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A B S T R A C T   

Detecting travel modes from global navigation satellite system (GNSS) trajectories is essential for understanding 
individual travel behavior and a prerequisite for achieving sustainable transport systems. While studies have 
acknowledged the benefits of incorporating geospatial context information into travel mode detection models, 
few have summarized context modeling approaches and analyzed the significance of these context features, 
hindering the development of an efficient model. Here, we identify context representations from related work 
and propose an analytical pipeline to assess the contribution of geospatial context information for travel mode 
detection based on a random forest model and the SHapley Additive exPlanation (SHAP) method. Through 
experiments on a large-scale GNSS tracking dataset, we report that features describing relationships with 
infrastructure networks, such as the distance to the railway or road network, significantly contribute to the 
model's prediction. Moreover, features related to the geospatial point entities help identify public transport 
travel, but most land-use and land-cover features barely contribute to the task. We finally reveal that geospatial 
contexts have distinct contributions in identifying different travel modes, providing insights into selecting 
appropriate context information and modeling approaches. The results from this study enhance our under
standing of the relationship between movement and geospatial context and guide the implementation of effective 
and efficient transport mode detection models.   

1. Introduction 

Knowledge regarding individuals' usage of travel modes is an indis
pensable element in contemporary travel behavior studies. Travel mode 
choices are formed due to the everyday needs and constraints of in
dividuals (Hägerstrand, 1970) and are generally influenced by travel- 
related factors such as cost, time, accessibility and comfort (Ortúzar 
and Willumsen, 2011). As a result, it is not uncommon for mobility 
systems to be evaluated and compared based on the current modal splits 
of the overall population (Lee et al., 2022) or their experienced modal 
shifts (Buehler et al., 2017) for reflecting the travel behavior situations 
in a defined area. Besides, individuals' choices in travel modes reflect 
personal travel preferences and habits (Hong et al., 2023a), whose in- 
depth understanding benefits traffic modeling (Horni et al., 2016) and 
transport planning (Molloy et al., 2022). Studies on individual travel 
mode choices have been particularly relevant nowadays due to the 
growing impact of mobility on the environment (Erhardt et al., 2019). 
Knowing travel mode shares for various activity-travel types is an 
essential prerequisite for estimating environmental impacts (Böhm 
et al., 2022) and promoting new mobility concepts, such as mobility as a 

service (MaaS), to achieve a more efficient and sustainable transport 
system (Reck et al., 2022). 

With the flourishing of information and communication technologies 
(ICT) (Bucher et al., 2019), the primary approach to collecting travel 
behavior information has gradually evolved from conventional travel 
surveys, where people are asked to complete questionnaires online, on 
paper, or by telephone, to sensors and devices that record location in
formation automatically (Stopher et al., 2008; Wang et al., 2018b; 
Raubal et al., 2021). Smartphone applications that utilize built-in global 
navigation satellite system (GNSS) sensors stand out due to their high 
data quality, low implementation costs, and easy administration (Shen 
and Stopher, 2014; Marra et al., 2019). These smartphone-GNSS data
sets contain location information recorded at a high spatial and tem
poral resolution, enabling continuous monitoring of individuals' 
whereabouts (Barbosa et al., 2018). Moreover, GNSS tracking data is 
suitable for uncovering the complex relationships between human 
mobility and its surrounding environments (Rout et al., 2021; Hong 
et al., 2023a). Despite these satisfactory properties, smartphone GNSS 
sensors do not support an automatic inference about high-level travel 
information, including on which travel mode the individual is currently 
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conducting the travel. 
Over the past decade, many studies have contributed to the auto

matic detection of travel mode, which is now regarded as a standard 
processing step for GNSS tracking-based travel behavior studies (Shen 
and Stopher, 2014). Early attempts are dominated by rule-based heu
ristics or fuzzy logic methods, where domain experts design rules to 
differentiate between travel modes (Chen et al., 2010; Schuessler and 
Axhausen, 2009). Recent interests have been gradually switched to 
machine learning (ML) based methods that can effectively learn non- 
linear relationships directly from data (Wang et al., 2018a), thus 
increasing the mode detection performance for large-scale real-world 
tracking datasets (Wu et al., 2022). Unlike rule-based heuristics with 
well-designed decision boundaries, the interpretability of ML models 
remains low (Prelipcean et al., 2017; Xiao et al., 2017). With little 
knowledge of the inner working mechanism, we cannot safely assess the 
models' ability to generalize to new populations and to transfer to new 
geographical areas. Moreover, researchers have increasingly recognized 
the importance of geospatial context information, such as bus stops, land 
cover, and points of interests (POIs), in characterizing movements with 
different travel modes (Semanjski et al., 2017). By representing context 
information as features and incorporating them into the framework, 
detection performance can be significantly improved (Roy et al., 2022; 
Zeng et al., 2023). However, the relationship between movement and 
context can be depicted in multiple ways. There is currently no 
consensus on which types of geospatial context information are most 
critical for mode detection. As a result, detection approaches create a set 
of features based on their interpretation, typically including more 
contextual variables than necessary as input to ML models. 

To address these gaps, we propose a pipeline to systematically 
evaluate the contribution of geospatial context information for travel 
mode detection. Specifically, we thoroughly review recent literature to 
identify common and natural context representations, which are then 
implemented based on open-source geospatial data. We develop a 
random forest (RF) model, reported as one of the best-performing ML 
models for this task. Finally, we apply SHapley Additive exPlanation 
(SHAP), a type of feature attribution method, to the trained RF model to 
evaluate the features' impacts. In short, our contributions are summa
rized as follows:  

• We implement a comprehensive set of features for travel mode 
detection. The features are summarized from previous research and 
describe motion characteristics and geospatial context information, 
covering a broad spectrum of context modeling approaches.  

• We quantitatively evaluate the importance of geospatial context 
features to the detection performance. Our results suggest that geo
spatial network features contribute the most, and the separation of 
travel modes can benefit from features describing their respective 
infrastructures.  

• We conduct experiments on a large-scale GNSS tracking dataset. The 
dataset includes individual movements within Switzerland and in
volves seven travel modes: bicycle, boat, bus, car, train, tram, and 
walk, which is one of the largest studies in terms of geographical 
areas and detection scheme. 

• We include only open-source geospatial data in the feature con
struction, ensuring the framework's reproducibility and generaliz
ability. We open-source our framework to provide a benchmark for 
further reference.1 

2. Related work 

Travel mode detection is the task of inferring the travel mode utilized 
by an individual given a movement trajectory. Here, we focus on 
detecting travel modes from trajectories recorded using smartphone 

GNSS sensors, as they provide dense mobility traces that can lead to fine- 
grained mode detection results (Huang et al., 2019). The general 
approach for this line of mode detection studies involves three steps 
(Shen and Stopher, 2014; Prelipcean et al., 2017; Zeng et al., 2023). 
First, rule-based algorithms are designed to detect mode transfer points 
(MTPs) from raw GNSS track points, which segment the continuous 
trajectory into stages conducted with a single travel mode. Then, char
acteristic features such as speed or heading are extracted from the 
stages. Finally, rule-based heuristics, statistical methods, or ML classi
fiers are developed to infer the travel mode based on these features. As 
the detection of MTPs has become the de-facto preprocessing standard 
(Tsui and Shalaby, 2006; Schuessler and Axhausen, 2009), we discuss 
the feature extraction and the method development in the following 
section. 

2.1. Feature extraction and importance assessment 

To identify typical features for travel mode detection, we consult 
review papers (Shen and Stopher, 2014; Gong et al., 2014; Prelipcean 
et al., 2017) and select representative studies published in recent years. 
An overview of features implemented in the reviewed literature can be 
found in Table 1. We distinguish between features that characterize the 
movement (motion feature) and features that describe the relationship 
between motion and context information (geospatial context feature). 

