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A B S T R A C T   

It is important to measure uncoordinated regional urban economic development to help guide government 
policy. However, previous models have often struggled to capture the fine-grained spatiotemporal characteristics 
of economic development, thereby failing to provide insight into the fine-scale patterns. Sectoral structure and its 
evolution are strongly related to economic development and provide finer spatial information. Therefore, this 
paper proposes a framework for forecasting the spatiotemporal evolution of urban economic development at the 
cadastral parcel scale based on sectoral land use dynamics modeling and the S-curve economic model. The results 
of the case study conducted in Shenzhen, China, show good performance (FoM = 0.182, average R2 

= 0.748, 
median R2 = 0.877). The sectoral structure in high-economic-level areas was found to be more balanced, and the 
economic volume tended to increase more. In contrast, sectoral land use types change more frequently in low- 
economic-level areas, and the economic growth rates are generally higher due to their lower economic base. 
Without government intervention, disparities in simulated economic volumes between regions will continue to 
widen in the short term. Hence, the government is encouraged to consider optimizing the sectoral structure in 
low-economic-level areas to promote coordinated regional economic development.   

1. Introduction 

In the 21st century, the problem of uncoordinated regional economic 
development has become increasingly serious in China as urbanization 
accelerates (Nishimura, 2020). Most of the regions in China still follow 
an inefficient land-extensive mode of economic development (R. Yin, Li, 
& Fang, 2023). The government’s excessive focus on economic growth 
has led to an uncontrolled expansion of urban land. It eventually leads to 
an imbalance between urban land development and the economic 
development of cities (Zhu & Du, 2021). However, optimizing the sec-
toral structure of cities can improve resource utilization and promote 
high-quality economic development, which is the key to solving the 

imbalance (Liu et al., 2021). The sectoral structure of cities has evolved 
dramatically with urbanization, which has given impetus to economic 
development(Irfan, Razzaq, Sharif, & Yang, 2022). In addition, a change 
in the major economic sector also affects the change in sectoral structure 
in terms of production and consumption (Liang et al., 2021a,b). Thus, 
studying the pattern of urban economic development can provide a 
reference for governmental decisions in coordinating urban economic 
development, thereby promoting common prosperity and maintaining 
social harmony and stability. 

Sectoral structure and its evolution are key to measuring and un-
derstanding regional economic development. They are highly correlated 
with the quantity, quality, and spatial patterns of regional economic 
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growth (Chen & Peng, 2018). Additionally, they can reveal the rela-
tionship between urban land use and economic development (Nasiri 
et al., 2019). However, the previous urban sectoral structure research 
faces several issues. First, the evolution of the urban sectoral structure 
has a significant spatial spillover effect on economic development (Shi, 
2020). The previous research on sectoral structure evolution and its 
relationship with economic development is mainly studied at macro 
scales, e.g., the provincial, city, and county scales (Liu, Yang, & Chen, 
2011; Liu, Xue, Chen, Miao, & Shi, 2022; Wu, Wei, Huang, & Chen, 
2017; Yin et al., 2023; Zeng, Hu, & Zhong, 2023). 

However, studies at coarse spatial scales often fail to accurately 
reveal the spatial relationship between sectoral structure and economic 
development (L. Guo & Liu, 2022; Jun Li, Hu, & Xu, 2010). In addition, a 
coarse spatial scale will further affect the accuracy of analyzing the 
urban land-economic impact mechanism and the coordinated develop-
ment of intracity regions (Hazell & Rinner, 2019). Further, how to model 
the evolution of the sectoral structure is still not sufficiently discussed. 
Previous models conducted economic forecasting mostly based on static 
panel data, without access to the dynamic spatiotemporal evolution of 
sectoral structure and economic development information (Wang, Ren, 
& Zhou, 2021). As a result, it is difficult to properly understand micro-
scale urban economic change and potential development issues. In short, 
the study of the sectoral structure and its evolution requires not only 
further refinement of the spatial scale but also an expansion of its tem-
poral coverage. 

Land use and sectoral structure are strongly correlated. Their rela-
tionship is important for the coordination of various urban elements, e. 
g., population, land, and industry (Zhang & Weng, 2022). The devel-
opment of the sectoral structure can be revealed by the corresponding 
development of land use (Zhang et al., 2005). The urban land-use system 
and the economic system together form a typical urban land-economic 
system. Moreover, an inherent need to coordinate between the two ex-
ists because of this interaction (Liu et al., 2014a,b). Cellular automata 
(CA) models are the most common used and effective computational 
modeling technique for simulating urban land use system (Barredo, 
Kasanko, McCormick, & Lavalle, 2003; Liang et al., 2021b; Liu et al., 
2014a,b; Santé, García, Miranda, & Crecente, 2010; Wu, 2002a,b). In 
the actual situation of urban planning, urban land uses are usually 
planned in terms of the cadasters as the basic units, which are usually 
irregular shapes (Rabbani, Aghababaee, & Rajabi, 2012). Conventional 
raster-based CA models struggle to accurately represent the geometric 
realism of urban land by simply treating urban land as regularly shaped 
discrete pixels (Barreira-González, Gómez-Delgado, & Aguilera- 
Benavente, 2015). 

