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Abstract— Spatiotemporal data fusion is a cost-effective way to
produce remote sensing images with high spatial and temporal
resolutions using multisource images. Using spectral unmixing
analysis and spatial interpolation, the flexible spatiotemporal
data fusion (FSDAF) algorithm is suitable for heterogeneous
landscapes and capable of capturing abrupt land-cover changes.
However, the extensive computational complexity of FSDAF
prevents its use in large-scale applications and mass production.
Besides, the domain decomposition strategy of FSDAF causes
accuracy loss at the edges of subdomains due to the insuffi-
cient consideration of edge effects. In this study, an enhanced
FSDAF (cuFSDAF) is proposed to address these problems, and
includes three main improvements. First, the TPS interpolator
is replaced by an accelerated inverse distance weighted (IDW)
interpolator to reduce computational complexity. Second, the
algorithm is parallelized based on the compute unified device
architecture (CUDA), a widely used parallel computing frame-
work for graphics processing units (GPUs). Third, an adaptive
domain decomposition (ADD) method is proposed to improve the
fusion accuracy at the edges of subdomains and to enable GPUs
with varying computing capacities to deal with datasets of any
size. Experiments showed while obtaining similar accuracies to
FSDAF and an up-to-date deep-learning-based method, cuFSDAF
reduced the computing time significantly and achieved speed-ups
of 140.3–182.2 over the original FSDAF program. cuFSDAF is
capable of efficiently producing fused images with both high
spatial and temporal resolutions to support applications for
large-scale and long-term land surface dynamics. Source code
and test data available at https://github.com/HPSCIL/cuFSDAF.

Index Terms— Compute unified device architecture (CUDA),
multisource satellite images, parallel computing, spatiotemporal
data fusion.

I. INTRODUCTION

THE dense time series of satellite images with high spa-
tial resolutions are critical for monitoring land surface
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dynamics in heterogeneous landscapes. In recent years, satel-
lites with advanced sensors, such as the microsatellites by
Planet Labs, WorldView-4, and GF-2 [1], can acquire images
with high spatial and temporal resolutions to compose dense
time series. However, the high cost of data acquisition from
these sensors limits their applications for large-scale land
surface dynamics. Furthermore, these sensors are unable to
trace long-term historical dynamics. Compared with advanced
satellite sensors, long-running satellite sensors can provide
long-term, large-scale, and free-of-charge satellite imagery
from the past several decades, such as Landsat and MODIS.
However, these historical images have either lower spatial
resolutions or lower temporal resolutions, limited by hardware
technologies [2] and atmospheric conditions [3]. For instance,
Landsat provides images with spatial resolutions ranging from
15 to 60 m and a revisit cycle of 16 days. MODIS provides
images with spatial resolutions of 250 m–1 km, and the revisit
cycle is 1–2 days. Given that these satellite images do not meet
the requirements of long-term and large-scale applications of
land surface dynamics, spatiotemporal data fusion provides a
feasible method for the production of remote sensing images
with both high spatial and temporal resolutions.

Spatiotemporal data fusion algorithms combine the spatial
information from high spatial resolution images with the
temporal information from high temporal resolution images
to generate images with both high spatial and temporal res-
olutions. Existing spatiotemporal data fusion algorithms can
be divided into five categories, i.e., unmixing-based, weight
function-based, Bayesian-based, learning-based, and hybrid
fusion [4]. Unmixing-based algorithms assume that each
mixed pixel in low spatial resolution images is a combination
of various endmembers [5]–[9] so that it can be unmixed
using the mixing theory. In weight function-based algorithms,
fusion images are generated using input images through weight
functions [10]–[19]. A typical example is the spatial and
temporal adaptive reflectance fusion model (STARFM) [10].
Bayesian-based algorithms use Bayesian estimation theory to
generate fusion images [20]–[22]. The key to Bayesian-based
algorithms is to model the relationship between observed and
unobserved images. Learning-based algorithms fuse multi-
source images through machine learning methods [23], such
as dictionary-pair learning [24]–[27], artificial neural net-
works [28]–[30], and extreme learning machines [31]. Hybrid
spatiotemporal data fusion algorithms integrate at least two of
the above methods to obtain fusion images [32]–[37].

1558-0644 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: China University of Geosciences Wuhan Campus. Downloaded on May 26,2021 at 03:50:52 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-0401-5376
https://orcid.org/0000-0002-7392-3709
https://orcid.org/0000-0002-2830-0377


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

The flexible spatiotemporal data fusion (FSDAF) is a hybrid
spatiotemporal data fusion algorithm and uses an unmixing
analysis and a thin plate spline (TPS) interpolator to gener-
ate images with high spatial and temporal resolutions [34].
FSDAF is suitable for heterogeneous landscapes and can
effectively capture land cover changes. In recent years, FSDAF
has been used in a number of applications, such as mon-
itoring dynamics of impervious surface [38], wetland [39],
land surface temperature [40], and vegetation [41]. Moreover,
FSDAF provides a framework for addressing both gradual and
abrupt land-cover changes during the spatiotemporal fusion
process. Several improved variants based on FSDAF have
been developed in the last few years, such as the improved
FSDAF model [42]–[44], the enhanced FSDAF model [45],
the enhanced FSDAF model considering subpixel class frac-
tion change information [46], the FSDAF 2.0 [47], and the
improved FSDAF to generate suspended particulate matter
concentrations [48].

However, FSDAF and many other spatiotemporal data
fusion algorithms have focused on the accuracy of fused
images rather than the computational efficiency of algorithms.
When dealing with a large quantity of data, the computing
time of a fusion algorithm can be extensive, greatly limiting
its applications in monitoring long-term and large-scale land
surface dynamics. Despite using fewer input images than many
other algorithms, FSDAF is still subject to computationally
intensive procedures that use neighborhood information, such
as TPS interpolation. In addition, the domain decomposition
strategy of FSDAF leads to accuracy loss at the edges of
subdomains because the pixels at edges do not have suf-
ficient information for the neighborhood-scope procedures.
Therefore, improving computational efficiency is an urgent
task for promoting the practical value of FSDAF and other
spatiotemporal fusion methods.

