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ABSTRACT 
A high-quality land-use dataset is crucial for constructing a high- 
performance land-use classification model. Due to the complexity 
and spatial heterogeneity of land-use, the dataset construction 
process is inefficient and costly. This challenge affects the quality 
of datasets, consequently impacting the model’s performance. 
The emerging field of Data-Centric Artificial Intelligence (DCAI) is 
expected to deliver techniques for dataset optimization, offering a 
promising solution to the problem. Therefore, this study proposes 
a data-centric framework named DCAI-CLUD for the construction 
of land-use datasets. Based on this framework, the accuracy and 
rate of data labeling are improved by 5.93 and 28.97%. The Gini 
index of the dataset and the proportion of samples with non- 
mixed land-use categories are enhanced by 3.27 and 8.52%. The 
overall accuracy (OA) and Kappa of the land-use classification 
model improved significantly by 27.87 and 58.08%. This study is 
the first to introduce DCAI into the field of geographic informa-
tion and remote sensing and verify its effectiveness. The proposed 
framework can effectively improve the construction efficiency and 
quality of the dataset and synchronously optimize the model per-
formance. Based on the proposed framework, we constructed 
a multi-source land-use dataset of major cities in China named 
CN-MSLU-100K.

HIGHLIGHTS 

1. A framework for optimizing the land-use dataset construction 
process is proposed.

2. Filtering and pre-labeling improved the quality and efficiency 
of data labeling.

3. The performance of land-use classification model is enhanced 
by dataset optimization.
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4. Preconceived results have a subjective impact on the data 
labelers.

5. The first study to introduce DCAI for land-use classification is 
launched.

1. Introduction

Accurate land-use classification is an essential basis for urban planning and sustainable 
urban development and can effectively reflect regional socio-economic contributions 
(Zhou et al. 2020) and explore the impacts of land-use change on the ecological envir-
onment (Kumar and Arya 2021). With the development of deep learning techniques 
and spatio-temporal geographic data, land-use classification based on machine learn-
ing models have been widely studied (Huang et al. 2022, Lu et al. 2022, Yao et al. 
2022).

Significant time invested in constructing machine learning models is spent on pre-
paring the training data. The quality of this data directly influences the overall per-
formance of the model (Whang et al. 2023). Therefore, high-quality land-use datasets 
are the basis for constructing high-performance land-use classification models.

The characteristics of land-use data present challenges for dataset construction, 
dataset quality, and model training (Figure 1). The land-use classification includes 
three processes: data sampling, data labeling, and model training. With global urban-
ization, the size of urban areas continues to grow, and the land-use categories are 
becoming more and more complex (Xia et al. 2020, Yao et al. 2022, Zhang et al. 2022).

During the data sampling process, the modifiable areal unit problem (MAUP) 
(Fotheringham and Wong 1991, Jelinski and Wu 1996) arises from multi-scale land par-
cels, which means that the training of the model must include data of multiple scales. 
Furthermore, due to the spatial heterogeneity (Wu et al. 2023) of land-use, knowledge 
learned from one area is difficult to transfer directly to other regions. Therefore, the 
spatial distribution of the data must be considered during the sampling process.

Figure 1. The processes of constructing a land-use classification model and the challenges therein 
due to the specificity of the land-use data.
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In the data labeling process, visual interpretation of land-use requires expertise in 
the fields of geographical sciences. Additionally, land-use categories are numerous and 
many of them are easily confused with each other (Zhang et al. 2022). The above facts 
make the construction of land-use datasets based on visual interpretation or automatic 
labeling by artificial intelligence challenging, thus affecting the efficiency of dataset 
construction and the quality of the dataset.

During the model training process, there is an obvious imbalance in the categories 
of land-use (Wang et al. 2022, Zhu et al. 2022). The class imbalance problem poses a 
challenge to the training of the machine learning models (Lin et al. 2017, Wasikowski 
and Chen 2010). Moreover, mixed land-use categories are common in modern cities 
(Guan et al. 2021). Data of mixed land-use categories cannot be used in the training 
dataset because they cannot be given an explicit label. Therefore, the quality of land 
use data poses a challenge to the accuracy of land use classification models.

Given the spatial heterogeneity of land-use data, generalizing a model built on a 
dataset from one region to other regions is a challenge. Many studies have con-
structed land-use datasets. These datasets contain varying amounts of land-use cate-
gories and focus on different regions. For example, PatternNet (Zhou et al. 2018), 
NWPU-RESISC45 (Cheng et al. 2017), EuroSAT (Helber et al. 2019), and ILU- CUG (Zhu 
et al. 2022). However, it is necessary to create new datasets when constructing land- 
use classification models in different regions.

Existing studies on land-use classification describe few details of dataset labeling. 
Existing data annotation methods can be categorized into three types: manual, auto-
matic and semi-automatic. Manual annotation methods are time-consuming and 
labor-intensive. Several studies have introduced a method that combines automatic 
model labeling, effectively assisting in data labeling (Maihami and Yaghmaee 2018, 
Zhu et al. 2020). However, the correctness of labels automatically generated by the 
model depends on the performance of the model, so ensuring the quality of the data-
sets is challenging. Semi-automated data labeling can strike a balance between data 
acquisition efficiency and data quality (Zhu et al. 2020). For example, using machine 
learning models to make predictions on unlabeled data (also called pre-labeling) is 
used to assist in manual labeling. However, further study is still needed on how to 
adopt a semi-automatic labeling approach to systematically optimize the labeling pro-
cess and improve the efficiency and quality of the dataset.

Data-centric Artificial Intelligence (DCAI), an emerging concept in the field of AI, has 
received extensive attention from both academia and industry (Polyzotis and Zaharia 
2021, Jakubik et al. 2024). Compared to Model-Centric Artificial Intelligence (MCAI), 
DCAI emphasizes the centrality of data in AI systems (Hamid 2022, Zha et al. 2023). A 
large part of the machine learning process is spent on data preparation. Without high- 
quality data, even the best machine-learning models cannot perform well (Whang 
et al. 2023).

