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ABSTRACT
Though global-coverage urban perception datasets have been
recently created using machine learning, their efficacy in accurately
assessing local urban perceptions for other countries and regions
remains a problem. Here we describe a human-machine adversarial
scoring framework using a methodology that incorporates deep
learning and iterative feedback with recommendation scores, which
allows for the rapid and cost-effective assessment of the local urban
perceptions for Chinese cities. Using the state-of-the-art Fully
Convolutional Network (FCN) and Random Forest (RF) algorithms,
the proposed method provides perception estimations with errors
less than 10%. The driving factor analysis from both the visual and
urban functional aspects demonstrated its feasibility in facilitating
local urban perception derivations. With high-throughput and high-
accuracy scorings, the proposed human-machine adversarial frame-
work offers an affordable and rapid solution for urban planners and
researchers to conduct local urban perception assessments.
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1. Introduction

Urban perceptions, which are the psychological feelings held by residents about an
urban locale (Tuan 2013, Ordonez and Berg 2014), provide an important basis for
understanding the ways in which urban environments interact with public mental health
(Ulrich 1979, Frank and Engelke 2001, Wolch et al. 2014). Traditionally, the evaluation of
human perceptions towards their visual surroundings remains difficult due to the lack of
high-throughput methods, inadequate sample problems and being restricted to inter-
views and questionnaires (Hannay 1983, Halpern 1995, Kabisch et al. 2015, Dadvand
et al. 2016). Given the costly and time-consuming nature of these investigation methods,
a framework that can boost work efficiency is needed to optimize the urban perception
assessment process.
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The last several years have witnessed the fast development in multi-sources of
geospatial big data, especially the emergence of massive geo-tagged imagery datasets
(e.g., street-view imagery and check-in imagery) (Zhou et al. 2014). Such images with
geographic location information contain abundant visual information (Xu et al. 2017)
and thus could effectively reflect visual scenery that is seen in daily life (Hu et al. 2015).
Since a sight is the most intuitive way for urban residents to gain perceptions about
their surrounding environments (Ulrich 1979), geo-tagged image datasets offer new
opportunities to tackle the large-scale derivation problem for urban perception. Street-
view (SV) imagery, which is composed of panoramic views from various positions along
streets, has emerged as a promising data source to infer urban perceptions. Street-view
pictures are geo-tagged photos that are collected, processed and maintained by map
service providers (e.g., Google Maps and Tencent Maps) using a standard processing
method, and they are collected through dedicated devices by acquiring images from
different headings and pitches (Anguelov et al. 2010). Street-view imagery is primarily
distributed along urban streets (Cheng et al. 2017) and represents the physical morpho-
logical properties of urban interior spaces (Gebru et al. 2017, Zhang et al. 2018a).

Salesses et al. (2013) first proposed using street-view images to assess the effect of
a city’s environment on social and economic outcomes by collecting human perceptions
through pair-wise street-view image comparisons. Based on Salesses’s work, Dubey et al.
(2016) extended the surveying area to global major cities using an online crowdsourcing
strategy and machine learning in computer vision to build a large-scale urban percep-
tion global dataset, thus overcoming the inadequate sample problem and certain limits
imposed by traditional interview and questionnaire approach. To the best of our knowl-
edge, the existing studies assessed urban perceptions based on the dataset provided by
the MIT Place Pulse project (Place Pulse 1.0 and 2.0) (Ordonez and Berg 2014, Porzi et al.
2015, Naik et al. 2017, Zhang et al. 2018a, 2018b).

Though global-coverage urban perception datasets have been created by Dubey
et al. (2016) using machine learning, its efficacy in accurately assessing local urban
perceptions remains a problem. For example, training sample areas in this dataset
only contain two Chinese regions (Hong Kong and Taiwan). Previous studies indicate
that Hong Kong and Taiwan are largely different from mainland China in terms of their
special political and economic status and physical environments (Wong 2015). The urban
perceptions derived from such a global dataset may not be representative of cities in
mainland China. Due to the complexity of China’s urban and local environments,
applications of models that are trained by Place Pulse dataset (which mainly consists
of western scenes) to a Chinese city are problematic.

