socioeconomic dynamics sensing
were reviewed, demonstrating the effectiveness of introducing
geospatial big data into remote sensing applications.

As location-based human activity information becomes more
pervasive, refined, and accessible, geospatial big data will play
an irreplaceably significant role in various aspects integrating
with remote sensing. Remote sensing information will be or-
ganically coupled with citizen sensing knowledge to provide
efficient decision-making support from multiple perspectives
and scales, driving the remote sensing applications to a new
paradigm shift. However, many pieces of research mainly focus

on the concatenation of multiple features and many issues re-
main to be explored, such as the representativeness and locality
of geospatial big data. Moreover, the way of multisource geo
big data fusion requires further exploration and validation. We
believe that data sources, fusion strategies, as well as analytical
approaches will get dramatic improvements with the develop-
ment of emerging technologies and the popularity of interdisci-
plinarity. More expressive and dynamic geospatial big data such
as trajectory flow and user profiles, as well as more advanced and
automated algorithms especially deep learning techniques, will
be employed in the hierarchical integration of remote sensing
and geospatial big data.
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