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A B S T R A C T   

The practice of crime risk mapping, enabled by the utilization of geospatial big data such as street view images, 
has received significant research attention. However, in situations where available data is scarce, mapping 
models may suffer from underfitting and generate inaccurate spatial pattern estimations of crime risk. The covert 
nature of pickpocketing crimes results in limited observed areas relevant to such criminal events, leading to 
insufficient coverage of geospatial data. Moreover, the location of crime is also influenced by socio-economic 
characteristics that may introduce biases into crime risk estimates. These factors render it challenging for the 
model to capture a valid crime risk pattern, potentially yielding misleading conclusions. Therefore, effectively 
extracting crime risk with limited data remains a challenge, especially when relying on easily accessible, 
widespread, and unbiased geospatial data. To address this challenge, we propose a novel crime risk assessment 
framework based on deep anomaly detection techniques, assuming that urban landscape anomalies carry deep 
crime risk information. We take Shenzhen as the study area and map the distribution of pickpocketing risk using 
street view images, accurately revealing the spatial aggregation of pickpocketing crime risk. Our findings indi
cate that pickpocketing crime in China is caused by regional economic conditions, built environment factors, and 
human routine activities. This study provides valuable insights for policing and prevention strategies aimed at 
addressing pickpocketing crimes in large Chinese cities. By leveraging our proposed crime risk assessment 
framework, decision-makers can allocate resources more efficiently and develop targeted interventions to 
mitigate crime risks.   

1. Introduction 

Crime has a significant impact on economic growth and human lives 
(ToppiReddy et al., 2018), a problem that has long plagued human so
cieties. One of the most common crimes is Pickpocketing, which in
volves stealing a victim’s property in a public or semi-public place 
(Deshotels, 2013). Pickpocketing is characterized by high concealment, 
small amounts of money involved, and high significant financial and 
material resources investment in detection and apprehension (Lafree & 
Birkbeck, 2010). Therefore, preventing pickpocketing yields greater 
policing benefits than detecting and apprehending the offender. The 
social disorder theory and crime pattern theory suggest out that an 

objective environment can stimulate crime generation to some extent 
(Shaw et al., 1942). Since pickpocketing requires physical contact with 
the victim and often occurs in urban environments, exploring the asso
ciation between the urban environment and pickpocketing is vital for 
police departments to prevent and control this type of crime and 
maintain social stability. 

Several previous studies have assessed crime risk using historical 
case data, spatio-temporal environmental data, or behavioral trajectory 
data. However, these approaches present certain limitations. Historical 
case data-based assessments can only consider crime patterns based on 
actual case occurrences and have low dimensions and a single source of 
information, making it challenging to assess crime risks in areas where 
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no crime has occurred or where crime data are unavailable (Hossain 
et al., 2020; Hu et al., 2018). Some researchers have integrated spatio- 
temporal environmental data (Ding & Zhai, 2021; Giménez-Santana 
et al., 2018) to further consider the spatio-temporal effects of the 
background environment on crime generation and evolution. Others 
have used micro-level behavioral trajectory data (Rumi et al., 2019; Xiao 
& Zhou, 2020) to assess crime risk, incorporating socioeconomic data 
such as demographic, GDP, and unemployment rates and trajectory data 
such like location check-in and cab traffic for crime risk assessment. 
However, obtaining fine-scale residential travel and socioeconomic data 
can be challenging in some areas, and, some environmental data may 
also be difficult to collect, leading to limited applicability and general
izability of existing methods. Thus, addressing the question of how to 
use easily accessible and equally objective indicators that can be 
correlated and mapped to crime instead of hard-to-obtain economic 
indicators remains a challenge. 

In the field of crime risk mapping, street view imagery offers a po
tential solution due to its extensive coverage. Recent studies have shown 
that street view images can provide insight into the physical urban 
environment and reveal crime risk (He et al., 2017; Zhang et al., 2021). 
Street view imagery accurately depicts the physical urban environment 
and allows for inferences about urban perception (Wang et al., 2019a; 
Yao et al., 2019). With easy availability, high-frequency updates, and 
microscopic perspectives on the city, street view imagery has become an 
increasingly popular tool for analyzing human or physical environ
mental elements using semantic segmentation or target recognition 
methods to test crime theories (He et al., 2017; Yue et al., 2022). Zhang 
et al. (2021) recently analyzed Houston street view imagery and his
torical criminal records and found a discrepancy between people’s 
perception of safety in the urban environment and the actual crime rate. 
However, most previous studies require large amounts of real, tagged 
crime data for analysis, which can be challenging to obtain for sparsely 
located crime events such as pickpocketing, whose data may have biased 
spatial distribution. Therefore, it remains unclear whether the rela
tionship between street view imagery and crime can be effectively 
mined when dealing with sparse and biased data. 

Pickpocketing is a very typical and common type of crime that affects 
people’s daily lives, yet reliable data regarding its occurrence is scarce 
and biased. The available data may not accurately reveal the true spatial 
patterns of crime risk due to several factors. Firstly, crime data is scarce 
and incomplete in certain regions. For instance, in China, publicly 
available crime data primarily consists of judgment documents, which 
do not always reflect the true number of pickpocketing crimes 
committed. Due to the relatively minor nature of pickpocketing offenses, 
suspects often employ various methods to evade surveillance and avoid 
detection, resulting in underreporting of such crimes. Secondly, there is 
a problem of biased sampling in the available data. The spatial distri
bution of crime locations in judgment documents is not solely deter
mined by the risk of crime but can also be influenced by population 
density, law enforcement efforts, economic conditions, and other attri
butes. As an example, densely populated and more economically 
developed areas have a high density of crime points, while sparsely 
populated suburban or rural areas may have limited data on pickpock
eting, despite not necessarily having lower crime risks. Moreover, 
obtaining a conviction for a pickpocketing offense involves a complex 
process that includes the occurrence of the crime, police investigation, 
and court proceedings. Therefore, although judgment documents can 
serve as a reference for analyzing crime patterns, they may not fully 
capture the real spatial pattern of pickpocketing crime. 

In conclusion, we contend that publicly available crime data, espe
cially for pickpocketing, does not provide a comprehensive representa
tion of the true spatial pattern of crime risk. Firstly, such data is highly 
sparse in space, which limits its utility in producing accurate crime risk 
assessments. Secondly, the pattern of crime data suffers from sampling 
bias, and can be influenced by socio-economic factors beyond crime risk 
considerations. While many studies have utilized multiple data sources 

to analyze crime risk, these studies often require large quantities of 
labeled data for training models (Hajela et al., 2021; Xiao & Zhou, 
2020). However, given the limited amount of labeled crime data and the 
significant bias present at crime points, there are currently few effective 
methods for achieving accurate spatial predictions of global crime risk. 
Despite studies indicating that the collection of crime information by 
law enforcement agencies inevitably suffers from biases due to in
fluences from the agencies themselves and those reporting the crimes, it 
is important to note that these data sources still exhibit fewer random 
biases compared to other sources, such as spontaneously reported crime 
victim survey data. Moreover, they provide accurate records of crime 
locations and processes, thus remaining a more trustworthy source of 
crime data (Brunton-Smith et al., 2023; Buil-Gil et al., 2022). However, 
when crime data is accurate but scarce, it remains unclear to what de
gree policing levels, as quantified by crime data such as judgment doc
uments, can be trusted as reliable indicators of crime risk. Given the 
current limitations associated with relying solely on real crime points for 
analysis and decision support, we propose the following research 
question: How can precise predictions of global crime risk be generated 
when crime data are sparsely sampled and biased? If it proves possible to 
accurately extract crime risk information from such sparse data sources, 
particularly in relation to hidden crimes like pickpocketing, this could 
have significant implications for large-scale crime risk assessment and 
urban governance. 