Optimizing data quality includes acquiring new data and optimizing existing data. 
For instance, Motamedi et al. (2021) optimized the existing dataset by data cleaning, 
label checking, and addressing the class imbalance problem. They generated new data 
using Generative Adversarial Networks (GANs), leading to a 5% improvement in model 
accuracy. Zhong et al. (2022) enhanced the robustness of the model by incorporating 
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transferable adversarial examples and 14 kinds of common corruptions into the data-
set. Lin et al. (2022b) proposed RoboFlow, which orchestrates the development pipe-
lines of AI-enhanced robots. With the integration of new data, the robot system can 
be updated swiftly and efficiently. In summary, DCAI, serving as a guideline for AI 
model construction, offers a solution to the issue of land-use dataset construction. 
However, due to the complexity and specificity of land-use classification studies, apply-
ing DCAI for land-use dataset construction still necessitates further study and practice.

To address the above problems, this study optimized the construction process of 
the land-use dataset based on the guiding principle of DCAI. We proposed a data-cen-
tric framework for the construction of land-use datasets called DCAI-CLUD. In this 
study, an irregular parcel-scale land-use dataset CN-MSLU-100K was constructed based 
on DCAI-CLUD. This study verified the effectiveness of the proposed method in 
enhancing the quality of datasets and performance of models from three perspectives: 
data labeling efficiency, dataset quality, and the accuracy of the model.

2. Methodology

The study process consists of three main parts (Figure 2): (a) The implementation 
methodology of DCAI-CLUD, which includes sample filtering based on the location 
and size of parcels, and a ‘human-computer collaboration’ approach to dataset con-
struction. (b) The evaluation of the effectiveness of DCAI-CLUD is based on evaluation 
indices from three perspectives: data labeling, dataset, and model. (c) This study 

Figure 2. The workflow of this study. It includes the proposed DCAI-CLUD framework, the assess-
ment of the effectiveness of DCAI-CLUD, and the statistics of the data labeling process.
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analyzed the performance of labelers in the labeling process, aiming to provide 
insights into the possible implications of the proposed framework.

2.1. Sample filtering based on size and location of parcels

The land-use data used in this study consists of irregular parcels generated by road 
networks. Due to overlapping road network data, some parcels are too small in area, 
while some parcels are excessively large due to insufficient road network data. These 
parcels are considered noise in model training because they cannot be effectively 
input into the model. Moreover, according to von Th€unen’s ‘land rent theory’, the size 
of a parcel affects its land-use category by influencing the expected profit (Sinclair 
1967). Therefore, we statistically evaluated the variation of the evaluation indices 
(Section 2.3) for the quality of the dataset with respect to the size of the parcels. 
Then, based on the result, an attempt was made to find an appropriate size range to 
filter out the noisy data and reduce the degree of class imbalance in the dataset and 
the proportion of parcels with mixed land-use categories.

Land-use in urban areas is more complex and diverse than that in non-urban areas, 
but the degree of land-use mixture has increased along with urban growth (Guan 
et al. 2021). To obtain more diverse land-use data in urban areas while simultaneously 
maximizing the quality of the dataset, this study proposed a sample filtering method 
based on the location of parcels. This method mediates the degree of dispersion of 
sampled parcels from the city center to the city periphery using a dispersion factor d:
Using this method, this study examined the relationship between data quality and d 
and then determined the optimal value of d: The proposed method is as follows:

Calculate the probability Bp
i that a parcel Bi within a city is selected by using 

Equation (1). Herein, Br
i is a uniformly distributed random value between 0 and 1, 

which we call the random factor corresponding to Bi: Br
i is used to represent the ran-

dom sampling method. To increase the probability that a parcel in the city center area 
will be selected, Bd

i , the distance from Bi to the city center, is used to divide Br
i : We 

refer to Bd
i as the distance factor. NðBd

i Þ is the normalization result of Bd
i , serving to 

eliminate the influence of the dimensions of Bd
i , and is obtained using Equation (2). 

d is the dispersion factor, representing the degree to which the sampling results are 
influenced by the random factor Br

i :

The value of d lies between 0 and 1. The larger the value of d, the more spatially 
dispersed the selected parcels become. When d equals 1, Bp

i ¼ 1=Bd
i and the selected 

parcels are clustered in the city center (Figure 3(a)). When d equals 0.5, Br
i and Bd

i 

have equal weights, the selected parcels are equally influenced by both factors 
(Figure 3(b)). When d equals 1, Bp

i ¼ Br
i : At this point the sampling is random and the 

selected parcels are evenly distributed (Figure 3(c)).

Bp
i ¼

Br
ið Þ

d

NðBd
i Þ

� � 1−dð Þ
(1) 

N xð Þ ¼
x − Min xð Þ

Max xð Þ − Min xð Þ
(2) 
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After the above steps, a total of n parcels in the current city are arranged in 
descending order based on the selection probability, forming the set P ¼
½p1, p2, :::, pn�: From the set of parcels P, the first k are selected based on demand.

2.2. Construction of datasets based on human-computer collaboration

Assisting manual labeling with the predictive power of machine models is an effective 
way to improve labeling efficiency (Zhu et al. 2020). This study proposed a ‘human- 
machine collaboration’ approach to dataset construction based on model pre-labelling. 
By continuously updating the data, the land-use classification model was iterated, and 
each iteration was used for the pre-labeling of the next round of data labeling. The 
subsequent round of labeling was then purposefully filtered based on the pre-labeling 
results, facilitating a collaborative iteration of the dataset and the model.

The proposed method is as follows: (a) Obtain the initial dataset D0 by manual 
labeling without pre-labeling. Then train the land-use classification model Ml

0 and the 
mixed-category sample identification model Mm

0 based on D0: (b) Predict the remain-
ing samples to be labeled (Dr) using Ml

0 and Mm
0 to get the pre-labeled class l and the 

label m of whether it is a mixed land use for each sample. Store the prediction results 
in the fields of the dataset to be labeled. (c) Starting from the second round of label-
ing, the remaining amount demanded in each class is r ¼ r1, r2, :::, rN½ �

T , which is 
obtained by subtracting the cumulative labeled amount of the class from the total 
demanded amount of each class. (d) Based on the label m, the samples identified as 
mixed land use are filtered out from Dr. The remaining data to be labeled after filter-
ing constitutes the dataset Dr’. (e) Calculate the number of samples to be selected in 
each class according to Equation (3), where s ¼ s1, s2, :::, sN½ �

T is the number of parcels 
selected from Dr’ for each class. py

x is the probability that the true class is x and is pre-
dicted by the model to be y, and is obtained through the confusion matrix of Ml

0: r is 
the number of requirements for each category. (f) After calculating the number of 
samples for each category in s, a random sample of each class is drawn from Dr’ 
according to the label l to obtain the data to be labeled in the next round. 