Parallel computing, which uses multiple processing units to
collaborate on a common task [49], is a promising solution for
processing massive remotely sensed data [50], [51]. In parallel
computing, the computing task is decomposed into subtasks,
which can be processed simultaneously by multiple processing
units. The key to parallelization is whether the computing
task can be divided and carried out concurrently. Raster is
the primary data structure for remote sensing images. Raster
data are typically organized as matrices of pixels, which can be
divided into groups and processed in parallel; raster data are
thus highly suitable for parallel computing. In recent years,
the advancement of geospatial technologies has generated
large-scale geospatial databases with high spatial resolutions,
such as the global land cover mapping at a 30-m resolu-
tion [52], the SEN12MS dataset with resolutions of 10–500 m
[53], and the FROM-GLC10 dataset at a 10-m resolution [54].
Meanwhile, with the introduction of advanced statistical and
machine learning techniques for the processing and analysis
of remote sensing images, remote sensing algorithms are
becoming more complex and computationally intensive. High
data intensity and computational intensity greatly increase
computing capacity requirements; therefore, parallel comput-
ing has been used in many geospatial algorithms and models
for better efficiency, such as cluster analysis [55], [56], spatial

interpolation [57], [58], change detection [59], relative radio-
metric normalization [60], urban growth simulation [61], [62],
remote sensing image classification [63], and watershed
modeling [64].

A graphics processing unit (GPU) is a processor for
rendering computer graphics [65]. With rapid performance
and capability advancements, modern GPUs cannot only
handle graphics processing tasks but also general-purpose
computation [66], [67]. A general-purpose graphics process-
ing unit (GPGPU) is a GPU that capable of processing
general-purpose computation. Compared with central process-
ing units (CPUs), GPGPUs have much higher memory band-
widths and more computing cores, thus exhibiting highly
improved computing performance. They have been used for
the processing and analysis of remotely sensed data, including
hyperspectral image classification [68], hyperspectral unmix-
ing [69], target detection [70], and compressive sensing [71].
Therefore, parallelization on GPUs is a promising solution
for overcoming the computational constraints of FSDAF and
improving computational performance, in addition to the fea-
sibility and scalability of FSDAF, especially in reference to
large-scale applications.

To address the aforementioned limitations of FSDAF, this
article proposes an enhanced FSDAF algorithm parallelized
using GPUs, named cuFSDAF; the objective is to improve
the computational efficiency while maintaining the accuracy.
In cuFSDAF, the TPS interpolator is replaced by an accelerated
inverse distance weighted (IDW) interpolator to reduce compu-
tational complexity. The computationally intensive procedures
are parallelized using the compute unified device architecture
(CUDA), a parallel computing framework for GPUs. More-
over, an adaptive domain decomposition (ADD) method is
proposed to adaptively adjust the size of subdomains according
to the hardware properties and ensure accuracy at the edges
of subdomains. Real satellite images were used to assess the
performance of cuFSDAF, and the results were compared
with those of the original FSDAF and the sensor-bias driven
spatio-temporal fusion (BiaSTF) model based on convolutional
neural networks [30], the latest deep-learning-based spatiotem-
poral fusion algorithm.

II. METHOD

A. Brief Introduction to FSDAF

As shown in Fig. 1, FSDAF requires a pair of images at t1
and an image with a low spatial resolution (hereafter called
the coarse image) at t2 as the input data, and the output is an
image with a high spatial resolution (hereafter called the fine
image) at t2. The image pair at t1 includes one fine image and
another coarse image from different sensors.

FSDAF includes four main steps: 1) predicting a fine image
at t2 using unmixing analysis; 2) predicting a fine image at
t2 by TPS interpolation; 3) distributing the residuals of two
predicted images; and 4) mitigating errors using neighborhood
information.

In the first step, FSDAF assumes that each pixel in a fine
image (hereafter called the fine pixel) is an endmember, and
a pixel in a coarse image (hereafter called the coarse pixel)
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Fig. 1. Flowchart for the FSDAF algorithm (modified from [34]).

consists of multiple fine pixels. According to linear mixing
theory, the reflectance of a coarse pixel is

C
(
x j , y j

) = 1

N

N∑

i

F(xi , yi ) + ξ (1)

where C(x j , y j) and F(xi , yi ) are the reflectance of the coarse
pixel (x j , y j) and fine pixel (xi , yi), N is the number of
fine pixels inside (x j , y j), and ξ is the systematic difference
between the two sensors. The unmixing analysis assumes that
the temporal changes of fine pixels with the same class are
equal and that no land-cover changes occur from t1 to t2.
Therefore, the temporal change of the coarse pixel (x j , y j)
from t1 to t2 can be represented by the mixing equation

Ct2

(
x j , y j

) − Ct1

(
x j , y j

) =
Nc∑

k

�F(k) × fk
(
x j , y j

)
(2)

where Nc is the number of classes in (x j , y j ), �F(k) is
the reflectance change of land-cover class k from t1 to t2,
and fk(x j , y j) is the fraction of class k in the coarse pixel
(x j , y j). �F(k) can be calculated by solving the set of mixing
equations in (2), and the prediction of a fine pixel (xi , yi) is
its reflectance at t1 plus the temporal change of class k if it
belongs to class k

F ′
t2(xi , yi) = Ft1(xi , yi) + �F(k) (3)

where F ′
t2(xi , yi ) is the prediction of fine pixel (xi , yi ) using

unmixing analysis and Ft1(xi , yi) is the reflectance of (xi , yi)
at t1.

The TPS interpolator is a spatial interpolation method for
point data based on spatial dependence [72]. In FSDAF, TPS
is used to capture land-cover changes and local variability. The
function of TPS is

ftps(xi , yi ) = a0 + a1xi + a2 yi + 1

2

N∑

j=1

b jr
2
j log r2

j (4)

where ftps(xi , yi ) is the prediction of a fine pixel (xi , yi),
N is the number of known points, and r j is the Euclidean
distance between (xi , yi ) and the j th known point (x j , y j).
As mentioned above, one coarse pixel consists of multiple
fine pixels and has one known point. In FSDAF, the known
point of a coarse pixel is the central fine pixel within the
coarse pixel.