Due to various factors, it is common to conduct research on data with 
bias in the field of geographic information. Whether it’s bias brought 
about in the data collection process (Li et al., 2016; Zhang & Zhu, 
2019a),bias in geographically large data voluntarily uploaded by the 
public (Zhang, 2022; Zhang & Zhu, 2019b), or even bias in data 
collected by government agencies (Brunton-Smith et al., 2023; Buil-Gil 
et al., 2022), there are inevitable deviations. Although the data may be 
geographically biased, it is still numerically correct. We can trust that 
the more similar the geographical configuration (i.e., spatial neighbor
hood geographical variables) of two points (regions), the more similar 
the values (processes) of the target variable at these two points will be 
(Zhu et al., 2018). Based on this idea, finding suitable environmental 
features for the data and designing analysis methods that adapt to this 
data has become the key task in using biased data for geographical 
modeling. 

This study proposes the Crime Anomaly Detection based on Street 
View (CADSV) framework, which utilizes deep learning methods to 
tackle the aforementioned challenges. Anomaly detection is a popular 
technique for identifying rare or unusual patterns within large datasets 
(Chandola et al., 2009), which is similar to a crime assessment task that 
extracts risk information from limited crime labeled street view images. 
In this study, we focus on the city of Shenzhen where we assess the risk 
of pickpocketing at various locations using judgment documents as to 
the supporting data. To further investigate the socioeconomic factors 
associated with crime, we incorporate point of interest (POI) data is used 
to represent the urban functional structures. Additionally, the random 
forest and SHapley Additive exPlanations (SHAP) techniques are used to 
utilize the complex relationship between the urban socioeconomic 
structure and spatial environment. 

2. Related work 

2.1. Risk assessment of pickpocketing crime based on spatial analysis 

Crime risk assessment is essential in policing (Fan et al., 2021; 
Oswald et al., 2018). Some scholars have conducted crime risk assess
ments based on analysis of historical case data (Hossain et al., 2020; Hu 
et al., 2018). For instance, Hu et al. (2018) utilized a spatiotemporal 
kernel density estimation (STKDE) method to analyze the history of 
crimes in a particular location and identify burglary hotspots in the re
gion. Similarly, Hossain et al. (2020) employed decision trees and the k- 
nearest neighbors (KNN) algorithm to evaluate crime risk using San 
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Francisco’s criminal activity data from 2003 to 2015. However, these 
studies do not account for the interaction between crime and other social 
environment factors. The data used in these studies are typically low- 
dimensional and obtained from single sources, rendering them suit
able only for macro trend statistical analyses with limited explanatory 
power for crime risk assessment. Furthermore, reliance on historical 
crime data from a specific location may limit the transferability of 
findings beyond that context. 

The Broken Window Theory (BWT) elucidates the relationship be
tween crime and environment, positing that visible signs of disorder and 
neglect can foster further criminal activity, including serious crimes 
(Wilson & Kelling, 1982). Certain scholars have augmented historical 
case data with spatiotemporal environmental data to better consider the 
spatiotemporal effects of the contextual environment on the generation 
and evolution of crime (Ding & Zhai, 2021; Giménez-Santana et al., 
2018). For example, Giménez-Santana et al. (2018) used a risk- 
topography modeling approach to identify environmental factors asso
ciated with three types of violent crime events (homicide, assault, and 
theft) and assessed the risk for different crime types. Ding and Zhai 
(2021) used crime statistics and observed climate records in Beijing to 
demonstrate strong correlations between PM2.5, the Air Quality Index 
(AQI), and bus pickpocketing crimes. Based on these findings, they 
utilized a support vector machine approach was used to predict the risk 
of bus pickpocketing crimes. Many studies have demonstrated that 
crime generally tends to concentrate in micro-specific locations such as 
streets, thereby highlighting the importance of assessing crime risk at 
the micro-level for effective crime prevention and police control (Groff 
et al., 2010; Weisburd et al., 2004). However, spatio-temporal envi
ronmental data are often collected at the grid scale, which has limited 
spatial resolution, and is generally only suitable for macro-level studies 
while being insufficiently assessed at the micro-scale. 

Crime pattern theory suggests that offenders do not randomly search 
for potential targets but instead rely on the path or routes of their daily 
activities to find suitable targets (Bernasco et al., 2013; Bernasco et al., 
2017; Brantingham & Brantingham, 2013). Therefore, some scholars 
have integrated suspects’ behavioral trajectory data with spatio- 
temporal environmental data (Bouma et al., 2014; Rumi et al., 2019; 
Xiao & Zhou, 2020). Notably, Zhao and Tang (2017) employed POI 
check-in data, weather data, and public service complaint data to pre
dict future crimes in New York City. Results showed that the inclusion of 
dynamic data characterizing daily human activity helped to accurately 
assess crime risks. Hajela et al. (2021), meanwhile, constructed distinct 
crime prediction models using taxi data, historical crime data, and de
mographic data, comparing their effectiveness against each other. This 
study demonstrated that methods incorporating dynamic data are more 
effective in crime prediction than those relying exclusively on crime 
data or data pertaining to social environmental factors. In summary, 
these studies consider the impact of the environment on crime at a finer 
scale, which is more effective in assessing pickpocketing risk at the 
micro-scale. However, such research typically requires low-accessibility 
data, thereby limiting its applicability to larger areas. Conversely, street 
view data can satisfy both environmental information provision and 
large-scale information provision, providing data support for crime risk 
assessment. 

2.2. Street view image and city perception 

Street View Images (SVI) are composed of panoramic images of 
various locations on the street that provide a comprehensive reflection 
of the physical urban environment and human activities on a large scale 
(Kang et al., 2020; Yao et al., 2019). In comparison to behavioral tra
jectory data, SVIs are low-cost and highly accessible. Additionally, they 
can capture detailed information in the physical environment more 
comprehensively using a perspective similar to that of the human eye 
(Zhang et al., 2020). As such, they have been integrated into diverse 
urban studies, including urban safety perceptions (Wang et al., 2019b; 

Zhang et al., 2021) and urban crime research(He et al., 2017). For 
instance, He et al. (2017) employed used Google Street View to identify 
factors in the physical environment of Columbus cities that contribute to 
violent criminal activity. Results showed positive associations between 
crime rates and street graffiti, abandoned buildings, and abandoned 
cars. Similarly, Zhang et al. (2021) analyzed street view images and 
historical criminal records in Houston, finding that areas where people 
feel unsafe do not correlate with high crime rates. There existed a 
perceived bias between perceived safety and actual crime rates in the 
urban environment. 

Most of the current studies examining the relationship between street 
view images and crime risk have focused on Western cities. However, it 
remains uncertain questionable whether research findings on Western 
cities can be effectively applied to Chinese cities. Firstly, there are sig
nificant disparities in architectural and urban planning styles between 
the East and West (Ashihara & Riggs, 1983). Secondly, various socio- 
political factors contribute to the differences in crime patterns be
tween East and West (Farrell & Bouloukos, 2001; Steffensmeier et al., 
2017). For instance, a comparative study of high school students in 
China and the United States revealed that crime rates were significantly 
lower in Chinese schools were much lower than in American ones (Webb 
et al., 2011). As such, it is crucial to investigate the relationship between 
urban environments and crime risk in China using street view images. 

Regarding the use of street views for crime risk prediction, a typical 
approach involves first extracting high-dimensional semantic features 
from the images, followed by constructing regression models to establish 
the relationship between these features and crime risk. For example, 
semantic segmentation can be used to extract the proportion of green 
space within an image, while target detection can estimate the number 
of people present (Hipp et al., 2021; Jing et al., 2021). Street view im
ages contain vast amounts of semantic information that humans have yet 
to explicitly express. This implicit information has the potential to un
cover crime risk. However, current solely rely on human-defined se
mantic features, thus overlooking a large amount of semantic 
information present in the images. Moreover, the above framework 
encounters difficulties when analyzing risks in areas not covered by LBS 
data, particularly with biased and spatially sparse crime data. To address 
this problem, it is crucial to extract crime risks from street views based 
on sparse data, which would fill this gap and facilitate the building of 
end-to-end models by eliminating complex image processing steps. 