Figure 3. The effect of the parcel selection when setting different dispersion factors, as an example 
in Shanghai. (a) d¼0. (b) d¼0.5. (c) d¼1.
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(g) Perform the next round of labeling to obtain the dataset Di (i¼ 1,2,3, … ). Then iter-
ate the models Ml

i and Mm
i using Di. (h) Return to step (a) and continue iterating the 

above process until the model Ml
n satisfying the accuracy requirement is obtained.

s ¼

s1

s2

..

.

sN

2

6
6
6
6
4

3

7
7
7
7
5
¼

p1
1 p2

1 � � �

p1
2 p2

2 � � �

pN
1

pN
2

..

. ..
. . .

.

p1
N p2

N � � �

..

.

pN
N

2

6
6
6
6
6
4

3

7
7
7
7
7
5

−1
r1

r2

..

.

rN

2

6
6
6
6
4

3

7
7
7
7
5
¼ P−1r (3) 

In step (g) above, the incremental dataset is used for a new round of model train-
ing. In order to avoid overfitting of the model, this study uses the newly acquired 
data to fine-tune the model or retrain it using the full amount of data. The model 
with the highest accuracy based on each round of dataset was obtained through tun-
ing. The model was continued to be used for the next round of data labeling.

In the above method, the classification model used in DCAI-CLUD was BDF-Net, 
which is a two-branch neural network coupling remote sensing images and POI data 
(Figure S1). It consists of two branches: one based on the Transformer (Vaswani et al. 
2017) for extracting features from remote sensing images and the other using POI 
embedding (Yao et al. 2017) for extracting features from POI data. Then, calculates the 
weights of the two features through an adaptive feature weighting layer (Lu et al. 
2022).

To prove the effectiveness of BDF-Net, an ablation analysis of the model was per-
formed, as shown in Table S1. A total of six comparative models were constructed, 
including the ablation of the data used in the model, the sampling method used for 
remote sensing images, and the Transformer model used for remote sensing image 
feature extraction. Then, 10,000 samples were randomly selected from the CN-MSLU- 
100K dataset, which was constructed in this study, to train the models. The accuracy 
and confusion matrices of the six models are shown in Table S1 and Figure S2. The 
results demonstrate the effectiveness of each module of the models. The OA of BDF- 
Net is 0.881, and the Kappa coefficient is 0.878.

Note that BDF-Net was chosen as an example model to embed DCAI-CLUD in this 
study, but any classification model can be used to pre-label the data. This is since the 
performance of any common model will improve with the quality of the data (Whang 
et al. 2023).

2.3. Effectiveness assessment of DCAI-CLUD

Several datasets were constructed using the above method, and models were trained 
using these datasets. A blank control group was established for comparison, that is, a 
dataset was constructed and a model was trained without using any optimization 
methods. To assess the quality of the datasets and Models, the following evaluation 
indices were established:

The efficiency of dataset construction is evaluated by the accuracy of the labeling 
result Acc (Equation (4)) and the rate of labeling Rate (Equation (5)). During the man-
ual labeling process, the labelers are asked to sample check each other to ensure the 
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accuracy of the labeling results. In Equation (6), M represents the number of samples 
inspected by each of the n labelers, while C represents the number of samples with 
correct inspection results. Rate is the number of labels each labeler makes per hour. In 
formula (5), N represents the number of samples labeled by each of the n labelers, 
and H represents the length of time (in hours) labeled by this labeler. The higher val-
ues of Acc and Rate represent the higher efficiency of dataset construction.

Acc ¼

Pn
1C=M

n
(4) 

Rate ¼

Pn
1 N=H

n
(5) 

The quality of the dataset is assessed by three indicators: (a) The degree of class 
imbalance within the sample is assessed by the Gini impurity, which is calculated 
using Equation (6). In Equation (6), ni represents the number of samples in class i, N 
represents the number of all samples, and K denotes the number of classes. The Gini 
assumes a value within the range of [0, (K-1)/K]. A larger value of Gini signifies a more 
balanced distribution of classes in the dataset. (b) The percentage of samples with 
non-mixed land-use categories, Pnm, is employed to assess the percentage of samples 
with unambiguous labels. (c) The percentage of parcels in urban areas, Piu, is 
employed to assess the percentage of samples of interest. To comprehensively assess 
the impact of Gini, Pnm, and Pnm on data quality, this study normalizes these three 
indicators to eliminate the effect of magnitude, then calculates the mean to obtain 
the composite score Savg.

Gini ¼ 1 −
XK

i¼1

ni

N

� �2

(6) 

For the evaluation indices of the model, Overall Accuracy (OA) (Equation (7)), Kappa 
(Equation (8)), and Confusion Matrix are utilized. In Equations (7) and (8), xij represents 
the element of row i and column j of the confusion matrix, xii denotes the number of 
correctly predicted samples for each category, and N is the number of test samples. 
During model training, the dataset is divided into training and validation sets in the 
ratio of 7:3. The model is first trained using the training dataset, and then the valid-
ation set is used to cross-validate the accuracy of the model.

Overall Accuracy ¼

PK
i¼1 xii

N
(7) 

Kappa ¼

PK
i¼1 xii=N −

PK
i¼1 xii

PK
j¼1 xij

PK
j¼1 xji

� �.
N2

1 −
PK

i¼1 xii
PK

j¼1 xij
PnK

j¼1 xji

� �.
N2

(8) 

2.4. Statistical methods for the dataset construction process

When using models to assist labelers in semi-automatic annotation, the impact of 
labelers’ subjective behavior is an important issue that cannot be ignored. To answer 
the question of ‘whether model pre-labeling will mislead the labelers?’ we conducted 
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a comparative experiment both with and without pre-labeling. Initially, the labelers 
were permitted to label with pre-labeling. Then, according to the time interval of the 
Ebbinghaus memory curve (Ebbinghaus 2013), after an interval of more than one 
month, the labelers were requested to re-label their previously labeled samples with-
out pre-labeling, without being informed of this change. By comparing the outcomes 
of the two labeling processes, the probability of being influenced by pre-labeling was 
calculated.