These two predictions have their own disadvantages. Unlike
the basic assumptions of unmixing analysis, land-cover
changes and within-class variation in real-world applications
cause residuals between the prediction of unmixing analysis
and true reflectance. The interpolator behaves well in the
homogeneous area, whereas the interpolation result is too
smooth to represent spatial details in heterogeneous land-
scapes. In the third step, FSDAF distributes the residuals
of prediction using unmixing analysis with the guidance of
TPS prediction and homogeneity of landscapes. The prediction
of the fine pixel (xi , yi) is the sum of the prediction using
unmixing analysis and the distributed residual

Ft2(xi , yi) = F ′
t2(xi , yi) + r(xi , yi) (5)

where Ft2(xi , yi) is the prediction of the fine pixel (xi , yi), and
r(xi , yi) is the distributed residual.

Like STARFM [10] and ESTARFM [13], the final step
of FSDAF uses neighborhood information to mitigate the
uncertainty resulting from previous computing procedures and
noise in input images. The final prediction of a fine pixel
(xi , yi) is the weighted average prediction of its surrounding
similar pixels

F̄t2(xi , yi) = 1
∑N

k wk

×
N∑

k

wk × Ft2(xi , yi) (6)

where F̄t2(xi , yi) is the final prediction of the fine pixel (xi , yi)
at t2, N is the number of similar pixels, and wk is the weight
of the kth similar pixel (xk, yk). The similar pixels around the
target pixel have similar spectral characteristics to the target
pixel. The pixel weight is associated with the spatial distance
between the target pixel and the similar pixel.

One of the key limitations of FSDAF that prevents its use
in large-scale applications and mass production is its extensive
computational intensity. As described above, the procedures of
FSDAF are complicated and computationally expensive. First,
the time complexity of TPS is O(n3), given that the number of
known points is n [73]. To make TPS computationally feasible,
it has been suggested that the number of known points should
not be larger than 2000 [74]. However, when using large-sized
input images, the number of known points can easily exceed
2000, leading to extremely extensive computing time for the
TPS interpolation, which greatly reduces the feasibility and
applicability of FSDAF. Therefore, FSDAF splits the entire
spatial domain into multiple subdomains and processes them
one at a time. By manually setting the maximum size, each
subdomain can be small enough to process within a feasible
period. Nevertheless, even with the domain decomposition
strategy, FSDAF is still computationally intensive, given the
computational complexity of TPS and a large number of
subdomains to be processed when dealing with large images.
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Second, several procedures in FSDAF are implemented
using a moving window to acquire neighborhood informa-
tion, leading to high demands for computing resources. For
instance, the last step of FSDAF is to ensure the spatial
continuity of fused images using neighborhood information.
Although such a strategy can effectively reduce the uncer-
tainties of fusion results, significant levels of computation
are required. Similarly, other procedures using neighborhood
information in FSDAF, such as the TPS interpolation and cal-
culating the homogeneity of pixels, are also computationally
intensive [34].

In addition to computational intensity, the domain decompo-
sition strategy of FSDAF means that certain procedures using
neighborhood information fail to acquire sufficient neighbor-
ing pixels for the target pixels at the edges of subdomains;
therefore, the fusion results at the edges of subdomains may
be less accurate.

B. cuFSDAF

The enhanced FSDAF algorithm parallelized using
CUDA (cuFSDAF) proposed in this study is enhanced
as follows: 1) the TPS interpolator is replaced by an
accelerated IDW interpolator to reduce computational
complexity; 2) the algorithm is parallelized based on CUDA
to utilize multithreading of GPUs; and 3) an ADD method
is proposed to improve the fusion accuracy at the edges of
subdomains and to enable various GPUs to handle datasets of
any size.

As shown in Fig. 2, the heterogeneous parallel computing
framework is adopted in cuFSDAF, which includes a CPU and
a GPU. The data input and output (I/O) are handled by the
CPU, and the computing procedures are carried out by the
CPU or GPU. Procedures with low computational intensities
(e.g., unmixing analysis and residual distribution) are handled
by the CPU, and the GPU manages parallelizable and compu-
tationally expensive procedures (i.e., interpolation, calculating
the homogeneity of pixels, and mitigating errors using neigh-
borhood information). Before the actual computation, the input
images are decomposed adaptively into subdomains according
to the device properties of GPU (e.g., memory size) and the
dimensions of the input images, such that any CUDA-enabled
GPU can be utilized in its maximum capacity to handle a
dataset of any size.

1) Accelerated IDW Interpolator: In FSDAF, the TPS inter-
polator is used to capture the spatial details of land cover
changes and local variability [34]. The FSDAF uses a domain
decomposition strategy to make the TPS feasible. However,
given the computational complexity of TPS, the total comput-
ing time is particularly lengthy for large images. In addition,
the matrix inversion procedure in TPS requires extensive com-
putation and is difficult to parallelize. Therefore, an accelerated
IDW interpolator is used in cuFSDAF to replace the TPS
interpolator.

The IDW interpolator assumes that each pair of points is
related to each other [75], and the relevance corresponds to
their distance apart. For a target point (x0, y0), the interpolation

Fig. 2. Flowchart for the cuFSDAF algorithm.

result is the weighted sum of every known point

fIDW(x0, y0) =
N∑

i=1

wi f (xi , yi) (7)

where N is the number of known points. Similar to FSDAF,
the known point of a coarse pixel in cuFSDAF is the central
fine pixel within the coarse pixel. wi is the weight of the
known point (xi , yi) and is often defined as

wi = d−n
i∑N

i=1 d−n
i

(8)

where di is the Euclidean distance between the target point
(x0, y0) and the known point (xi , yi ), and n is a positive power
parameter with recommended values of 1–3. The optimal value
of n can be determined by the homogeneity of the landscapes.
In general, higher values (e.g., >2) can be used for areas
with high heterogeneity to reserve neighboring spatial details.
In practice, the value of n can be determined by comparing the
interpolated result with the fine image reserved for validation
purposes.

For known points far from a target point, the weights
are often too light. To enhance the computational efficiency,
cuFSDAF only considers those known points within a certain
distance r from the target point. This strategy reduces the
computation, but the distances between the target point and
every known point should be calculated. In cuFSDAF, this
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traversal operation was avoided by preliminary selection. For
the target point (x0, y0), the known points are located in a
circle with a radius of r , and the coordinate ranges of the
minimum enclosing square of the circle are calculated as

xi ∈ [x0 − r , x0 + r ] (9)

and

yi ∈ [y0 − r , y0 + r ]. (10)

Next, the known points of the square are selected for
distance calculation. Through such a modification, the time
complexity of the IDW interpolator is O(n), where n is the
number of target points.