2.3. Geographical research based on biased data 

In fact, in the field of geographic information, analyzing data with a 
geographical distribution bias is a widely studied problem. For example, 
Volunteer Geographic Information (VGI), voluntarily uploaded by citi
zens, is one of the newly emerged types of big geographic data in recent 
years (Zhang & Zhu, 2018). With its rich geographic information, high 
update frequency, and low cost, VGI is used to reveal spatiotemporal 
patterns of geographic phenomena. However, since the spatial distri
bution of volunteer observation work is neither random nor regular, the 
observation results are often spatially biased towards areas with high 
population density or high route accessibility, leading to bias in 
geographic distribution. To address this issue, researchers typically start 
by comparing sample locations with the environmental covariates of the 
predicted areas, improving sample representativeness by comparing 
similarities. Based on this concept, studies by (Zhang & Zhu, 2019b) and 
(Zhang, 2022) have mitigated the spatial bias in samples based on VGI 
by improving sample representativeness. 

Additionally, studies based on geographically biased data in the field 
of digital soil mapping underscore the importance of environmental 
covariates. Since the spatial distribution of soil samples may lean to
wards specific geographical areas and be influenced by the personnel 
taking measurements, soil samples are a type of data that can be easily 
affected by spatial bias (Li et al., 2016; Zhang & Zhu, 2019a). To solve 
this problem, (Fan et al., 2020) proposed the SoLIM-FilterNA method, 
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which predicts the soil property values of unknown units by learning the 
characteristics of one or more environmental covariates, as long as the 
uncertainty of that unit does not exceed the set threshold. (Zhu et al., 
2018) proposed a method that does not use the explicit relationships 
derived from the entire sample set, but instead makes predictions based 
on the comparison of the geographical configurations of the sample 
points and the prediction points. This study suggests that accurate 
spatial predictions can be made based on biased samples. Similarly, 
facing the issue of data sparsity, (Du et al., 2020) proposed a semi- 
supervised machine learning method for predictive mapping, which 
uses the natural aggregation (clustering) pattern of environmental co
variate data to supplement the limited samples in prediction. The 
characteristic of these studies is that they step outside of the spatial 
dimension to deal with spatially biased data. It can be seen that in the 
case of geographical bias, if suitable environmental features and 
methods can be selected to fit the data, results better than traditional 
geographic models can be achieved. 

2.4. Deep anomaly detection model 

Anomaly detection models are commonly used to identify events that 
have a low probability of occurrence but often cause fatal harm to the 
system (Chandola et al., 2009). Since crimes tend to be concentrated in 
specific areas, only a few street images are spatially associated with 
crime events (Weisburd, 2015). Therefore, the crime risk information 
contained within the street view images can be classified as anomally. 
Anomaly detection tasks that distinguish between anomalous and 
normal data is a One-Class Classification (OCC) tasks. Early OCC 
research focused on using statistical methods for feature extraction and 
developing classifiers. Since 2017, deep learning methods have become 
the mainstream of OCC research (Perera et al., 2021) which have made 
progress in several areas, such as cybersecurity intrusion detection (Kim 
& Kim, 2021), medical pathology image detection (Schlegl et al., 2017), 
One approach to deep learning-based OCC is to learn normal features 
and compare differences between test data and normal features, with 
greater variations indicating anomalous data (Ruff et al., 2018). 

The convolutional neural network (CNN) structures can be utilized to 
achieve high accuracy in anomaly detection algorithms for images 
(Minhas & Zelek, 2019). Cohen and Hoshen (2020) utilized pyramidal 
neural networks to detect anomalous images and localize anomalous 
parts. Massoli et al. (2021) proposed the MOCCA framework to extract 
features at different depths of deep neural networks, thereby enhancing 
network discrimination in single-classification (OCC) problems. Sabo
krou et al. (2018) introduced the first single-classification model based 
on GAN networks, which enhances the interpreter’s normalization 
ability while iteratively reconstructing features. 

3. Materials and method 

Fig. 1 depicts a flowchart illustrating the pickpocketing crime risk 
assessment with coupled street view images using deep anomaly 
detection. The methodology comprises three fundamental stages: (1) 
Data preparation. Collected the 2018 judgment documents using a web 
crawler and subsequently extracting the crime locations using a natural 
language processing models, the crime locations were spatially with the 
street view images; (2) Mapping urban crime risk using the proposed 
Constructed Crime Anomaly Detection framework based on Street View 
(CADSV). We evaluated the risk of pickpocketing crimes by calculating 
image feature similarities between street view image; (3) Model inter
pretability analysis. Used POI kernel density data to characterize the 
drivers of the pickpocketing crime risk. This analysis utilized the 
Random Forest and SHAP models for interpretability. Additionally, we 
explored whether these drivers are consistent with the objective envi
ronmental risks characterized by the Street View imagery. 

3.1. Study area and data 

Shenzhen (Fig. 2) is a typical migrant city and the most developed 
city in South China, consisting of 10 districts. There are significant dif
ferences in economic development between downtown and suburban 
areas in Shenzhen (Meyer, 2016). The downtown areas are Shenzhen’s 
political, economic, and cultural centre, including Nanshan District, 

Fig. 1. Schematic overview of pickpocketing crime risk assessment with coupled street view images using deep anomaly detection.  
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Fig. 2. (A) High-spatial resolution remote sensing imagery and (B) Crime locations and land-parcels in the study area (Shenzhen). (C) Road network and street view 
image sampling points. 
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Futian District, Luohu District, and Yantian District. Meanwhile, the 
suburban areas comprise Longhua District, Longgang District, Pingshan 
District, Dapeng District, Guangming District, and Baoan District, with a 
complex composition of foreign and migrant populations. It should be 
noted that the administrative division of Shenzhen underwent signifi
cant reorganization in 2018. To ensure study validity and offer support 
for future research efforts, all data used in this study were collected from 
2018. 

Land use planning parcels represent the fundamental unit of urban 
cadastral management in China. This study employed Shenzhen land use 
parcel data as the primary analytical unit. These parcels consist of 6913 
records retrieved 

from the Shenzhen Planning and Natural Resources Bureau website 
(https://pnr.sz.gov.cn/). 

Acquiring crime locations from social media platforms has been 
explored in literature by Hipp et al. (2019). However, this approach may 
not provide credible crime data and therefore needs to be supported by 
police or official documents. In this study, the pickpocketing data were 
obtained from the China Judicial Documents website (http://wenshu. 
court.gov.cn). The Supreme People’s Court of China mandates that all 
Chinese courts to publish judgment documents on the web, including 
information such as the cause, time, and location of the crime. To 
validate the accuracy of this data, previous studies have analyzed crime 
cases from different fields (Cai & Xin, 2019; Miao et al., 2016). Our study 
captured all criminal cases from 2018, which amounted to 7535 cases. 
Of these, pickpocketing accounted for 9.05 % (or 682) of all sentencing 
documents. Natural language processing models were utilized to extract 
pickpocketing crime locations, which are accurate up the building level 
or street level can be spatially matched with street view images. 

Street View Image has been utilized in prior studies to reflect the 
physical environment or residents’ perceptions of cities (Helbich et al., 
2019; Wang et al., 2019b; Zhang et al., 2018). In this study, Baidu Street 
View images from 2018 were employed to depict the urban environment 
in Shenzhen. As one of the largest street view service providers available 
in China, Baidu Street View covers a vast majority of Chinese cities 
(Kang et al., 2020). This study used the road network data of Shenzhen 
city in 2018 were obtained via OpenStreetMap using the OpenStreetMap 
API. Byun and Kim (2022) have noted that acquiring street views at the 
street level with a distance of 200 m can effectively reveal the urban 
environment and its changes. There are also studies on crime that use 
200 m as a buffer range for data collection, an interval that is considered 
to best describe the scale of urban communities (Kadar et al., 2016). 
Therefore, this study employed a sampling approach that involved the 
collection of road network data at 200 m intervals, thus obtaining a total 
of 38,717 sampling points. Subsequently, street view images were ac
quired from four horizontal directions (0◦, 90◦, 180◦, and 270◦) to 
simulate human visual perception. In total, 154,868 street view images 
were obtained for all sampling points. These images were then labeled as 
either pickpocketing risk images or non-pickpocketing risk images based 
on crime locations. Consistent with the sampling interval, a buffer radius 
of 200 m was selected to identify street images at risk of pickpocketing. 
Consequently, a total of 2712 street images were flagged as being at risk 
of pickpocketing. All other street view images were classified as normal 
images. It is worth noting that each street view image was labeled only 
once, although some street view images were located within buffer 
zones of multiple crime locations. 

