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A B S T R A C T

Quantifying intra-person variability in travel choices is essential for the comprehension of
activity–travel behaviour. Due to a lack of empirical studies, there is limited understanding of
how an individual’s travel pattern evolves over months and years. We use two high-resolution
user-labelled datasets consisting of billions of GPS track points from ∼ 3800 individuals to
analyse individuals’ activity–travel behaviour over the long term. The general movement
patterns of the considered population are characterised using mobility indicators. Despite the
differences in the mobility patterns, we find that individuals from both datasets maintain a
conserved quantity in the number of essential travel mode and activity location combinations
over time, resulting from a balance between exploring new choice combinations and exploiting
existing options. A typical individual maintains ∼ 15 mode–location combinations, of which ∼ 7
are travelled with a private vehicle every 5 weeks. The dynamics of this stability reveal that
the exploration speed of locations is faster than the one for travel modes, and they can both
be well modelled using a power-law fit that slows down over time. Our findings enrich the
understanding of the long-term intra-person variability in activity–travel behaviour and open
new possibilities for designing mobility simulation models.

1. Introduction

Transport planners have long recognised that individual travel behaviour is dynamic and varies considerably from regular
personal routines when observed over an extended period. This intra-person variability exhibits needs and constraints that
are not constant from day to day (Hägerstrand, 1970), and that allow for flexibility in modelling individuals’ timings and
activities (Axhausen, 2006; Pas and Sundar, 1995). The constraint-need interactions form the observed individuals’ multidimensional
activity–travel patterns over time. To understand the interaction between the different aspects of activity–travel patterns, multi-day
observations of individuals’ mobility traces are necessary (Schlich and Axhausen, 2003), as opposed to the cross-sectional data
where individuals are asked to report their travel behaviour on a single day. Intra-person variability of activity–travel patterns is
an important area of research that has many practical applications such as offering better understandings of urban life (Ahas et al.,
2010), assessing policy impacts (Jones and Clarke, 1988), and optimising public transit usage (Egu and Bonnel, 2020).
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Using actively collected multi-day travel survey datasets, previous studies have gained insights into the intra-person variability,
ainly focusing on a single dimension of the activity–travel patterns, such as trip frequency (Pas and Sundar, 1995), activity

ocation (Susilo and Kitamura, 2005; Hanson and Huff, 1988), and travel mode (Heinen and Chatterjee, 2015). Comparatively few
tudies investigated the inter-dependency between the different behaviour dimensions and measured their variability over time, such
s activity–travel–location combinations by Susilo and Axhausen (2014) and activity–location–mode sequences by Dharmowijoyo
t al. (2017). All of this research provides valuable knowledge for understanding the variability in activity–travel patterns. However,
heir results are restricted by the employed datasets. Since multi-day datasets are costly and difficult to collect (Schlich and Axhausen,
003; Goulet-Langlois et al., 2018), they are limited in sample size and survey duration (typically ranging from days to a few weeks).
he lack of continuous observations of individuals’ activity–travel patterns over months and years hinders our understanding of the

ntra-person variability over the long term.
With the development of information and communication technologies (ICT) (Bucher et al., 2019) and location-based services

LBS) (Huang et al., 2018), massive passively-recorded digital datasets containing human mobility traces have emerged, which
rovide the opportunity to study the long-term patterns of travel behaviour. Based on these ‘‘big’’ mobility datasets, studies have
rovided statistical evidence into the regularities of individual visited activity locations (Alessandretti et al., 2020; Barbosa et al.,
015; González et al., 2008). A recent seminar study proposed that the number of essential locations visited by an individual is a
onserved quantity over the long term (Alessandretti et al., 2018). Nevertheless, we still lack sufficient understanding of the evolution
f travel mode, the other essential component of activity–travel patterns. Given the stability of visited locations (Alessandretti et al.,
018), it is unclear how an individual’s travel mode choices influence this stability and whether similar long-term stability can be
bserved by additionally considering travel mode information.