Managing the labelers is a crucial task to enhance the efficiency of data labeling. 
During the labeling process, three variables for each labeler were calculated and 
recorded: the number of labeled samples (Num), the working hours (WH), and the 
labeling rate (Rate). The correlation between these three variables and the accuracy of 
their labeling (Acc) was subsequently measured using the Pearson correlation coeffi-
cient (Equation (9)) (Cohen et al. 2009). The results were used to analyze the behav-
ioral characteristics of each labeler and any potential patterns that may be embedded 
in the labeling process. In Equation (9), the Pearson correlation coefficient is derived 
by calculating the covariance (cov) as well as the mean (l) and standard deviation (r) 
of each of the two variables.

qX , Y ¼
cov X , yð Þ

rXrY
¼

E X − lxð Þ Y − lYð Þð Þ

rXrY
¼

E XYð Þ − E Xð ÞE Yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E X2ð Þ − E2 Xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E Y2ð Þ − E2 Yð Þ

pq (9) 

3. Results

3.1. Study areas and data

Eighty-one cities in China were used as the study area to construct the land-use data-
set. These cities cover all administrative levels in China and possess diverse spatial 
forms, patterns, and landscapes (Zhang et al. 2022), enabling the dataset to better rep-
resent Chinese urban areas. The total area of the study area is 983,215 km2, as shown 
in Figure 4. A list of the 81 cities with their administrative levels is shown in Table S2.

The unlabeled parcel boundary data, also called the Area of Interest (AOI) data, was 
obtained from Alibaba, the largest e-commerce company in China, and was generated 
using geometric algorithms based on the road network data. This study also used the 
China Physical Urban Area (CPUA) data produced by Zhang et al. (2022) to calculate 
the percentage of labeled parcels within the urban area. Figure 4 shows the preview 
of the CPUA and AOI data in the study area for the four representative cities. Among 
them, Beijing is the capital city and an important political, economic and cultural cen-
ter of China, which is a representative city reflecting the development of urbanization 
in China. Chengdu, Taiyuan, Beijing and Nanjing are located in the southwest, north- 
central and southeast of China, respectively. They are distributed in different directions 
in China, which can well reflect the urban landscape and spatial characteristics of dif-
ferent regions in China.

The Remote Sensing Imagery (RSI) data was downloaded from Google Earth Engine 
(GEE). These RSIs were created by fusing and stitching together data from multiple 
sources, including Landsat, Quick Bird, IKONOS, SPOT5, and aerial photography. 
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The downloaded RSIs contain three bands (red, green, blue), produced from 2019 to 
2022, with a resolution of 2.5 m.

The POI dataset was mainly obtained through the application program interface 
(API) provided by the Gaode Open Platform (https://lbs.amap.com/). Gaode Maps is a 
leading provider of digital map content, navigation, and location service solutions in 
China. On the basis of Gaode POIs, combined with Alibaba POI database, we finally 
obtained 80 million pieces of data, including 32 primary classifications and 170 sec-
ondary classifications. The POI data are proxies for real-world locations that can effect-
ively reflect the functional structure of the city (Psyllidis et al. 2022). The POI data was 
used to assist the RSI in the land-use classification.

The land-use of the parcels was categorized into five major first-level categories and 
22 second-level categories (Table S5). A group of 56 labelers was enlisted to perform the 
labeling. During the labeling process, labelers were asked to sample and cross-check 25% 
of the data with each other. For tasks with less than 90% accuracy, the labelers were asked 
to revise their results until the accuracy exceeded 90%. Ultimately, a total of about 100,000 
pieces of data were obtained, including 40,682 pieces of residential districts (Res), 6,286 
pieces of public services land (Pub), 6,684 pieces of commercial zones (Com), 24,498 pieces 
of industrial land (Ind), and 21,411 pieces of agricultural and natural land (Agr). We named 
the final training dataset CN-MSLU-100K (China Multi-Source Land-use Dataset). A demo 
dataset named CN-MSLU-DEMO has been publicly available. Refer to the supporting 
material for a detailed description of the dataset.

Figure 4. The China Physical Urban Area (CPUA) and Area of Interest (AOI) data in the study area 
encompass 81 major cities in China. Four representative examples, including (a) Chengdu, (b) 
Taiyuan, (c) Beijing, and (d) Nanjing, are illustrated. (It is IJGIS policy to remain strictly neutral with 
respect to jurisdictional claims on disputed territories in published maps, and the naming conven-
tions used in maps are left to the discretion of authors.).
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3.2. Results of sample filtering based on location and size of parcels

Before proceeding with more labeling, this study first experimented with the proposed 
sample filtering method using a total of 31,960 samples from nine cities, which 
include four first-tier cities and five new first-tier cities in China, covering the east, 
west, south, north, and center of the country. The cities are Beijing, Shanghai, 
Guangzhou, Shenzhen, Hangzhou, Xi’an, Changsha, Tianjin, and Wuhan. Then, the par-
cels were equally divided into 20 groups according to their size. Refer to Table S3 for 
detailed grouping data.

The statistical results (Figure 5(a� b)) show that when the area of the parcels is less 
than 38,931.32 m2 (Group 1), more than 50% of them fall into ‘agricultural and natural 
land’. The Gini index (0.621) and Piu (0.835) are lower, but Pnm (0.954) is higher com-
pared to parcels with larger area.

When the area ranges from 38,931.32 m2 to 676,818.47 m2 (Groups 2–16), compared 
to smaller parcels, the percentage of ‘agricultural and natural land’ decreases rapidly 
by 30%, while the samples of other land-use categories begin to increase. The Gini 
index, Pnm, and Piu change by 20.82, −7.47, and 13.72%. Within this interval, the Gini 
index and Pnm tend to stabilize, with the fluctuations accounting for 12.28 and 10.84% 
of the total fluctuations. Piu rapidly decreases by −95.78% (from 0.742 to 0.031) until it 
is close to 0 after the area exceeds 340,493.105m2 (Groups 14–20), indicating that the 
parcels are gradually shifting from urban to rural areas.