Point of Interest (POI) data have been demonstrated to effectively 
reflect the socioeconomic and functional structural characteristics of 
cities (Yao et al., 2017). In this study, POI data were utilized to analyze 
the relationship between pickpocketing crimes and urban functions at 
the micro-scale. The POI data used in this study were derived from 
Gaode Map (https://www.amap.com/), one of China’s largest online 
map providers. A total of 213,476 POI data points from the year 2018 
were collected in the study area, which were classified into five major 
categories: Catering & Entertainment, Education & Health care, In
dustry, Finance & Insurance, and Other Five major categories (Hu & 

Han, 2019). These categories were further divided into nine second- 
level categories, which are Life Services (39,590, 18.55 %), Trans
portation (37,536, 17.58 %), Landscape (2515, 1.18 %), Police (2544, 
1.19 %), Medical Institutions (20,327, 9.52 %), Restaurants (75,030, 
35.15 %), Finance (14,165, 6.64 %), Entertainment (17,107, 8.01 %) 
and Shopping Malls (4662, 2.18 %). We calculated the density of each 
type of POI density using kernel density analysis. 

3.2. Extracting crime information by treating it as the anomalies 

3.2.1. The propose of the assumption and the overall framework 
Limited availability of crime data in certain regions makes it difficult 

to associate street view images with criminal activity. Typically, crimes 
tend to occur in specific locations according to the crime concentration 
theory (Weisburd, 2015). To address this issue, we propose that crime 
information can be viewed as anomalies within urban landscapes. Based 
on this assumption, we developed a Crime Anomaly Detection based on 
Street View (CADSV) framework for mining pickpocketing risk infor
mation from spatially sparse street view images and performing large- 
scale risk mapping. The framework is threefold (Fig. 3): 1) The normal 
feature vectors extraction. 20 % of street view images (totally 29,744 
images) labeled with non-crime were randomly selected. The ResNet-50 
Network was used to extract the normal feature vectors for all street 
view image. Normal feature vectors include the feature vector extracted 
for each image. 2) Verify the effectiveness of the extracted normal 
feature vectors for revolving crime information. 3) Mapping the crime 
risk for all street view images in the study area. 

In this study, we aimed to evaluate the effectiveness of our proposed 
Crime Anomaly Detection based on Street View (CADSV) framework. To 
achieve this objective, we randomly selected 29,744 street view images 
to extract normal feature vectors using the ResNet-50 Network. Subse
quently, we selected 10,148 street images to assess the performance of 
these extracted normal feature vectors. 

It is important to note that we included all crime-labeled images in 
the test set, resulting in a total of 2712 such images. To ensure accurate 
assessment of the capability of the extracted features in assessing crime 
risk, we selected four times as many normal-labeled images as crime- 
labeled ones. Thus, we randomly selected 7436 images for this pur
pose. It should be noted that there were no strict guidelines for selecting 
this number; however, we considered 10,148 images to be sufficient for 
the evaluation process. 

3.2.2. Normal feature extraction and feature adaptation 
Self-supervised deep anomaly detection is considered a One-Class 

Classification (OCC) problem. However, when the amount of data is 
limited, a trained Convolutional Neural Network (CNN) may not effec
tively capture the semantic information within image dataset, resulting 
in suboptimal performance. Recent studies have demonstrated that pre- 
training can improve the effectiveness of model in deep anomaly 
detection. The CNN network is trained in a larger dataset to get the 
original feature vectors, which are then adapted features for use in the 
target dataset. 

Feature adaptation aims to map the data from a different source and 
target domains into a feature space such that they are as similar as 
possible to each other in that space. Contrast learning is an excellent and 
effective self-supervised learning method commonly used for the feature 
adaptation of pre-trained feature extractors (Khosla et al., 2020; Reiss & 
Hoshen, 2023). The contrast learning method optimizes the prediction 
task by extracting a dataset x′ of batch size N from the training set and 
training it against the data-enhanced x′ with the loss function shown in 
Eq. 3.1. Where ϕ denotes the feature extraction module used to compute 
the feature vectors, which in this study represents the ResNet-50 model 
with normalization added at the last fully connected layer. This is 
because this method speeds up the convergence of the model and en
sures adaptive normalization of the feature data (Yao et al., 2021a). 
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Lcontrastive(xi′, xi′′) = − log
exp((ϕ(x′)⋅ϕ(x′′) )/τ )

∑2N
i=11[xi ∕= x′]⋅exp((ϕ(x′)⋅ϕ(xi) )/τ )

(3.1) 

The temperature hyperparameter, which is utilized in contrast 
learning to regulate the strength of penalty for negative samples (Wang 
& Liu, 2021), is denoted by τ in Eq. 3.1. 

However, although the above contrast learning method is very 
effective for feature adaptation, for deep anomaly detection in OCC, it 
may lead to catastrophic collapse, where the accuracy of prediction 
decreases instead as the number of training increases. Therefore, we 
used a newly developed loss function, Mean-shifted contrastive loss, 
proposed by Reiss and Hoshen (2023). It is shown that this solves the 
problem of dimensional collapse that may occur in the field of image 
anomaly detection and surpasses the latest previous models in OCC 
classification. The objective function of mean-shifted loss is shown in Eq. 
3.2, and ctrain denotes the normalized centre of all training images: 

θ(x) =
ϕ(x) − ctrain

‖ϕ(x) − ctrain‖
(3.2) 

The method is not only able to calculate the Euclidean distance dif
ference between the feature vector of a single image x and and ctrain, but 
also normalizes the sample difference to the unit sphere and maximizes 
the distance between negative and positive samples. Besides, in order to 
reduce the distance between the x′ samples and ctrain after data 
enhancement, we also introduced the angular center loss (ACL), and the 
formula is shown in Eq. 3.3: 

Langular(x) = − ϕ(x)⋅ctrain (3.3) 

To sum up, the objective function used in this study that combines 
the above two constraints is shown in Eq. 3.4: 

Fig. 3. Crime Anomaly Detection based on Street View (CADSV) framework coupled with Resnet-50 and MSAD.  
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Lmsc(x′,x′′)=− log
exp((θ(x′)⋅θ(x′′))/τ)

∑2N

i=1
1[xi ∕=x′]⋅exp((θ(x′)⋅θ(xi))/τ)

+Langular(x′)+Langular(x′′)

(3.4) 

In this study, small batches of data after data enhancement from the 
original training set are represented byx′and x′′. The data enhancement 
method includes a series of ways such as flipping, cropping, and 
Gaussian filtering of the original image features, and ensures that the 
data enhancement results for x′and x′′ are not the same by introducing 
randomness. 

In this study, the ImageNet dataset was selected to pre-train the 
ResNet-50 network. And the feature adaptation was conducted using the 
proposed objective function in Eq. (3.4). Each image in the training set 
was extracted with a feature vector of 2048 dimensions. Normal feature 
vectors include the feature vectors extracted for each image. 

3.2.3. Risk scoring and feature assessment 
The process of anomaly scoring (risk scoring) for a street image from 

the test set is depicted in Fig. 4. Firstly, the pre-trained ResNet-50 
network was utilized to extract the feature vector of the test image. 
Secondly, the KNN model was used to find the K nearest normal vectors 
for the test feature vector. The K was selected as two, and Euclidean 
Distance was used as distance metric, referring to the previous work 
(Reiss et al., 2021). Third, the risk score of the test image was calculated 
as the cosine distance between the test feature vector and the two 
nearest normal vectors. The cosine distance can take into account both 
the Euclidean distance and the angular distance between the features. It 
has a better deep anomaly detection performance than the other two 
distance metrics (Reiss et al., 2021). The scoring formula is shown in Eq. 
3.5: 

s(x) =
∑

ϕ(y)∈Nk(x)

1 − ϕ(x)⋅ϕ(y) (3.5)  

where Nk(x) denotes the k features in the training set that have the 
closest cosine distance to ϕ(x). Moreover, the training set consists of 
street scenes where no crime occurred, while s(x) indicates the distance 
of the input street scenes from the normal street scenes. This value 
ranges between 0 and 1, with higher values indicating a greater prob
ability that the input streetscape belongs to the pickpocketing area. 

