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ABSTRACT
We present a novel approach for estimating the proportional distri-
butions of function types (i.e. functional distributions) in an urban
area through learning semantics preserved embeddings of points-
of-interest (POIs). Specifically, we represent POIs as low-dimensional
vectors to capture (1) the spatial co-occurrence patterns of POIs and
(2) the semantics conveyed by the POI hierarchical categories (i.e.
categorical semantics). The proposed approach utilizes spatially
explicit random walks in a POI network to learn spatial co-occur-
rence patterns, and a manifold learning algorithm to capture cat-
egorical semantics. The learned POI vector embeddings are then
aggregated to generate regional embeddings with long short-term
memory (LSTM) and attention mechanisms, to take account of the
different levels of importance among the POIs in a region. Finally, a
multilayer perceptron (MLP) maps regional embeddings to func-
tional distributions. A case study in Xiamen Island, China imple-
ments and evaluates the proposed approach. The results indicate
that our approach outperforms several competitive baseline models
in all evaluation measures, and yields a relatively high consistency
between the estimation and ground truth. In addition, a compre-
hensive error analysis unveils several intrinsic limitations of POI data
for this task, e.g. ambiguous linkage between POIs and functions.
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1. Introduction

The latest demographic projections forecast the tendency of an increasing urban popula-
tion in the forthcoming decades; thus, we are confronting the challenge of making cities
more fit for human habitation (United Nations 2019). Among numerous perspectives,
studying the functional distributions of urban spaces is pivotal for promoting the forma-
tion of sustainable and livable cities (Rodrigue et al. 2013). Specifically, our cities are com-
posed of many regions that bear various functions, such as residential, commercial and
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industrial. In reality, the function of each region is not unitary, but is normally a compos-
ition of several functional types. Moderately blended functional regions are advocated,
which can make cities more compact, promote urban vibrancy and yield socioeconomic
benefits, e.g. reducing the need for long-distance commuting (Burton et al. 2003, Koster
and Rouwendal 2012, Yue et al. 2017). Therefore, studying the proportional distributions
of function types (i.e. the proportions of different functions that each region bears) is of
paramount relevance for the understanding, planning and management of our cities.

Recently, data mining approaches using a variety of crowdsourcing data sources have
become increasingly popular for studying urban functional distributions, in view of the
shortcomings of remote sensing data in delineating the socioeconomic perspectives of
regions (Yao et al. 2017). Such crowdsourcing data sources include, among others, POIs
(e.g. Gao et al. 2017, Barlacchi et al. 2021), social media data (e.g. Zhou and Zhang 2016, Tu
et al. 2017), and human mobility data (e.g. Zhang et al. 2021). A recent survey by Andrade
et al. (2020) revealed that, POIs are one of the most commonly used crowdsourcing data
sources in this regard, owing to their intrinsic connections with human behavior and the
socioeconomic perspectives of cities (Janowicz 2012). In addition, POIs can usually be eas-
ily obtained compared to other data sources, such as human mobility data, of which the
availability is often restricted to a few particular areas and certain user groups. Therefore,
although increasing types of crowdsourcing data are emerging, POIs remain a valuable
and readily available data source for estimating urban functional distributions.

Early studies that utilized POIs for mining urban functional regions mainly relied on
feature engineering methods, with POI frequencies being the most employed feature
(Tian and Shen 2011, Jiang et al. 2015). Even if one discounts tedious efforts to con-
struct features, such methods suffer from the loss of many types of latent information,
e.g. the spatial distribution patterns of POIs. To overcome such limitations, representa-
tion learning approaches have been utilized. Such approaches learn low-dimensional
latent vector embeddings for POI categories (e.g. hotel and park) based on spatial co-
occurrence information with a certain sampling strategy. A pioneering work was
inspired by the seminal idea of Word2Vec in natural language processing (Mikolov
et al. 2013), in which a string of nearby POIs is constructed in each region, so that spa-
tial co-occurrence information can be captured according to closeness in the strings
(Yao et al. 2017). A subsequent study modified the sampling strategy to the Place2Vec
approach (Yan et al. 2017; essentially K-nearest-neighbors [KNN]), which captures spa-
tial co-occurrence information based on POI adjacency relations (Zhai et al. 2019). The
rationale behind these studies is that there is a linkage between region functions and
POI spatial co-occurrence patterns (e.g. mall and parking lot usually co-occur, and they
both imply certain functions). Subsequently, the learned POI (category) embeddings
are aggregated with an average operation to generate regional embeddings, which
are then mapped to a type of urban function through a supervised classifier, e.g. ran-
dom forest or fed into clustering methods in an unsupervised setting.

Despite the remarkable performance of such intuitive yet powerful models, previous
studies have several limitations that impede the utilization of the rich information in POIs:

1. Incapability to estimate multiple functions: Previous studies usually only assign a
single functional label to a certain region, neglecting the general presence of

1906 W. HUANG ET AL.



mixed and multiple functions embodied in a single region. Although there are a
few studies dealing with the mixed-function problem with human mobility data
(Zhang et al. 2021) and social media data (Wu et al. 2020), there has not been a
supervised approach that could fully utilize the available ground truth data, e.g.
Zhang et al. (2021) only used regions with a single function for training.

2. Shortage in capturing long-range spatial co-occurrence: The methods to capture
spatial co-occurrence relations between POIs mainly concentrate on adjacency
relations, i.e. two POIs would only co-occur if they are spatially close to each
other. We can readily learn local patterns using such a sampling strategy, e.g. the
co-occurrences between malls and parking lots. However, this strategy falls short
in capturing long-range complementary dependencies (Du et al. 2019). For
example, schools tend to distribute evenly in cities, and the dependency between
universities and university science parks could arise outside of close proximity (Mai
et al. 2020).

3. Omission of categorical semantics: Previous studies only utilized spatial co-occur-
rence information to learn POI embeddings, overlooking the intrinsic semantic
relations in their hierarchical categories (Jin et al. 2019). For instance, Chinese res-
taurant and western-style restaurant, despite their differences, have substantial sim-
ilarities in their functional affordance, and they both belong to an upper-level
category: food service (according to Baidu Map).1 In fact, hierarchical categories
are common for POI data, such as the POIs from Baidu Map, Foursquare and Yelp.
POI embeddings should ideally take into account such categorical semantics.