The IDW interpolation result may not be as accurate as that
of TPS. The TPS interpolation is replaced by the accelerated
IDW for several reasons. First, IDW can generate high-quality
interpolation results when using evenly distributed known
points [75], which is the case with FSDAF/cuFSDAF. Sec-
ond, compared to TPS, whose time complexity is O(n3),
the accelerated IDW, with time complexity O(n), is much more
efficient and therefore suited to large-scale interpolation tasks.
Third, IDW can be easily parallelized, whereas the matrix
inversion in TPS makes parallelization problematic. Although
Sharma et al. [76] parallelized matrix inversion using CUDA,
this requires n2 threads, given that n is the size of the matrix.
In large-scale applications for land cover dynamics, the matrix
size can be too large for a GPU to provide sufficient threads;
thus, parallel matrix inversion is still infeasible. In contrast,
the IDW interpolation for a particular point is independent of
the interpolations for other points; thus, the computing task
can be compartmentalized easily into subtasks and processed
simultaneously.

2) Parallelization on GPU: Several procedures in cuFS-
DAF require information about the neighborhood of each
target pixel. For example, the IDW interpolation requires the
reflectance of its neighboring pixels when estimating the value
of the target pixel. In addition, the homogeneity index (HI) is
calculated to measure the homogeneity of a fine pixel and is
used for the distribution of residuals. In cuFSDAF, HI equals
the fraction of neighboring pixels with the same land cover
type, and this fraction is calculated according to the land
cover type of neighboring pixels around the target. Moreover,
the weighted average of the predictions for neighboring pixels
with similar spectral characteristics is used to further mitigate
errors in the fused images. Although these procedures are
computationally intensive and require extensive computing
time when dealing with large images, they are all paralleliz-
able, as the computation for a given pixel is independent
of the computations for other pixels in these procedures.
General-purpose parallel frameworks, such as the CUDA by
Nvidia, enable GPUs to perform general-purpose computations
using multiple threads simultaneously [77], [78]. In cuFSDAF,
all three procedures mentioned above (i.e., IDW interpolation,
HI calculation, and error mitigation using neighboring pixels)
are parallelized using GPU through CUDA.

It is important to note that the parallel procedures in
cuFSDAF are separate from each other (see Fig. 2). When a
procedure is finished (e.g., IDW interpolation), the GPU will

Fig. 3. Domain decomposition method in FSDAF and cuFSDAF.
(a) Subdomain in FSDAF. (b) Subdomain in cuFSDAF.

reset and all threads are re-assigned for the next procedure
(e.g., HI calculation). Maintaining their independence makes
them portable for the parallelization of other spatiotemporal
fusion algorithms if they use similar operations as FSDAF,
such as those variants of FSDAF.

3) Adaptive Domain Decomposition: Domain decomposi-
tion is still necessary for cuFSDAF, especially when dealing
with large images and the GPU memory is not sufficient to
accommodate all of the data at once. An ADD method is
proposed for cuFSDAF.

Compared with the original domain decomposition method
in FSDAF, ADD has two enhancements. First, the maximum
size of the subdomain is determined automatically according
to the hardware specifications of the GPU (e.g., the available
video memory). The domain decomposition method in FSDAF
decomposes images into squares with a user-specified size
[Fig. 3(a)]. The ADD in cuFSDAF uses a row-wise decom-
position strategy and divides the domain into rectangular
subdomains with widths equal to the widths of the input
images. The maximum height of a subdomain is determined
adaptively, such that a subdomain contains as many pixels as
the GPU can handle at one time [Fig. 3(b)]. In other words,
cuFSDAF can automatically adapt to GPUs with different
memory capacities and maximize the memory utilization and
computing capacity of the GPU. In general, the subdomain
size determined by the ADD of cuFSDAF is much larger than
the size used in FSDAF, resulting in fewer subdomains and,
therefore, quicker data transfer between the CPU and GPU.

The second enhancement is the adaptive determination of
the neighborhood size. For target pixels at the edges of sub-
domains, FSDAF extends extra “halo” pixels [49] for the TPS
interpolator to preserve edge details [79]; thus, a subdomain is
larger than the block of target pixels [see Fig. 3(a)]. However,
this strategy does not include sufficient neighboring halo pixels
of an edge pixel for other neighborhood-scope procedures
besides interpolation (e.g., HI calculation and error mitigation
using neighborhood pixels), which may undermine the fusion
accuracy for pixels on the edges of subdomains.

A subdomain generated by the ADD of cuFSDAF
not only holds the target pixels for processing but also
holds valuable neighboring pixels (i.e., halo pixels) for all
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Fig. 4. Two-level neighborhood at subdomain edges. (a) Neighborhood for
the first level. (b) Neighborhood for the second level.

neighborhood-scope procedures [see Fig. 3(b)]. In cuFSDAF,
the width of the neighborhood is calculated adaptively, accord-
ing to the demands of neighborhood-scope calculations and
unmixing analysis. Two levels of neighborhood-scope calcu-
lations exist in the cuFSDAF. The first level includes the
IDW interpolator and HI calculation [see Fig. 4(a)]. To ensure
that all target pixels can retrieve necessary neighborhood
information, the width of the neighborhood is the maximum
between the searching radius of IDW and the neighborhood
width for HI calculation

w1 = max{rIDW, wHI}. (11)

A neighborhood with width w1 ensures accurate prediction
before error mitigation using neighborhood information.