When the area exceeds 676,818.47 m2 (Groups 17–20), urban facilities such as 
‘public services land’ and ‘industrial land’ are decreasing, while ‘residential districts’, 

Figure 5. Statistics of Gini, Pnm, Piu and land-use categories. (a) Variation of Gini, Pnm, Piu with area. 
(b) The change of land-use percentage with area. (c) Variation of Gini, Pnm, Piu with dispersion fac-
tors d. (d) The change of land-use percentage with dispersion factors d.
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which are primarily composed of large-scale rural homesteads, as well as ‘agricultural 
and natural land’ are increasing. This result means the parcels are gradually located far 
away from the city. The Gini and Pnm change by −27.61% and 10.72%. In addition, we 
found that when the area of parcels is less than 38,931.32 m2 and more than 
676,818.47 m2, the Pearson correlation coefficient between Gini and Pnm is −0.914, 
showing a very strong negative correlation.

For the proposed sample filtering method based on the location of parcels (refer to 
Table S4 for detailed grouping data), the results in Figure 5(c� d) show that the loca-
tion of selected parcels gradually moves away from the city center, and the various 
categories of land-use change gently and uniformly as d increases from 0 to 1. Among 
them, the proportions of ‘agricultural and natural land’ and ‘industrial land’ increase 
by 39.88 and 61.10%. The proportion of ‘commercial zones’, ‘residential districts’, and 
‘public services land’ decreases by 23.58, 20.04, and 21.06%. The Gini index and Pnm 

fluctuate and increase, while Piu decreases at an accelerating rate. Finally, Savg presents 
a fluctuating increase, achieving a maximum value of 0.752 at d¼ 0.8.

Based on the above results, dataset Ds was acquired by limiting the size of the par-
cels on the original dataset Dori, which was purely manually labeled, from 38931.35 to 
676,818.47 m2. The models Mori and Ms were then trained using the two datasets. The 
evaluation results of the dataset and model are presented in Table 1. The results indi-
cate that, compared to Dori, the Gini and Piu of Ds increase by 1.09 and 19.26%. When 
compared to Mori, the OA and Kappa of Ms increase by 4.92 and 6.15%.

The confusion matrix (Figure 6) reveals that due to the imbalance in the classes of 
the samples, the classification accuracy of Mori for different classes also appears to be 
extremely imbalanced. Given that ‘residential land’ has the largest number of samples, 
the model tends to predict more samples as ‘residential land’ to ensure accuracy. In 
comparison to Mori, Ms, which has samples more concentrated in urban areas and has 
filtered out fine and very large parcels, enhances the recognition accuracy of ‘public 
services land’, ‘agricultural and natural land’, and ‘commercial zones’ by 17.11, 64.27, 
and 79.65%. The accuracy of ‘agricultural and natural land’ shows the most significant 
improvement. Meanwhile, the recognition accuracy of ‘residential districts’ and 
‘industrial land’ is slightly reduced by 5.27 and 3.09%.

Further, based on Ds, the sample Dsl was obtained by filtering based on spatial loca-
tion, taking d equal to 0.8. The model Msl was then trained. The results (Table 1) dem-
onstrate that, in comparison to Ds, Dsl increases the Gini, Pnm, and Piu by 2.97, 0.38, 
and 10.65%. In comparison to Dori, these metrics exhibit changes of þ4.09, −1.38, and 

Table 1. Results of evaluation indices for datasets constructed with different sample filtering 
methods and models trained with the datasets.

Dataset

Results of dataset construction Results of model training

Gini Pum Piu OA Kappa

Dori 0.733 0.798 0.701 0.671 0.520
Ds 0.741 0.784 0.836 0.704 0.552

(þ1.09%) (−1.75%) (þ19.26%) (þ4.92%) (þ6.15%)
Dsl 0.763 0.787 0.925 0.762 0.664

(þ2.97%) (þ0.38%) (þ10.65%) (þ8.24%) (þ20.29%)

Dori: a completely randomly sampled dataset. Ds: a dataset filtered by size-based method. Dsl: a dataset filtered by 
size-location-based method.
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þ31.95%. In terms of model training, the OA and Kappa of Msl rise by 8.24 and 
20.29% when compared to Ms, ultimately displaying a total increase of 13.56 and 
27.69% when compared to Mori.

The confusion matrices (Figure 6) reveal that, in comparison to Ms, due to the more 
balanced classes of the dataset and the increased number of samples from urban 
areas, the recognition accuracy of Msl for ‘public services land’, ‘commercial zones’, 
‘residential districts’, and ‘industrial land’ has improved by 23.33, 154.84, 4.93, and 
12.51%. The most significant improvement is observed in the accuracy of ‘commercial 
zones’. However, the recognition accuracy of ‘agricultural and natural land’ has 
declined by 22.14%.

3.3. Results of dataset construction based on human-computer collaboration

Labelers were organized to label the data both without and with pre-labeling during 
the same period to avoid the effect caused by the proficiency difference. Based on 
this method, the study acquired datasets Dnp and Dp and used them to train models 
Mnp and Mp.

Table 2 indicates that Dp improves its Gini by 12.90% compared to Dnp due to the 
reduction of class imbalance in the dataset by pre-labeling. Although Mp ’s OA 
decreases by 5.01%, its Kappa improves by 2.00% compared to Mnp. The confusion 
matrix results (Figure 7) reveal that the accuracy of Mnp for each class appears unbal-
anced due to the class imbalance of the sample. Mnp’s recognition accuracy for ‘public 

Figure 6. Confusion matrix of the models trained on datasets constructed with different sample fil-
tering methods. (a) Model Mori trained on a completely randomly sampled dataset. (b) Model Ms 

trained on a dataset filtered by size-based method. (c) Model Msl trained on a dataset filtered by 
size-location-based method.

Table 2. Results of evaluation indices for datasets constructed by different labeling methods and 
models trained with the datasets.