4. Naïve aggregation scheme to obtain region embeddings: Previous studies mainly
used an element-wise average operation to aggregate POI vector embeddings
and generate regional embeddings, neglecting the different influence levels of
POIs on the functions of a region. For example, a railway station may only appear
once in a region, and restaurant appears many times. In this case, the railway sta-
tion should be more definitive for the region. Simply averaging all POI embed-
dings in a region would water down such key information. Although several
works utilized POI frequencies or popularity for determining the semantics of
regions (e.g. Gao et al. 2017, Yan et al. 2017, Liu et al. 2020), how to consider dif-
ferent importance levels of POIs to generate region embeddings is
largely unexplored.

To overcome the aforementioned limitations, in this article, we formulate the prob-
lem of estimating urban functional distributions with POIs as a supervised label distri-
bution learning problem, and propose an approach that learns semantics preserved
POI embeddings. The approach comprises four components: 1) spatially explicit ran-
dom walks in a POI network to capture both local and long-range spatial co-occur-
rence information; (2) the incorporation of categorical semantics into POI embeddings
with a semantic smoothing assumption and a manifold learning method; (3) an aggre-
gation function coupling LSTM (Hochreiter and Schmidhuber 1997) and attention
mechanisms (Vaswani et al. 2017) to aggregate POI embeddings and generate regional
embeddings, to account for the differences of each POI’s importance in defining the
functions of a region; and (4) an MLP that maps the generated regional embeddings
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to functional distributions. The proposed approach is evaluated in a study area in
Xiamen, China, against several competitive baseline models.

The primary goal of this study is to estimate urban functional distributions, which
can be applied to the scenarios, such as (1) when the ground truth of functional use
in a city is only partially available (e.g. through field survey), our approach can be
used to estimate the functional distributions in the unknown areas, as the discovered
pattern would most likely hold within the same city; (2) when the urban functional
use data is partially obsolete, e.g. due to urban renewal, our approach can be lever-
aged to discover such updates, as POIs are usually up-to-date; (3) when the urban
function map is not completely accurate, one could use our approach to discover
errors in such data. In addition, from a methodological viewpoint, our approach can
also be used as a general POI embedding method for other downstream tasks, such
as POI classification (e.g. Mai et al. 2020) and recommendation (e.g. Yu et al. 2020).

Following this introduction, we formulate the problem in Section 2. In Section 3,
we provide the details and intuitions of our approach. In Section 4, we demonstrate
the results of our experiment, including a comparison with several baseline models, an
ablation study, a parameter sensitivity analysis, and an error analysis. The article ends
with a discussion in Section 5, and the conclusions and outlook in Section 6.

2. Problem formulation

The notations used in this study are as follows. Let F ¼ f1, . . . , fmf g be the set of m
labels indicating the function types of an urban region (e.g. residential, commercial and
public service and education). Let R ¼ r1, . . . , rnf g be a set of n spatially disjoint
urban regions, and yfki represents the proportion of the kth function that the region ri
bears, which satisfies the constraints yfki 2 0, 1½ � and

P
ky

fk
i ¼ 1: Let P ¼ p1, . . . , ptf g

be a set of t POIs, and the ith POI pi (e.g. the national museum) is associated with a
two-dimensional geographic location xi and a category set ci, where ci ¼ fc1i , . . . , chii g,
with cji indicating the category of POI pi in the j th hierarchical category level and hi
denoting the depth of the categorical hierarchy (hi ¼ 2,3 for most POI providers). For
example, a POI’s category set is ffood service (first-level category), Chinese restaurant
(second-level category)g, where each first-level category conceptually contains a num-
ber of second-level categories.

The problem of estimating urban functional distribution can be formulated as a
label distribution learning problem (Geng 2016): For a region ri, given the POI set
P i � P that spatially resides in ri, the goal is to learn a conditional probability distri-
bution P fkjP i

� �
for each function label fk 2 F , i.e. obtaining an estimated functional

distribution yi ¼ fP f1jP i

� �
, P f2jP i

� �
, � � � , P fmjP i

� �g (proportions of function types that
region ri affords). In this process, each POI pi is represented as a vector embedding pi
in the latent space R

s, and such a vector captures the information of spatial co-occur-
rence and the hierarchical structures of categories, which implies that the embedding
of a POI is determined by its category. Therefore, in this study, we use the terms POI
embedding and POI category embedding interchangeably.
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3. Methodology

The overarching architecture of the proposed approach is illustrated in Figure 1. This
approach comprises four major components. First, we construct a POI network and design
a spatially explicit random walk strategy to sample POI co-occurrence information (Figure
1(a); Section 3.1). We then capture the categorical hierarchy of POIs (Figure 1(b)). The cap-
tured co-occurrence information and the categorical semantic information are fed into a
POI encoder / that generates POI embeddings by simultaneously optimizing the objec-
tives of skip-gram (Mikolov et al. 2013) and a manifold learning algorithm Laplacian
Eigenmaps (LE; Belkin and Niyogi 2001) (Section 3.2). Subsequently, the embeddings of
the POIs in a single region are stacked to generate an embedding matrix for each region,
and each matrix is passed through an aggregation function C coupling LSTM and atten-
tion mechanisms to obtain an embedding for each region (Figure 1(c); Section 3.3). Finally,
an MLP w maps the regional embeddings to functional distributions (Figure 1(d); Section
3.4). In this process, the POI encoder / is trained in an unsupervised manner, whereas the
aggregation function C and MLP w are trained with the supervision of the urban functional
distribution ground truth data.

3.1. Capturing spatial co-occurrence information in a POI network

Network, which essentially models entities as nodes and their connections as edges, is a
natural data model for modeling and linking discrete spatial vector data (e.g. POIs), in virtue

Figure 1. The overarching architecture of the proposed approach.
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of its flexibility which is not tied to a rigid raster (e.g. for remote sensing imageries) or
sequence (e.g. for trajectories) notion (Yan et al. 2019, 2021). In particular, we can leverage
a network representation learning approach (Zhang et al. 2020) to flexibly capture the co-
occurrence patterns of POI categories.