The second level of neighborhood-scope calculation is to
mitigate errors. As shown in Fig. 4(b), the width of the
window for searching similar pixels is w2, and the poten-
tial farthest similar pixel may be located at the edge of
the neighborhood. To ensure the accuracy of the first-level
calculations for these pixels, the total neighborhood width
needs to expand w1. Therefore, the width of the neighborhood
for neighborhood-scope calculations should be the sum of the
widths of the two levels

wn = w1 + w2. (12)

Moreover, the total width of the neighborhood in
cuFSDAF may be larger than the neighborhood width for
neighborhood-scope calculations, because wn may not be
enough to mitigate the block effect effectively if the subdomain
size is too large. The unmixing analysis in FSDAF is indepen-
dent across subdomains, thus the pixels on different sides of a
subdomain edge will have different temporal changes, despite
belonging to the same class of endmembers. Extending “halo”
pixels regarding the subdomain size can reduce such block
effect resulted from the unmixing analysis. The neighborhood
width for unmixing analysis is

wu = aW (13)

where W is the height of subdomains, and a is the ratio of W
ranging from 0 to 1. Therefore, the width of the neighborhood
in cuFSDAF equals the maximum between the neighborhood
width for neighborhood-scope calculations and the width for
unmixing analysis

w = max{wn, wu}. (14)

III. EXPERIMENTS

The cuFSDAF was implemented using the C++
programming language and CUDA, and the source code
is publicly available at https://github.com/HPSCIL/cuFSDAF.
To provide the baselines for accuracy and efficiency
assessments, a serial FSDAF was implemented using C++,
which can generate the same results as the IDL-implemented
FSDAF (https://xiaolinzhu.weebly.com/open-source-code.
html), but 1.6–2.0 times faster on a workstation computer
equipped with an Intel Xeon W-2133 CPU @ 3.6 GHz
and 16 GB of main memory. To evaluate the performance
of cuFSDAF in large-scale and long-term spatiotemporal
data fusion tasks, one of the newest deep-learning-based
spatiotemporal fusion algorithms, the BiaSTF model based
on convolutional neural networks [30], was also used in the
experiments for comparison.

A. Testing Dataset and Environment

To assess the prediction accuracy and computational per-
formance of cuFSDAF, we selected three sets of satellite
images (Table I and Fig. 5) from the benchmark datasets
for spatiotemporal fusion provided by Li et al. [80], including
the AHB, Tianjin, and Daxing datasets. Each dataset includes
eight pairs of images, and each pair consists of a MODIS and
a Landsat image as the coarse and fine images. The time gap
between the first image pair and the last pair in each dataset
is around 1.5–2 years. The necessary atmospheric correction,
geometric transformation, resampling, and band rearrangement
were applied to these datasets. Considering the strip noises
in the short-wave infrared bands in the MODIS images [80],
we used four bands (i.e., blue, green, red, and near-infrared
band of Landsat 8 OLI and their corresponding bands of
MODIS) from these images.

Except for the unique parameters of cuFSDAF (i.e., search-
ing radius and power for IDW), the same parameter settings
were used for both cuFSDAF and FSDAF. For BiaSTF,
we used the parameters recommended by the authors of
BiaSTF. In our experiments, we used the image pairs 1–5 and
8 for CNN training and predicted fine images on the dates
of image pairs 6 and 7. In cuFSDAF and FSDAF, a pair of
images on the base date, a coarse image on the prediction date,
and a classified image by the ISODATA classifier [81] (based
on the fine image on the base date) were used as the input to
predict a fine-resolution image on the prediction date. BiaSTF
requires a former image pair and a later image pair for a fusion
image [30]. Therefore, we picked one pair closest to the fusion
date as the input image pair for FSDAF/cuFSDAF, and picked
two pairs closest to the fusion date as input images for BiaSTF.
For instance, when generating the fusion image on July 7,
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TABLE I

TEST DATASETS FOR COMPARATIVE EXPERIMENTS

Fig. 5. Image pairs of three datasets. (a) Landsat image on June 21, 2015 in the AHB dataset. (b) Landsat image on October 1, 2018 in the Tianjin dataset.
(c) Landsat image on April 8, 2018 in the Daxing dataset. (d) MODIS image on June 21, 2015 in the AHB dataset. (e) MODIS image on October 1, 2018 in
the Tianjin dataset. (f) MODIS image on April 8, 2018 in the Daxing dataset.

2015, using the AHB dataset, the image pairs on June 21,
2015, and September 25, 2015, were input to BiaSTF, and the
image pair on June 21, 2015, were input to both FSDAF and
cuFSDAF.

The resultant image was compared visually and quanti-
tatively with the corresponding true images. The accuracy
indices used in the experiments include the root mean square
error (RMSE), the correlation coefficient (CC), the structure
similarity (SSIM) [82], the spectral angle mapper (SAM) [83],
and the erreur relative globale adimensionnelle de synthese
(ERGAS) [84]. Besides, the computing time of each exper-
iment was recorded as an indicator of computational per-
formance. Additional experiments were conducted using the
AHB dataset to compare the fusion result by TPS with that

by IDW, to assess the variation at the edges of subdomains
with and without the proposed ADD method, and to compare
cuFSDAF and FSDAF when using input images with different
time intervals.

The same testing environments (hardware and software)
were used for all experiments. The experiments were con-
ducted on a workstation computer equipped with an Intel Xeon
W-2133 CPU @ 3.6 GHz, and a Nvidia GeForce GTX 1080ti
GPU with 3584 CUDA cores and 11 GB of video memory.
Other hardware and software information is shown in Table II.

B. Experimental Results

Fig. 6 shows the fusion results using the AHB dataset
including the actual Landsat image [Fig. 6(a) and (e)],
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Fig. 6. Actual and fusion images for the AHB dataset: Landsat image on (a) July 7, 2015 and (e) September 25, 2015, fusion image by BiaSTF on (b) July 7,
2015 and (f) September 25, 2015, fusion image by FSDAF on (c) July 7, 2015 and (g) September 25, 2015, fusion image by cuFSDAF on (d) July 7, 2015 and
(h) September 25, 2015.

Fig. 7. Actual and fusion images for the Tianjin dataset: Landsat image on (a) October 1, 2018 and (e) December 4, 2018, fusion image by BiaSTF on
(b) October 1, 2018 and (f) December 4, 2018, fusion image by FSDAF on (c) October 1, 2018 and (g) December 4, 2018, fusion image by cuFSDAF on
(d) October 1, 2018 and (h) December 4, 2018.

fusion images by BiaSTF [Fig. 6(b) and (f)], FSDAF
[Fig. 6(c) and (g)], and cuFSDAF [Fig. 6(d) and (h)].
The results of the Tianjin and Daxing datasets are shown
in Figs. 7 and 8; quantitative indices for all three datasets are
shown in Table III. Both visual comparison and quantitative

analysis indicated that the accuracy of cuFSDAF is very
similar to those of FSDAF and BiaSTF.