Overall, motion features have been introduced since the emergence 
of the problem and are still the most widely used input variables. Speed 
and acceleration features can be found in nearly all studies and are 
considered the most straightforward indicators for distinguishing travel 
modes (Tsui and Shalaby, 2006; Xiao et al., 2015). The bearing rate that 
reflects the heading change stability and the length of the stage is mainly 
applied to separate motorized and non-motorized travels (Stenneth 
et al., 2011; Xiao et al., 2015). Jerk, which measures the change rate in 
acceleration, has gained popularity due to its introduction as an addi
tional channel input for deep learning (DL) models (Dabiri and Heaslip, 
2018). Other motion features, including duration, altitude, GNSS accu
racy, and distance between track points, have been less often employed 
in recent years. Operationally, variables observed per track point, such 
as speed and acceleration, need to be aggregated into a single value to 
describe a movement trajectory. Apart from the most often calculated 
average value, researchers note that a nearly maximum value such as the 
85th percentile should be used as an additional indicator (Biljecki et al., 
2013), allowing for robustness to noise (Schuessler and Axhausen, 
2009). In addition, a few methods consider more sophisticated statistical 
indicators (e.g., standard deviation, mode, and skewness) to describe the 
variable's distribution over the movement trajectory (Xiao et al., 2017; 
Wu et al., 2022). 

Comparatively, geospatial context data has been used less frequently 
for travel mode detection. Based on their represented context informa
tion, we divide these features into four categories:  

• Infrastructure networks. These features quantify the trajectory's 
proximity to networks that allow movements with specific travel 
modes, typically implemented using different distance measures. For 
example, Stenneth et al. (2011) represented the rail network feature 
with the average Euclidean distance between each track point and its 
closest rail line. Roy et al. (2022) adopted the Hausdorff distance to 
obtain the furthest distance between track points and the network. 
Threshold-based methods, which assess the proportion of track 
points with Euclidean distances closer to the network than a speci
fied threshold, have also been employed in previous studies (Ras
mussen et al., 2015; Wu et al., 2022; Yang et al., 2022).  

• Public transport stations. They are the most commonly implemented 
geospatial context features because of their easy accessibility from 
open-source map services and their effectiveness in distinguishing 
public transport from car travel (Chen et al., 2010). Proximity to 
public transport stations is either considered for the whole trajectory 1 The source code is available at https://github.com/mie-lab/mode_detect. 
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Table 1 
Summary of input features in related literature (PT: public transport, WB: water body, GS: green space, CA: commercial area, RA: residential area).   

Motion feature Geospatial context feature 

Speed Acc. Jerk Bearing Len. Dur. Alt. Point 
acc. 

Point 
dist. 

Road PT Rail Tram Metro Cycle Walk Bus 
stop 

Metro 
stop 

Train 
stop 

PT 
plan 

PT 
real- 
time 

WB GS CA RA 

Patterson et al. 
(2003) 

✓          ✓      ✓         

Tsui and 
Shalaby 
(2006) 

✓       ✓   ✓       ✓        

Zheng et al. 
(2008) 

✓ ✓   ✓                     

Stopher et al. 
(2008) 

✓    ✓     ✓ ✓ ✓     ✓         

Chen et al. 
(2010) 

✓     ✓  ✓   ✓      ✓         

Stenneth et al. 
(2011) 

✓ ✓  ✓    ✓    ✓     ✓    ✓     

Gong et al. 
(2012) 

✓ ✓    ✓           ✓ ✓ ✓       

Biljecki et al. 
(2013) 

✓         ✓ ✓ ✓   ✓ ✓ ✓ ✓ ✓   ✓    

Xiao et al. 
(2015) 

✓ ✓   ✓                     

Rasmussen et al. 
(2015) 

✓ ✓        ✓  ✓     ✓         

Feng and 
Timmermans 
(2016) 

✓ ✓   ✓   ✓  ✓   ✓ ✓            

Xiao et al. 
(2017) 

✓ ✓  ✓ ✓                     

Semanjski et al. 
(2017) 

✓         ✓  ✓   ✓ ✓ ✓  ✓       

Zong et al. 
(2017)a 

✓ ✓   ✓ ✓            ✓        

Wang et al. 
(2018a)a 

✓ ✓  ✓ ✓ ✓            ✓        

Dabiri and 
Heaslip 
(2018) 

✓ ✓ ✓ ✓                      

Yazdizadeh 
et al. (2020) 

✓ ✓ ✓ ✓                      

Markos and 
James (2020) 

✓ ✓ ✓                       

Li et al. (2020) ✓ ✓ ✓ ✓                      
Sadeghian et al. 

(2022) 
✓ ✓  ✓ ✓ ✓   ✓ ✓ ✓ ✓   ✓ ✓ ✓  ✓ ✓      

Kim et al. 
(2022) 

✓ ✓ ✓ ✓                      

Roy et al. 
(2022) 

✓   ✓ ✓  ✓        ✓  ✓ ✓     ✓ ✓ ✓ 

Wu et al. (2022) ✓ ✓ ✓ ✓      ✓  ✓     ✓         
Yang et al. 

(2022) 
✓    ✓ ✓    ✓ ✓ ✓     ✓         

Zeng et al. 
(2023) 

✓ ✓  ✓  ✓   ✓        ✓         

Total 25 17 6 11 10 7 1 4 2 8 7 8 1 1 4 3 13 6 4 1 1 1 1 1 1  

a Geospatial context features were only used to detect metro mode by designed rules. 
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(e.g., by measuring the distance to each track point) (Stenneth et al., 
2011; Roy et al., 2022) or for the movement's start and end points (e. 
g., by only considering the trajectory's endpoints) (Zong et al., 2017; 
Wang et al., 2018a).  

• Public transport timetables and real-time locations. Besides static 
geospatial contexts, previous studies integrate information that re
flects the actual public transport service situations (Sadeghian et al., 
2022; Stenneth et al., 2011). However, this dynamic information is 
only openly accessible in limited areas of the world (e.g., large cit
ies), hindering their application in large-scale travel mode detection 
studies.  

• Land use and land cover (LULC). Relatively few studies consider 
LULC contexts in the task. Biljecki et al. (2013) proposed using the 
water body feature to identify boat movements, and Roy et al. (2022) 
argued that including LULC features help distinguish non-motorized 
travel modes. It has been long recognized that the built environment 
influences an individual's travel mode choice (Cheng et al., 2019; 
Tamim Kashifi et al., 2022), suggesting a considerable potential to 
incorporate LULC features for travel mode detection. 

Although many studies have recognized the importance of geospatial 
context features (Biljecki et al., 2013; Semanjski et al., 2017), few have 
attempted to quantify their significance in improving mode detection 
performance. Comparative studies have demonstrated that including 
geospatial context information can significantly increase accuracy, 
ranging from 18% (Stenneth et al., 2011) to 77% (Roy et al., 2022). 
However, due to variations in the implemented features, it is challenging 
to assess and compare the contribution of different context categories to 
the outcome, hindering the development of an efficient travel mode 
detection model. 