POIs that scatter around a city do not naturally form a network. Nevertheless, each
POI can be viewed as a network node, and the edges between the nodes are expected
to foster connectivity. In principle, there are various means for generating a spatial net-
work with a set of points. In this article, we employ the Delaunay triangulation (DT) net-
work, in virtue of its several favorable properties which make the generated network
both informative and compact. In addition, previous studies have demonstrated its fit-
ness for learning embeddings of spatial vector data (e.g. Yan et al. 2019).

In this article, we propose a spatially explicit random walk sampling strategy to cap-
ture the co-occurrence patterns of POI categories. The core of our method lies in the
transition probability from point a to point b along network edges, and such a biased
probabilistic transition between nodes (POIs) incorporates spatial distance decay, the
balance between local and long-range co-occurrence patterns, and the differentiation
between intra- and cross-region co-occurrences. To this end, we define three types of
transition bias in the random walk process. In Figure 2, a DT network for the POIs is
shown. Assuming that we are going through a random walk process, and have just
completed the transition p1 ! p2, and for the next step of transition, we have sev-
eral candidates: the seven neighbors of p2 : p1, p3, . . . , p8f g (it is allowed to traverse
back to the previous node). Each candidate node has a transition probability that
depends on three transition biases.

The first is an inverse-distance transition bias ad :

ad ðp2, xÞ ¼ log 1þ D1:5ð Þ
.

1þ d1:5p2x

� �� �
(1)

ad ensures that spatially closer candidate nodes are assigned with higher probability,
where D denotes the diagonal length of the minimum bounding rectangle of all the
POIs in the study area, and d represents the spatial distance between two nodes p2

Figure 2. A DT network for POIs. Each node color represents a second-level category.
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and x (the candidate node). The rationale behind the distance decay of ad � d�1:5 is
in view of the previous studies in Calafiore et al. (2021) and Chen et al. (2015) that
revealed the exponent of �1.5 can well capture spatial network structures.

The second transition bias balances local and long-range co-occurrences between
POIs, which is inspired by Node2Vec (Grover and Leskovec 2016). Recall our example
in Figure 2, the second transition bias ab is defined as:

ab p2, xð Þ ¼
alocb if hopp1x ¼ 0
1 if hopp1x ¼ 1
alrb if hopp1x ¼ 2

8><>: (2)

where hopp1x denotes the required minimum number of hops from p1(the previous
node) to the candidate node x: For example, we have ab p2, xð Þ ¼ alocb for going back
(x ¼ p1), ab p2, xð Þ ¼ 1 for x ¼ p3, and ab p2, xð Þ ¼ alrb for traversing further to explore
long-range information, e.g. x ¼ p5: The searching strategy of alocb and alrb can refer-
ence to Grover and Leskovec (2016). Note that the notion of long-range is within the
random walk framework, and is not strictly bonded to spatial distance incrementation.
Nevertheless, in reality, making more hops further could reach rather distant places.

The third transition bias balances intra- and cross-region co-occurrences. In previous
studies, Yao et al. (2017) only sampled intra-region co-occurrences, while Zhai et al.
(2019) sampled both of them without any differentiation. We argue that neither of the
sampling strategies fully respects the influence of region boundaries. Indeed, the co-
occurrence between two POIs in different regions entails a certain level of correlation,
but is weaker than the co-occurrences in the same region. Therefore, we define the
third transition bias ar p2, xð Þ as:

ar p2, xð Þ ¼ 1 if p2, xf g � P i

ainter�region
r if p2 2 P i, x 2 Pk, and ri 6¼ rk

(
(3)

In principle, the value of ainter�region
r should be smaller than 1, which implies that

the intra-region co-occurrence information should be more likely to be sampled.
Finally, the unnormalized transition probability in our spatially explicit random walk

from the current node p2 to each candidate node x is:

tp p2, xð Þ ¼ ad ðp2, xÞ � ab ðp2, xÞ � ar ðp2, xÞ (4)

With the proposed sampling strategy, we perform several walks starting from each
node, and can then obtain a number of POI sequences. Subsequently, each POI in the
sequence is represented by its second-level category c2i : The reason for using the
second-level category (e.g. Chinese restaurant) is that it is neither too generic (e.g. food
service in the first level) nor plethorically detailed (Sichuan restaurant in the third level)
(Zhai et al. 2019). For each sampled sequence, the first is regarded as the target cat-
egory, and each of the rest is a context category.

The embedding of each POI second-level category is then obtained by optimizing a
skip-gram neural network with a negative sampling process, which essentially entails
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minimizing the objective function:

Lco�occurrence ¼
X
c2C2

X
cq2NRðcÞ

�log
exp cTc

0
q

� �
P

cn2C2exp cTc0
n

� �
0@ 1A

�
X
c2C2

X
cq2NRðcÞ

� log r cTc0q
� �� �

�
Xk
i¼1

log r cTc0ni
� �� � !

(5)

where c denotes the vector embedding of the second-level category c, and NRðcÞ rep-
resents the set of context categories of c captured in the random walks. c denotes the
target embedding, while c0 denotes the context embedding of category c. r denotes
the sigmoid function. The first line is the original form of skip-gram’s objective func-
tion, which is computationally expensive; thus, we use its approximation in the second
line, in which cni means the categories obtained by the negative sampling process (i.e.
cni does not co-occur with c).

3.2. Incorporating categorical semantics into POI embeddings

The POI (category) embeddings in previous studies generally encode only their spatial
co-occurrence patterns, overlooking the intrinsic semantic relations between them. As
we intend to learn the embeddings for second-level POI categories, there is abundant
semantic information explicitly defined in the POI category hierarchy. For example, in
Baidu POIs, the categories supermarket, mall and grocery store all belong to a first-level
category shopping, implicating their substantial resemblance in functional affordance
(categorical semantics). Such resemblance can only be marginally captured using spa-
tial co-occurrence information under the assumption that semantically similar catego-
ries have similar spatial distribution patterns.