The quantitative indices of FSDAF and cuFSDAF
in Table III vary slightly. Two reasons may have caused the
variations. The first reason is related to the unmixing analysis,
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Fig. 8. Actual and fusion images for the Daxing dataset: Landsat image on (a) April 8, 2018 and (e) October 1, 2018, fusion image by BiaSTF on (b) April 8,
2018 and (f) October 1, 2018, fusion image by FSDAF on (c) April 8, 2018 and (g) October 1, 2018, fusion image by cuFSDAF on (d) April 8, 2018 and
(h) October 1, 2018.

TABLE II

HARDWARE AND SOFTWARE ENVIRONMENTS FOR EXPERIMENTS

in which both FSDAF and cuFSDAF estimate the temporal
changes using linear regression. Compared with the subdo-
mains in FSDAF, the subdomains in cuFSDAF are larger. With
the expansion of the subdomain size, the coarse pixels chosen
for linear regression in cuFSDAF changed, which resulted
in the accuracy differences. More specifically, the temporal
changes of fine pixels of the same class may vary, but the
unmixing analysis assumes their temporal changes are equal
given that they belong to the same subdomain. Therefore,
it is harder to capture the local intra-class variations when
using larger-sized subdomains. The second reason is related
to the ADD method of cuFSDAF, which reduces the block
effects and increases the accuracy at the edge of subdomains.
As shown in Table IV, replacing TPS with IDW did not
result in obvious accuracy loss, which proved our analysis.
Compared with the Daxing dataset, the subdomains for the
AHB and Tianjin dataset had larger sizes, so cuFSDAF per-
formed slightly worse than FSDAF due to more accuracy loss
resulted from intra-class variations. On the contrary, cuFSDAF
performed better for the Daxing dataset.

In cuFSDAF, the ADD method often generates larger-sized
subdomains than those by the original FSDAF that may lead

to some accuracy loss, but it would bring more benefits.
First, the accuracy loss resulted from intra-class variations is
slight and acceptable. Second, larger subdomain sizes result
in quicker data transfer between the CPU and GPU, which
improves computational efficiency. Third, larger size helps
reduce the block effects. The larger the subdomain size,
the fewer subdomains as well as slighter block effects.

The accuracies of FSDAF and cuFSDAF were as good
as the accuracy of BiaSTF in our experiments. Compared
with the datasets used by Song et al. [29], the time series of
datasets we used are sparser. For instance, the AHB dataset
consists of eight image pairs, and the time span of them is
about two years. The LGC dataset used by Song et al. [29]
consists of 14 image pairs, and the time span is about one year.
Datasets with denser time series help BiaSTF better capture
reflectance changes, which may result in better performance
than FSDAF and FSDAF-like methods. Nevertheless, in many
cloudy regions, the time series of satellite images may not
be dense enough to show the superiority of BiaSTF. Besides,
the experiments by Bernabé [70] showed that BiaSTF achieved
higher accuracy than FSDAF when predicting one fusion
image using two image pairs as the training data. For produc-
ing long-term time series by spatiotemporal fusion technology,
retraining BiaSTF for predicting each fusion image is unlikely
feasible because of the large time consumption for model
training.

C. Additional Experiments

In the first additional experiment on the AHB dataset,
we fused the image on September 25, 2015, using the original
FSDAF with TPS (FSDAF-TPS) and the modified FSDAF
with IDW (FSDAF-IDW) to evaluate the change induced
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TABLE III

ACCURACY ASSESSMENTS OF THE PREDICTED IMAGES BY BIASTF, FSDAF, AND CUFSDAF. UNITS ARE REFLECTANCE. (RMSE = ROOT MEAN
SQUARE ERROR, CC = CORRELATION COEFFICIENT, SSIM = STRUCTURE SIMILARITY, SAM = SPECTRAL ANGLE MAPPER, ERGAS = ERREUR

RELATIVE GLOBALE ADIMENSIONNELLE DE SYNTHESE)

TABLE IV

ACCURACY ASSESSMENT OF THE FUSION IMAGES BY FSDAF-TPS
AND FSDAF-IDW. UNITS ARE REFLECTANCE. (RMSE = ROOT

MEAN SQUARE ERROR, CC = CORRELATION COEFFICIENT,
SSIM = STRUCTURE SIMILARITY, SAM = SPECTRAL

ANGLE MAPPER, ERGAS = ERREUR RELATIVE

GLOBALE ADIMENSIONNELLE DE SYNTHESE)

by replacing TPS with IDW. Both quantitative indices (see
Table IV) and visual comparison (Fig. 9) indicate that the
replacement of TPS by IDW had no obvious impact on the
accuracy of the fusion results.

The second additional experiment was to evaluate the
effectiveness of the proposed ADD strategy. To exclude the
differences caused by the TPS and IDW interpolators, we com-
pared the results of FSDAF with IDW using the fixed domain
decomposition (FSDAF-IDW-FDD) with those obtained using
the ADD strategy (FSDAF-IDW-ADD). Given that the ADD
method increases the size of subdomains significantly, the
edges of subdomains in FDD are no longer the edges of
subdomains in ADD. To assess the performance of ADD at the
edges of subdomains, the sizes of the subdomains of FSDAF-
IDW-ADD were set manually, but the neighborhood width was
determined using the adaptive method of ADD.

The quantitative comparisons between FSDAF-IDW-FDD
and FSDAF-IDW-ADD at the edges of the subdomains are

Fig. 9. Fusion images using FSDAF with different interpolators. (a) Fusion
image by FSDAF-TPS. (b) Fusion image by FSDAF-IDW.