Vector-based CA (VCA), a state-of-the-art type of CA models, was 
proposed to more accurately represent urban land as irregularly shaped 
cadastral polygons in vector format (Lin, Li, Wen, & He, 2023; Moreno, 
Ménard, & Marceau, 2008). It shows advantages in simulating the detail 
and complexity of spatial change in the urban land use system at the 
cadastral scale. VCA models have been proven to better meet the prac-
tical needs of cadastral parcel-based land management in urban plan-
ning, and more accurately simulate urban land use dynamics than 
conventional raster-based CA models (Abolhasani, Taleai, Karimi, & 
Rezaee Node, 2016; Guan, Xing, Li, & Wu, 2023; Isinkaralar & Varol, 
2023). Thus, VCA model can be used to help analyze the distribution 
pattern of economic development at the fine scale of cities from the 
perspective of land use and sectoral structure. It has the potential to help 
urban planners to identify the mechanism influencing economic devel-
opment and sectoral structure, adjust regional land use policies, improve 
regional sustainable development performance (Wang et al., 2022), and 
ultimately achieve efficient, green, and sustainable use of land resources 
(Li et al., 2021). 

This paper proposes a framework for predicting the spatiotemporal 
evolution of urban economic development at a fine scale. By using 
sectoral attributes as mediating variables, this paper aims to integrate 
urban land use dynamic and economic forecasting to achieve the 

simulation of spatio-temporal change of economic development in 
mega-cities. In contrast to with current studies, whose results mostly 
only remain at a coarse spatial granularity, e.g., provinces, cities or 
districts, this study achieves the fine-grained simulation of economic 
forecasting at the cadastral parcel granularity. A case study was con-
ducted in Shenzhen. In general, the proposed framework is used to 
simulate the development of diverse sectoral land use types at the 
cadastral scale in urban areas. Then, the cadastral-scale economic 
growth trend of diverse sectoral land use types is predicted. Finally, the 
spatial pattern of economic growth at the fine scale can be analyzed. The 
results can help to analyze the impact of economic growth on urbani-
zation at the fine scale and assist decision-making in proposing policies 
that are appropriate to local conditions. 

2. Literature review 

2.1. Relationship between sectoral structure, economic development, and 
land use 

The study of the sectoral structure of urban land has positive im-
plications for urban planning and design. An optimal sectoral struc-
turing of urban land can promote positive economic development, 
provide more jobs, and promote the process of urbanization (F. Lu & 
Gao, 2008). In terms of research methodology, a combination of quali-
tative and quantitative analyses is usually used to describe and verify the 
relationship between urban sectoral structure and economic develop-
ment (Fang & Sun, 2018; Gregory & Griffin, 1974). From a systemic 
perspective, the economy shows an important influence on the effi-
ciency of urban land use (Yin, Li, & Fang, 2023). Many methods have 
been proposed to evaluate urban land efficiency (Guo et al., 2007), the 
mechanisms of land use evolution (Su, He, & Fang, 2011), and regional 
differences at different spatial scales (Kline & Alig, 2001; Stoorvogel & 
Antle, 2001). 

The transformation from the inefficient land-extensive mode to the 
efficient land-intensive mode of urban development can help optimize 
the allocation of land resources and promote economic development. 
Therefore, the study of the land-intensive mode has attracted great 
attention from scholars and governments in China (Liu et al., 2014a,b). 
Scholars hope to obtain fine-grained regional economic patterns to help 
analyze the two-way relationship between urban land use and economic 
development, thereby contributing to regional coordinated 
development. 

2.2. Urban economic modeling 

In recent years, traditional quantitative statistical models have been 
gradually combined with spatial analysis methods, leading to larger 
spatial scale of analysis (Smętkowski, 2015). In the field of economic 
forecasting, performance largely depends on the appropriateness of the 
chosen economic forecasting method (F. Lu & Gao, 2008). Economic 
forecasting methods include qualitative forecasting methods (e.g., sub-
jective probability methods, cross-probability methods, expert surveys, 
etc.) and time series forecasting methods (Pesaran, Schuermann, & 
Smith, 2009), causal analysis methods (Gorus & Aydin, 2019) and 
neural network modeling methods (Cai, 2021). In the field of time series 
forecasting methods, the S-curve model has been proposed to describe 
the phenomenon of initial low growth, followed by faster growth and 
then slow growth at the end (X. Gao, Wang, Liu, Liu, & Yan, 2019). It has 
been applied to quantify the relationship between individual sectors 
such as energy and steel and economic development (Guo et al., 2022). 
The model has also been applied to studies of economic growth fore-
casting (Hidalgo & Hausmann, 2009) and urban expansion (Liu et al., 
2017). Economic forecasting studies based on time-series data usually 
have a small sample size of data. It is generally demonstrated through 
statistical methods, such as significance test, to verify the quality of the 
data and evaluate the regression model. (Baitinger, 2021; Kouziokas, 
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2020). However, most current studies focus only on the impact of a 
single sector on economic development (Gunay, Can, & Ocak, 2021). 
Additionally, most current studies are conducted at coarse spatial 
granularities, e.g., nation, province, city scales (Christensen, Gilling-
ham, & Nordhaus, 2018), and metropolitan area (Du, Ge, & Sun, 2021). 
In summary, the choice of economic forecasting methods should 
consider the various contributing factors and the spatial granularities. 