Dataset

Data construction efficiency Quality of datasets Results of model training

Acc Rate Gini Pnm OA Kappa

Dnp 89.92% 116.34 0.690 0.749 0.778 0.649
Dp 90.00% 115.94 0.779 0.733 0.739 0.662

(þ0.09%) (−0.34%) (þ12.90%) (−2.14%) (−5.01%) (þ2.00%)
Dpm 95.25% 150.04 0.757 0.866 0.858 0.822

(þ5.83%) (þ29.41%) (−2.82%) (þ18.14%) (þ16.10%) (þ24.17%)

Dnp: a dataset whose labeling was done without pre-labeling. Dp: a dataset whose labeling process used pre- 
labeling. Dpm: a dataset whose labeling process used pre-labeled and filtered mixed land use samples.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 13



services land’, ‘agricultural and natural land’ and ‘commercial zones’ are all below 44%. 
In contrast, as the classes of the dataset become more balanced, Mp’s recognition 
accuracies for all three categories improve to over 60%.

Building on the pre-labeling of the samples, the proposed method of filtering sam-
ples with mixed categories was further applied to the samples to derive the dataset 
Dpm on which Mpm was trained. Due to the filtering of samples with mixed categories, 
which are relatively more difficult for labelers to recognize, the Acc, Rate and Pnm of 
Dpm improve by 5.83, 29.41 and 18.14%, compared to Dp. In comparison to Mp, Mpm’s 
OA and Kappa improve by 16.10 and 24.17%. The confusion matrix results (Figure 7) 
reveal that, compared to Mp, the recognition accuracy of Mpm for ‘public services land’, 
‘agricultural and natural land’, ‘residential districts’, and ‘industrial land’ increase by 
28.72, 59.14, 17.16, and 10.27%. Among them, the accuracies of ‘public services land’ 
and ‘agricultural and natural land’ exceed 90%. However, the precision of ‘commercial 
zones’ drops by 13.01, with 19.75% of the samples misclassified as ‘industrial land’.

When comparing Dpm and Dnp, it is found that Acc, Rate, Gini, and Pnm improve by 
5.93, 28.97, 9.71, and 15.62%. When Mpm is compared with Mnp, it is found that OA and 
Kappa improve by 10.28 and 26.66%. When Dpm is compared with the completely ran-
domly constructed dataset Dori, the Gini and Pnm are found to improve by 3.27% (0.733– 
0.757) and 8.52% (0.798–0.866). Lastly, when comparing Mpm with Mori, OA and Kappa 
are found to significantly improve by 27.87% (0.671–0.858) and 58.08% (0.520–0.822).

3.4. Statistical results and analysis of the dataset construction process

To analyze whether the pre-labeling misled the labelers, we selected 1197 samples 
(evenly covering five categories) to conduct the above experiment. The labelers were 
organized to label the same samples with and without pre-labeling, with a one-month 
interval between the two labeling tasks. The results indicate that the error rate is 
24.5% when pre-labeling is applied. Among these errors, 7.10% are attributed to the 
labelers being misled by pre-labeling, accounting for 28.98% of all error causes.

Typical labeling errors are illustrated in Figure 8. Among them, 87.06% of the 
errors occur when the labelers are misled by the pre-labeling and choose the wrong 

Figure 7. Confusion matrix for models trained on datasets constructed based on human-computer 
collaboration. (a) Models Mnp trained on a dataset whose labeling is done without pre-labeling. (b) 
Model Mp trained on a dataset whose labeling process used pre-labeling. (c) Models Mpm trained 
on a dataset whose labeling process used pre-labeling and filtered samples with mixed land-use 
categories.
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first-level class. For instance, in Figure 8(a), a hospital under construction should be 
categorized as ‘industrial land’. However, it was labeled as ‘public services land’, align-
ing with the pre-labeling label. In Figure 8(b), a parcel that contains about 50% 
‘residential districts’ and 50% ‘commercial zones’ should be labeled as mixed land-use. 
However, it was labeled as ‘commercial zones’.

The remaining 12.94% of the errors occurred when the first-level class was labeled 
correctly, but the second-level class was mislabeled. Part of the reason for this error is 
that in this study, the pre-labeling only predicted the first-level class of the parcels, 
and the second-level class was randomly selected. This approach may have misled the 
labelers. This kind of error typically occurs between conceptually confusing land-use 
categories. For example, Figure 8(c) depicts a residential neighborhood. However, it 
remains to be seen whether this parcel is a ‘villas and high-end residences’ because 
there are villa-like buildings in it. In Figure 8(d), it is easy for labelers to identify this 
parcel as a ‘residential district’. However, due to the rapid development of cities in 
China, there are many areas in the transition stage between urban and rural areas 
(Lang et al. 2016), making it relatively challenging to distinguish whether it belongs to 
an ‘urban village’ or a ‘rural homestead’.

Table 3 shows the value of Pearson’s correlation coefficients between the number 
of labeled samples (Num), the working hours (WH), the rate of labeling (Rate) for all 
labelers, and their labeling accuracy (Acc). In this study, a Pearson correlation coeffi-
cient between 0 and 0.4 is considered a weak correlation, between 0.4 and 0.8 is con-
sidered a moderate correlation, and above 0.8 is considered a strong correlation.

The results indicate that the Pearson’s correlation coefficients between Num, WH, 
and Accl are primarily concentrated in the range of 0 to 0.4 (62.06% for Num and 
70.68% for WH). However, 31.03 and 22.4% exhibit moderate positive correlation with 
Acc. In contrast, the correlation between Rate and Acc is more pronounced. 49.99% of 

Figure 8. Typical examples of labeling errors. Errors that occur due to the misleading of pre-label-
ing include (a) industrial land being labeled as public services land and (b) mixed land-use being 
labeled as commercial zones. Errors that occur due to the confusion in second-level land-use cate-
gories include (c) ‘villas and high-end residences’ or ‘high-rise residential buildings’ and (d) ‘urban 
village’ or ‘rural homestead’.
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labelers demonstrate a moderate positive correlation, and 6.89% show a strong correl-
ation. It is also observed that 5.15% of labelers exhibit a moderate negative correl-
ation, and 1.72% display a strong negative correlation.