Chinese cities manifest different environments from other cities in the world, similar to
how Eastern European cities (post-communist ones) differ from the American cities or
Australian cities. Previous studies showed differences of Eastern and Western architectures
and town planning style in the ‘demarcations’ of interior and exterior as well as private
and public spaces through discussions of differences in street-view images (Ashihara
1983). Every city is a complex system, composed of people, places, routes and activities
distinctive from cities of other countries (Cameron and Larsen-Freeman 2007). People in
a Chinese city commonly feel safe about their inner city regardless of the city’s physical
appearance, since the inner city is usually densely populated and has more police officers.
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Inner-city images in China may look like urban villages – not good-looking and disor-
dered – but they would be perceived as being quite safe by Chinese people.

Also, an urban perception is a subjective assessment and is influenced by people’s social
and cultural backgrounds (Rapoport and Hawkes 1970). Although Dubey et al. (2016) and
Salesses et al. (2013) claimed that demographics of the survey respondents would not cause
any bias, their statement is only tenable within sample areas or cities that are similar to the
sample areas, and bias may still exist when this dataset is directly used to predict and assess
urban perceptions elsewhere. In other words, when we need to accurately assess the urban
perception of a region, we need to obtain a local urban perception dataset from the
residents who are aware of the regional socioeconomic background.

To address these problems on assessing local urban perceptions, we proposed
a novel ‘human-machine adversarial’ scoring methodology to rapidly and cost-
effectively assess local urban perceptions. This study developed a framework with
deep learning, street-view imagery and iterative feedback mechanism and to assess city-
scale urban perceptions. We conducted a case study of an urban perception assessment
in a high-density urban environment, e.g., Wuhan, to demonstrate the efficacy of the
proposed framework. Moreover, we analyzed the driving factors to explain the results
from both the visual and urban functional aspects.

2. Methodology

The flowchart of the proposed methodology is illustrated in Figure 1. The methodology
attempts to assess the local urban perception using the proposed human-machine adver-
sarial framework. The framework includes three procedural components: 1) using fully
connection network (FCN) trained by the ADE-20K1 dataset to semantically segment fea-
tures in each street-view photograph and obtain the areal ratio of each semantic object; 2)
using the proposed human-machine adversarial scoring module to enhance the efficiency
in the urban perception assessment for Chinese cities; and 3) analyzing the driving factors of
the derived urban perceptions in term of the visual elements and urban functions.

2.1. Designing ‘Human-machine adversarial’ strategy

Humans have superior abilities to recognize image’s global-property, which provides the
theoretical support for our ‘human-machine adversarial’ methodology (Greene and Oliva
2009a). Previous experimental comparisons indicate that global-property categorization
takes significantly less presentation time than basic-level categorization, for example,
the degree of openness or navigable, rather than a mountain or lake. Our visual system
can recognize and classify scenes much faster than individual component objects, which
usually take less about 100 ms in laboratory conditions (Greene and Oliva 2009b).

Human perceptions (e.g., safety, lively, etc.) on street-view scenes – scenes that we
see daily – are exactly a dual to global-property for natural scenes (e.g., openness,
temperature, etc.). Therefore, human’s superiority for understanding global-property is
used to facilitate human annotation process for human perception (global-property)
ratings in this study. The ‘human-machine adversarial’ design provides a conditioned
reflex environment where machine learning assists human annotations on global-
property categorization, similar to Google’s recent research ‘Fluid Annotation (2018)’.
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2.2. Human and machine rating local street view images

2.2.1. Semantic segmentation of street-view imagery via FCN-8s
To determine the visual elements that might induce a safe, lively, or depressing perception
of a place, our proposed method aims to extract the semantic elements of a place that
might be highly correlated with human perceptions. The extracted semantic elements then
proceed for the RF-model fitting in adversarial scoring and further correlation analysis.
Recent progresses on deep learning show a fully convolutional network (FCN) can predict
each pixel’s semantic property in an image, which can be used to produce natural-object-
level segmentation results.(Long et al. 2015, Badrinarayanan et al. 2017).

As shown in Figure 2(a), a FCN divides a street-view image into multiple sub-scenes,
each of which attends to vehicles, roads, trees or other natural objects up to 151
categories (including the category of ‘unknown’). The MIT ADE20K website2 documents
the full description of all 151 categories. In this study, we use the ADE20K dataset
released by MIT (Zhou et al. 2019, 2017) to train our FCN network. Next, the trained FCN
network is integrated into our proposed human-machine adversarial scoring framework,

Figure 1. Workflow of assessing the street-level local urban perception via human-machine adver-
sarial scoring.
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which provides a 151-dimension feature vector for the random forest to fit the human-
annotators’ scoring preferences and give recommendation scores.