2.3. Cellular automata models for urban land use simulations 

CA models are designed as a bottom-up simulation approach (Li, 
Yang, & Liu, 2008) to simulate the change in cells based on spatial- 
related rules (Li et al., 2013; Yang et al., 2015). Traditional Geo-CA 
models with regular grids are generally considered more suitable for 
large-scale spatial modeling (Al-kheder et al., 2009; Liang et al., 2021a, 
b; Liu et al., 2017a,b).However, the basic units of urban planning are 
usually cadastral parcels, i.e., irregular polygonal blocks (Dahal & 
Chow, 2015). The value of urban land is not only a key indicator of the 
economic status of a city, but also has the potential to attract larger 
populations and businesses, which can further contribute to the eco-
nomic growth of the city (Peng, Song, & Han, 2017). Such development 
also has an impact on the demand for urban land for diverse sectors (J. 
Gao, Wei, Chen, & Chen, 2014; Shu, Xie, Jiang, & Chen, 2018). In this 
context, the application of VCA is particularly important. Because it is 
able to model intra- and inter-city land use dynamic by capturing the 
distances, connectivity, and spatial interactions between different land 
parcels (Y. Lu, Cao, & Zhang, 2015). By capturing the geographic 
characteristics based on urban irregular cadasters, VCA can simulate the 
details and complexity of land use within high-density cities at a fine 
spatial granularity, and better adapt to the irregularity of sectoral land 

use dynamics (Moreno, Wang, & Marceau, 2009). Therefore, vector- 
based CA (VCA) models are proposed to represent irregular 
geographic cells and to simulate land use changes at a finer scale to 
predict the evolution of urban development (Moreno et al., 2008). 

VCA models can better fit the actual urban land use conditions 
(Dahal & Chow, 2014) and are more advantageous for fine-scale ur-
banization simulations (Jia et al., 2020). Yao et al. (2021) designed 
UrbanVCA, a cadastral-scale urban development simulation framework 
based on the VCA model, which supports various machine learning al-
gorithms to enable the simulation of future land use patterns under 
diverse scenarios (Yao et al., 2021). Since urban renewal within the city 
has a strong influence on economic growth, this paper uses the VCA 
model to simulate the evolution of sectoral land use in our study area. 

3. Study area and data 

Our study area is Shenzhen, Guangdong Province, China. Shenzhen, 
located in South China (Fig. 1 (A) (B)), is a special economic zone as well 
as one of the important national economic centers in China (Zhang et al., 
2022). According to official data published by the Shenzhen Bureau of 
Statistics (https://tjj.sz.gov.cn/), the city had a total area of 1997.47 
km2 and a resident population of 17,763,800 in 2020. Shenzhen is 
therefore well represented in the changing economic trends of China’s 
megacities. 

Land use data are the basis for conducting simulations of sectoral 
land use evolution, as well as analyzing regional economic patterns. The 
land use data for this paper are vector-based cadastral land use data 
obtained from the Shenzhen Municipal Bureau of Planning and Natural 
Resources (https://pnr.sz.gov.cn/). The 2011 and 2014 land use data 
were used, containing a total of 120,547 cadastral parcels. The raw land 

Fig. 1. Study area - (B) Shenzhen, located in (A) Guangdong Province, China, and sectoral land use data in (C) 2011 and (D) 2014.  
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use types were reclassified into sectoral land use types based on the 
designed rule (Table S1). The sectoral land use data are shown in Fig. 1 
(C) and (D). The county-scale administrative boundaries for 2011 were 
used since the land use data for 2011 and 2014 were used. 

The economic data in this paper are the official gross domestic 
product (GDP) data of each district and sector from 2011 to 2020. They 
are obtained from the 2011–2020 Statistical Yearbook issued by the 

Shenzhen Municipal Bureau of Statistics. The economic statistics of nine 
sectors are included, i.e., primary sector, industry, construction, trans-
portation and warehousing, wholesale and retail, catering services, 
finance, real estate, and other services. 

The spatial driver data for this paper are a set of contributing factors 
for sectoral land use evolution in cities. The evolution of urban sectoral 
land use is often affected by economic and social factors simultaneously 

Fig. 2. Spatial auxiliary variables for urban land use dynamic modelling.  
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(Glaeser & Gottlieb, 2009; F. Wu, 2002a; Xu & Feng, 2022). Thus, the 
selected contributing factors consist of economic factors (e.g., density of 
shopping, factory facilities), social factors (e.g., density of trans-
portation, medical facilities), political factor (distance to government) 
and location factor. Spatial drivers are obtained from the Point of In-
terest (POI) data in 2015 from Gaode Map (https://lbs.amap.com/), as 
well as the road network data from OpenStreetMap (https://www.ope 
nstreetmap.org/). And then the kernel density analysis is applied to 
process the above data to obtain spatial auxiliary variables. The band-
width of kernel density analysis determines the level of details of the 
generated density raster. This study applied the Silverman’s rule of 
thumb to set an appropriate bandwidth for different datasets (X. Liu 
et al., 2017a; Silverman, 2018; J.-D. Zhang & Chow, 2015). Next, the 
spatial ancillary variables were projected and resampled onto the raster 
layers with the same geographic coordinate system and the 30 m spatial 
resolution. Last, all the spatial ancillary variables were normalized in a 
range of [0,1] (Fig. 2). 