In this article, we impose a semantic smoothness assumption on the embeddings
of POI categories: if two second-level POI categories ci and cj belong to the same first-
level category, they should have embeddings ci and cj close to each other in space
R

s: This assumption forces the second-level categories that share the same first-level
category to be adjacent in the embedding space, which is akin to the local invariance
assumption utilized in manifold learning theory (Guo et al. 2015). Therefore, we pro-
pose to realize this assumption with a manifold learning algorithm, which is capable
of enforcing the learning model to be smooth in terms of the geometric structure of
the data (Belkin et al. 2006).

Specifically, we leverage the manifold learning algorithm LE, which preserves the
local invariance between each data point pair (Belkin and Niyogi 2001). With LE, the
semantic smoothness assumption for POI category embeddings can be realized by
minimizing the objective function:

Lcategorical semantics ¼ 1
2

Xn
i¼1

Xn
j¼1

k ci�cj k22 wij (6)

where ci and cj are the embeddings of the second-level POI categories ci and cj ,
respectively; wij is used to measure the semantic smoothness of the embedding space,
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for which wij ¼ 1 if ci and cj belong to the same first-level category, and otherwise
wij ¼ 0, and k � k22 denotes the operation of taking the squared q2 norm of the encap-
sulated vector.

Thus far, we have proposed two objective functions for optimizing POI category
embeddings, which encode spatial co-occurrence information (Equation (5)) and cat-
egorical semantics (Equation (6)). Our proposed POI encoder / then combines them
to foster embeddings entailing information from both perspectives with the overall
objective function:

L/ ¼ Lco�occurrence þ kLcategorical semantics (7)

where k is a hyperparameter that should be tuned during training to balance the two
perspectives. The optimization of the overall objective function L can be carried out
with stochastic gradient descent.

3.3. Generating regional embeddings through aggregating POI embeddings

With the POI encoder / the embedding for each POI (category) is obtained. As we
aim to estimate functional distributions of urban regions, the embedding for each
urban region should be generated. Specifically, each urban region ri 2 R is often a
traffic analysis zone (TAZ; Yao et al. 2017, Zhang et al. 2021) or a grid cell (Barlacchi
et al. 2021); in this article, we opt to use TAZ, although our approach applies to both
of the means of region partition.

For each region, usually tens or hundreds of POIs spatially reside in it, and the set
of corresponding POI embeddings is fundamentally a region embedding matrix if one
stacks them together. As the number of POIs in each region varies, we need an aggre-
gation function to generate an embedding ri for each region. Such an aggregation
function should be permutation invariant, which means that the embedding ri needs
to remain the same regardless of the order of the POIs fed into the function (Zaheer
et al. 2017). To this end, previous studies generally applied (element-wise) average
pooling to generate an region embeddings (e.g. Yao et al. 2017, Zhai et al. 2019).
Nevertheless, using average pooling could let some frequently arisen POI categories
(e.g. restaurant and grocery store) water down the definitive information (e.g. railway
station and park) in the regional embedding, thereby compromising the performance
for the task.

Intuitively, there is an intrinsic importance order of the POIs in a region to define
its functions. For example, given the POIs that reside in a region frestaurant_1, railway
station, restaurant_2, grocery store, restaurant_3g, its importance order is largely appar-
ent to humans, while unknown a priori to machines. The work by Vinyals et al. (2015)
sheds light on this problem, in which they argued that there is generally an optimal
hidden ordering for a set of entities, e.g. for the task of number sorting, and they pro-
posed an aggregation function coupling LSTM and attention mechanisms to discover
such an optimal order. This function is permutation invariant and has exceeded aver-
age pooling in several applications, e.g. in quantum chemistry (Gilmer et al. 2017). In
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this article, we employ this aggregation function C to aggregate POI embeddings. The
function can be formally defined as:

qt ¼ LSTM rj, t�1ð Þ (8)

ai, t ¼ exp ðpiqtÞP
j exp ðpjqtÞ

(9)

vt ¼
X
i

ai, tpi (10)

rj, t ¼ qt vt½ � (11)

where pi is the embedding of the POI pi in the region rj (note that the POI embedding
is actually the embedding of its second-level category, i.e. pi ¼ c2i ); qt is a query vector
used to compute the POI weights in the attention mechanism; LSTM is an LSTM net-
work that computes a recurrent state with a randomly initialized input in the first
step; t is the processing steps of the attention computation; ai, t can be viewed as the
weight of the POI pi at step t; the region embedding rj, t 2 R2s is finally generated by
concatenating the query vector qt and the POI weighted summation (vt) at step t.

The intuition behind the aggregation function C is that the query vector qt can be
understood as the regional embedding in its infancy, and it serves as a ‘benchmark’ to
measure the importance levels of the POIs in a region; the ‘benchmark’ improves to
be increasingly expressive and mature during the training of the LSTM, and the
regional embedding is finally obtained through combining the ‘benchmark’ itself and
the weighted summation with regard to the ‘benchmark’. The generated region
embedding rj, t would implicitly account for the different contribution levels of the
POIs in defining the region’s functional distribution.

3.4. Mapping regional embeddings to functional distributions

With the aggregation function C, each region is represented as a vector embedding
rj, t The last component of our proposed approach utilizes an MLP w to map each
regional embedding to its functional distribution, i.e. w rð Þ : R

2s ! R
m, where 2s is

the dimension of the region embeddings, and m is the number of function types.
Specifically, the MLP takes a region embedding rj, t as input, and outputs an m dimen-
sional distribution in which each dimension represents a function type fk 2 F :

Between the input and output layers, there can be one or several hidden layers with
nonlinear activation functions. The activation function used for the output layer is a
softmax function to guarantee that the elements (proportions) sum to 1, i.e.

P
kbyi fk ¼

1: The aggregation function C and the MLP w can be jointly trained by minimizing
the Kullback� Leibler divergence (KL divergence) objective function:

LC,w ¼
Xn
i¼1

Xm
k¼1

yi
fk log

yifkbyi fk
 !

(12)

where byi fk is the estimated proportion of the function type fk that region i bears, and
yfki is the corresponding ground truth proportion. By minimizing this objective
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function, the aggregation function C and MLP w can be trained to learn the correla-
tions between the functional distribution of a region and the POIs that it contains,
and produce the estimated functional distribution in a supervised manner.