TABLE V

ACCURACY ASSESSMENT OF FUSION RESULTS BY FSDAF-IDW-FDD
AND FSDAF-IDW-ADD AT THE EDGES OF SUBDOMAINS. UNITS

ARE REFLECTANCE (RMSE = ROOT MEAN SQUARE ERROR,
CC = CORRELATION COEFFICIENT, SSIM = STRUCTURE

SIMILARITY, SAM = SPECTRAL ANGLE MAPPER,
ERGAS = ERREUR RELATIVE GLOBALE

ADIMENSIONNELLE DE SYNTHESE)

presented in Table V, which show that the accuracy was
improved slightly by ADD. For better observation of the
visual details, we enlarged an edge of the subdomains in
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Fig. 10. Enlarged actual and fusion images from a sub-domain edge.
(a) Landsat image on September 25, 2015. (b) Fusion image by cuFSDAF.
(c) Fusion image by FSDAF-IDW-FDD. (d) Fusion image by
FSDAF-IDW-ADD.

the fusion images by FSDAF-IDW-FDD and FSDAF-IDW-
ADD. We also enlarged the same area in the Landsat image
on September 25, 2015, and the fusion image by cuFS-
DAF for comparison (Fig. 10). Compared with FSDAF-
IDW-FDD [Fig. 10(c)], the enlarged FSDAF-IDW-ADD image
[Fig. 10(d)] shows that the block effects at the edges
of subdomains were diminished considerably by the ADD
method. As mentioned above, the pixels on different sides
of a subdomain edge will have different temporal changes,
despite belonging to the same class of endmembers. Therefore,
the block effects at the edges of the subdomains cannot
be completely resolved if domain decomposition is applied.
In cuFSDAF, domain decomposition can be avoided auto-
matically when the memory of the GPU is large enough to
accommodate the entire spatial domain, in which case the
block effects can be removed completely[see Fig. 10(b)].

The third additional experiment was to compare cuFSDAF
and FSDAF when using input images with different time
intervals. We predicted the fusion image on September 25,
2015, using different image pairs (i.e., July 7, 2015; June 21,

TABLE VI

ACCURACY ASSESSMENTS OF THE PREDICTED IMAGES BY FSDAF
AND CUFSDAF ON SEPTEMBER 25, 2015 USING DIFFERENT BASE

PAIRS. UNITS ARE REFLECTANCE. (RMSE = ROOT MEAN

SQUARE ERROR, CC = CORRELATION COEFFICIENT,
SSIM = STRUCTURE SIMILARITY, SAM = SPECTRAL

ANGLE MAPPER, ERGAS = ERREUR RELATIVE

GLOBALE ADIMENSIONNELLE DE SYNTHESE)

2015; May 4, 2015; and March 17, 2015) in the AHB dataset
as the base pair of FSDAF/cuFSDAF. The time intervals of
input images varied from 2 to 6 months. The quantitative
indices in Table VI show that the cuFSDAF achieved similar
accuracies as FSDAF.

D. Computational Performance

Crucially, the experiments showed that compared with
FSDAF, cuFSDAF significantly reduced the computing time
and improved the computational efficiency Fig. 11, while
maintaining the fusion accuracy (see Table III). We fused six
fusion images using the AHB, Tianjin, and Daxing datasets
(two images were fused in each dataset). Without data
I/O, cuFSDAF achieved speed-ups of 140.3–182.2 over
the IDL-implement FSDAF, and achieved speed-ups
of 84.9–93.6 over the C++-implemented FSDAF [Fig. 11(a)].
The data transmission between CPU and GPU often consumes
extra time, which may affect the computational performance
of cuFSDAF. For instance, the data transmission consumed
0.1, 0.1, and 0.3 s for the interpolating, calculating HI, and
error mitigation when predicting the fusion image on June 21,
2015, for the AHB dataset. Considering that FSDAF has
no such data transmission, the time of data transmission
between CPU and GPU was included in the computing time
of cuFSDAF (Fig. 11).

We also recorded the computing time for each parallel
procedure in cuFSDAF and the C++-implemented FSDAF
(hereafter called FSDAF). First, the CUDA-enabled paral-
lel IDW in cuFSDAF was 1807.4, 1685.1, 1426.4, 1392.4,
1064.6, and 1105.1 times faster than the TPS in FSDAF,
for the six fusion tasks, respectively [Fig. 11(b)], which
induced a significant improvement in computational efficiency.
Second, for calculating HI, cuFSDAF was 34.7, 35.0, 23.7,
22.2, 16.7, and 17.5 times faster than FSDAF [Fig. 11(c)].
Third, for error mitigation using neighborhood, cuFSDAF
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Fig. 11. Computing time for FSDAF and cuFSDAF without data I/O. (a) Total time for IDL-implemented FSDAF, C++-implemented FSDAF and cuFSDAF.
(b) Time for TPS in C++-implemented FSDAF and CUDA-enabled IDW (cuIDW) in cuFSDAF. (c) Time for calculating homogeneity index in C++-
implemented FSDAF (HI) and cuFSDAF (cuHI). (d) Time for error mitigation using neighborhood in C++-implemented FSDAF (ME) and in cuFSDAF
(cuME).

Fig. 12. Computing time and speed-ups of fusing the fusion image on September 25, 2015 using clipped AHB images with different image size. (a) Trend of
computing time and number of pixels for FSDAF. (b) Trend of computing time and number of pixels for cuFSDAF. (c) Speed-ups of cuFSDAF over FSDAF.

was 79.3, 82.7, 92.1, 97.6, 91.2, and 102.0 times faster than
FSDAF [Fig. 11(d)].

Notably, the speed-ups for interpolation and HI calcu-
lation were demonstrably different for the three datasets.
The computing time of these procedures in cuFSDAF was
too short to show differences among these three datasets,
unlike FSDAF. Although the extra time for data transmission
between CPU and GPU was also very short, it impacted
the stability of speed-ups in these procedures more signifi-
cantly than error mitigation. Besides, three procedures yielded
different speedups using the same dataset. For instance, the
speed-ups for interpolation, calculating HI, and error mit-
igation are 1807.4, 34.7, and 79.3 times when predicting
the fusion image on July 7, 2015, for the AHB dataset.
First, we replaced the TPS interpolator with the accelerated

IDW interpolator, which greatly reduced the time complex-
ity of the interpolation. Therefore, the modification of the
interpolator achieved more significant speed-ups than other
parallel procedures. Second, the computing time of interpo-
lating and calculating HI in cuFSDAF was so short that the
time of data transmission affected the speed-ups for these
procedures.

We also conducted additional experiments to investigate
the trend of computing time in terms of the image size
by clipping the images from the AHB dataset into different
sizes. As shown in Fig. 12, the computing time of both
FSDAF and cuFSDAF matched the linear trend with the
increasing number of pixels. The speed-up of cuFSDAF over
FSDAF remained stable when the images were large enough
(i.e., when the image size was equal to or greater than
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Fig. 13. Running time for BiaSTF, FSDAF, and cuFSDAF.