4. Methodology 

The proposed framework includes the following three steps (Fig. 3). 
In the first step, the overall development probabilities of all sectors were 

first calculated through a random forest algorithm. The future total land 
stocks for each sector are then predicted through the Markov chain 
models. The evolution of sectoral land is simulated based on the VCA 
model. In the second step, the S-curve model was introduced to 
construct an economic forecasting model that considers location and 
sectoral land use type. The spatial patterns of sectoral land use and 
economic growth in each district are analyzed. In the third step, the 
economic output indicators for each sector in each district were calcu-
lated by combining the predicted sectoral land use data with the pre-
dicted economic data for each sector from the zoning statistics. These 
indicators are then assigned at the cadastral scale based on sectoral land 
use type, land area, and location attributes. Thus, regional fine-grained 
economic growth can be obtained. 

4.1. Dynamic simulation for urban sectoral land uses 

This section describes the details of the VCA model used to simulate 
the evolution of sectoral land use. The average of the spatial auxiliary 
variables for each parcel is defined as X. The evolved sectoral land use 
type is defined as Y. The sectoral land use evolution model is constructed 
as Y = f(X). The transformation probability for each sectoral land use 
type Yi is calculated based on the random forest algorithm. These Yi are 

Fig. 3. Workflow of the proposed framework.  
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taken as the overall development probability of each parcel P0. Mean-
while, the mass interception buffer method is also used to calculate the 
neighborhood effect φ for each parcel since the development of the cell’s 
neighborhood also affects the evolution of the cell’s sectoral land use. 
The model introduced a random factor RA = 1+(− lny)α considering the 
uncertainty in the evolution of sectoral land use. α refers to a parameter 
between 1 and 10, while y is a random value between 0 and 1. 

Here, the VCA model used in this paper, called random forest-based 
VCA (RF-VCA), can be expressed by the following equation. 

Pk,t
i = P0

k,t
i × φk,t

i × RA (1) 

where Pk,t
i ,P0

k,t
i ,φk,t

i indicates the transformation probability, the 
overall development probability, and the neighborhood effect of parcel i 
transformed into sectoral land use type k at time t, respectively. 

Finally, a Markov chain (D. Guan et al., 2011) is used to predict the 
future total land stock for each sector (Zhang et al., 2011). Therefore, the 
future evolution of sectoral land use can be simulated based on the total 
land stocks. 

4.2. Fine-grained forecasting of urban regional economic development 

4.2.1. Location- and sector-based economic forecasting 
Based on the simulated urban sectoral land use, the S-curve model is 

used to forecast future economic growth using economic data from 2011 
to 2020 (Wang et al., 2022a,b). The S-curve regression allows for good 
control of the maximum environmental carrying capacity of the targeted 
location. The economic development trend of sectors that are mature in 
terms of megacities may eventually reach a steady state (Siedlecki, 
Papla, & Bem, 2018). The equation for fitting the economic growth 
curve for each sector at each location is as follows: 

GDPt
ij =

K
1 + a • e− bt (2) 

where GDPt
ij denotes the economic output value of the j-th sectoral 

land use type in the i-th administrative unit in year t. K indicates the 
maximum environmental carrying capacity, and a and b control the 
growth direction and speed of the curve. 

The regional curve of overall economic output can be described as 
follows: 

GDPt =
∑n

i

∑m

j
GDPt

ij (3) 

where GDPt
ij denotes the forecasted economic output in year t for 

sectoral land use type j at parcel i, and GDPt refers to the forecasted 
economic output in year t for the whole city. 

4.2.2. Fine-grained spatiotemporal economic growth calculation 
Each region of a city has a different economic development status, 

sectoral structure, and sector with the highest economic contribution 
(Jiang et al., 2017). To better adjust the spatial scale of the economic 
allocation, district- and county-scale land area data and sectoral eco-
nomic data are used to calculate the economic output at the cadastral 
parcel scale. First, the land area of each district unit and each sector is 
calculated based on the cadastral sectoral land use data. Second, the 
economic data of each sector in each district unit are collected based on 
official statistical documents. Finally, the economic output of each dis-
trict unit is allocated based on the area and sector land use type of each 
cadastral parcel. The equation is as follows: 

Ek
ij =

Gi
j × Sk

∑

k
Sk

(4) 

where Ek
ij represents the economic output of the k-th parcel in the i-th 

district unit with the j-th sectoral land use type. Gi
j denotes the GDP 

volume of the j-th sectoral land use type officially published in the i-th 
district unit. Sk indicates the area of the k-th parcel. The spatiotemporal 

pattern of the urban economic output at the cadastral parcel scale can be 
obtained based on the above economic output. 