2.2. Travel mode detection methods 

The widespread use of smartphone GNSS sensors for collecting travel 
diaries has spurred researchers to develop approaches for automatically 
detecting travel modes from raw GNSS tracking data. As a first attempt, 
rule-based heuristics with human-crafted rule sets to differentiate each 
travel mode were proposed (Stopher et al., 2008; Chen et al., 2010; Gong 
et al., 2012). These systems match experts' understanding of mode usage 
but failed to perform satisfactorily when applied to noisy real-world 
GNSS records. Therefore, statistical methods such as fuzzy logic 
(Schuessler and Axhausen, 2009; Biljecki et al., 2013) and Bayesian 
networks (Xiao et al., 2015) were applied to account for ambiguity in 
allocating modes to observed motion and context characteristics. Later 
attempts introduced ML for learning classification “rules” directly from 
input features, allowing more flexibility in the decisions and being more 
robust to real-world noise. Examples of ML-based approaches include 
decision trees (Zheng et al., 2008), RF (Wang et al., 2018a), support 
vector machines (Semanjski et al., 2017), and artificial neural networks 
(Roy et al., 2022). Among these, RF has become increasingly popular as 
it can effectively handle high feature dimensionality and multi
colinearity (Fernández-Delgado et al., 2014). Studies comparing various 
mode detection methods have consistently found that RF achieved the 
best performances among classical ML algorithms (Stenneth et al., 2011; 
Dabiri and Heaslip, 2018; Sadeghian et al., 2022). 

Thanks to the availability of large-scale datasets, DL models have 
sparked a new paradigm for travel mode detection. Examples include 
convolutional neural network (CNN) (Dabiri and Heaslip, 2018; Yazdi
zadeh et al., 2020) and recurrent neural network (RNN) (Kim et al., 
2022), which can learn multi-level representations from input features, 
enabling them to describe highly non-linear relationships. Additionally, 
DL models can effectively capture consecutive travel mode choice pat
terns (Zeng et al., 2023), which is challenging to consider in the standard 
three-step mode detection framework (Bolbol et al. 2012). However, 
current DL mode inference models only accept a limited motion feature 
set as input (e.g., speed, acceleration, jerk, and bearing in Dabiri and 

Heaslip (2018)), and approaches to include relevant geospatial context 
information are still to be explored. The modeling approaches and 
feature attribution results obtained from this study offer valuable in
sights that can inspire geospatial context integration into DL models for 
travel mode detection. 

3. Methodology 

We present a framework for evaluating the importance of geospatial 
context information in travel mode detection. The overall pipeline is 
illustrated in Fig. 1. First, we extract motion and geospatial context 
features from the GNSS movement trajectory (§3.1). These features 
provide a comprehensive characterization of movements performed 
with different travel modes. Then, we implement an RF classifier to 
identify the travel mode with the extracted feature set (§3.2). Finally, 
based on the classification outcomes, we evaluate the contribution of the 
features to the model's prediction using SHAP (§3.3). In the following, 
we provide a more detailed description of each step. 

3.1. Feature extraction 

As a first step, a typical travel mode identification framework re
quires extracting meaningful features. We represent a movement tra
jectory traveled with a single travel mode by user ui using Si =

〈m, c, g(s) 〉, where m represents the employed travel mode, c is the 
associated geospatial context, and g(s) denotes the time-ordered track 
points that constitute the movement, i.e., g(s) = (qk)

n
k=1. A track point q 

is a tuple of q = 〈p, t〉, where p = 〈x, y〉 includes spatial coordinates in a 
reference system, e.g., latitude and longitude, and t is the time of 
recording. Following the notation, we distinguish between motion fea
tures, where only track points g(s) are involved, and geospatial context 
features, where both context information c and track points g(s) are 
needed. 

3.1.1. Motion feature 
Table 2 provides an overview of all motion features included in the 

study. Basic movement metrics such as length, duration, speed, accel
eration, and bearing rate are calculated from track points. We obtain the 
average and the 85th percentile value of these metrics for each trajec
tory. More specifically, we calculate the length Δdk and duration Δtk of 
travel between two consecutive track points qk,qk− 1 ∈ (qk)

n
k=1: 

Δdk = ‖pk − pk− 1‖2 Δtk = tk − tk− 1 (1)  

where ‖⋅‖2 denotes the Euclidean distance with pk and pk− 1 represented 
in a planar coordinate system. The length D and duration T are obtained 
through summarizing all these intervals, i.e., D =

∑n
k=2Δdk, T =

∑n
k=2Δtk. Moreover, the speed vk and acceleration ak of track point qk ∈

(qk)
n
k=1 are obtained as follows: 

vk =
Δdk

Δtk
ak =

vk − vk− 1

Δti
(2) 

Another essential feature that distinguishes travel modes is the di
rection change, which is often represented using the bearing rate (Yaz
dizadeh et al., 2020; Sadeghian et al., 2022) that measures the absolute 
difference between the bearings of two sequential track points. The 
bearing rate bk of track point qk ∈ (qk)

n
k=1 can be calculated as follows: 

bk = |βk+1 − βk| where βk = arctan(xk − xk− 1, yk − yk− 1) (3) 

We then calculate the average speed V, average acceleration A and 
average bearing rate B of the trajectory by averaging over all its track 
points: 

V =
1

n − 1
∑n

k=2
vk A =

1
n − 2

∑n

k=3
ak B =

1
n − 2

∑n− 1

k=2
bk (4) 
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The 85th percentile speed V85th , acceleration A85th and bearing rate 
B85th are obtained by ordering the (vk)

n
k=2, (ak)

n
k=3 and (bk)

n− 1
k=2 sequences 

in ascending order and selecting the 85th percentile value, respectively. 

3.1.2. Geospatial context feature 
Table 3 provides an overview of the geospatial context features 

considered in the study. These features are either obtained with the 
trajectory's endpoints (Table 3 Endpoints) or all points that form the 
trajectory (Table 3 All points). The latter can be further categorized 
following the geometric type of the context data, i.e., whether the 
contexts exist in the form of points (e.g., POI), networks (e.g., road 
network), or areas (e.g., residential area). We demonstrate the compu
tation of various geospatial context features using an example trajectory 

in Fig. 2. We include abundant geospatial context features to exhaus
tively consider different context modeling approaches in previous 
studies (see Section 2). 

We start by implementing features that only depend on the endpoints 
of a trajectory. These features measure the closeness of trajectory end
points to the geospatial context, assuming that trajectories shall start 
and end at predefined locations (Stopher et al., 2008; Gong et al., 2012). 
Operationally, we regard the point object set Q = {Qk}

m(Q)

k=1 with m(Q)

point objects as the context c = Q , and identify the minimum distance 
between Q and the trajectory start point q1 as well as the end point qn, 
respectively: 

dstart = min
( {

‖q1 − Qk‖2

⃒
⃒Qk ∈ Q

})
dend = min

( {
‖qn − Qk‖2

⃒
⃒Qk ∈ Q

})

(5) 

We use the minimum and maximum of the two distances to quantify 
the closeness of a trajectory to the point context: 

Dmin = min
(
dstart, dend

)
Dmax = max

(
dstart, dend

)
(6) 

We construct Q using context data regarding railway station, tram 
stop, bus stop, car parking, bicycle parking, and ship landing stage, 
respectively, which results in 12 features in this category (Fig. 2A). 

Besides, previous studies have measured the proximity of the entire 
trajectory to geospatial contexts (Semanjski et al., 2017), which ac
counts for dynamic context interactions during the movement process. 
Considering the same point object set Q , we now measure the average 
minimum distance between Q and every point q ∈ (qk)

n
k=1 that forms the 

Fig. 1. Pipeline for evaluating the contribution of geospatial context information for travel mode detection.  

Table 2 
Description of motion features.  

ID Name Feature 

1.1 Length D 
1.2 Duration T 
1.3 Average speed V 
1.4 85th percentile of speed V85th 

1.5 Average acceleration A 
1.6 85th percentile of acceleration A85th 

1.7 Average bearing rate B 
1.8 85th percentile of bearing rate B85th  

Table 3 
Description of geospatial context features (End: Endpoints, All: All points).  