Coupled with the calculation of the per-pixel loss based on the softmax layer (Shelhamer
et al. 2014, Zheng et al. 2016), the FCN-8s network (Figure 2(b)) produces the area ratio of each
visual element in the image by counting the number of pixels in each segmentation mask.

2.2.2. Urban perception derivation via the human-machine adversarial scoring
framework
This study focuses on six categories of urban perceptions: wealthy, safety, lively, beauti-
ful, boring and depressing, as in Place Pulse 2.0 (Dubey et al. 2016). These six perception
datasets from previous studies are assembled through training on mostly western urban
street scenery with CNNs and annotators’ votes on pairwise image comparisons (Dubey
et al. 2016). Our proposed framework, however, collects real score annotations on each
image from volunteers. To accurately produce urban perceptions in Chinese urban
environments, local volunteers who are aware of the regional socioeconomic back-
ground are asked to work through the human-machine adversarial scoring framework.

Our human-machine adversarial scoring module processed the FCN sematic segmen-
tation result and the city-scale human perceptions from local volunteers. Furthermore,
the module mined the relationship between the visual scenery and perception directly
to expedite image classification according to human perception. We use RF algorithm to
determine the final image classification, and therefore the results are subject to RF fitting
and limited to one perception label per image.

Figure 2. (a) The input and output of the fully convolutional network (FCN) and (b) the details of the
FCN structure (Long et al. 2015).
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Figure 3 illustrates the process of human-machine adversarial scoring. Volunteers
score a displayed street-view image in terms of the six types of perception in a range
of 1–100 with 0 being the lowest and 100 being the highest level of a perception. The
demography and number of volunteers recruited to score street-view images may vary
depending on the different application cases. A case study is provided in Section 4 to
demonstrate the feasibility and effectiveness of the proposed method.

2.2.2.1. Random-forest fitting. The proposed method consists of a random forest (RF)-
based module to fit the relationship between the visual scenic features and the user
scorings. The visual scenic feature is a 151-dimension vector that reflects the areal
proportion of each kind of object in the FCN segmentation. Once a user has scored
the first 50 photos, the scoring software establishes a random forest set to fit the scoring
process. Then, as users have rated subsequent photos, the software offers
a recommendation score based on the rules learned from the previous user rating
actions. Previous studies have already demonstrated RFs’ outstanding performance in
model fitting (Fern A Ndez-Delgado et al. 2014).

During the random forest training process, the training data set is randomly divided
into a training (in-bag) data set and a test (out-of-bag, OOB) data set. The OOB data set
is only used to test the model accuracy at each iteration during the training process.
The average OOB validation error can be used to evaluate the degree to which the RF-
based fit or classification model achieves the best accuracy. Previous studies have
proven that the OOB estimation is better than the cross-validation (Fern A Ndez-
Delgado et al. 2014).

Figure 3. Schematic diagram of the proposed human-machine adversarial scoring process.
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2.2.2.2. Iterative adjusting. Inspired by the iterative feedback module designed for
scoring cell phenotypes (Jones et al. 2009), we enable our scoring software to auto-
matically adjust the recommendation scores according to the user scoring behaviors. If
the recommendation scores of more than five pictures seriously deviate from a user’s
score by more than 10 points, the embedded random forest module will be retrained
and self-correct the fitting model. Otherwise, if the OOB validation error of the fitting
model is less than 10 points, the user scoring procedure stops and outputs a human-
machine adversarial scoring dataset.

The adversarial scoring between people and machines help obtain a stable machine
learning model while human-machine confrontation reaches a compromise. We define
Human-machine confrontation compromise as a scoring result that difference of
machine prediction score and human annotation score is within ±5 point. As the photos
assigned to volunteers are randomly retrieved from the after-segmentation street-view
image database, if a photograph is rated multiple times by several volunteers, the final
score of the photograph will be set as the median value to avoid extreme scores. The
final product is a data set of scored local perceptions on street-view imagery ready for
analyzing urban perceptions of Chinese cities.

2.2.3. Accuracy assessment
During the process of human-machine adversarial scoring fitting via random forest and
the process of RF-fitting between urban perception and POI-based urban function, this
study uses the Pearson correlation coefficient (Pearson R), standard R2, root mean
squared error (RMSE) and mean absolute error (MAE) to quantify the accuracy between
the predictions and the ground-truth values. The Pearson R, standard R2, RMSE and MAE
are mathematically represented as follows using Equation (1) to Equation (4),
respectively.