4.3. Accuracy assessment 

4.3.1. Accuracy assessment of urban sectoral land use simulation 
Figure of merit (FoM) can be used to focus more on parcels that have 

changed sectoral land use type in the simulated urban sectoral land use 
evolution (Zhai et al., 2020). This paper applies FoM, PA, and UA to 
evaluate the accuracy of urban sectoral land use evolution simulation. 
Their equations are as follows: 

FoM =
B

A + B + C + D
(5)  

Producer′saccuracy(PA) =
B

A + B + C
(6)  

User′saccuracy(UA) =
B

B + C + D
(7) 

where A, B, C, and D indicate the parcels that remain unchanged in 
the simulation while in the ground truth the parcels have changed, the 
parcels that correctly predict land-use change as well as the land-use 
type, the parcels that correctly predict land-use change but with an 
incorrect land-use type, and the parcels that have land-use change in the 
simulation while in the ground truth the parcel remains unchanged, 
respectively. 

In terms of land area for each sectoral land use type, the accuracy is 
assessed at the district scale by comparing the simulated results and the 
ground truth from the official statistics. The equation is as follows: 

Accuracyij = 1 −

⃒
⃒
⃒Asimulation

ij − Ature
ij

⃒
⃒
⃒

Ature
ij

× 100% (8) 

where Accuracyij,Asimulation
ij , andAture

ij indicate the accuracy, the simu-
lated land area, and the ground truth of the j-th sectoral land use type in 
the i-th district unit. 

4.3.2. Accuracy assessment of regional economic forecasting 
In this study, the accuracy of the economic forecasting models was 

evaluated using the coefficient of determination (R2), mean absolute 
percentage error (MAPE) and symmetric mean absolute percentage 
error (SMAPE). R2 is a statistical measure of how well the regression 
model fits the observations, ranging from 0 to 1. The closer the value of 
R2 is to 1, the better the fit of the regression model to the observations. 
Conversely, the smaller the value of R2 is, the worse the fit of the 
regression model to the observations. 

R2 =
SSR
SST

= 1 −
SSE
SST

(9)  

SST =
∑n

i=1
(yi − yi)

2 (10)  

SSR =
∑n

i=1
(ŷi − yi)

2 (11)  

SSE =
∑n

i=1
(yi − ŷi)

2 (12) 

where y, y, ândy represent the economic output to be fitted, the 
average, and the fitted economic output. SST, SSR, and SSE indicate the 
sum of squares total, the sum of squares regression, and the sum of 
squares error, respectively. 

Mean Absolute Percentage Error (MAPE) is a statistical indicator 
commonly used to measure the accuracy of regression, such as time 
series forecasts. The MAPE coefficient ranges from [0,+∞]. The smaller 
the MAPE, the better the model results. A model with a MAPE over 100 
% indicates a poor model. SMAPE is a corrective indicator for the 
possible problems of MAPE, which can avoid the problem of MAPE being 
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asymmetric, i.e., biased towards large values. Their equations are as 
follows. 

MAPE =
100%

n
×
∑n

i

⃒
⃒
⃒
⃒
ŷi − yi

yi

⃒
⃒
⃒
⃒ (13)  

SMAPE =
100%

n
×
∑n

i

|ŷi − yi|

(|ŷi| + |yi| )/2
(14) 

where ŷi, yi and n refer to the predicted value, the actual value, and 
the total sample size. 

5. Result 

5.1. Result of sectoral land use modeling 

5.1.1. Validation of sectoral land use simulation 
The VCA model has reached the desired accuracy (Yao et al., 2021). 

The results show that the FoM, PA, and UA of the simulated sectoral land 
use evolution in 2014 are 0.182, 0.324, and 0.280, respectively. Overall, 
these indicators show a good performance of urban land change simu-
lation. Thus, future sectoral land use can be predicted via this VCA 
model. 

To further verify the local accuracy of the land area simulation, the 
simulated results of each sectoral land use type in each district unit in 

Fig. 4. Results of sectoral land evolution simulation in Shenzhen in 2014, 2017, and 2035. (A) Example in Baoan District, (B) example in Dapeng Peninsula. The 
black dashed boxes indicate the areas where the sectoral land use types were transformed. 
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2014 are compared with the ground truth. The majority of the models 
achieved more than 90 % accuracy. The simulation results of other fitted 
models also achieved good accuracy and can be used for future sectoral 
land use change prediction (Table S2). 

5.1.2. Spatiotemporal pattern of sectoral land use evolution 
The future land stocks for each sectoral land use type in 2017, 2026, 

and 2035 were predicted through the Markov chain model. The evolu-
tion of urban sectoral land use in 2017, 2026, and 2035 was simulated 
(Fig. 4) based on the future sectoral land stocks. In terms of spatial 
pattern, the four special economic zones (i.e., Luohu, Futian, Nanshan, 
and Yantian districts) cover the most diverse sectoral land use types and 
most balanced sectoral land areas. These are followed by Baoan District 
and Longgang District, with large and balanced land areas in all sectors 
except the primary sector. The land area of the primary sector is 
dominant in Guangming District, Pingshan District, and Dapeng Penin-
sula, indicating a poor balance of sectoral land areas. 