The Anomaly Scoring was conducted on each image in the test set to 
assess the ability of the extracted normal feature vectors to characterize 
non-criminal features. The scoring results of normal-labeled street view 
images were compared with crime-labeled street view images to verify 

the effectiveness of the normal vectors. 
The model’s performance was evaluated using the AUC metric, 

which represents the area under the ROC curve (Ling et al., 2003). This 
metric can address classification result biases towards the majority class 
when the sample data is imbalanced (Burez & Van den Poel, 2009). The 
ROC curve is a probability curve that plots the true positive rate (TPR) 
against the false-positive rate (FPR), while the AUC measures the 
model’s ability to classify correctly. An AUC close to 1 indicates good 
separability, while an AUC of 0.5 implies no category separation ability. 

In this study, the best threshold for classifying whether street view 
images contain pickpocketing risk features or not was determined using 
the Youden index (Schisterman et al., 2005; Youden, 1950). Classifica
tion accuracy was subsequently assessed using Recall and F1-score. 
Recall can indicate the proportion of positive samples being correctly 
predicted in the classification results. On the other hand, the F1-score 
provides a comprehensive evaluation of classification model accuracy 
and recall. The formulas used to calculate Recall and F1-score are as 
follows: 

Recall =
TP

TP + FN
(3.6)  

F1 =
2*Precison*Recall
Precision + Recall

(3.7)  

where TP denotes the number of correctly identified pickpocketing 
street view images and FN denotes the number of incorrectly predicted 
as normal street view images. 

3.3. Interpretability analysis based on random forest and Shapley 

This study employed the CADSV framework to calculate the street- 
level pickpocketing crime risk score for each image. The average risk 
score of street view images within each land parcel was used to char
acterize the crime risk score in that particular parcel. To investigate the 
effects of different POIs on the pickpocketing risk, this study utilized a 
SHAP method to interpretability analysis the results. SHAP (SHapley 
Additive Explanations) is a data feature analysis method based on game 
theory (Lundberg & Lee, 2017). This interpretable model that can 
integrate multiple variables effectively and reveal the contribution of 
each input spatial data in the model. The SHAP model finds wide 
application across various fields such as crime (Xie et al., 2022; Zhang 
et al., 2022) and medicine (Kim & Kim, 2022; Yao et al., 2022). The 
SHapley values (Štrumbelj & Kononenko, 2014) were calculated in the 
SHAP model to interpret the contribution and influence of the input 

Fig. 4. The process of anomaly scoring for one test image.  
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features. Specifically, this study employed the Shapley model is used to 
explain the degree of contribution of different POIs to crime risk. The 
formula for calculating SHapley values is presented in Eq. 3.8. 

ϕi =
∑

S⊆N\{i}

|S|!(|N| − |S| − 1 )!
|N|!

(v(S ∪ {i} ) − v(S) ) (3.8)  

where ϕidenotes the SHapley value of the i-th independent variable and 
|N| is the number of POI types; S represents an arbitrary disjointly ar
ranged subset of each POI attribute except the i-th variable; 
v(S ∪ {i} ) denotes the output of the model when all data appear; 
v(S)denotes the output of only the input subset model. Following the 
above method, the SHapley value of each feature can be calculated by 
sequentially arranging and sampling each multi-source spatio-temporal 
data. 

In addition to explaining the contribution of spatial variables using 
the SHAP method, this study used a random forest (RF) model to fit the 
POI density of different types within each land parcel to the pickpock
eting indices. RF model has been used to analyze complex nonlinear 
correlations between variables in spatial analysis (Hengl et al., 2018; 
Nussbaum et al., 2018; Rodriguez-Galiano et al., 2012). It can effectively 
avoid correlation issues in high-dimensional features and has been 
shown to be the most effective nonlinear fitting model in previous 
studies (Fernández-Delgado et al., 2014). 

4. Result 

4.1. Model accuracy 

The normal feature vectors were extracted from the training dataset 
and evaluated in the test dataset. A 5-fold cross-validation was con
ducted to obtain the hyperparameters of learning rate (0.0005), batch 
size (64), and epoch (150) were obtained for the training dataset. The 
risk scores of street view images in the test dataset are shown in Fig. 5. 
The test dataset include 7436 normal-labeled images and all 2712 crime- 
labled images. The results revealed a significant difference in risk scores 
between crime-labeled and normal-labeled images, with values of 0.41 
and 0.29, respectively. Accuracy assessment shows that the AUC, Recall, 
and F1-Score were 0.921, 0.816, and 0.767, respectively. The scoring 
result in test dataset demonstrate that the extracted feature vector 
effectively characterizes the normal urban landscape (Fig. 5) and can 
detect crime information as anomalies. 

Fig. 5c shows the percentage of criminal and non-criminal images in 
the test set at different intervals of crime risk values. When the crime risk 
values were less than approximately 0.36, the percentage of non-crime 
images greatly exceeded that of crime images in each interval of risk 
values. Conversely, when the crime risk values were >0.36, the pro
portion of crime-risk images rapidly increased and surpassed that of 

Fig. 5. Risk scores in test datasets: (A) box plot; (B) Percent stacked histogram; (C) Line chart of the percentage of crime/ non- crime street views in each crime risk 
value interval. 
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non-crime risk. Therefore, the crime risk values obtained from this 
model exhibit good discrimination between crime and non-crime im
ages. Further statistical analysis revealed that when the crime risk was 
<0.354, including images with a ratio of 74.22 % of cases, 90.05 % of 
them were non-criminal. In contrast, when the crime risk was >0.371, 
19.04 % of the images were included, while 90.78 % were criminal. At a 
crime risk value of 0.354–0.371, the ability to distinguish crime images 
from non-crime images was found to be the weakest, with a ratio of 
276:409 between crime and non-crime images in this range. However, 
this represents only a small percentage (6.75 %) of the total number of 
images. In conclusion, the crime risk value can distinguish between 
crime and non-crime images well. 

Having established the validity and rationality of the extracted 
normal feature vectors, pickpocketing crime risk scoring was conducted 
for all street view images. The resulting scores from street view images 
were then aggregated into land parcel level. To investigate the driving 
factors of pickpocketing crime risk, this study used the random forest to 
fit the nonlinear relationship between each type of POI feature and the 
pickpocketing crime risk index. In the fitting step, the random forest out- 
of-bag samples were randomly accounted for 30 %, and the number of 
decision trees (estimators) was set to 400. The R2, RMSE, and MAE were 
0.455, 0.016, and 0.868, respectively. These results demonstrated that 
socioeconomic features revealed by POI data could effectively explain 
the mapping results of the pickpocketing risk mapping result in most 
areas. 

4.2. Parcel-scale pickpocketing risk mapping 

This study mapped the risk distribution of pickpocketing crime for all 
land parcels in Shenzhen (Fig. 6). The results revealed a high pick
pocketing risk in the central city with an average value of 0.362, and a 
low pickpocketing risk in the peripheral city with an average value of 
0.347. This observation suggests that commercial and transportation 
activities, which are more prevalent in the central urban areas, may play 

a significant role in shaping the risk pattern of pickpocketing crime in 
Shenzhen. 

Fig. 7 shows the street view images and their corresponding risk 
scores of typical functional zones. In general, for each functional area, 
the more dense the urban building bias, the more chaotic and disorga
nized the visual perception of the environment, the more likely pick
pocketing is to occur. For instance, although the risk of crime inside a 
factory is low, while a construction site underway is at greater risk. Our 
findings indicate that the risk of pickpocketing crime is higher in areas 
relatively disorganized and underdeveloped areas. Tangwei Urban 
Village, a shantytown in Shenzhen, with a high migrant population and 
weak security management, had a higher risk of pickpocketing crime 
(0.404) compared to the resident community Yijing Community (0.354), 
as seen in Fig. 6. The Business Centre generally had good infrastructure, 
but its dense flow of people and disorder led to a higher risk of pick
pocketing crime. For example, Mixc World Shopping Mall, one of the 
major business centres in Shenzhen, Mixc World Shopping Mall had a 
higher risk of pickpocketing crime (0.378) than the average value 
(0.351). These observations highlight the importance of considering 
visual perception when evaluating pickpocketing crime risks in urban 
settings. 