Pearson R ¼
Pn

i¼1 yi � yið Þ byi � byi� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 yi � yið Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 byi � byi� �2
r (1)

R2 ¼ 1�
Pn

i¼1 yi � ŷið Þ2Pn
i¼1 yi � �yð Þ2 (2)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 yi � ŷið Þ2
n

s
(3)

MAE ¼ 1
n

Xn
i¼1

yi � ŷij j (4)

Where yi is the ground-truth value, �y is equal to 1
n

Pn
i¼1 yi, and ŷi is the predicted result

from the fitting model.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 7



2.3. Exploring the driving factors of urban perceptions

The data set of local perception scores can be used to estimate the perceptual distribu-
tions at the city-scale. We use the trained RF model embedded in the adversarial scoring
module to estimate all four headings of the street-view pictures (0, 90, 180 and 270
degrees) and calculate the average perception score at each site. Next, we assemble the
average scores for all sites to map the urban perception for a given study area.

Driving factor analyses aim to further assess the derived urban perception from two
aspects. The first aspect is semantic element factor identification. The weights of the
features extracted from the RF training process provide the basis to quantify the effects
of street level sub-scenes on urban perceptions as a means to examine the rationality of the
derived urban perception (Zhang et al. 2018c). The second aspect is POI-based urban
function factor identification. A detailed RF-based calculation method from previous studies
(Palczewska et al. 2014, Yao et al. 2017a, 2017b) is used to analyze the relationship between
urban functional patterns and urban perceptions. The POI-based identification supple-
ments the semantic element analysis result in assessing the feasibility and effectiveness
of the proposed human-machine adversarial framework for urban perception assessment.

The spatial distribution of POIs is used to construct an RF-based model that fits the
urban perception distribution. We use the fitting accuracy and parameters to calculate
the correlation between the urban functional patterns and urban perceptions.

3. Case study

Taking Wuhan as the case study, we performed the human-machine adversarial scoring
procedure and conducted driving factor analysis to show that the proposed methodol-
ogy is an efficient and low-cost method for obtaining city-scale local urban perception.

As the largest city in and the political, economic and cultural center of Central China
(Sun et al. 2016, Yao, Wang et al. 2016), Wuhan is characterized as one of the most
rapidly developing cities in China. This case study covers the downtown area of Wuhan,
including 8 administrative districts3 (Figure 4). The central zone of Wuhan, including
Wuchang, Jiang’an, Jianghan and Hanyang, along the Yangtze River is the most devel-
oped area of Wuhan.

Street-view (SV) images are essential data in this study. Tencent Maps (https://map.qq.
com/) is one of the largest online map service providers in China (Long and Liu 2017).
Similar to Google Maps, Tencent Maps provides street-view photos (Figure 5) for various
positions with different headings and pitches along each road. Based on the road network
data (Figure 4) from OpenStreetMap.org, we evenly selected our sampling points 100
meters apart on every main road. In our sampling strategy, each sample point captures
street-view images from four headings (0, 90, 180, and 270 degrees) with a fixed horizontal
pitch, as illustrated in Figure 5. In total, we collected nearly 500 thousands street-view
photographs of major Chinese cities (Beijing, Shenzhen, Guangzhou, Shanghai, Wuhan,
Hangzhou, etc.). In terms of our case study in Wuhan, we selected 24,860 sampling points
and obtained a total of 99,440 street-view images for further processing.

In addition, we fetched Gaode POI data to analyze the relationship between urban
functions and urban perceptions in this case study. Gaode is one of the biggest map
service providers in China and has a rich source of POI (http://amap.com). We captured
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603,015 POIs from Gaode Maps (https://www.amap.com/) in the case study area. Gaode
provides nine categories of POI, and this data source was successfully employed in the
recognition of urban function patterns (Liu et al. 2017, Yao et al. 2018). Figure 6 shows
the density distribution of the nine POI categories.

Figure 4. Case study area: Downtown area of Wuhan, Hubei Province. The white lines in the right
subplot are the main roads in the study area obtained from openstreetmap.org.

Figure 5. Online Tencent street-view data. Case areas: (a) Huazhong university of science and
technology, (b) Nanwang mountain, and (c) Wuhan optical valley (CBD area).

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 9
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4. Results

Our research team built a software application and developed the proposed models in
Section 3. The FCN model was trained using two sets of Nvidia GTX 1080ti graphics
processors. Several open-source C/C++ libraries, such as GDAL (http://www.gdal.org/),
DLib (http://dlib.net/), Qt (https://www.qt.io/) and Shark (http://image.diku.dk/shark/),
were used in this project. The source codes were implemented in Java, C++ with
OpenMP and run on a multiprocessor computational server. The related application
and source code can be downloaded from our GitHub website (https://github.com/
whuyao/human-machine-adversarial).