From the perspective of temporal trends, the land area and spatial 
pattern of sectoral land use in Shenzhen reach a stable state when 
comparing these three timeframes. In this study, representative high and 
low economic zones in Shenzhen were selected for comparison and 
analysis. It was found that the areas of high economic levels (Fig. 4 (A)) 
have fewer sectoral type changes in land compared to the lower eco-
nomic level areas (Fig. 4 (B)). This result may reflect that the sectoral 
structure of land in high economic level areas of megacities is relatively 
stable; in lower economic level areas, the probability that urban land 
will maintain a frequent sectoral-type change in the future to better 
adapt to regional economic development is higher. 

5.2. Predicted economic growth considering location and sector 

This section aims to analyze the predicted result of location- and 
sector-based economic forecasting. Since the administrative division in 
Shenzhen changed after 2014, this paper uniformly follows the eight 
administrative divisions of the Futian, Luohu, Yantian, Nanshan, Baoan, 
Guangming, Longgang, and Pingshan districts. 

5.2.1. Fitting accuracy 
In this study, the significance test was first carried out to verify the 

validity of the economic data used in this study, followed by the error 
analysis of the sector-based models and the location-based models. All 
models passed the significance test with the p-values less than 0.001, 
proving the reliability of the economic data in this study (Table S3). Both 
the sector- and location-based economic models show a good perfor-
mance. Moreover, Table 1 shows that all models can achieve an R2 of 0.9 
or more, except for the model for the primary sector, which has an R2 of 
0.806. The MAPE and SMAPE of all the economic forecasting models in 
this study are within 5 %, except for the models for the primary and 
construction sectors, indicating good performance of the models. Thus, 
these S-curve models have an acceptable degree of accuracy and can be 
used to forecast the economic growth of each sector in each adminis-
trative region. By using this strategy, these S-curve models can address 
regional and sectoral heterogeneity very well. The predicted results 

show that all the economic curves are in growth mode, indicating that 
the future trend of economic development of Shenzhen will continue to 
increase. At the same time, the economic growth trend can be catego-
rized into three trends: stable growth, decelerating growth, and accel-
erating growth. 

5.2.2. Economic analysis 
For comparative analysis of the fitted model parameters for the 

sectoral economy, Futian District and Pingshan District were selected as 
representatives of high- and low-economic level areas, respectively 
(Table 2). Please check Table S4-S11 for the remaining results. Table 2 
reveals a Matthew effect in the differences in regional economic growth. 
The Matthew effect of accumulated advantage refers to the tendency of 
individuals to accrue social or economic success in proportion to their 
initial level of popularity, friends, wealth, etc. In the S-curve models, K 
represents the bounded amount of economic output, revealing the 
feature of the economic curve. Although the overall economic level of 
the two regions is different, the economic level of the sectors within each 
region has the regional strength. Parameters a and b can reveal the 
growth trend and speed of the curve. The higher the value of a is, the 
slower the economic growth, indicating that the corresponding sector in 
the region is entering a mature stage, while b has the opposite effect. 
Table 2 shows that the overall economic output is higher in the region 
with a high economic level. Although the economic growth rate may 
slow down, the value of economic growth will be higher. Thus, the total 
economic growth in the high economic areas is greater, and the regional 
gap in economic levels will further widen. Based on the accuracy of these 
models, the economy of each district and sector in Shenzhen is fitted to 
predict future economic outcomes (Figures S1-S16). 

The trends of the fitted curves for the various sectors in Shenzhen are 
generally consistent with the distribution of sample points (Fig. 5). The 
economic growth of all sectors and locations in Shenzhen shows an 
upward trend. However, there are still some differences. For example, 
the sectoral land uses for industry, wholesale and retail, and other ser-
vices tend to grow before maintaining stability in future years. This 
indicates that the development of such sectors tends to be mature and 
stable. However, the sectoral land use for the primary sector and 
financial services shows a continuous rapid growth trend in economic 
development. 

5.3. Spatiotemporal pattern of forecasted urban economic growth 

The heterogeneity of sectoral economic levels in both spatial and 
temporal dimensions is revealed by the forecasting of the fine-grained 
economic levels. Fig. 6 shows the forecasted results of the fine-grained 
economic levels in Shenzhen for 2017, 2026, and 2035. Several pat-
terns emerged. 

From the spatial perspective, the overall economic level of Shenzhen 
is high in the west and low in the east. The spatial characteristics of 
economic levels within urban and county-level administrative regions 
and their association with sectoral structure are linked in some cases. 
The central part of Nanshan District, which is mainly covered by in-
dustrial land and land for other services, shows the highest economic 

Table 1 
Accuracy of economic fitting S-curve models for different sectors and different locations in Shenzhen.  