4. Experiment and results

4.1. Study area and data

We demonstrate the effectiveness of the proposed approach in the study area of
Xiamen Island, which is the central part of the southeast coastal city of Xiamen, China.
Xiamen Island has a population of more than 2 million, and its area is approximately
136.3 km2. Xiamen Island is widely known as an economically prosperous yet
extremely land-scarce area. Thus, sensible urban planning has been a priority in the
management of the city, in which obtaining updated and accurate urban functional
distributions is pivotal (Song et al. 2018). In this study, we utilize three datasets from
Xiamen Island:

1. A POI dataset from Baidu Map harvested in June 2020, which contains 45,033
POIs belonging to 22 first-level categories and 184 second-level categories; the
first-level categories include, among others, life service, shopping, food service, med-
ical service, governmental agency, and so on.; several second-level categories can
be subsumed under one first-level category.

2. An urban region partition (TAZ) dataset containing 661 regions. The regions are
divided by the network of the major roads in the study area, and they are the
basic units of urban structure and land use (Liu and Long 2016); the urban
regions are demonstrated in Figure 3(a).

Figure 3. The study area of Xiamen Island. (a) The urban region partition (colors are merely used
to differentiate regions, and have no connection with region functions). (b) The spatial distribution
of urban functions in the study area. The ground truth proportional distributions of urban functions
are derived through spatially overlapping (a) and (b).
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3. An urban function classification dataset from the Urbanscape Essential Dataset
of Peking University as shown in Figure 3(b), which is produced through infor-
mation extraction from remote sensing data, POI data and extensive human
correction, and modification in 2019 (Zhang et al. 2017, 2018, Du et al. 2019,
2020); this dataset provides detailed spatial distributions of 10 different urban
functions (functional land use): (1) forest, (2) water, (3) unutilized, (4) transporta-
tion, (5) green space, (6) industrial, (7) educational and governmental, (8) com-
mercial, (9) residential and (10) agricultural. This dataset is spatially overlapped
with the urban region partition dataset, to obtain the proportional functional
distribution of each region, namely the area proportion of each functional use
in the region. For example, after the overlapping operation, a region ri is
assigned with its proportional function distribution yi (a 10-dimentioal vector
distribution), e.g. 0.5 for commercial, 0.2 for education and governmental, 0.3 for
residential and 0 for all other function types. The derived proportional distribu-
tions are then used as ground truth data.

4.2. Generating POI embeddings

4.2.1. Implementation details
We train the POI encoder / to generate embeddings for POI (second-level) categories.
First, we build a DT network based on POIs using Scipy.2 The constructed POI DT net-
work contains 45,033 nodes and 270,123 edges. During the random walk, five walks
with a length of 10 are conducted starting from each node. In total, 225,165 walks are
conducted, and each walk yields nine co-occurrence pairs of ftarget category, context
categoryg. Negative sampling is performed to generate five negative pairs for each co-
occurrence pair.

With the POI co-occurrences collected, we can then train the POI encoder / with
the objective function L/ (Equation (7)) using the co-occurrence information and the
POI category hierarchy. To this end, we utilize the Adam optimizer built in Pytorch3

with an embedding size of 64 in view of previous practices (e.g. Yan et al. 2017). As
the number of co-occurrence pairs is enormous, we perform training in minibatch
mode with a batch size of 128 for 100 epochs. In this context, the hyperparameter k is
pivotal in generating POI category embeddings, which is used to balance the spatial
co-occurrence information and categorical semantics, and it can be expressed as

k ¼ bn� k
0

(13)

where bn denotes the number of batches in a single training epoch. As bn is a con-
stant and the absolute value of the LE item in L/ is large, we tune the hyperpara-
meter k’ in f10�7, 10�8, 10�9, 10�10g.

4.2.2. Analysis
We generate POI category embeddings while tuning the hyperparameter k’, and we
also test the scenario where the embeddings are completely learned with spatial co-
occurrence information (k’ ¼ 0). Upon completion of the training, we project the
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obtained POI category embeddings into 2D planes using the t-SNE algorithm
(Van der Maaten and Hinton 2008) for visualizations in Figure 4, where each point rep-
resents a second-level category, and those belonging to the same first-level category
are colored identically. The rationale of using t-SNE is that it has great capacity in
maintaining the relations between high-dimensional points after casting them to a
2D plane.

Figure 4(a) shows the scenario in which the embeddings for second-level categories
are trained completely with spatial co-occurrence information (k’ ¼ 0). For the anno-
tated second-level categories (colored pink) belonging to the first-level category shop-
ping, we can observe that they generally scatter around the plane and are mixed with
other categories, and no particular pattern arises. We recognize that semantic similar-
ities can only be marginally captured; for example, mall and department store are simi-
lar in their functional affordance, and are also adjacent in the embedding space.
Nevertheless, some second-level categories, such as grocery, street market and super-
market, also have substantial semantic resemblance, which can seldom be
reflected here.

The embeddings in Figure 4(b) are generated by considering both spatial co-occur-
rence information and categorical semantics (k’ ¼ 10�8), in which the embeddings are

Figure 4. Exhibition of POI category embeddings in 2D planes. The second-level categories belong-
ing to the same first-level category are colored identically. (a)�(d) represent several scenarios with
different enforcement strength of categorical semantics, in which (a) corresponds to no enforce-
ment. The annotations in (a) and (c) are second-level categories, while (b) shows first-level catego-
ries (clusters).
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semantically preserved. The second-level categories belonging to the same first-level
category exhibit an evident clustering phenomenon (each cluster is annotated with its
first-level category). Meanwhile, the distribution of the first-level category clusters
expresses the spatial co-occurrence patterns. For example, cluster shopping is adjacent
to education, life service and hotel; cluster tourism lies closely to landmark, and trans-
portation. The two examples both concur with human perception.

In Figure 4(c,d), the embeddings are generated by progressively decreasing the val-
ues of k’, thereby weakening the enforcement of categorical semantics. We can
observe that with smaller values of k’, the first-level category clustering phenomenon
is mitigated. With k’ ¼ 10�10 the visual boundaries between the clusters have almost
vanished, but practically, we can still identify the mitigated clusters. It can also be
observed that the spatial co-occurrence patterns for second-level categories can still
be expressed after the preservation of categorical semantics. For example, in Figure
4(c), the second-level categories Internet caf�e and square are both in the first-level cat-
egory cluster of life service, in which the former lies close to the dormitory (second-
level) in the real-estate (first-level) cluster, and the latter is close to the sanatorium in
the medical cluster, which conforms with human experiences.