4.1. Semantic segmentation result

The ADE-20K dataset had a total of 20,210 items of training data and 2,000 items of
validation data. When training the FCN-8s, the scanning window was set to 500*500
pixels, while the learning rate and the early-stopping minimum learning rate were set to
0.1 and 0.001, respectively. The batch size for each input was set to 32. To derive an FCN-
8s suitable for semantic segmentation, nearly 1 week was required to complete the
training procedure.

Figure 6. Distribution of Gaode POIs in the study area using kernel density. POI categories:
residential communities (RES), traffic facilities (TRA), commercial and business (COM), tourist attrac-
tions (TOU), food and shopping (SHP), education facilities (EDU), government and public services
(GOV), financial services (FIN), and public facilities (PUB).
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The trained FCN-8s showed excellent performance for natural image scene segmen-
tation. Through a pixel-by-pixel comparison, experiments using the ADE-20K dataset
showed that our trained FCN-8s achieved an accuracy of 81.44% on the training
dataset and 66.83% on the test dataset. Figure 7 shows the segmentation results of
the street-view images in the case study area. The street-level sceneries of Chinese
cities are quite complex, ranging from under-construction environments to both rural
and developed urban areas. However, the model trained in this paper showed satis-
factory results in segmenting and parsing street-level sub-scenes, thereby handling the
complexity of China’s city environment quite well.

4.2. Human-machine adversarial scoring result

We invited a total of 20 college students and staff to be volunteers, and their ages
ranged from 20 to 50 years old. The age distribution of volunteers is as follows: 9
people from 20 to 30 years old, 8 people from 31 to 40 years old, and 3 people from 41
to 50 years old. The ratio of male to female was approximately 1:1. A total of 25,000
street-view images were scored via the proposed human-machine adversarial scoring.

With the support of the human-machine adversarial scoring system, each person
annotated 1,000–2,000 images in one or two hours since the recommendation scores
provided by the program accelerated the scoring process. Through the adversarial
scoring process, the ‘human-machine compromise’ state reached after 1,000 images

Figure 7. Scene segmentation results of the Tencent street-view photos via our trained FCN-8s. The
colors of segmentation masks are random.
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manually scored by volunteers upon the training of the best fitting random forest
model was complete and the module terminated the data collection process.

4.2.1. Human-machine RF training accuracy
A total of 60% of the user-scored perceptual annotation data was used to train the
random forests, while the other 40% was used as the testing data for model validation.
The fitting results are shown in Table 1. The RF-based urban perception estimation
accuracy was over 90% on average, thereby demonstrating the strength of the sub-
scene descriptors using the semantic segmentation technique. In the case of a full
mark of 100 points, our average fitting error for the machine scoring was within 10
points. Since we established the stop criterion of the user scoring procedure as OOB
errors less than 10 points, the training accuracy result for the lively perceptions
( � 10.11) serves the baseline result. Compared with the wealthy, safety and depres-
sing perceptions, the human perceptions of beautiful and boring had obviously poorer
accuracies with scoring errors of ( � 14.52) and (� 11.01), respectively. These results
indicated a higher perceptual diversity of beautiful and boring among our volunteers,
which may represent a stronger subjectivity towards beautiful and boring from the
demographic groups with higher-education backgrounds in the Wuhan region.

4.2.2. Correlation analyses among perceptions
The correlation matrix between the pairwise perceptions is shown in Table 2. Wealthy
perceptions have strong positive correlations with safety and lively perceptions. Since
human perception of wealth is usually stronger in Chinese downtown areas where
denser populations and more modern facilities (as well as more police forces) are
located, it is reasonable that safety and lively perceptions would be simultaneously
evoked. Along with the increased/decreased degrees of prosperity, positive correla-
tions appear ‘interlocking’ among wealthy, safety and lively perceptions. This

Table 1. Training accuracy of the urban perception estimation via random forest.
Perceptions Average error RMSE OOB Error OOB RMSE

Wealthy 1.84% 3.00 5.38% 8.60
Safety 1.37% 2.58 3.97% 7.32
Lively 2.36% 3.48 6.92% 10.11
Beautiful 3.88% 5.06 11.37% 14.52
Boring 2.61% 3.78 7.77% 11.01
Depressing 2.02% 2.91 5.99% 8.57

Table 2. The Pearson correlation matrix among the different perceptions.