District R2 MAPE SMAPE Sectors R2 MAPE SMAPE 

Futian District  0.993  1.247 %  1.245 % Primary sector  0.830  9.705 %  9.443 % 
Luohu District  0.983  2.043 %  2.031 % Industry  0.961  3.192 %  3.176 % 
Yantian District  0.994  1.009 %  1.008 % Construction  0.953  6.013 %  5.977 % 
Nanshan District  0.977  3.657 %  3.637 % Wholesale and retail  0.935  2.950 %  2.936 % 
Baoan District  0.983  3.018 %  2.999 % Transportation and storage  0.904  4.593 %  4.536 % 
Guangming District  0.989  2.591 %  2.617 % Accommodation and catering  0.884  3.600 %  3.568 % 
Longgang District  0.976  4.434 %  4.397 % Financial services  0.980  2.970 %  2.964 % 
Pingshan District  0.985  3.192 %  3.186 % Real estate  0.988  2.703 %  2.725 %     

Other services  0.991  3.133 %  3.144 %  
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level in the whole city. The western part of Guangming District, which is 
dominated by industry, has a significantly higher economic level than 
the eastern part of Guangming District, which is dominated by the pri-
mary sector. The lands in Pingshan District and Dapeng Peninsula, 
which are mainly covered by primary sector land use, generally have 
lower economic levels, except for a few lands designated for industry 
and financial services. Moreover, the sectoral structure in the high- 
economic-level areas such as Futian District, Luohu District, and Nan-
shan District is more balanced and corresponds to a higher economic 
level than other districts. The lands in the low-economic-level areas, 
such as Pingshan District and Dapeng Peninsula, are dominated by the 
primary sector with a lower economic level. 

From the temporal perspective, the overall economic level of 
Shenzhen has been increasing year by year on the macro scale. However, 
at the micro scale, the economic level of the low-economic-level regions 
(Fig. 6 (C) (D)) has been increasing more significantly than that of the 
high-economic-level regions (Fig. 6 (A) (B)). This may be related to the 
fact that the low-economic-level regions start from a lower economic 

base and have a greater potential for development, while the high- 
economic-level regions tend to be saturated with economic 
development. 

The refined changes in economic levels predicted effectively tap into 
the spatial heterogeneity at regional economic levels. Fig. 7 shows the 
differences in the amount and rate of economic growth for each land 
parcel between 2017 and 2026 and 2035. In terms of the change in GDP 
volume, a larger increase occurs in high-economic-level areas such as 
the south-central Nanshan District. Lower-economic-level areas experi-
ence a small increase in GDP. A slight decrease occurs in some areas of 
the Pingshan District. In terms of temporal trends, the GDP volumes 
from 2017 to 2026 and 2026 to 2035 have their ups and downs. For 
example, from 2026 to 2035, the western part of Guangming District 
shows a substantial increase in GDP, while in contrast, the eastern part 
of Luohu District and the northwestern part of Yantian District show a 
smaller increase in GDP. In general, larger increases exist in weaker 
economic areas such as Guangming District, Longgang District, and 
Dapeng Peninsula. 

Table 2 
Parameters of the S-curve models for Futian District and Pingshan District.   

K  a  b   

Futian District Pingshan District Futian District Pingshan District Futian District Pingshan District 

Overall 7.94× 107 2.01× 107 3.17× 101 7.05× 101 1.56× 10− 1 1.59× 10− 1 

Primary sector 2.53× 104 7.43× 107 2.79× 101 1.34× 104 3.63× 10− 1 -5.34× 10− 3 

Industry 1.81× 106 1.61× 107 4.32× 10− 1 8.84× 101 5.93× 10− 1 1.32× 10− 1 

Construction 7.32× 1012 4.50× 105 4.24× 107 1.53× 101 1.61× 10− 1 4.68× 10− 1 

Wholesale and retail 6.85× 106 4.80× 105 1.69× 101 3.06× 101 9.01× 10− 1 3.74× 10− 1 

Transportation and storage 5.14× 1012 7.24× 104 7.68× 106 2.64× 101 7.61× 10− 2 4.33× 10− 1 

Accommodation and catering 4.59× 1010 8.32× 104 1.14× 105 1.33× 101 4.33× 10− 2 3.81× 10− 1 

Financial services 2.45× 1014 5.30× 105 3.78× 107 8.33× 101 1.07× 10− 1 2.86× 10− 1 

Real estate 5.90× 106 3.06× 1012 4.01× 101 1.35× 107 1.84× 10− 1 9.87× 10− 2 

Other services 1.56× 107 2.37× 106 3.30× 101 1.82× 101 2.89× 10− 1 3.32× 10− 1  

Fig. 5. Forecasted economic growth for each sector (A) in each region (B).  
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However, the largest GDP increase is found in some strong economic 
areas (i.e., Nanshan District and parts of Yantian District). The GDP 
growth rate is significantly lower from 2026 to 2035 relative to that 
from 2017 to 2026. Most notably, the GDP trend changes from 
increasing to decreasing in the eastern part of Luohu District and the 

south-central part of Yantian District. Hence, under the strategy of un-
controlled economic development, the overall economic level of the city 
will improve in the future, but the gaps in economic volumes between 
districts will widen further in the short term. 

Fig. 6. The fine-grained spatial distribution of economic levels in Shenzhen. (A) Example in Futian District. (B) Example in Guangming District. (C) Example in 
Longgang District. (D) Example in Dapeng Peninsula. 

Fig. 7. Temporal changes in economic level and growth rate and their spatial distributions. The change in economic level from 2017 to 2026 (A) and from 2026 to 
2035 (B). The economic growth rate from 2017 to 2026 (C) and from 2026 to 2035 (D). 
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6. Discussion 

This paper proposes a framework for predicting the spatiotemporal 
evolution of urban economic development at the fine-grained cadastral 
parcel scale, considering sectoral and locational factors, to portray fine- 
scale economic development. The framework makes the following two 
contributions: 1) The framework introduces the land use dynamics 
simulation model for economic forecasting. 2) It can generate an accu-
rate fine-scale spatial distribution of economic development. This study 
realizes the prediction of the spatiotemporal pattern of urban economic 
growth at a fine scale by coupling the results of urban land use and 
economic development forecasting. 