The study results highlight variations in pickpocketing crime risk 
risks across functional areas. Tourist attractions showed a high average 
pickpocketing risk value (0.404) due to Shenzhen’s well-developed 
tourism industry, with numerous scenic green spaces attracting many 
tourists and providing accessible targets for criminals (Fig. 7). Addi
tionally, the risk values of pickpocketing in residential (0.372), com
mercial (0.362), industrial (0 0.368), and school (0.357) areas were 
higher than the average pickpocketing risk value (0.351). Such func
tional areas were characterized by dense crowds that offered an op
portunity for disorder, making offenders more likely to commit 
pickpocketing crimes. Parks and landscape spaces were adjacent to 
residential areas also had many open spaces (Fig. 7 Scenery) that 
attracted offenders. 

Fig. 6. The distribution of pickpocketing crime risk at land parcel-level in Shenzhen. The triangle marks typical functional areas.  
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Moreover, differences in social structure within functional areas can 
lead to heterogeneity in pickpocketing crime risk. As shown in Fig. 6, the 
transportation facilities in the city centre had a 39.4 % higher average 
pickpocketing risk than transportation facilities in other areas. Specif
ically, transportation facilities such as Shenzhen Station (0.377) and 
Futian Railway Station (0.373), with an average risk value of 0.375, 
while those in Baoan International Airport (0.172), Pingshan High- 
Speed Railway Station (0.331), and Shenzhen North High-Speed Rail
way Station (0.306), had an average pickpocketing risk level of 0.269. 
As shown in Fig. 7, the streetscape of stations was very similar in 
different areas. The risk was higher in the city centre with better eco
nomic development, suggesting that economic factors play plays a 
complex role in pickpocketing crime. 

4.3. Spatial aggregation analysis of pickpocketing crime risk 

The global Moran’ I index of pickpocketing crime risk in Shenzhen 
was 0.591 (p-value <0.001, z-score 51.219), indicating a significant 
spatial correlation. Furthermore, local spatial autocorrelation analysis 
based on the Local Moran’s I index was conducted to investigate the 
pattern of urban crime aggregation (Fig. 8). The results indicated that 
social factors significantly influenced the clustering pattern of pick
pocketing crimes. Approximately 29.9 % of areas in Shenzhen had high- 
high aggregation of a pickpocketing crime risk, which were mainly 
located in urban central areas, such as University Town (Fig. 8(A)) and 
Futian CBD (Fig. 8(B)). These regions were characterized by a high 
concentration of people and wealth, making them prime targets for 
pickpocketing crimes. Additionally, areas outside the central urban area, 
such as Tangwei Urban Village (Fig. 8(C)), also showed high-high ag
gregation due to their inadequate infrastructure construction and a large 

Fig. 7. Street view images of typical functional zones of Shenzhen: The Crime risk axis represents the pickpocketing risk score assessed by the CADSV model, and the 
Land-use types axis represents typical functional zones. 
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Fig. 8. Results of parcel-scale pickpocketing crime risk aggregation in Shenzhen and remote sensing images of some typical areas.  

Fig. 9. Distribution of SHAP values and main drivers for all land parcels in Shenzhen: (A) shows the statistical analysis of SHAP values for all land parcels with the 
same characteristics; the SHAP Value axis indicates the magnitude of SHAP values, and the Dominant Factor axis indicates each type of POI characteristic that affects 
the risk of pickpocketing; (B) shows the drivers that have the greatest impact on the risk of pickpocketing in the parcel, which is obtained based on the average 
absolute magnitude of SHAP. 
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proportion of migrant residents. 
Conversely, 26.8 % of the area exhibited low-low aggregation re

gions, mainly distributed outside the central city. Notably, these regions 
typically had better built environments and overall policing, evident in 
areas such as the central southern region of Baoan district, the science 
and technology industrial area in the south-central Longhua district, and 
the northeastern industrial area in Longgang district (Fig. 8(D)-(F)). Our 
study findings indicate socioeconomic conditions and the built envi
ronment in neighbouring regions greatly influence the spatial pattern of 
crime risk. The results are consistent with the hypothesis proposed by 
Sparks (2011a). 

4.4. Explainable spatial distribution of pickpocketing risks 

After fitting the relationship between each type of POI feature and 
the risk of pickpocketing crime, we calculated the SHAP values for each 
type of POI feature (Fig. 9(A)). Residents’ routine activity was mainly 
carried out in five facilities, namely Traffic, Entertainment, Catering, 
Shopping, Financial, and Life services facilities (Boivin, 2018). The re
sults indicate that routine activity was the most important factor influ
encing pickpocketing crime risk and positively correlates with the risk of 
pickpocketing crime. Compared to Tourist (− 0.052), Medical In
stitutions (− 0.003), and Police (− 0.009), routine activity had the 
greatest impact on the risk of pickpocketing crime with an overall SHAP 
value of 0.079. According to the resident’s routine activity theory 
(Cohen & Felson, 1979), Routine activity facilities provide criminals and 
potential targets that are prone to criminal activity. Tourist character
istics had a negative impact on pickpocketing crime risk scores, with a 
negative median SHAP value (− 0.079). The Tourist feature reduced the 
risk score in many samples, which indicates that tourism had a high 
potential to reduce the risk of pickpocketing crime in urban areas. The 
results are consistent with the findings of (Bogar & Beyer, 2016) that 
urban landscape features are associated with reduced crime rates. 

The present study investigated the determinants of pickpocketing 
crime risk on all parcels in Shenzhen Shenzhen, revealing insights into 
the spatial heterogeneity of crime risks (Fig. 9(B)). The influence of 
routine activities on the risk of pickpocketing crime was found to be 
spatially heterogeneous. In the downtown area, routine activity facilities 
were observed to positively affect the risk of pickpocketing (average 
SHAP value: 0.184). For example, in the vicinity of Shenzhen University 
Town, where traffic was the main driver, urban residents moved around 
for work and education purposes, and the population was more mobile, 
increasing the risk of pickpocketing crime in the area. However, resi
dents’ routine activity facilities in suburban areas negatively impact 
crime risk (average SHAP value: − 0.118). For example, Shopping and 
Financial features dominated the dominant factors near the central area 
of Baoan district, which reduced the crime risk of the area. This may 
associate with increased guardianship (Boivin, 2018), which stabilizes 
social order. These results support the hypothesis that routine activity 
may increase or decrease criminal activity (Boivin, 2018). 

The present study revealed the heterogeneous effect of tourist at
tractions on the risk of pickpocketing crime. Tourist (average SHAP 
value: 0.098) had a predominantly positive effect on crime risk in 
economically developed urban areas. For instance, Shenzhen Central 
Park witnessed an increased risk of pickpocketing due to the congre
gation of many tourists, making tourism the main driver of crime risk in 
the area (Zhong et al., 2011). In contrast, tourists in suburban areas 
(average SHAP value: − 0.119) mainly negatively affect crime risk. For 
example, crime risk in Baoan International Airport was driven by 
tourism, but it reduced the risk of pickpocketing crime in the area. This 
could be attributed to the presence of a large area of public green spaces 
near the airport, which stabilizes social order and reduces the risk of 
pickpocketing crime (Jennings & Bamkole, 2019). Our study shows the 
uncertainty of Tourist’s effect on crime risk in the region due to socio
economic influences, which is in line with the findings of (Groff & 
McCord, 2012). 

5. Discussion 

The extraction of crime information from street view images 
reflecting the built environment is essential for urban governance and 
crime risk analysis. However, the number of street view images labeled 
as crime occurred is often very less. This issue is particularly true in 
China since the most reliable crime data source is the Chinese judgment 
documents, which do not contain all criminal cases. This study is an 
active attempt to extract crime risk through urban built environments 
using spatially sparse crime data. To achieve this, we adopted an 
alternative approach by evaluating the distribution of pickpocketing 
crimes based on OCC-based anomaly detection and street view images. 
In addition, it is the first exploration of the relationship between the 
built environment and pickpocketing crime risk in a large Chinese city. 
Previous studies have analyzed cities’ physical environment and socio
economic characteristics as reflected in street view images in several U. 
S. cities and explored their relationship with urban crime rates (He et al., 
2017; Zhang et al., 2021). 