Perceptions Wealthy Safety Lively Beautiful Boring Depressing
Wealthy 1.000 0.954 0.978 -0.714 -0.143 0.848 
Safety 0.954 1.000 0.950 -0.677 -0.284 0.874 
Lively 0.978 0.950 1.000 -0.747 -0.192 0.884 
Beautiful -0.714 -0.677 -0.747 1.000 -0.203 -0.878 
Boring -0.143 -0.284 -0.192 -0.203 1.000 -0.204 
Depressing 0.848 0.874 0.884 -0.878 -0.204 1.000 
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phenomenon was well demonstrated in urban studies of Chinese cities (Hanslmaier
2013, Song et al. 2018). In addition, the depression perception appears strongly related
to wealthy, safety and lively perceptions. The relationship between urban develop-
ment and the residents’ depression status is a well-discussed issue in the field of public
health and has gained increasing attention (Wang et al. 2018). These findings are
consistent with those in the literature subserve the premise of the proposed metho-
dology to identify local urban perceptions.

4.3. Spatial distribution of urban perceptions in the case study area

Based on the adversarial scoring embedded RF-model for fitting street-view percep-
tions, we calculated the average value of the four-direction street-view sampling
points on different perceptions types. The resulting Wuhan urban perceptions distri-
bution map is shown in Figure 8. Table 3 shows the statistical results of the perception
scores of each administrative district in Wuhan. The old town area (Wuchang, Jiang’an,
and Jianghan), which is a traditional commercial center and a densely populated area,
obtained high wealthy, safety and lively perceptions with average scores that are
approximately 1.0 to 1.2 times the overall level of Wuhan. Moreover, less boring
perception scores were obtained in the old town area, outperforming the average
level of Wuhan (≤ 60).

Dongxihu is a scenic spot district in the suburbs of Wuhan and has a relatively less-
developed economy, thus receiving relatively low levels of wealthy, safety and lively
perceptions while earning the highest beautiful and lowest boring and depressing
perceptions within Wuhan. The derived local urban perception highly agreed with the
economic development level of each administrative region, which demonstrated the
efficacy of the proposed human-machine adversarial scoring framework for local urban
perception assessment.

Figure 8. The distribution of urban perception results along the road. (a) Wealthy, (b) Safety, (c)
Lively, (d) Beautiful, (e) Boring and (f) Depressing. (Low represents 0 score and high represent 100).
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4.4. Driving factor identification for the derived urban perception

4.4.1. Visual factor identification
Based on the parametric weight analysis of the random forest model (Palczewska et al.
2014), we analyzed the effects of 151 ground objects of 6 urban perception types and
quantitatively investigated their interrelationships. As shown in Figure 9, the impact of
the building layout contributes 15% to 30% to all urban perceptions except boring.
Natural landscapes, including the sky, trees, rivers and grass, considerably impact
residents’ perceptions, especially in the depressing, boring and beautiful categories.
Additionally, inspired by the close correlation between urban perceptions and urban
land use (e.g., houses, fountains, and dirt tracks) revealed by the diagrams, we were
interested in the potential relationship between urban perceptions and urban functional
structures since urban land use always comes with a typical urban function.

4.4.2. Poi-based urban functional factor identification
To further study the relationship between urban functional patterns and urban percep-
tions, this study constructed nonlinear RF models to fit the urban perceptions and POI
spatial distribution in the case study area. The case study included nine types of Gaode
POIs, and used the mean integrated squared error (MISE) criterion (Duong and Hazelton
2003) to automatically determine the bandwidth of the Gaussian function-based kernel
density analysis of POIs.

The fitting accuracy between the POIs and the urban perception distribution is shown
in Table 4. All urban perceptions show a good fitting accuracy (R2 > 0.7, Person R > 0.85),
but the perception of boring appears relatively weak compared to other perceptions.
Our result shows that boring was a more subjective perception with a large deviation,
which was consistent with the findings of (Zhang et al. 2018c).