This study couples land use dynamics simulation and sectoral 
structure economy, addressing the problem of the coarse-scale spatial 
distribution of economic forecasting portrayed in the past. The simu-
lated results of the sectoral land use dynamics indicated a good perfor-
mance (FoM = 0.182), which shows that the results can be used to 
analyze the spatial distribution and temporal change characteristics of 
the sectoral structure of urban land at a fine scale. According to the 
analysis, the sectoral structure in higher-economic-level areas is more 
balanced, and development is more stable. 

In contrast, the lower economic level areas tend to show a more 
unbalanced sectoral structure and a higher frequency of adjusting the 
sectoral structure. For example, the areas of the different sectors in the 
high-economic level areas such as Nanshan District and Futian District 
are almost the same, with few parcels undergoing sector changes. 
Meanwhile, the sectoral structures in the low-economic-level areas such 
as Dapeng Peninsula, Yantian District, and Pingshan District are domi-
nated by the primary sector. The number of parcels undergoing sector 
changes is higher. It reveals a general pattern of changing land use 
sectors in the development process of China’s megacities. The frame-
work can provide data references for further exploring the correlation 
and the driving mechanism of urban economic development changes 
with sectoral factors. 

This study introduces the official statistics of gross economic output 
and economic volume into the framework to achieve more accurate 
economic forecasting. By depicting the spatiotemporal evolution of the 
urban economy, this study identifies a general pattern in which cities 
will continue to grow in the future. Areas with stronger economies will 
experience slower but larger economic growth, while those with weaker 
economies will have faster but smaller economic growth. This pattern 
describes the spatial distribution characteristics and temporal changes 
in economic heterogeneity among urban regions in the short run. Un-
coordinated regional development will also continue to expand in the 
short term. This study enriches the theory related to urban economic 
modeling at the spatial microscale and provides a data reference for 
guiding policy for coordinated urban regional development. 

The linkage between changes in urban sectoral land and economic 
growth is examined. First, for land parcels whose sectoral land use type 
do not change, their economic volumes change according to the current 
sectoral development trend. Since sectoral productivity varies in 
different administrative districts, the economic levels of land parcels 
with the same sectoral land use type are not the same. Second, for land 
parcels with a change in sectoral land use type, the economic level is 
mainly influenced by the productivity of the two sectors before and after 
the change, t, and thus changes more notably. For example, most land 
parcels in Shenzhen are currently experiencing economic growth as the 
sectoral economy grows. 

At the same time, however, some areas in Pingshan District are 
experiencing a slight economic decline because the majority of the land 
parcels there are the primary sector land use, whose economic level is 
slowly declining. In addition, the change in sectoral land use type is also 
one of the reasons for the economic decline of some land parcels in 
Pingshan. Despite the economic decline in some of the areas, the overall 
economic level of Pingshan District is still growing. It further confirms 
the uncoordinated regional development of China’s megacities, which 

needs to be adjusted through a series of government interventions. 
This study needs to be further improved. First, in the process of 

modeling urban land dynamics, built-up factors, such as commercial 
facilities and transportation facilities, are seen as the main contributors. 
However, the influence of some natural factors on changes in sectoral 
land use types is not considered but may be useful. Second, in the pro-
cess of modeling the spatial distribution pattern of economic develop-
ment, the economic levels of each parcel are forecasted according to the 
three attributes of each parcel, i.e., sectoral land use type, area, and 
administrative district to which it belongs. However, the spatial neigh-
borhood effect may exist between the economic growth of a parcel and 
its neighborhood. In the future, the proposed framework will be 
improved by introducing multisource spatial data, e.g., natural land-
scape data and urban population data, to determine the spatial neigh-
borhood effect of economic growth to more accurately model economic 
growth. 

7. Conclusion 

This paper proposes a framework for calculating and forecasting the 
spatiotemporal economic levels in megacities at the fine-grained 
cadastral parcel scale to obtain the fine-scale economic pattern. Tak-
ing Shenzhen, Guangdong Province, China, as an example, the results 
show that the framework can effectively simulate sectoral land use 
changes (FoM = 0.182) and has significant advantages in economic 
curve fitting (the mean of R2: 0.748, the median of R2: 0.877). 

This study found that the spatial distribution of sectoral land in 
Shenzhen is gradually stabilizing, and the urbanization mode is gradu-
ally shifting from urban land expansion to urban sector regeneration. 
The economic strength of the city continues to increase year by year. The 
lower-economic-level areas show a more substantial increase due to 
their weaker economic base and greater development potential. The 
regional economic gap between regions will continue to widen in the 
short term if there is no government intervention. Because the higher- 
economic-level regions have a larger base of economic output, some of 
them have the highest growth rate. This study reveals the general eco-
nomic growth of megacities and uncoordinated regional development. 
We provide a possible explanation for the phenomenon in terms of urban 
land use change and sectoral structure balance. 
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