Based on the above observations, we believe that learning POI embeddings merely
using spatial co-occurrence information cannot suffice in capturing the underlying seman-
tic similarities between POI categories, and our approach could resolve this problem by
considering both spatial co-occurrence information and categorical semantics.

4.3. Estimating urban functional distributions

4.3.1. Baseline models
We compare our proposed approach with several baseline models, including:

1. Place2Vec (Yan et al. 2017): This approach considers spatial co-occurrence informa-
tion with a KNN sampling strategy and distance decay. In fact, the full version of
Place2Vec also incorporates POI popularity, but we ignore such information which
is unavailable in our POI dataset. In this article, we utilize the same aggregation
function and the MLP architecture in the proposed approach to produce esti-
mated region functional distributions for a fair comparison.

2. One-hot: This approach considers only categorical semantics. Each POI’s embed-
ding is the concatenation of the one-hot vectors of its first- and second-level cate-
gories (206-dimensional). Subsequently, the aggregation function and MLP
architecture remain the same.

3. Random guess (random): Unlike classification problems, it is difficult to gauge the
difficulty level of the target problem. Therefore, we provide the results on random
guess, i.e. randomly guessing a uniform functional distribution for each region.
This shapes the lower bound in the evaluation.

4.3.2. Evaluation measures
Estimating urban functional distributions is essentially a label distribution learning prob-
lem. There are generally two types of evaluation measures in this regard: distance

1918 W. HUANG ET AL.



measures and similarity measures. Cha (2007) analyzed 41 measures for this problem, and
Geng (2016) selected several representative ones among them, in which each one could
reflect a certain perspective of an algorithm. We partially follow these previous works, and
pick five measures to obtain a comprehensive understanding of the performance of our
approach (#denotes the smaller the better, and "indicates the opposite):

1. L1 distance (L1) #: Pm
k¼1 byi fk � yfki

��� ���
2. Canberra distance (Canberra)#: Pm

k¼1 byi fk � yfki

��� ���= byi fk þ yfki

� �
3. KL divergence (KL)#: ∑mk¼1y

fk
i log yfki =byi fk� �

4. Chebyshev distance (Chebyshev)#: maxk byi fk � yfki

��� ���
5. Cosine similarity (Cosine)":

Pm

k¼1
byi fk yfki� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

k¼1
byi fk 2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

k¼1
y
fk
i 2

q� �
where byi fk is the estimated proportion of the function type fk that region i bears, and
yfki is the corresponding ground truth proportion.

4.3.3. Implementation details
The embeddings of the POIs in each region are stacked to compose a region embed-
ding matrix for each region. Each region embedding matrix is then mapped to a func-
tional distribution of the region through the aggregation function C and the MLP w,
which are trained using the objective function LC, w (Equation (12)). We set the proc-
essing step number t to 5 in the aggregation function C, and set the MLP to have
one hidden layer with a size of 64 and the tanh activation function. These processes
are implemented using Pytorch.

To train the models in the proposed approach, we have 661 regions that can serve
as input data, each of which has a ground truth distribution. We split the dataset into
a training set (80%) and a test set (20%). Within the training set, 20% is used as the
validation set. The models are first trained on those instances left in the training set
and tested on the validation set to select the best parameters. Then, the models are
trained on the entire training set and tested on the test set. The training is also per-
formed in minibatch mode with a batch size of 64 for 100 epochs. For reliability, the
entire dataset (661 regions) are randomly shuffled 10 times to repeat the abovemen-
tioned training, validation and testing processes.

Table 1. Performance of our approach and baseline models.

Approach

Evaluation measures

Avg. rankL1# Canberra# KL# Chebyshev# Cosine"
Ours 0.696 ± 0.024 7.467 ± 0.106 0.576 ± 0.020 0.290 ± 0.012 0.808 ± 0.013 1.0
Place2Vec 0.784 ± 0.034 7.537 ± 0.096 0.687 ± 0.031 0.328 ± 0.009 0.764 ± 0.014 3.0
One-hot 0.729 ± 0.023 7.473 ± 0.108 0.634 ± 0.033 0.302 ± 0.009 0.786 ± 0.015 2.0
Random 1.412 8.002 1.455 0.555 0.458 4.0

The best value with regard to each evaluation measure is presented in bold.
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4.3.4. Performance
The performances of our approach and the baseline models are presented in Table 1,
where the results are represented by ‘mean± standard deviation’. We can observe that
our proposed approach prevails in all evaluation measures. The L1 distance indicates
that the average absolute value of the estimation error for each function is approxi-
mately 0.0696 (as we have 10 function types). The Canberra distance is sensitive to
small changes near zero, and thus its values indicate that estimating small functional
proportions is generally challenging. The KL divergence performance indicates that the
relative entropy between the estimated functional distributions and the real distribu-
tions is the smallest with our approach. The Chebyshev distance only cares about the
worst match between the estimated and real functional distributions, and the results
reveal that the average largest discrepancy for a single function is less than 0.3. In
terms of the cosine similarity, the result of our approach is larger than 0.8, indicating a
rather high level of consistency between the estimated and real distributions.

With regard to the baselines, Place2Vec (simplified) only encodes spatial co-occur-
rence information, whereas one-hot only embodies categorical semantics. Surprisingly,
we observe that one-hot outperforms Place2Vec in all evaluation measures, indicating
that categorical semantics, which was usually neglected in previous studies, is more
informative and relevant than spatial co-occurrence information for estimating urban
functional distributions. Our approach incorporates both perspectives and thus outper-
forms the baselines. In addition, the performance of random guess indicates that this
task is generally difficult, and the results of our approach are significant.