Level ID Name Geospatial context Feature 

End 

2.1/2.2 Distance to railway stations Railway stations Dmin
rail /Dmax

rail 
2.3/2.4 Distance to tram stops Tram stops Dmin

tram/Dmax
tram 

2.5/2.6 Distance to bus stops Bus stops Dmin
bus /Dmax

bus 
2.7/2.8 Distance to car parkings Car parkings Dmin

car /Dmax
car 

2.9/2.10 Distance to bike parkings Bike parkings Dmin
bike/Dmax

bike 

2.11/2.12 Distance to landing stages Landing stages Dmin
ship/Dmax

ship 

All 

2.13 Distance to railway stations Railway stations DrailS 
2.14 Distance to tram stops Tram stops DtramS 

2.15 Distance to bus stops Bus stops DbusS 
2.16 Distance to POIs POIs DPOIS 

2.17 Distance to railway network Railway network DrailN 
2.18 Distance to tram network Tram network DtramN 

2.19 Distance to road network Road network DroadN 

2.20 Distance to pedestrian & bike network Pedestrian & Bike network DpedN 

2.21 Proportion on water Lakes and large rivers Pwater 

2.22 Distance to green spaces Green spaces Dgreen 

2.23 Distance to residential areas Residential areas Dresident 

2.24 Distance to forest areas Forest areas Dforest  
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trajectory: 

DS =
1
n
∑n

j=1
min

({⃦
⃦qj − Qk

⃦
⃦

2

⃒
⃒
⃒Qk ∈ Q

})
(7) 

We implement features measuring the distance to railway stations 
DrailS, tram stops DtramN, bus stops DbusS and general POIs DPOIS (e.g., public 
and catering facilities) using the respective point context data (Fig. 2B). 

In addition, movements using specific travel modes are confined by 
their infrastructures, such as trains and trams that operate on established 
tracks. This characteristic can be quantified by measuring the distance 
between the trajectory and infrastructure networks. Here, we consider 
the infrastructure network N = {Lk}

m(L)
k=1 that consists of m(L) line ob

jects as the context c = N . We then calculate the average of the closest 
distance between every trajectory point q ∈ (qk)

n
k=1 and the network N : 

DN =
1
n

∑n

j=1
min

( {
f
(
qj,Lk

)⃒
⃒Lk ∈ N

} )
(8)  

where f
(

qj, Lk

)
measures the Euclidean distance between the point qj 

and the line Lk. As a result, network distances of a trajectory to the 
railway network DrailN, the tram network DtramN, the road network DroadN, 
and the pedestrian and bike network DpedN are obtained (Fig. 2C). 

The last feature category relates to built and natural environments 
that are particularly attractive to or only accessible by specific travel 
modes. These LULC contexts are typically available in area formats and 
can be denoted using a set C = {Ek}

m(E)
k=1 that contains m(E) non- 

overlapping area objects. Analogous with Eq. (8), we include features 
describing the distance to residential areas Dresident, public green spaces 
Dgreen and forest areas Dforest (Fig. 2D), as travels close to these LULC 
contexts were reported to be dominated by active modes and short- 
distance public transport (Semanjski et al., 2017; Roy et al., 2022). In 
addition, we obtain the trajectory's proportion on water Pwater for 
describing boat travels: 

P =
1
n

∑n

j=1

∑m(E)

k=1
1[within(qj ,Ek) ] (9)  

where within
(

qj, Ek

)
represents the spatial analysis function for deter

mining whether qj is within Ek, 1[⋅] is the indicator function, and 1[C] = 1 
if C is True and 1[C] = 0 otherwise. 

3.2. Random forest classification 

Given a feature set that describes the trajectory, travel mode detec
tion can be viewed as a classification problem that aims to obtain a (non- 
linear) mapping g(⋅) between the feature set X and the ground-truth 
travel mode label m, i.e., m = g(X ). When a new trajectory is 
observed, the learned mapping g(⋅) is used to predict a travel mode label 
m̂. Many supervised ML models have been proposed for learning g(⋅)
(Dabiri and Heaslip, 2018), among which tree-based models, especially 
the RF model, are reported to achieve optimum performances (Stenneth 
et al., 2011; Yang et al., 2022). 

RF is an ensemble method based on the decision tree classifier, with a 
binary tree structure that partitions the feature space into a set of 
mutually exclusive regions. These partitions are performed by searching 
all possible feature splits and selecting the one that maximizes the Gini 
impurity gain. For a candidate splitting feature Xk ∈ X , the Gini im
purity index is calculated as: 

Gini(Xk) =
∑C

i=1
pri⋅(1 − pri) (10)  

where C is the number of categories in Xk, and pri represents the sample 
proportion of the i-th class. The gain for a split is calculated by 
comparing the Gini impurity in the parent node and the one after per
forming the split. A decision tree is completely built until pre-specified 
termination criteria are met, or until all leaves are pure, meaning that 
only samples from the same category are included (Breiman et al., 
2017). 

While the decision tree is robust to the inclusion of irrelevant fea
tures and produces inspectable models, it tends to overfit the training set 
and has low generalization ability (Hastie et al., 2009). RF significantly 
alleviates the overfitting issue by maintaining multiple decision trees, 
each trained with a different training set, constructed by random sam
pling from the original training dataset with replacement. In addition to 
this sample randomization, often referred to as bootstrap aggregating, 
RF introduces additional randomness in the feature selection process. 
Only a random subset of features is considered at each node split, 
ensuring the diversity of the learned decision trees (Breiman, 2001). 
During prediction, each constructed decision tree outputs a prediction 
class label, and the majority voting strategy is used to determine the 
final classification result. 

Fig. 2. Illustration of geospatial context feature calculation using a sample GNSS trajectory. We showcase the process of constructing features for the trajectory's 
endpoints with point context (A) and for all trajectory points with point context (B), network context (C), and area context (D). Dotted lines depict the calculated 
distances. Map data ©OpenStreetMap contributors, ©CARTO. 
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3.3. Evaluating feature importance 

With a well-trained RF model, we evaluate the contribution of in
dividual features to the prediction result with SHAP (Lundberg and Lee, 
2017) and TreeExplainer (Lundberg et al., 2020). SHAP is a game- 
theoretic approach to explain the output of ML models using Shapely 
values (Shapley, 1952) that fairly distribute players' contributions when 
they collectively achieve an outcome. The concept can be generalized to 
ML to quantify the contribution of each feature that collectively delivers 
the model's output (Štrumbelj and Kononenko, 2014). More formally, 
the Shapley value ϕXk 

of feature Xk is its marginal contribution to the 
model prediction, averaged over all possible models trained with 
different feature combinations: 

ϕXk
=

∑

S⊆X \Xk

|S|!⋅(|X | − |S| − 1)!
|X |!

(v(S ∪ {Xk} ) − v(S) ) (11)  

where |⋅| denotes the cardinality of a set and v(S) is the prediction value 
of a model trained with the feature set S. The exact computation of 
Shapley values for an arbitrary model has proven to be NP-hard (Matsui 
and Matsui, 2001), posing computational challenges to their widespread 
adoption. Facing this challenge, Lundberg and Lee (2017) proposed 
SHAP to estimate Shapley values, and subsequently, TreeExplainer was 
presented to exactly compute Shapley value explanations for tree-based 
models (such as RF) in polynomial time (Lundberg et al., 2020). 

We use the TreeExplainer to obtain SHAP value explanations at the 
level of individual observations. The overall importance ϕXk 

of feature 
Xk is calculated as the average absolute SHAP values over all considered 
data samples: 

ϕXk
=

1
N

∑N

i=1

⃒
⃒ϕi,Xk

⃒
⃒ (12)  

where ϕi,Xk 
is the SHAP value for sample i for feature Xk, and N is the 

considered sample size. A higher absolute SHAP value suggests a 
stronger influence of the feature on the prediction. Therefore, we can 
assess the impact of context features in travel mode detection by 
analyzing ϕXk 

for all implemented motion and geospatial context 
features. 