TABLE VII

HARDWARE AND SOFTWARE ENVIRONMENTS

FOR FLEXIBILITY EXPERIMENTS

TABLE VIII

COMPUTING TIME AND SPEED-UP FOR CUFSDAF WITHOUT DATA I/O ON

THE TIANHE-2 SUPERCOMPUTER AND THE LAPTOP COMPUTER

1250 × 1250), in which case the computing time of serial
procedures and data transmission between CPU and GPU
only took negligible proportion of the total computing time.
Considering the distinct variations in algorithm principle,
we recorded the total running time of BiaSTF, FSDAF, and
cuFSDAF using the AHB, Tianjin, and Daxing dataset (see
Fig. 13). Because BiaSTF trained one model to predict two
fusion images for each dataset, the total running time of
BiaSTF includes the time of data processing, model training,
and result predicting for two fusion images. For FSDAF and
cuFSDAF, the total running time includes the running time for
two fusion images. In our experiments, cuFSDAF was 1332.8,
1346.5, and 1359.9 times faster than BiaSTF for the three

datasets, respectively. Considering cuFSDAF achieved similar
accuracy and much better efficiency compared with FSDAF
and BiaSTF, cuFSDAF is a better choice for large-scale and
long-term spatiotemporal fusion tasks.

E. Computational Performance Using Various GPUs

To further assess the flexibility of cuFSDAF on GPUs
with different computing capacities, we conducted a series
of experiments using two other computers. The first com-
puter was a computing node of the Tianhe-2 supercomputer,
equipped with an Intel Xeon E5-2660 v3 CPU @ 2.6 GHz,
and a Nvidia Tesla K80 GPU with 2,496 CUDA cores and
11,441 MB video memory. The second was a laptop computer
with an Intel Core I5-7400 CPU @ 3.00 GHz, and Nvidia
Geforce GTX 1050 GPU with 640 CUDA cores and 4 GB of
video memory. The hardware and software environments of
these two computers are shown in Table VII.

Compared with the C++-implemented FSDAF (hereafter
called FSDAF), the cuFSDAF significantly improved the
computational efficiency on both the Tianhe-2 supercomputer
and the laptop computer Table VIII. Experimental results
showed that cuFSDAF performed well in various hardware and
software environments if a CUDA-enabled GPU was available.
The higher the computing capacity of the GPU, the higher the
performance of the cuFSDAF.

IV. CONCLUSION

Spatiotemporal data fusion algorithms are cost-efficient
methods of obtaining remote sensing images with high spatial
and temporal resolutions. Compared with other algorithms,
the FSDAF algorithm closely captures the reflectance changes
caused by land cover conversions and requires only one
fine-resolution image as input. However, FSDAF faces several
challenges when dealing with large-scale and long-term land
surface dynamics because of its computational inefficiency.
Moreover, block effects at the edges of subdomains are
often inevitable in FSDAF fusion results. This study
proposes an enhanced FSDAF algorithm parallelized using
GPUs (cuFSDAF) to improve computational performance
without losing accuracy.

The main enhancements of cuFSDAF include the follow-
ing: 1) the TPS interpolator is replaced by an accelerated
IDW interpolator to reduce computational complexity; 2) the
algorithm is parallelized based on the CUDA, a widely used
parallel computing framework for GPUs; and 3) an ADD
method is proposed to improve the fusion accuracy at the edges
of subdomains and to enable GPUs with different computing
capacities to deal with datasets of any size.

The performance of cuFSDAF was evaluated through a
series of experiments using the three sets of satellite images.
Compared with FSDAF, cuFSDAF significantly improved the
computational performance while maintaining accuracy. Also,
cuFSDAF achieved similar accuracies compared to one of
the latest deep-learning-based algorithms, BiaSTF, and much
higher computational efficiency. cuFSDAF also performed
better than popular algorithms such as STARFM and ESTRFM
in areas with abrupt land cover changes in both accuracy
and computational efficiency (results not shown). Such an
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improvement in computational efficiency greatly increases
the feasibility and applicability of cuFSDAF to applications
for large-scale long-term land surface dynamics and mass
production. The code and test data of cuFSDAF are freely
available at https://github.com/HPSCIL/cuFSDAF.

It is worth noting that besides IDW, other interpolators, such
as bilinear and bicubic, can also be used to replace the TPS
interpolator for FSDAF. In this study, IDW was used because
it is easy to implement and parallelize, and the experiments
showed that the accelerated IDW can achieve similar accuracy
as TPS for FSDAF. Other interpolators can also be used if they
can achieve equivalent or better accuracy than IDW.

The parallelization framework and strategies (e.g., ADD)
proposed in our study not only can greatly increase the com-
putational efficiency of FSDAF, but also can be used in other
similar algorithms to enhance their computational efficiency
and eventually improve their applicability in the long-term and
large-scale fusion tasks. For example, the variants of FSDAF
can easily adopt the proposed parallelization framework and
strategies to achieve much higher efficiency because these
FSDAF-like methods share similar principles and procedures.
Moreover, other spatiotemporal fusion algorithms that include
similar procedures/operations as FSDAF can also benefit from
the proposed parallelization strategies. As a matter of fact,
we have also parallelized three other spatiotemporal fusion
algorithms, including STARFM [10], ESTARFM [13], and
STNLFFM [18] (the source codes and test datasets are freely
available at https://github.com/HPSCIL), which achieved
significant improvements of computational efficiency on
various GPUs.

Also, this study has several implications for the future devel-
opment of spatiotemporal fusion. First, as shown in our experi-
ments, the parallel procedures in cuFSDAF showed significant
improvements in efficiency. Therefore, parallel computing on
GPUs is a promising solution to enhance the efficiency of
spatiotemporal fusion algorithms. Second, if the input images
are decomposed before calculation, algorithms should take
into account the multilevel neighborhood-scope calculations to
avoid block effects at the edges of subdomains. Enlarging the
size of subdomains and extending extra “halo” pixels should
be considered. Third, for large-scale and long-term appli-
cations, algorithms should find a balance between accuracy
and efficiency. When dealing with large-scale and long-term
applications, the computational efficiency of the algorithm is
as important as its accuracy. When enhancing existing algo-
rithms, replacing computationally intensive procedures with
more efficient procedures may be advisable as long as the
variation in accuracy is acceptable.
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