5.1. Interpretation of the findings 

In this study, we developed a Crime Anomaly Detection based on the 
Street View (CADSV) model, which can effectively extract deep semantic 
information from massive street view for assessing pickpocketing risks. 
Our results show that the street view images can accurately reflect the 
city’s physical environment and provide reliable assessments of the risk 
of pickpocketing crimes, as confirmed by the high accuracy of the 
CADSV model (AUC = 0.921, recall = 0.816). Through comparative and 
explainable analysis, we obtained a micro-scale pickpocketing risk dis
tribution map of the study area and confirmed the reliability of the 
results. 

Our findings reveal that pickpocketing crime in Chinese megacities 
exhibits strong spatial autocorrelation, consistent with previous studies’ 
observations that crime tends to be concentrated in small areas (Groff 
et al., 2010; Weisburd et al., 2004). The observed decrease in crime risk 
decreases with distance from the downtown provides quantitative sup
port for the social disorganization theory proposed by Shaw et al. 
(1942). In the downtown area, pickpocketing is a high prevalence and 
aggregation of pickpocketing crime are significant due to dense human 
traffic, making it challenging to manage. Simultaneously, in the course 
of ongoing urban expansion due to population and economic growth, the 
influx of migrant workers and the gradual deterioration of the physical 
environment in older urban areas (Li et al., 2014) have become the 
dominant drivers of the high prevalence of pickpocketing crimes in 
urban village areas (Liu, 2010). In contrast, the suburbs, and industrial 
parks outside the central city, where a large number of immigrants live 
and work (Roitman & Phelps, 2011), display a better built environment 
and exhibit low-low aggregation of pickpocketing crimes. These findings 
highlight the complexity of the impact of urban function on pickpock
eting crime. They also confirm that confirm that the complex roles of the 
urban physical environment, neighborhood socioeconomics, and 
migrant population all play a significant role in shaping the spatial 
distribution of pickpocketing crime risk in Chinese cities (Sparks, 
2011b). 

This study also utilized the Random Forest and SHAP model to 
interpretively analyze the relationship between pickpocketing crime, 
urban function, and urban environment at the microscopic scale. The 
proposed model achieved high accuracy (R2 = 0.455) and reliability 
(RMSE = 0.016) by employing urban functions to fit pickpocketing risk, 
thus quantitatively confirming the crucial role of different urban func
tions in shaping regional pickpocketing risk. Consistent with the routine 
activity theory proposed by Cohen and Felson (1979) and the crime 
pattern theory proposed by Brantingham and Brantingham (2013), our 
findings highlight that routine activity in the central city is a critical 
factor that enhances pickpocketing risks. Furthermore, we observed that 
the high intensity of economic activity in commercial areas contributes 
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significantly to crime incidence in China. 
The results demonstrate that both the built environment information 

and urban functional information captured in street view images play a 
role in shaping crime incidence. Regarding the built environment, areas 
with high-density urban buildings and visually chaotic and disorganized 
surroundings are more susceptible to pickpocketing crimes, while areas 
with better-organized environments have lower risks. Concerning urban 
functional zones, densely populated areas that are challenging to fully 
secure and where high-value items are prevalent pose a higher risk of 
pickpocketing crimes. Examples include high-traffic attractions, shop
ping centres, isolated factories or residential areas, schools with a high 
number of minors, among others. We can use these findings to guide 
urban planning and security management. For example, in high-traffic 
areas such as commercial centres and tourist attractions, surveillance 
and security forces can be strengthened in advance to reduce the threat 
of crime by installing additional warning signs and alarm facilities based 
on unusual risk situations reflected in the street view images. In 
important areas such as residential and school zones, residents and 
students can be encouraged to exercise extra vigilance towards high- 
value property. Additionally, open spaces like parks and attractions 
could benefit from increased police patrols and surveillance equipment 
deployments in crowded areas can be increased to improve security 
perceptions and prevent pickpocketing and other crimes from 
happening. Furthermore, functional areas may also reflect differences in 
social structures. For instance, the transport facilities present a higher 
risk of crime in the city centre than in other areas, which may have 
complex links to social phenomena such as frequent movements of 
movement of people, conflicts arising from intricate social structures, 
and the allocation of police forces. In the long term, governments should 
to promote social development and long-term security by improving the 
social structure and raising the level of the economy. 

The above discussion underscores the multifaceted nature of pick
pocketing crime in China’s megacity, which cannot be explained by a 
single theory of crime. The occurrence of such crime is influenced by a 
combination of regional economic development, urban physical envi
ronment, and routine activity, among other factors. Moreover, inter
pretable analyses have uncovered complex spatial heterogeneity in the 
drivers of pickpocketing crime across China’s megacity. Routine activity 
exerts a positive impact on areas with intense human activity areas in 
downtown regions but a negative impact in suburban areas. Similarly, 
tourist activity positively affects crime risk in urban centers but has a 
negative effect in the suburbs. These findings indicate that the di
chotomy of China’s urban-rural structure, characterized by the differ
ences in physical space, industrial infrastructure, and economic 
composition across regions (Ann et al., 2015; Long et al., 2016), gives 
rise to significant variations in the underlying drivers of crime. 

As a developing country, China faces the challenge of operating with 
a relatively constrained police force and fewer police services available 
per capita compared to developed countries, resulting in inadequate law 
enforcement resources to combat pickpocketing crimes (Hyland & 
Davis, 2019; Wang et al., 2014). To enhance policing effectiveness, our 
findings suggest deploying police patrols strategically high-risk areas for 
pickpocketing crimes while implementing video surveillance systems in 
urban villages, shopping centres, and economic activity centers. 
Furthermore, increasing anti-pickpocketing campaigns at daily activity 
locations such as bus stops and metro stations could raise residents’ 
security awareness and contribute to reducing pickpocketing risks. Our 
study further highlights that urban villages with significant migrant 
populations are at greater risk of pickpocketing crime. Therefore, 
improving service facilities in urban villages and providing more 
employment opportunities may aid in enhancing urban policing efforts. 

There are difficulties in mapping the real spatial pattern of crime risk 
due to the specificity of data collection for the judgment document. The 
anomaly detection model in this study learns from sparse data about 
hidden crime risks and finds a spatial mismatch between the number of 
crime events and the risk of the area. Current policy-making authorities 

quantify the level of policing in an area mostly based on government 
survey data, such as judgment documents. Conclusions based on such 
data may therefore lead to problems such as misallocation of public 
resources and misguided business investments. Our findings may pro
vide support to government policy makers or commercial investors. 

5.2. The spatial mismatch between the judgment document and mapped 
crime risk 

Our study has revealed a spatial mismatch between crime risk and 
the original crime data obtained from judgment document, as depicted 
in Fig. 10(A). This disparity is a tangible manifestation of the sparse and 
biased sampling problem that this research has explored. Specifically, 
the spatial distribution of data collected through sentencing instruments 
is exceedingly sparse and closely associated with factors such as popu
lation density and law enforcement efficiency, rendering it difficult to 
accurately reflect the actual spatial pattern of crime risk. 

In practice, acquiring a judgment document involves a lengthy pro
cess comprising three stages: (1) commission of a crime and successful 
theft; (2) notification of the police by the victim or public body, leading 
to the opening of a case and arrest of the suspect; and (3) filing of a case 
and commencement of prosecution against the accused by the victim or 
public body in a court of law. Consequently, the data we collect for each 
judgment paper represents not only the occurrence of a crime, but also 
the diligence of the court and the efficiency of the police in executing the 
case. Regarding the distribution of crimes, since not all criminal in
cidents go through the aforementioned process, the sentencing paper 
data can only serve as a sparse sample point and cannot directly depict 
the full scope of criminal activities. 