In addition, we implement feature importance assessment methods 
employed by previous travel mode detection studies (Yang et al., 2022; 
Wu et al., 2022), including mean decrease in impurity (MDI), permu
tation importance, and drop column importance, to complement and 
support the result obtained using SHAP. These methods are based on 
different principles and are described in detail in Appendix A. 

4. Experiment 

4.1. GNSS tracking data and preprocessing 

We utilize a large-scale longitudinal GNSS tracking dataset for the 
case study. The tracking dataset was recorded within the SBB Green 
Class (GC) E-Car pilot study conducted by the Swiss Federal Railways 
(SBB) from November 2016 to December 2017 (Martin et al., 2019). The 
study, involving 139 Switzerland-based participants, aimed to evaluate 
the effect of a mobility-as-a-service (MaaS) offer on individuals' mobility 
behavior. The participants were provided with a MaaS bundle and were 
asked to install a GNSS-tracking application on their smartphones that 
records their daily movement with a high temporal resolution. Based on 
motion measurements such as speed and acceleration obtained from 
built-in smartphone sensors, the application segments the recorded 
GNSS traces into stages of continuous movements and staypoints where 
users are stationary. It additionally imputes the travel mode labels for 
stages (also based on motion measurements), which are later confirmed 
or corrected by the study participants. We provide an example that il
lustrates the attributes of GNSS traces in Appendix B. The GC dataset 

consists of ∼230 million GNSS track points, aggregated into 465,195 
stages with travel mode labels (car, e-car, train, bus, tram, bicycle, e- 
bicycle, walk, airplane, boat, coach), and includes information about 
individual travel behavior for 52,251 user days. 

We implement a series of preprocessing steps to prepare the dataset 
for travel mode detection following previous research on travel behavior 
analysis (Hong et al., 2023b) and mode detection (Stopher et al., 2008; 
Dabiri and Heaslip, 2018). The detailed steps and the resulting tracking 
quality can be found in Appendix B. After preprocessing, we obtain 
365,307 stages with user-validated mode labels grouped into bicycle, 
boat, bus, car, train, tram, and walk. The travel mode frequency is shown 
in Table 4, suggesting a highly imbalanced number of class labels: 
ranging from 367 stages for the class boat to 155,177 for the class walk. 

4.2. Geospatial context data 

The geospatial context data used to calculate context features derives 
from Open Street Map (OSM)2 and Swiss Map Vector 25 (SMV25).3 OSM 
is an open-source project that provides users with free and easily 
accessible digital map resources and is considered the most successful 
and prevailing volunteered geographic information (VGI) project (Hong 
and Yao, 2019). We retrieve historical feature layers from early 2017 in 
Switzerland from OSM to match the time frame of the GC tracking study. 
These layers include transport infrastructure, traffic-related POI, general 
POI, places of worship, road and railway infrastructure, as well as land 
cover type. We discuss the representation of geospatial context features 
when abstracting spatial entities as POIs and its impact on mode 
detection performance in Appendix C. We note that the pedestrian/bike 
network utilized to derive feature 2.20 is constructed by considering all 
road types permitting walking and biking, along with the specific 
“pedestrian” and “cycleway” road types from OSM. As the water layer of 
the 2017 dataset does not include main lakes across Swiss borders, this 
layer is taken from the latest version of OSM (mid-2022). Besides, we 
retrieve information regarding the size of a river and whether it is 
navigable for boats from SMV25. Table 5 provides an overview of all 
layers used as input to extract geospatial context features. 

4.3. Model training and evaluation metrics 

Our pipeline is implemented in Python using trackintel (Martin et al., 
2023), scikit-learn (Pedregosa et al., 2011) and SHAP (Lundberg and 
Lee, 2017) libraries. We randomly split the GC dataset into non- 
overlapping train and test sets with a ratio of 8:2. We then perform a 
grid search using five-fold cross-validation on the training set to deter
mine the optimum hyper-parameters. Detailed information about the 
implemented RF model, including strategies for randomizing samples 
and features, as well as the ranges and the final selected hyper- 
parameter set, is presented in Appendix D. We finally retrain the RF 
model using all the training data and evaluate the model performances 

Table 4 
Travel mode frequency of stages.  

Mode category Green Class 

Bicycle 11,948 
Boat 367 
Bus 9,436 
Car 130,678 
Train 51,470 
Tram 6,231 
Walk 155,177 
Total 365,307  

2 
http://www.openstreetmap.org.  

3 https://www.swisstopo.admin. 

ch/en/geodata/maps/smv/smv25.html. 
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on the held-out test set. SHAP values are obtained from test data samples 
using path-dependent feature perturbation for the shapely value func
tion (Eq. (11)), whose results are regarded as “true to the data” and 
reflect natural mechanism in the real world (Chen et al., 2020). 

We use the F1 score to assess the performance of our travel mode 
detection model. For each travel mode category, the F1 score is the 
harmonic mean of precision and recall, which are obtained by con
structing the confusion matrix and counting the true positive (TP), false 
positive (FP), and false negative (FN) samples from the model: 

Precision =
TP

TP + FP
(13)  

Recall =
TP

TP + FN
(14)  

F1 score = 2⋅
Precision⋅Recall

Precision + Recall
(15) 

We use the average F1 score across classes, which weights the per
formance for each travel mode fairly without considering its number of 
instances, thus creating a suitable measure for the class imbalance 
problem. 

5. Results 

5.1. Feature extraction 

We extract 32 features for each movement stage, consisting of 8 
motion features and 24 geospatial context features. Fig. 3 shows the 
distribution of three example features from different categories, high
lighting clear distinctions between the considered travel modes. For 
instance, 85th percentile of acceleration distinguishes between low ac
celeration modes such as boat and walk with high acceleration ones such 
as car and tram (Fig. 3A). Additionally, the stage endpoints for all travel 
modes except tram have a considerable distance to tram stops (Fig. 3B). 
Finally, distance to road network successfully differentiates travel modes 

that operate on the road network (i.e., bus and car) from those that do 
not occupy road spaces, such as boat and train (Fig. 3C). These examples 
demonstrate that features characterize movements from different per
spectives and facilitate the separation of travel modes. 

We conduct a correlation analysis to investigate the relationship 
between features. Fig. 4 shows the heatmap of Spearman's rank corre
lation coefficient ρ between pairs of features, which accounts for dif
ferences in feature distributions and scales. The majority of light grid 
colors representing ρ values close to 0 show that most features are not 
strongly correlated, indicating that the implemented feature set effec
tively captures diverse movement characteristics without much redun
dant information. However, there are some exceptions. We observe 
darker grid colors for motion features, showing high positive correla
tions between length and duration as well as speed and acceleration. We 
also report high negative correlations between bearing rates and other 
motion features. Moreover, we find strong positive correlations between 
features related to train infrastructure and between features related to 
tram infrastructure. Highly correlated features have limited influence on 
the travel mode detection performance since RF is relatively robust to 
feature collinearity during training (Fernández-Delgado et al., 2014). 
However, the interpretation of individual feature contributions may be 
affected depending on the employed feature attribution method (Hastie 
et al., 2009; Molnar, 2020). 

5.2. Travel mode identification result 

We train an RF model using these features to identify travel modes 
for movement stages. The confusion matrix and the precision, recall, and 
F1 score of travel modes are presented in Table 6. We achieve an overall 
accuracy of 93.0% and an average F1 score of 83.3%. Regarding indi
vidual classes, we report reliable detection for the most frequently 
observed travel modes, namely car, train, and walk, as indicated by their 
high F1 scores of over 90%. In addition, the RF model achieved high 
performance for the tram mode with an F1 score of 96.2%. On the other 
hand, the model experiences difficulty correctly classifying less 

Fig. 3. Boxplot showing the feature distribution categorized based on the ground truth travel mode. Three example features 1.6 A85th (A), 2.4 Dmax
tram (B), and 2.19 

DroadN (C) are selected to show the effectiveness of the implemented features in separating travel modes. Outlier values are excluded. 