Figure 9. The weight of each ground object’s impact on the different urban perceptions: (a) Wealthy,
(b) Safety, (c) Lively, (d) Beautiful, (e) Boring and (f) Depressing.
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The fitting weights between urban perceptions and POI categories are shown in Table 5.
Education, government and shopping appear the most important factors influencing the
urban perception in the case study area. In addition, the public facilities function has
a greater weight for wealth perception compared with its weights for the others, which is
consistent with common sense that developed and sufficient public facilities are commonly
located in a wealthy area. The perceptions of safety and lively have very strong relationships
with the traffic function. The existence of traffic facilities significantly contribute to safety,
while the traffic flow volumes that are affected by the traffic function can substantially
influence human impressions of the urban vitality.

5. Discussion and conclusion

Based on street-view data, this study proposed a rapid and cost-effective methodology
for local urban perception assessment. This study used the proposed framework to
estimate the urban and regional perceptions with high accuracy (RMSE within 10%),
thereby indicating that human-machine adversarial scoring is useful for assisting local
urban perception assessment. Experiments on identifying the driving factors demon-
strated the feasibility and efficacy of the proposed framework.

This study proposed the idea of human-machine adversarial scoring to assess city-
scale local urban perception in a cost-effective and accurate way. In the past, collection
methods for city-scale human perceptions were limited to traditional interviews and
questionnaire methods, which were labor-insensitive and time-consuming. Recent

Table 4. Fitting accuracy of the urban perceptions based on the POI densities via RF.
Perceptions R2 Pearson R RMSE MAE OOB RMSE OOB MAE

Wealthy 0.893 0.945 5.367 3.039 5.406 3.099
Safety 0.908 0.953 4.360 2.475 4.297 2.496
Lively 0.907 0.952 5.499 3.122 5.543 3.176
Beautiful 0.879 0.937 5.166 2.989 5.146 3.017
Boring 0.744 0.863 5.786 3.345 5.645 3.362
Depressing 0.903 0.951 5.394 2.956 5.204 2.914

Table 5. The fitting weights of the RF between the urban perceptions and POI
categories: residential communities (RES), traffic facilities (TRA), commercial and
business (COM), tourist attractions (TOU), food and shopping (SHP), education
facilities (EDU), government and public services (GOV), financial services (FIN),
and public facilities (PUB).

Perceptions RES TRA COM TOU SHP EDU GOV FIN PUB

Wealthy 0.083 0.088 0.071 0.063 0.121 0.172 0.151 0.101 0.151 

Safety 0.060 0.134 0.070 0.061 0.102 0.184 0.173 0.108 0.110 

Lively 0.072 0.114 0.070 0.059 0.121 0.177 0.150 0.114 0.125 

Beautiful 0.072 0.080 0.070 0.090 0.144 0.204 0.166 0.082 0.093 

Boring 0.089 0.092 0.109 0.089 0.125 0.139 0.141 0.146 0.070 

Depressing 0.057 0.084 0.073 0.081 0.092 0.239 0.228 0.064 0.083 
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online crowd-sourcing strategies could improve this situation, but they still suffered
from two shortcomings: (1) high time costs and economic costs for acquiring sufficient
volunteers and (2) spatial heterogeneity for different countries and regions. Questions
remained whether applications of datasets obtained from the information that was
designed specifically for certain regions would be effective in other areas. The proposed
human-machine adversarial scoring methodology addressed these questions and pro-
vided a rapid and cost-effective way to accurately generate city-scale data on local urban
perceptions.

We designed a case study to demonstrate the feasibility of the proposed methodol-
ogy. The number of volunteers recruited in the case study was small (only 20 citizens). In
order to solve the problem that the small number of volunteers may lead to data bias,
we are developing a website for the human-machine adversarial-based perception
scoring system that supports crowdsourcing for future study. We will build a specific
sensory dataset suitable for supporting large cities and regions in China and provide
available urban perception data and services for urban planners.

By exploring the correlation and fitting weights between the urban perceptions and
urban functional patterns revealed by the POIs, we found a very strong nonlinear
relationship between urban perceptions and urban functional structures. POIs were
proven to be useful for urban landscape evaluations (Liu et al. 2017, Waddell et al.
2010, Yao et al. 2016), and this study also found that the POIs could accurately estimate
the distribution of urban perceptions (the RMSE approximated 5%). The case study
quantitatively identified the impact of urban functions on urban perceptions and
demonstrated the efficacy of the proposed adversarial scoring methodology in facilitat-
ing local urban perception assessment.