4. Discussion

4.1. The effectiveness of sample filtering based on size and location of parcels

Filtering data based on parcel size and location can effectively improve dataset quality 
and model performance. The proposed method solves the problem of the lack of 
effective data filtering methods before data labeling and can guide researchers in 
making a preliminary screening of samples through sample statistics before starting 
data labeling, thereby obtaining higher-quality samples to be labeled and significantly 
improving the efficiency of subsequent labeling work. Compared to the unfiltered 
dataset, the model trained on the dataset obtained using the proposed filtering 
method improved the OA and Kappa by 13.56 and 27.69%.

The proposed sample filtering method can help researchers understand the charac-
teristics of various categories of parcels in terms of their size and location so that 
land-use data can be filtered in a more precise and targeted way. Our conclusions can 
provide an important reference for land-use researchers and urban planning 
departments.

In the process of analyzing the size and location of land parcels, we discovered that 
as the size of the parcel changes, its land-use category and location also exhibit differ-
ent characteristics. This conclusion is consistent with the findings of von Th€unen’s 
‘land rent theory’ (Sinclair 1967). As the parcel area increases, the categories of parcels 
gradually change from urban facilities to rural and then to natural wilderness, and the 
location of the parcel gradually moves away from the city center. Furthermore, parcels 
with mixed land-use categories are mainly concentrated in the urban center area, fur-
ther confirming the study of Guan et al. (2021). By understanding the characteristics of 
various categories of parcels in terms of area and spatial location, researchers can filter 
the land-use data more precisely and in a more targeted manner.

This study finds a new pattern for the relationship between the size and land-use 
categories of parcels. Our sample filtering method, based on these findings, enhances 

Table 3. The value of Pearson’s correlation coefficients between the number of labeled samples 
(Num), the working hours (WH), the rate of labeling (Rate) for all labelers, and their labeling accur-
acy (Acc).

The value of Pearson’s correlation coefficient

Num WH Rate

Percentage of persons (%)

−1�−0.8 0.00 0.00 1.72
−0.8�−0.6 0.00 1.72 1.72
−0.6�−0.4 3.44 0.00 3.44
−0.4�−0.2 1.72 3.44 3.44
−0.2� 0 1.72 1.72 1.72
0� 0.2 18.96 13.79 15.51
0.2� 0.4 43.10 56.89 15.51
0.4� 0.6 25.86 15.51 32.75
0.6� 0.8 5.17 6.89 17.24
0.8� 1 0.00 0.0 6.89
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the dataset quality and model performance without leading to a lack of certain data 
categories. We found that extremely small or large parcels see a rise in mixed land-use 
categories, leading to a more balanced category distribution. The conclusion is that 
the Pearson correlation coefficient between Gini and Pnm is −0.914 when parcels are 
smaller than 38,931.32 m2 and larger than 676,818.47 m2. Smaller parcels are mostly 
‘agricultural and natural lands’, while larger ones are dominated by ‘residential dis-
tricts’ and ‘agricultural and natural lands’. Therefore, as parcels of certain categories 
dominate, the balance of categories gradually decreases, but the number of parcels 
with mixed land-use categories also gradually decreases. This suggests a challenge in 
balancing dataset classes and obtaining non-mixed samples for extreme parcel sizes. 
In addition, parcels that are too small or too large are not ideal samples for model 
training, so they were filtered out from the dataset.

We also find that the quality of the sample is optimal when the spatial distribution 
of the selected parcels presents a weight ratio of 8 to 2 for ‘randomly dispersed’ and 
‘concentrated around the city center’. This parameter provides a valuable reference for 
sample selection in land-use datasets. For the sample filtering method based on the 
location of parcels, the results indicate that when the dispersion factor d¼ 0.8, it can 
better balance the needs of ‘keeping the classes of dataset balanced’, ‘obtaining more 
non-mixed samples’, and ‘located in the urban area’.

4.2. The effectiveness of DCAI for the construction of the land-use dataset

This study marks the first introduction of DCAI into the field of GIS and RS, effectively 
applying it to land-use classification studies. The proposed DCAI-CLUD framework can 
significantly enhance data labeling efficiency, dataset quality, and model performance, 
thereby realizing the data-centric construction of land-use datasets and model training 
processes.

The proposed method provides an effective solution for land-use data labeling. The 
method addresses the issues of inefficiency and lack of guidance in labeling land-use 
datasets and is also applicable to other multi-category data labeling tasks. The pro-
posed human-computer collaborative data labeling method is realized by model pre- 
labeling. Through model pre-labeling, priori knowledge can be gained about the 
unlabeled data.

Pre-labeling can improve the labeling efficiency. Based on the proposed method, 
the average accuracy and labeling rate of the labelers are improved by 5.93 and 
28.97%. Such results are because each labeler is assigned to label only the data pre-
dicted to be the same category. This strategy can significantly reduce the learning 
cost of labelers and increase their proficiency in a specific category. Moreover, by fil-
tering out some of the samples with mixed land-use categories, the redundant infor-
mation in the labeling process is reduced, and the labeling rate is improved. Given 
that in the field of remote sensing, many datasets are required to enhance the recog-
nition ability of the models (Tong et al. 2020), the methodology proposed in this study 
aids in generating datasets quickly and in large quantities.

Moreover, Pre-labeling can be used to equalize categories and filter unavailable 
data, thus reducing time wastage. Based on the proposed method, the Gini index of 
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the dataset is improved by 9.71%, and the proportion of parcels with non-mixed cate-
gories is improved by 15.62%. Ultimately, the OA and Kappa of the obtained model 
improved by 10.28 and 26.66%.

Using pre-labeling to assist manual labeling can ensure the accuracy of the data. 
Although automatically labeling data through models can improve the labeling effi-
ciency (Maihami and Yaghmaee 2018, Zhu et al. 2020, Bortoloti et al. 2022). But the 
labeling process lacks rigorous inspection. The accuracy of the data is easily affected 
by the performance of the model. In this study, while introducing model pre-labeling 
to improve the labeling efficiency, manual inspection is used to effectively ensure the 
quality of the dataset.