Table 5 
The sources, geometry types, and descriptions of the considered geospatial context data.  

Source Name Type Description 

OSM 2017 transport Point Transport infrastructure (e.g. railway stations) 
traffic Point Traffic-related POI (e.g. car parkings) 
pois & pofw Point General POI & Places of worship 
roads Line Road infrastructure (e.g. motorways, tracks) 
railways Line Railway infrastructure (e.g. railways, trams) 
landuse Polygon Land cover type (e.g. residential areas, forests) 

OSM 2022 water Polygon Lakes 
SMV25 FGT Line Rivers  
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frequently observed travel modes, such as bicycle, bus, and boat. Spe
cifically, movement stages recorded as bicycle modes are often mis
classified as walk or car modes. This could result from the bicycle mode 
being formed from both conventional and electric bikes, leading to a 
wide range of movement behaviors. We also observe that bus trips are 
frequently misdetected as car movements, likely due to their similar 
motion characteristics and shared road infrastructure. In summary, the 
overall performance of the mode detection model provides an excellent 
foundation for estimating the relative importance of each input feature. 

Yet, we must consider the performance variations between travel modes 
when interpreting the feature importance result. 

5.3. Evaluation of feature importance 

Based on the trained RF model, we analyze the feature contribution 
to distinguishing travel modes using various feature importance 
assessment methods. This section focuses on feature importance ob
tained using SHAP values from TreeExplainer, while results obtained 

Fig. 4. Spearman's rank correlation coefficient between pairs of features. All pairs have two-tailed P < 0.05 except for 2.21 Pwater and 2.6 Dmax
bus (P = 0.13).  

Table 6 
Confusion matrix and performances for travel mode identification.    

Predicted class Sum Recall (%) 

Bicycle Boat Bus Car Train Tram Walk 

Actual class 

Bicycle 1,191 1 45 570 0 0 554 2,361 50.4 
Boat 0 62 0 0 0 0 18 80 77.5 
Bus 21 0 1,183 585 1 1 112 1,903 62.2 
Car 334 1 447 23,997 4 5 1,333 26,121 91.9 
Train 2 0 0 10 10,161 8 67 10,248 99.2 
Tram 1 0 0 7 28 1,166 38 1,240 94.0 
Walk 456 12 30 448 3 3 30,157 31,109 96.9 

Sum 2,005 76 1,705 25,617 10,197 1,183 32,279 73,062 – 
Precision (%) 59.4 81.6 69.4 93.7 99.6 98.6 93.4 – – 
F1 score (%) 54.6 79.5 65.6 92.8 99.4 96.2 95.2 83.3 – 
Accuracy (%) – – – – – – – 93.0 –  
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from other assessment methods can be found in Appendix A. Fig. 5A 
presents the average SHAP values across all test data samples, allowing 
us to assess the relative importance of features without being influenced 
by the imbalanced mode distribution. 

5.3.1. Overall 
We report that distance to road network (2.19), distance to pedestrian 

and bike network (2.20), and average speed (1.3) contribute the most to 
the model's output, which belong to geospatial network features and 
motion features, respectively. All four network features (2.17–2.20) 
obtained high SHAP values. Within this category, tram network distance 
(2.18) contributes relatively less than the other three features. Motion 
features also play a crucial role, as indicated by their high overall 
importance, particularly distance (1.1), speed-related (1.3 and 1.4), and 
acceleration-related (1.5 and 1.6) features. However, the SHAP values of 
duration (1.2) and bearing rate-related (1.7 and 1.8) features are rela
tively low, suggesting that the detection model does not deem their 
contained information crucial. Additionally, geospatial point features 
moderately contribute to generating the output. Context information 
regarding public transport, including rail, tram, and bus stops (2.1–2.6 
and 2.13–2.15), is more valuable than the information related to car, 
bicycle, and ship parking (2.7–2.12). The distance to POIs (2.16) is 
among the most influential features in this category. Lastly, except for 

the high contribution of the water body feature (2.21), the other LULC 
features (2.22–2.24) have limited impacts on the detection model, as 
shown by their lowest SHAP values compared to all other features. We 
believe that motion and other context features are sufficient in dis
tinguishing travel modes, and the ancillary LULC context information 
does not provide additional knowledge for the RF model. 

5.3.2. Travel mode category 
SHAP values are calculated at the level of individual observations, 

thus able to reflect detailed feature attribution for each travel mode 
category. We presented the five most crucial features for detecting each 
travel mode in Fig. 5B-H. Although these features vary, we observe 
shared patterns for different travel modes. The corresponding network 
feature is always the most important contributing factor for modes 
restricted to specific infrastructures. Typical examples include cars, 
buses, trains, and trams, whose infrastructure network is the most 
contributing feature, considerably exceeding the importance of the 
second most crucial one (Fig. 5C, D, F, and H). In addition, motion 
features such as average speed and acceleration are commonly attached 
to high SHAP values, showing their importance in distinguishing all 
travel modes. Their contributions are particularly evident in identifying 
walking, where the highest SHAP value factors all belong to motion 
features (Fig. 5B). On the contrary, motion features are insufficient in 

Fig. 5. Feature importance evaluated using SHAP. The higher the mean absolute SHAP value, the higher the contribution. We visualize the overall contribution of 
each feature to the model's output (A) and the top-5 contributing features for identifying walk (B), car (C), bus (D), bicycle (E), train (F), boat (G) and tram (H). 
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separating bus and tram modes, whose most contributing elements are 
related to their corresponding geospatial context, such as bus and tram 
stops (Fig. 5D and H). Here, it is evident that identifying bus and tram 
modes benefit from different context modeling approaches. We observe 
a high SHAP value of the endpoint-context distance to detect bus trips, 
whereas the trajectory-context distance contributes more to output tram 
labels. Not surprisingly, identifying boat travels benefits the most from 
the water body feature (Fig. 5G), which describes the unique charac
teristics of boats traveling on water. In summary, this detailed analysis 
reveals that feature importance is travel mode dependent, and features 
with low overall importance might be essential for identifying specific 
travel modes. Besides general motion features, geospatial context fea
tures that reveal characteristics of particular modes are also crucial for 
travel mode detection. 

6. Discussion 

This study proposes a feature attribution framework for travel mode 
detection models. We implement a set of motion and context features to 
train an RF model, which obtains convincing travel mode identification 
results. Note that by considering various mode labels on a large-scale 
GNSS tracking dataset, the achieved performance is high in view of 
the recent studies (Yang et al., 2022; Kim et al., 2022; Wu et al., 2022). 
Although the exact performance figures are not directly comparable due 
to the differences in the employed dataset and preprocessing steps, the 
result demonstrates the selected features' effectiveness and the RF 
model's capability. Moreover, the successful detection lays a solid 
foundation for subsequent feature importance assessment, as feature 
attribution methods aim to disentangle the decision-making process 
within the model. After further validating the model's detection results 
using official travel surveys (Yang et al., 2022; Graells-Garrido et al., 
2023), the framework could be applied to automate mode detection in 
large-scale travel behavior studies that are essential for informing and 
supporting policy design (Molloy et al., 2022). 