The proposed method has many limitations and opportunities for future studies.
Urban perceptions are unique and subjective, not only related to the street scenery
seen by the individual but also to other factors in the city, such as the noise, tempera-
ture, humidity, commodity prices, etc. (Bonaiutoa et al. 1999, Hong and Jin 2015,
Gunnarsson et al. 2017). Therefore, future studies need to consider more factors in the
design of urban perception models with diverse input data (such as street scenes,
videos, etc.), and evaluation goals (such as noise, livability, etc.) to develop a more
complete and accurate urban perception analysis model. In addition, when identifying
urban functional driving factors, the weights obtained by the RF model can only indicate
the importance of the variables to the results but not decide whether the driving factors
are positive or negative (Biau 2012). Besides, the collection speed of street-view imagery
may not keep apace with the change of urban landscape and the mapping result of
a city’s urban perception may have temporal issue. We will focus on these issues in
future research.

This study did not consider the issue of ethnic differences in volunteers. According to
2010 Census data of National Bureau of Statistics of China (2011) in China, the propor-
tion of minority in China is 8.49%, while the proportion of minority in Wuhan is 0.90%, so
the potential bias caused by the existing of some particular ethnic group may be
negligible in our results. The volunteers in our study are from both northern and
southern cities (which may be different in cultural and other aspects), so their rating
behaviors may be relatively representative and can weaken the effect of genetic or
cultural homogeneity in China. However, the future study may be restricted to
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a particular ethnic group and thus ensure better genetic or cultural homogeneity.
Moreover, we will record as much personal information as possible from volunteers in
the future study. Therefore, we can further investigate biased effect of the scenes which
are scored and operated differently by either one or multiple volunteers. The relation-
ship between gender, age, income level, ethnicity and the perceptions of the urban
environment is expected to be better informed by considering such biases from
annotators.

Further studies should consider whether the ‘recommendation score’ would bias the
choice of volunteers’ respondents. On the one hand, we consider that this technique is
able to give a reasonable recommendation score without bias in most cases because we
assume that respondents, after 50 images, should have a conditioned reflex on image
scoring. The human-machine adversarial program is designed to capture such
a conditioned reflex on image scoring that subconsciously leads respondents to score
the next image. This kind of phenomenon has been proved by previous studies. For
example, works done by Anokhin (2016) and Lang (2000) indicated that after several
repeated actions, respondents may act without hesitation, which would be much faster
than before. The recommendation score might not seriously bias respondents’ actions.
Jones et al. (2009) used a similar method to score the cell morphologies in an image via
machine learning and iterative feedback and improved the phenotype identification
efficiency.

On the other hand, this technique may lead to bias for some respondents because of
the perceptual prime effect. Respondents’ perception score on a middle-income neigh-
borhood may be biased under different imagery displaying strategy, e.g., a series of
images of wealthy neighborhoods vs. a series of images of poor neighborhoods. Future
studies may revise the method, such as sorting the images according to existing
residential segregation phenomenon. A revised method may sort images into various
neighborhood contexts in advance and make batches of display images highly consis-
tent. The revised method can keep records of image displaying orders and examine the
potential bias caused by the perceptual prime effect.

Urban perceptions can be very important to the field of public health (Hong and Jin
2015, Wang et al. 2018) and can also be integrated into the best urban planning
practices by considering the feelings of local urban residents. To cost-effectively assess
urban perceptions at a local scale, this study first proposed an effective human-machine
adversarial scoring framework that incorporates deep learning using street-view imagery
Perception data from the research can provide a basis for spatial correlation mining
between public health data and local urban perception on street scenery.

Additionally, this study showed a strong correlation between urban functional
patterns and urban perceptions and quantitatively identified driving factors of
urban features for different urban perceptions. The study demonstrated the efficacy
of the proposed adversarial scoring methodology in facilitating local urban percep-
tion assessments. By taking advantage of the enriched spatial semantics using human
perceptions, the proposed framework is able to help researchers understand the
underlying urban structure and reveal the impacts of urban function using an
affordable and rapid solution, thereby facilitating urban planners in integrating
urban perceptions into their planning practices for more sustainable and human-
oriented urban development.
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Notes

1. The ADE-20K is an open data set that can be downloaded from the MIT website (http://
groups.csail.mit.edu/vision/datasets/ADE20K/).

2. Official website of the MIT ADE20K dataset: http://groups.csail.mit.edu/vision/datasets/
ADE20K/.

3. The 8 administrative districts are as follows: Wuchang, Hongshan, Jiang’an, Qiaokou,
Hanyang, Jianghan, Qingshan and Dongxihu. The residential population of each district is
1,178 million, 1,107 million, 755 million, 723 million, 673 million, 661 million, 502 million and
374 million, respectively.
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