4.3.5. Ablation study
As our proposed approach comprises four major components, we perform an ablation
study to verify the necessity of each component. The results of the ablation study are
presented in Table 2. The first row is the performance of the proposed approach with
all the components. In the second row, we drop the semantic smoothing technique in
the process of learning POI embeddings, thereby considering only spatial co-occur-
rence information, and the performance declines. Nevertheless, the performance in
such a setting is better than Place2Vec (see Table 1), which implies that the network
representation learning method outperforms Place2Vec from the perspective of cap-
turing and expressing spatial co-occurrence information. In the third row, we replace
the aggregation function with the average pooling method, which degrades the per-
formance. Finally, we replace the distribution learning component (mapping regional
embeddings to functional distributions) with a support vector machine (SVM) and ran-
dom forest. In these settings, we cannot train the aggregation function coupling LSTM
and attention mechanisms; therefore, we use the average pooling method. It turns out
that SVM and random forest produce unsatisfactory performance, and induce serious
performance decline. In the ablation study, we observe that the performance is ranked
as follows: our approach> replacing aggregation function>dropping categorical
semantics> replacing MLP with random forest or SVM. The results clearly indicate that
all the components in our approach are necessary, and the incorporation of categor-
ical semantics in POI embeddings seems to be a pivotal factor in underpinning the
superiority of our approach.
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4.3.6. Parameter sensitivity analysis
As revealed in the ablation study, the incorporation of categorical semantics in POI
embeddings is pivotal, and the hyperparameter k’ controls the strength of the
enforcement of categorical semantics in the process of learning POI embeddings.
Therefore, we tune k’ to find the best balance point. The results of the parameter sen-
sitivity analysis are presented in Table 3. Specifically, we find that the value of 10�8

leads to the best performance, and the performance decreases as k’ moves away from
10�8. Such results imply that a relatively strong enforcement of categorical semantics
is necessary for estimating urban functional distributions (cf. Figure 4), and a subtle
balance point exists for our certain task (but we speculate that such a balance point
would shift in other tasks).

In addition, we also search the parameters alocb , alrb 2 f0.25, 0.50, 1, 2, 4g, and
ainter�region
r 2 f0.2, 0.4, 0.6, 0.8, 1.0g, which are the transition biases in random walks.

We find out that the parameters yield the optimal performance are alocb ¼ 2, alrb ¼ 2,
and ainter�region

r ¼ 0.4, which indicates that both local and long-range spatial co-occur-
rence information play important roles, and there is a subtle balance between them.
However, we observe that varying these parameters only leads to small shifts of the
final performance, which strengthens our argument that categorical semantics plays a
more important role.

4.3.7. Error analysis
We perform a thorough investigation and analysis of estimation errors against ground
truth data through visualizations and manual inspections. In Figure 5, the results of
the error analysis are presented. In Figure 5(a,b), the L1 distance and cosine similarity
between the real and estimated functional distributions are visualized. We then dig
into the regions where large errors arise, and select four representative regions to
illustrate the underlying reasons that lead to large discrepancies; see Figure 5(c–j); in
Figure 5(g–j), the solid blue lines represent the ground truth, and the orange dashed
lines are the estimated functional distributions.

The presence of few predominating POIs. In Figure 5(c), a region is shown where a
lake (water: 0.59) dominates, and around the lake there are also some green space,
commercial and residential areas, and so on. However, our approach falls short in sens-
ing such a large proportion of water, and only comes to an estimation of 0.10 for
water. Instead, the estimated functional distribution is relatively flat, with large propor-
tions of residential, transportation and water. In this region, there are 349 POIs, mainly

Table 3. Performances of our approach with different values for the parameter k’.

Parameter
Evaluation measures

Avg. rankk’ L1# Canberra# KL# Chebyshev# Cosine"
10�7 0.729 ± 0.023 7.510 ± 0.065 0.619 ± 0.041 0.304 ± 0.011 0.790 ± 0.016 3.2
10�8 0.696 ± 0.024 7.467 ± 0.106 0.576 ± 0.020 0.290 ± 0.012 0.808 ± 0.013 1.2
10�9 0.726 ± 0.023 7.456 ± 0.058 0.604 ± 0.020 0.302 ± 0.012 0.794 ± 0.011 1.8
10�10 0.742 ± 0.035 7.551 ± 0.101 0.615 ± 0.045 0.309 ± 0.016 0.790 ± 0.022 3.8

The best value with regard to each evaluation measure is presented in bold.
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with first-level categories, such as life service, food service, real estate and transporta-
tion. Only eight POIs fall under the first-level category tourism, e.g. park and scenic.
The large discrepancy can be ascribed to the low presence of the POIs related to the
function of water, even with the employed importance-aware aggregation function.
Nevertheless, we believe that our approach is somehow competent in view of its esti-
mation for water (0.1), given that there is nearly no POI that is directly related to
water, e.g. park is only implicitly linked to water.

Ambiguous linkage between POIs and functions. The region shown in Figure 5(d) is a
lakeside industrial area, and thus majorly contains the functions of industrial, green space
and water. However, our approach assigns the highest proportion to transportation, and
less to industrial and commercial. Through inspection, we found that there are many trans-
portation-related POIs in this area, e.g. car wash, parking lot, etc. There are also many POIs
that fall in company, and we speculate that our approach has limited capability to discrim-
inate whether such POIs indicate industrial or commercial, and in the end certain propor-
tions are assigned to both of the functions.

Figure 5. Error analysis. (a) is the visualization for L1 distance, while (b) is for cosine similarity;
(c)–(f) are the visualizations of the selected representative regions; in (g)–(j), solid blue lines repre-
sent the ground truth-functional distributions of the selected regions, while the orange dashed
lines are the estimated functional distributions.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 1923



Error in ground truth. The region shown in Figure 5(e) is an industrial park. In fact,
our approach performs well in this case, as it assigns the highest proportion to indus-
trial; this discrepancy is induced by the error in the ground truth data. It is common
that the ground truth data are not completely correct, and we believe this case
strengthens the superiority of our approach, as it has a strong tolerance to errors in
ground truth data, which also demonstrates the utility of our approach in discovering
such problems.