We use SHAP values to measure the importance of features and 
compare them with those obtained from other importance assessment 
methods. Despite differences in relative importance, all assessment 
methods regard network features as the most contributing factors, and 
LULC (except water body) features are of minor significance. The dis
crepancies mainly lie in the attribution of motion features, which are 
most heavily affected by feature correlation. Permutation and drop 
column importance both suffer from this issue, underestimating the 
contributions from motion features. MDI and SHAP reflect the internal 
decision process of the RF model that is relatively robust to feature 
colinearity. Consequently, these two methods obtain similar attribution 
results for motion features. Nevertheless, MDI utilizes training data to 
derive its result and cannot reflect the model's generalization ability for 
unseen data. Therefore, with a solid foundation from game theory, SHAP 
is the most suitable and accurate approach to demonstrate the relative 
importance of geospatial context features. 

The SHAP importance value for features helps us understand why the 
RF detection model may confuse specific travel modes. We show this by 
comparing each travel mode's most contributing feature set, given in 
Fig. 5B-H. Bicycle movements are detected relying on road and pedes
trian networks as well as motion features, which are also the most 
contributing factors for identifying walking and car trips. Similarly, the 
distance to the road network is most influential for both car and bus 
trips. The detection model will likely misclassify a travel mode if its 
distributions in the most contributing features are similar to other 
modes. In other words, the lack of distinctive features for bicycle and bus 
movements limits their prediction performance, leaving room for 

improving existing and introducing new feature designs. 
Although we have systematically evaluated the importance of geo

spatial context data, there are several points to consider when inter
preting the results. Firstly, it is essential to distinguish the context 
feature importance obtained from our pipeline from the general signif
icance of the underlying context information. Our study presents only 
one way to represent context information as features, and feature 
assessment results may vary with different modeling approaches. 
However, we note that the features and their representations imple
mented in this study are carefully selected following a systematic liter
ature review. Secondly, we exclusively use the average and 85th 
percentile values to characterize the motion quantities for each trajec
tory, given their consistent recognition as the primary motion de
scriptors (Wu et al., 2022; Yang et al., 2022). While including 
comprehensive statistics to depict the distribution of the motion vari
ables might potentially enhance mode detection performance, we do not 
anticipate a change in the main result and interpretation of the geo
spatial context feature importance. Finally, the GC dataset is subject to 
common GNSS tracking quality issues, such as spatio-temporal gaps and 
spatial uncertainties in GNSS recordings (Zhao et al., 2021), which may 
affect the representativeness of the features and consequently influence 
the assessment results. Future studies should analyze the robustness of 
the assessment results to the quality of GNSS tracking data. 

7. Conclusion 

Methods proposed for travel mode detection from GNSS tracking 
data are increasingly powerful, yet little is known regarding the model's 
underlying working mechanism and how the model outputs a travel 
mode. To address this gap, this study introduces an analytical frame
work for assessing the significance of geospatial context information in 
travel mode detection models. Concretely, we review common feature 
representations from recent work and implement an exhaustive set of 
features that describe motion characteristics and geospatial context in
teractions of a moving trajectory. We analyze the correlations between 
these features and use them for training an RF model that learns to 
correctly identify the travel mode. Using the constructed RF model, we 
employ feature attribution methods to evaluate the influence of indi
vidual features on obtaining the output mode label. The framework is 
tested on a longitudinal GNSS tracking dataset containing user-labeled 
travel modes for trips over 52,000 user days. 

The feature attribution results obtained in this study demonstrate 
that geospatial network features, such as distance to the road network, 
are more critical than motion features, such as speed and acceleration, 
when classifying an extensive list of travel modes. This finding high
lights the importance of incorporating network features in travel mode 
detection models, especially given that many existing studies rely 
heavily on complex motion features without considering the geospatial 
context. We also find that features describing relations between move
ment and geospatial point entities help identify public transport travel 
with designated start and end stations. Additionally, our results suggest 
that the majority of LULC features do not significantly contribute to the 
task, emphasizing the need for further modeling work to represent the 
relationship between LULC and movements. Finally, we identify the 
most contributing features for detecting each mode, providing insights 
into the contexts that should be emphasized when aiming to classify 
specific travel modes accurately. 

The proposed travel mode detection framework can be readily 
applied to movement datasets collected from other parts of the world, 
thanks to the high-quality and easily-accessible OSM worldwide map 
service (Boeing et al., 2022). Building upon the findings of this study, we 
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suggest several promising directions to improve the performance of 
travel mode detection models. Since this study exclusively focuses on 
geospatial contexts, the temporal aspects of movements have not been 
taken into account, despite their considerable influence on individuals' 
travel mode choices (Schönfelder and Axhausen, 2016). Detection 
models will likely benefit from including features that differentiate 
specific travel modes, such as public transport schedules, and features 
that capture patterns of periodicity and routines in travel behavior. 
Furthermore, researchers have extensively examined the trip-chaining 
effect, including the interdependencies between successive usages of 
travel modes (Huang et al., 2021). However, efforts to integrate this 
knowledge into detection models remain at an early stage (Zeng et al., 
2023). Lastly, we believe there is potential for refining the extraction of 
the non-linear relationship between the built environment and travel 
modes, especially in distinguishing active modes (Cheng et al., 2019). 
DL models offer significant promise in this regard. We expect our find
ings to inspire novel approaches in integrating context for DL models, 
effectively representing the intricate relationship between movement 
and geospatial context. Overall, the study provides valuable guidance 
for feature selection, effective feature design, and building efficient 
travel mode detection models. 
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Appendix A. Alternative methods for evaluating feature importance 

A.1. Mean decrease in impurity 

The RF model employs the Gini impurity (Equation 10) as the criterion for selecting the splitting feature while constructing its decision tree. This 
criterion can also be used to evaluate the feature’s importance for the classification task. The mean decrease in impurity (MDI) measures the 
effectiveness of a feature in reducing uncertainty and is calculated by averaging the total Gini impurity reduction of that feature over all decision trees 
in the RF model. This measure is computationally efficient, but it has two main limitations. First, it overestimates the importance of continuous 
features and high-cardinality categorical variables. Second, since it is computed on training set statistics, it may not accurately reflect the predictive 
power of the feature for generalization to the test set. 

Fig. S1 presents the feature importance assessment result, with error bars indicating the variance across different decision trees. The network 
features are deemed the most important for the RF model, followed by proportion on water (2.21) and average speed (1.3). The contributions of all other 
features to the model’s prediction are approximately on the same level. The LULC features (2.22–2.24) are among the least contributing factors to the 
model. Moreover, the inter-tree variability is generally very high and positively correlates with the feature importance, likely due to the introduced 
randomness of feature selection in constructing decision trees.

Fig. S1. The feature importance obtained from MDI. Error bars represent variability among decision trees.  
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A.2. Permutation importance 

This measure is computed as the decrease in a model’s performance score when a single feature value is randomly shuffled (Breiman, 2001; 
Molnar, 2020). By breaking the feature-target relationship, the drop in the model score indicates how much the model depends on the feature. We 
compute the permutation importance on the test set without retraining the RF model. However, it is essential to note that this importance score does 
not reflect the intrinsic predictive value of a feature by itself, but rather how important the feature is for a particular model. For example, features 
deemed low importance for a poor model could be essential for a good model. Therefore, ensuring a strong predictive power of the model is crucial 
before using this score. Additionally, permutation importance is biased for highly correlated features. As a well-trained model may still achieve good 
performance when one of the correlated features is shuffled, the permutation importance measure tends to underestimate the contribution of 
correlated features. 

Fig. S2 shows the mean decrease of the F1 score for random shuffling features. Most feature permutations have a limited effect on the model’s 
performance, as indicated by an F1 score decrease of less than 3%, which might be due to their observed inter-correlations (see Fig. 4). The network 
features have much higher contributions than all other feature categories, with distance to road network (2.19) being the most important among them. 
Also, including proportion on water (2.21) significantly impacts the model’s performance. Other decisive contributing factors include motion features 
(1.1 and 1.3), endpoint features (2.5, 2.6, 2.11, and 2.12), and distance to residential areas (2.23). The standard deviation across different permutation 
runs, indicated by the error bars, is very low, suggesting the permutation importance result is relatively stable.