This study provides a complete application scheme for data labeling based on the 
principles of DCAI. Our results further inspire related studies to emphasize the impor-
tance of data for geographic modeling. A core strategy of DCAI is to continuously 
optimize the quality of the dataset while keeping the model unchanged, thereby 
improving the performance of the model (Jakubik et al. 2024). However, when apply-
ing these generalized principles to geoscience, domain expertise is essential, and 
various challenges must be addressed. To handle imbalanced land-use data and 
mixed-category samples, our framework selects the samples to be labeled through 
model pre-labeling. We fixed the model structure unchanged and continuously iter-
ated the land-use classification model and the mixed-category sample identification 
model by continuously improving the quality of data labeling. The model obtained 
from each iteration is then used to pre-label the data in the subsequent round to 
assist in acquiring higher-quality data. This iterative process simultaneously improves 
model performance and dataset quality, forming a virtuous cycle for data-centric 
training.

4.3. Analysis of the statistical results of the data labeling process

Investigating the potential effects of the labeling strategy on the labeler can aid in fur-
ther optimizing the labeling strategy. The results remind researchers that when con-
ducting volunteer experiments, it is important not to overlook the fact that 
preconceived results can have a subjective effect on volunteers. In this study, we 
found that 28.98% of the incorrectly labeled samples are due to being misled by pre- 
labeling. The likely reason for these phenomena is that labelers tend to accept pre- 
labeling results when the definition of rules is not sufficiently clear. As has been 
shown in existing research, errors in annotation are most likely since the annotator 
does not have a good understanding of the task in hand (Theodosiou and 
Tsapatsoulis 2020). To address these issues, we prompt the labelers to cross-check 
promptly, which can assist them in quickly correcting rules with biased understanding, 
ensuring the final accuracy of the dataset.

Through personalized management of different types of labelers, we can better ana-
lyze the different characteristics of the labelers, maximize their respective advantages, 
and enhance the overall labeling efficiency and quality. The study by Martin-Morato and 
Mesaros (2023) suggests that quantifying the reliability of labels by assessing annotators’ 
capabilities can effectively improve the quality of annotated data. Therefore, it is 
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essential to conduct a quantitative analysis of annotators’ characteristics. In this study, 
we find that there is a significant correlation between the rate of labeling and the accur-
acy of labeling. Some labelers (6.68% strong and 49.99% moderate correlation) improve 
in speed and accuracy over time, embodying the ‘Practice makes perfect’ principle. 
Conversely, a small group (1.72% strong and 5.16% moderate correlation) achieves bet-
ter accuracy at slower speeds, reflecting the ‘Slow and steady wins the race’ approach. 
These labelers may require more time to ensure quality. Our conclusions can provide 
insightful references for the management and decision-making of managers in charge of 
data production tasks.

4.4. Limitations and future works

During the data labeling process, the influence of human subjectivity is inevitable. Even 
though we strive to cross-check, provide feedback, and revise the labeled data, errors 
still occur, and a considerable amount of time is consumed. In future studies, the devel-
opment of applications that utilize models to provide auxiliary checks and real-time 
feedback may mitigate this issue. In addition, the use of crowdsourced labeling, where 
labels are obtained by multi-person voting, can also help to improve the problem of 
labeling accuracy (Martin-Morato & Mesaros 2023, Lin et al. 2022a, Zhang et al. 2018).

According to Figure 7(c), the precision of ‘commercial zones’ is still not very high. 
And ‘commercial zones’ is easily confused with ‘industrial land’. This is because 
Chinese cities have many mixed-use business districts, where commercial zones are 
often mixed with other categories. It is more difficult to recognize commercial land 
use than other land use classes (Srivastava et al. 2019, Yao et al. 2022, Yan et al. 2024). 
Moreover, the concepts of some of the secondary categories of ‘commercial zones’ 
and ‘industrial land’ are easily confused. However, the purpose of this study is not to 
propose a high-performance land use classification model, but an efficient framework 
for land use dataset construction. In future studies, we will explore land use classifica-
tion models with higher accuracy and performance based on the DCAI-CLUD frame-
work and the CN-MSLU-100K dataset.

It is evident that embedding a high-performance classification model in DCAI-CLUD 
is highly necessary. A low-performance model may impact the effectiveness of DCIA- 
CLUD. In future studies, we will continue to explore the effectiveness of DCAI-CLUD 
when embedding classification models with different performances. In addition, statis-
tically different optimal values of the dispersion factors for different areas can further 
improve the quality of sampling by location. Furthermore, incorporating a mechanism 
to identify simple and difficult samples during the labeling process is also a potential 
direction for optimization in future studies. The aim of this approach is to obtain more 
difficult samples and thus enhance the generalization performance of models.

5. Conclusion

To solve the issues of low efficiency and data quality in the construction of land-use 
datasets, which in turn hinders the improvement of the model’s performance, this 
study proposes a data-centric dataset construction framework named DCAI-CLUD. 
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As the first study introducing DCAI into a land-use classification study, the framework 
filters out low-quality samples based on parcels’ size and location, optimizing both the 
dataset and the model through human-machine collaboration. Compared to the base-
line method, the quality of the dataset constructed using DCAI-CLUD has improved, 
and the OA and Kappa of the model have also significantly increased by 27.87% and 
58.08%, respectively.

The first introduction of DCAI into geographic modeling research represents a pio-
neering intellectual contribution to GIScience. Researchers will be inspired by the results 
of this study, showing that optimizing datasets is a practical and worthwhile approach to 
improving the usability of geographic models and that more analysis and optimization 
methods for geographic datasets should be further investigated in the future.

The results of this study are promising for researchers and practitioners in the field 
of geographic information. The proposed method helps them quickly obtain many 
high-quality samples in a short period and reduces the cost of dataset construction. 
Additionally, due to the high quality of the dataset, geographic models can achieve 
better performance in the initial training phase. Moreover, the conclusions derived 
from the analysis of labelers’ behavior characteristics can assist administrators in 
improving the labeling process. Finally, the CN-MSLU-100K dataset constructed in this 
study provides a valuable land-use data resource for the field of geographic science.

Despite the impressive results of this study, the influence of human subjectivity in 
the data labeling process is still unavoidable. In our future work, we will develop appli-
cations that utilize the model to assist in checking and providing real-time feedback 
to address this issue. In addition, a low-performance model may impact the effective-
ness of DCIA-CLUD. We will explore the effectiveness of DCAI-CLUD when embedding 
classification models with different performances in the future. And we will further 
incorporate a mechanism to identify simple and difficult samples during the labeling 
process to introduce more difficult samples to the dataset, thus helping to improve 
the generalization of the model.
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