Regarding the sparsity of sampled data, Table 1 presents the area 
covered by crime points and the number of street view images under 
varying buffer distances. The results reveal that with a buffer distance of 
200 m, only 3 % of the region is labeled as crime-related, with an 
average of 4.17 street view images per buffer. If a shorter buffer distance 
of 50 m is chosen, then merely 0.2 % of the area is covered, and each 
buffer can only include 0.31 street image. Given the limited proportion 
of relevant data, it becomes arduous to offer a comprehensive and ac
curate spatial pattern at a global level. 

With regards to the biased nature of the data, we counted the judg
ment instruments for all cases (including cases in which the location is 
not publicly available) in each administrative region of Shenzhen in 
2018 based on the data provided by the Judgment Instruments website 
(https://wenshu.court.gov.cn/), as shown in Fig. 10(B). The figure de
picts darker colors indicating a higher total number of judgment in
struments within each respective region. It is evident that the 
aggregation level of crime points obtained through our opportunity 
judgment instruments closely aligns with the number of judgment in
struments generated by courts in each region. 

In order to further validate our previous assertion concerning human 
activity, we have gathered Real-time Tencent user density (RTUD) data. 
Tencent is one of the largest internet companies in China, with a user 
base exceeding 800 million individuals utilizing its diverse range of 
internet services. Through Tencent Maps or WeChat, when users engage 
in location-related activities, their relevant location information is 
recorded, enabling RTUD data to capture population distribution during 
specific periods. The raw data is stored as a raster image format 
comprising of 24 bands that represent each hour of the day. This study 
utilizes an overlay of the 24-h average change in population density over 
weekdays to generate a graph (He et al., 2020). A correlation can be 
observed between higher crime spots and elevated levels of people’s 
activities, once again affirming the notion that data acquisition does not 
accurately reflect the complete volume of criminal incidents. 

This study has examined areas of mismatch to establish a connection 
between Fig. 10 (A) and Fig. 8. Specifically, in Figs. 10 (A-a) and Fig. 8 
(C), it is apparent that despite the limited sample of pickpocketing crime 
events in Tong Mei Urban Village, the village exhibits a high risk of 
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criminal activity due to its inadequate infrastructure and chaotic 
building structure. Conversely, Fig. 10 (A-b) and Fig. 8 (E) demonstrate 
that emerging technology industrial parks and factories have a lower 
risk of crime, attributed to their well-organized and tidy environment. 
Further, Fig. 10 (A-c) corresponds to Fig. 8 (B), where the Futian Central 
Business District displays a medium-high risk of criminal activity due to 
the concentration of wealth. However, there are also areas with a low 
risk of criminal activity, as seen in Fig. 10(A-c). These regions are 

primarily located in residential areas within the city center, which may 
be due to enhanced security facilities and the higher quality of residents. 

5.3. Limitation and future works 

The present study does have some limitations that must be 
acknowledged. First, the objective of this study is to utilize sparse crime 
data to reflect implicit crime risks in urban built environments using the 
technique of anomaly detection. However, it is important to note that 
this study conducted a crime risk analysis rather than an estimation of 
actual crime rates. There are interactions and complex causal relation
ships between risk and crime rates. Understanding these relationships is 
critical to developing effective crime prevention and governance stra
tegies, and requires the integration of multiple social, economic, cultural 
and individual dimensions. Future studies may collaborate with law 
enforcement agencies to analyze the relationship between street view 
images and real-time alarm data utilizing the framework proposed in 
this paper. 

The second limitation of this study pertains to the crime data used in 
model design. The premise assumption of this study is that crime in
formation can be viewed as an outlier in the urban landscape. Therefore, 
we first removed street view images spatially associated with a crime 
based on judgment documents. After that, we randomly selected a 
certain number of street view images for training purposes so as to 
obtain a normal feature vector. However, we cannot guarantee that no 
crime has occurred in those areas since judgment instruments may not 
always contain all relevant data. Our hypothesis was that by using deep 
learning for feature extraction using numerous images, we could elim
inate the influence of crime information could be eliminated as much as 
possible. The precision validation results also show such effectiveness. 
To further improve the accuracy, subsequent studies should take into 
account the more prior knowledge and eliminate as much as possible the 
street view images where crime may be present to obtain the most 
effective feature vector. Moreover, exploring the impact of different 
street view image acquisition intervals on the results would be valuable. 
More frequent street view sampling has the potential to yield better 
results，and in the field of crime, how to choose the most suitable 
analysis interval is also a topic worth exploring (Ramos et al., 2021). 
This study has successfully constructed a framework illustrating the 
feasibility of anomaly detection for exploring crime risk. Subsequent 
research endeavors can build upon this framework to delve deeper into 
this topic. 

The third limitation is we utilized POI data to interpret the result of 
crime risk mapping. Prior research has found that POI data can effec
tively reflect the characteristics of socioeconomic structure (Yao et al., 
2017). Furthermore, we have carried out some work to demonstrate the 
strong relationship between street view images and several social and 
environmental factors such as urban economic level and urban popu
lation structure (Wang et al., 2021; Yao et al., 2021b). However, POI 
data and street view images can only be proxy variables of socioeco
nomic characteristics and urban environment. To explain the risk 
mapping result more accurately, future studies will introduce more 
detailed census, travel survey, and trajectory data. Additionally, 
econometric models may be used to analyze the temporal and spatial 

Fig. 10. The overlap of pickpocketing events between the judgment document 
and: (A) the crime risk distribution; (B) the total number of judgment docu
ments of each district; (C) The average population distribution of Shenzhen 
during the working day. 

Table 1 
The area and images that are covered by crime event according to different 
buffer.  

Buffer range 50 m 100 
m 

150 
m 

200 
m 

250 
m 

300 
m 

Area percentage covered 
by buffer zones  

0.2 %  0.8 %  1.9 %  3.0 %  5.4 %  7.8 % 

Average number of 
images covered by one 
buffer  

0.31  1.36  2.51  4.17  6.69  9.45  
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correlations between the multiple urban structures and criminal be
haviours at the micro-scale. Finally, follow-up research can also expand 
the research scale by obtaining global street view datasets and analyzing 
the similarities and differences of criminal behavior drivers in different 
cities worldwide. 

The solution proposed in this study carries substantial practical 
value, as street view images are easy to obtain, models can be easily 
migrated to other areas, and it can be utilized by lay users to quickly 
comprehend crime risk levels in a particular area of the city. For 
instance, we can develop a mobile application that enables users to 
swiftly assess safety status of a city neighborhood. Visitors arriving in an 
unfamiliar city can rapidly determine whether a specific alley is safe. 
While police crime statistics are typically the most trustworthy in such 
cases, official data may not always cover the entire area. In such sce
narios, our approach can assist users in identifying and mitigating po
tential safety concerns. 

6. Conclusion 

This study aims to propose a solution for extracting crime risk in
formation from the built environment using the limited crime-labeled 
street view images. We also try to prove the association between the 
human perception of the built environment and urban pickpocketing 
crimes in China. To achieve these objectives, we propose a pickpocket
ing risk assessment model that combines deep anomaly detection tech
niques to reveal the crime risk from street view images. The SHAP was 
introduced to conduct an interpretable analysis of urban functions and 
crime risks. Through spatial distribution analysis of pickpocketing 
crimes based on judicial documents, our proposed CADSV model accu
rately and reliably maps out a micro-scale pickpocketing risk distribu
tion in Shenzhen. Our results indicate street view images can effectively 
assess pickpocketing crime risk in Chinese cities, and the crime risk has a 
strong spatial autocorrelation. Moreover, we demonstrate that pick
pocketing crime in China is driven by complex factors such as regional 
economic development, physical urban environment, and daily activ
ities. These findings provide valuable insights for policing deployment 
and city management strategies. Nonetheless, this study does not discuss 
the association between crime risk and actual crime rates. Moreover, the 
inclusion of finer-scale geographic big data could be considered to 
identify crime-related street view images in anomalydetection, thereby 
offering more prior knowledge about crime risk. Furthermore, a more 
comprehensive interpretation of the crime risk mapping results is 
necessary to analyze the correlation between various urban structures 
and criminal behavior at finer spatial and temporal scales. 
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