Fig. S2. The feature importance evaluated using permutation. The error bars indicate standard deviations calculated from five different permutations.  

A.3. Drop column importance 

The drop column importance method evaluates the contribution of a feature by retraining a model without it. The underlying idea is that training a 
model without a feature will not significantly affect the performance if the feature is unimportant. However, this method is computationally 
expensive, requiring retraining the model as many times as the number of features. Additionally, it can underestimate the importance of correlated 
features. In extreme cases where two features are completely correlated, dropping one will not impact the model, as the remaining feature contains all 
the necessary information for training, resulting in a zero importance score. 

Drop column importance is measured by the decrease in the F1 score of the test set, averaged across five different model (re-)trainings, as shown in 
Fig. S3. This method can also produce negative values, which suggests the prediction performance increases when the feature is excluded from the 
model. Dropping each feature does not significantly influence the model’s performance, with most differences in F1 score of less than 1%. We still 
observe a relatively high contribution of the network features, especially distance to road network (2.19). The distinction between all other features is 
small. The motion features demonstrated low importance compared to the other assessment methods, most likely due to their strong correlation (see 
Fig. 4), which diminished their contribution when measured using drop column importance. 
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Fig. S3. The feature importance evaluated using the drop column method. The error bars represent standard deviations calculated from five different model fits.  

Appendix B. Preprocessing GNSS tracking dataset 

Table S1 shows the attributes of the raw GNSS traces collected during the GC study. Each GNSS tracking entry includes details about the user, 
spatial coordinates, and recording time. In instances where records are affiliated with a stage (as determined by the tracking application; see Section 
4), the application assigns a stage ID and incorporates the user-verified mode label.  

Table S1 
Structure and attributes of the collected GNSS trace. The coordinates and timestamps are synthesized to protect the subjects’ privacy.  

ID User ID Latitude Longitude Timestamp Stage ID Mode 

1 CDPXB 47.408 8.507 2016-11-23 07:27:13 1 walk 
2 CDPXB 47.410 8.505 2016-11-23 07:27:49 1 walk 
... ... ... ... ... ... ... 
45 CDPXB 47.412 8.544 2016-12-01 09:43:33 – – 
46 CDPXB 47.413 8.542 2016-12-01 10:02:28 32 bus 
... ... ... ... ... ... ... 
235 BLWNJ 47.498 8.719 2016-11-24 11:23:06 46 car 
236 BLWNJ 47.497 8.717 2016-11-24 11:24:01 46 car 
... ... ... ... ... ... ...  

We perform data preprocessing to achieve two goals: a) selecting relevant stage data for travel mode detection, and b) filtering incomplete or 
incorrect data records to ensure high data quality. All processing steps are implemented in Python using the open-source Trackintel human movement 
data processing library (Martin et al., 2023). The steps include:  

• We pre-filter the dataset to consider high temporal tracking quality participants, using temporal tracking coverage as a measure for the proportion 
of time the user’s whereabouts are recorded. We only include participants with temporal tracking coverage higher than 50%.  

• We include only stages recorded within Switzerland to match the geographic extent of the geospatial context data.  
• We exclude stages labeled with airplane, coach, and ski travel modes. We also merge stages traveled with car and e-car, as well as bicycle and e- 

bicycle.  
• We filter out short stages with a total traveled distance of fewer than 50 meters or a total recorded duration of fewer than 60 seconds.  
• We exclude stages with low tracking qualities, including the ones that consist of less than 4 track points or have average recording intervals of more 

than one minute. For efficient data storing and processing, we reassigned the timestamp for each track point with a linear interpolation from the 
start time to the end time of the stage.  

• We filter stages traveled with unrealistic speeds concerning the reported travel mode. The thresholds are chosen as follows: 20 km/h for walking, 
60 km/h for bicycle, 250 km/h for train, 80 km/h for tram, 150 km/h for bus, 50 km/h for boat, and 150 km/h for car. 

After preprocessing, we acquire stages featuring high-quality travel mode labels across Switzerland (Fig. S4A), comprising GNSS position records 
sampled at a high frequency (Fig. S4B), which enables the precise depiction of motion and geospatial contextual features. 
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Fig. S4. Evaluation of the preprocessed tracking data quality. (A) Spatial distribution of stages conducted using various travel modes. Map data ©OpenStreetMap 
contributors, ©CARTO. (B) Temporal recording frequency representing the time gap between consecutive GNSS recordings across all stages. 

Appendix C. Representing spatial entities as POIs 

Given their rich attribute information and widespread availability, POIs have been extensively utilized as a data source to represent spatial entities, 
particularly in addressing urban function-related issues (Yao et al., 2021). However, abstracting spatial entities into POIs may introduce spatial errors 
in the representation depending on the application task, potentially leading to adverse effects on subsequent analyses (Psyllidis et al., 2022). In our 
study, POIs are employed as proxies for spatial entities. While POIs effectively capture the spatial position of smaller entities, such as bus stops, using 
them to represent larger entities, such as railway stations and car parking areas, might not accurately convey their spatial relationship with movement 
stages. We adopt the movement model defined by Martin et al. (2023), in which stages are created using all GNSS records between two consecutive 
stay points where a user remains stationary for a specific duration. This results in the start and end points of stages corresponding to the initial and final 
movement points, respectively. Hence, calculating the distance between the track points of a stage and the geospatial context POIs will always yield a 
non-zero value, even if the track point is located within the spatial entity represented by the POI. This representation error subsequently affects both 
the travel mode prediction model and the evaluation of feature importance. 

The representation error might not significantly affect the differentiation of travel modes due to: a) the high spatial precision of GNSS recordings 
and b) the modeling decision to utilize distance as a spatial proximity metric, which is more refined than coarser threshold-based methods. Never
theless, we suggest that future research should quantitatively evaluate the influence of spatial entity representations on travel mode detection per
formance. Representing these entities as polygon areas rather than point-type POIs and evaluating their topological relationship with movement 
stages would mitigate this issue, albeit with the trade-off of introducing greater complexity and potentially reducing the efficiency of the modeling 
framework. 

Appendix D. Implementing RF model 

We employ the scikit-learn Python library (Pedregosa et al., 2011) to implement the randomizing of samples and features for training distinct 
decision trees within RF. Specifically, we configure the sub-sample set derived from bootstrap aggregating to match the original training set’s sample 
count (controlled by the max-samples parameter). The optimal split is ascertained by selecting a random subset of features, with the number of features 
considered being the square root of the initial feature count (governed by the max-features parameter). To ensure consistency across various runs, we 
employ the random-state parameter to manage the introduced randomness in the aforementioned process. 

The hyper-parameter search space includes whether to use sample weighting based on the class frequency (sample-weighted), the maximum depth 
of a tree (max tree depth) ranging from 10 to 30 with a step size of 1, and the number of trees (#estimators) ranging from 10 to 300 with a step size of 10. 
Fig. S5 shows the performance variation when increasing max tree depth and #estimator for both sample-weighted and original RF. We observe the 
performances initially increase and then gradually stabilize with the increase of max tree depth and #estimators. The optimum performances are 
achieved with a sample-weighted RF. We thus select a sample-weighted RF and corresponding parameters where the performance begins to stabilize, i. 
e., max tree depth=21 and #estimators=150. 
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Fig. S5. Travel mode prediction performance when altering the hyper-parameters of RF. The error bars represent standard deviations calculated from five-fold cross- 
validation. We show the performances for sample-weighted and original RF when tuning the maximum tree depth with 150 estimators (A), and tuning the number of 
estimators with 21 maximum tree depth (B). 
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