Diversity and granularity of POIs. The region shown in Figure 5(f) is a busy region
and contains 593 POIs covering a diversity of categories, e.g. governmental agency,
transportation, automotive, medical, finance, education, etc. Such many and diverse
POIs, we suspect, lead to the difficulties for our model to gauge what functions this
region really has, and thus some relatively close proportions are assigned to several
functions, e.g. residential, commercial and transportation. This discrepancy is also linked
to the granularity difference between POIs and ground truth data. Yue et al. (2017)
argued that POIs represent a finer-grained picture than traditional land use maps pro-
duced from remote sensing and surveying. This implies that the discrepancies are not
necessarily due to the limited expressiveness of our model, but can be attributed to
the granularity difference between the POIs and the ground truth.

5. Discussion

Through a thorough experiment, we find that POIs are indeed a competent proxy for
sensing urban functions. The results clearly demonstrate that the potential and rich
information of POIs are incompletely mined in previous studies. In particular, the
incorporation of categorical semantics leads to substantial performance gains. We
observe that simply encoding POI categorical semantics (one-hot) with nearly no com-
putation cost could already excel encoding only spatial co-occurrence information.
The power of categorical semantics has also been revealed in studies, such as Liu
et al. (2018) and Jin et al. (2019), where only categorical information was utilized in
POI embeddings to search for similar urban regions. To this end, this work is the first
attempt to encode both categorical semantics and spatial co-occurrence information
in POI embeddings.

Spatial co-occurrence information of POIs still matters, as our approach that enco-
des information from both perspectives leads to the best performance. To this end,
we essentially propose a new POI co-occurrence sampling strategy, i.e. the spatially
explicit random walk in a network structure. In fact, previous studies mainly concen-
trated on designing various sampling strategies, e.g. Yao et al. (2017) and Zhai et al.
(2019). In the experiment, we demonstrate that the proposed sampling strategy in a
network structure outperforms the others. We believe that the rationale behind this is
that our approach could capture both local and long-range spatial co-occurrence pat-
terns, i.e. several ten-length walks see further than a ten-neighbor KNN. To this end,
one might argue that we could increase the searching radius in KNN to peep at long-
range dependencies. However, such a strategy would capture a plethora of co-occur-
rence information, which compromises the model’s efficiency, and the capability to
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discriminate POI categories (likely each category could co-occur with all
other categories).

It has also been clearly shown that the aggregation function utilized in our
approach with LSTM and attention mechanisms lift the performance compared to
average pooling. The aggregation function underlays a more expressive model with
inevitably more parameters that have to be trained (mainly those in LSTM). The aggre-
gation function has a certain capacity to gauge the different importance levels of the
POIs in a region, but not perfectly. For example, in Figure 5(c), although our model
could sense that the POI with the second-level category park might be indicative of
the region, while such a large proportion of water (0.59) is still difficult to estimate.
We believe that this should be ascribed to the intrinsic limitation of POI data that
models each entity as a point, and we speculate that this problem could be further
alleviated by incorporating complex geometries, e.g. from OpenStreetMap.

To the best of our knowledge, this work is a first attempt to estimate urban func-
tional distributions using POIs in a supervised manner with full utilization of the avail-
able ground truth data (such ground truth data can be partially available in a city, in
which case full utilization is even more pivotal). To this end, the problem formulation
and evaluation measures provided in this work could form a solid basis for further
studies. We also believe that estimating proportional distributions is more meaningful
than classification from an application perspective, as the users of the results (e.g.
urban planners) would have a comprehensive understanding of the naturally mixed
functions embodied in each region. In addition, if the ground truth is completely
unavailable in a city, one could also use our approach in a fully unsupervised setting,
but in such a case the aggregation function should be replaced with an average pool-
ing. Subsequently, the region embeddings can be fed into certain clustering methods
to discover the functional structure in a city.

In our experiment, we have once again verified the power of POIs as a proxy for urban
functions, and we demonstrate a real case where POI data have great potential to rectify
erroneous ground truth data and sense the changes of region functions that are yet to
be updated. In addition, several limitations of POI data have been unveiled. Apart from
the limitation of modeling all entities as points, we also find that the expressiveness of
POIs is limited, e.g. whether a company POI indicates industrial or commercial is ambigu-
ous. The problem could be mitigated with multiple POIs in a region, but in many such
cases, expressiveness still remains an issue. We believe that estimating distributions with
fewer functions could be a cure at the cost of reducing the granularity of the functional
distributions, which should be weighed depending on the applications.

6. Conclusions and outlook

In this article, we present a framework for estimating the functional distributions of
urban regions (proportions of urban function types in each urban region) based on
POIs. In this framework, each POI is represented as a low-dimensional vector embed-
ding that embodies the information of spatial co-occurrence and categorical seman-
tics. The embeddings of the POIs are then aggregated to generate region embedding
using an aggregation function coupling LSTM and attention mechanisms, which is

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 1925



aware of the different importance levels of the POIs in a region. Finally, the regional
embeddings are mapped to functional distributions using an MLP. A comprehensive
experiment and thorough result analyses are performed in the study area of Xiamen
Island, China. The results reveal that the proposed approach substantially outperforms
the baseline models in all evaluation measures.

In the error analysis, we exhibit the reasons behind estimation errors and find that
POIs are a competent proxy for urban functions, which can sometimes help rectify
erroneous ground truth data, and provide a picture of urban functional distributions
at a finer granularity than traditional means of remote sensing data and land survey-
ing. At the same time, this study also reveals several intrinsic limitations of POIs for
this task, such as (1) all entities are modeled as points, which makes it difficult to
sense the large area functions with only few POIs (e.g. a lake) and (2) the linkages
between POI categories and urban function types are sometimes ambiguous, e.g. it is
unclear whether the POI category company implies industrial or commercial.

Future studies can be conducted in three directions. The first is to further improve
the approach for estimating urban functional distributions by considering the unique-
ness of individual POIs, as thus far all the POIs belonging to the same categories have
the same embeddings, which leads to the loss of the uniqueness of each POI. Second,
POIs can be integrated with a data source with complex geometries (e.g.
OpenStreetMap) to improve the aggregation mechanism. Third, the proposed
approach can be adapted and applied in other downstream tasks to explore its fitness
and superiority, such as in POI recommendation, housing price estimation and geo-
graphic risk analysis in the insurance industry.

Notes

1. See https://map.baidu.com/.
2. See https://www.scipy.org/.
3. See https://pytorch.org/.
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