We aim to bridge this research gap by analysing the evolution of individuals’ choices in activity location and travel mode in two
arge, long-term GPS datasets. We address the following research question: Given the claimed stability of location visits, how do activity

location and transport mode choices of individuals evolve in the long term?
We address this question by statistically analysing individuals’ travel mode and activity location choices over time. We provide

empirical evidence that each individual’s number of essential mode–location choices is a conserved quantity over the long term. This
stability results from a balance between exploring new choice combinations and exploiting existing options. Our findings are derived
based on high-resolution user-labelled mobility traces from participants in two longitudinal experiments: 139 participants from the
Swiss Federal Railways (SBB) Green Class (GC) E-Car pilot study (GC dataset) (Martin et al., 2019), spanning over 12 months,
and the research project Mobility Behaviour in Switzerland (MOBIS dataset) (Molloy et al., 2022), containing approximately 3700
persons traced for more than eight weeks. This research improves our understanding of the long-term intra-person variability in
individuals’ activity–travel behaviour and provides empirical support for designing new mobility simulation models.

2. Related work

2.1. Intra-person variability in activity–travel behaviour

In the travel behaviour literature, the intra-person variability analysis, which investigates the extent to which our activity–travel
decisions differ from the consistent patterns over time, has sparked interest in the field for a long time (Jones and Clarke, 1988;
Pas, 1987; Hanson and Huff, 1988). Over the years, a large number of empirical studies have measured the degree of this variability
through indicators calculated on a single aspect of the activity–travel pattern, which can be roughly classified into trip-based methods
(e.g., trip frequency (Pas and Sundar, 1995) and travel mode (Heinen and Chatterjee, 2015; Cherchi and Cirillo, 2014)), time use-
related methods (Kang and Scott, 2010; Minnen et al., 2015) and activity-based methods (Schönfelder and Axhausen, 2016; Susilo
and Kitamura, 2005). However, previous studies argued that the uniqueness of individuals’ activity–travel patterns in each period
should be understood from multiple dimensions as a form to satisfy their needs and desires that are limited by constraints (Susilo
and Axhausen, 2014; Dharmowijoyo et al., 2017). Therefore, involving multiple aspects of activity–travel patterns is necessary
to understand intra-person variability completely. For example, Schlich and Axhausen (2003) analysed different combinations
constructed from travel mode, activity purpose, arrival time and destination location, which all show a high degree of repetition
over the studied duration. Susilo and Axhausen (2014) adopt the Herfindahl–Hirschman Index (HHI) index to measure the degree of
repetition of individuals’ choices regarding their daily activity–travel–mode–location combinations and conclude that the variability
is less correlated to travel mode choice, but more to the individuals’ commitments and obligations. Dharmowijoyo et al. (2016)
analysed the variability in the sequence of activity type, activity location and travel mode by applying a multidimensional sequence
alignment model. They report that the variability between weekend and weekday pairs is much greater than between weekday–
weekday pairs or weekend–weekend pairs. Moreover, this line of studies noted that the degree of variability differs with the
employed methods and the aspect of the activity–travel pattern under consideration (Schlich and Axhausen, 2003; Raux et al.,
2016).

All the studies mentioned above were conducted based on multi-day travel surveys, which require the active participation of
surveyed individuals and are thus difficult to scale. Moreover, as indicated by Schlich and Axhausen (2003), high response burden
and the tendency to ignore short trips are critical challenges faced by interviewed individuals when filling out a multi-day survey.
Although providing valuable travel information, longitudinal travel behaviour data often cover a time range from several days up to
six weeks, making it difficult to study the intra-personal variability in activity–travel behaviour over months and years. However, this
knowledge is essential for understanding the evolution of travel behaviour and estimating travel demands over time. Conventional
travel demand modelling approaches often implicitly assume activity–travel behaviours to be static and model them using mobility
data sampled from a single day, which leads to growing model errors over time (Zhang et al., 2018). To date, we still lack a
2

comprehensive model to describe how individual travel behaviours may have evolved over time (Chen et al., 2016).



Transportation Research Part C 146 (2023) 103979Y. Hong et al.

m
t
s
e
f
p

s
e
a
f
a
i
d
a

d
f
p
w
h
2
s
e
m

3

2.2. Longitudinal human mobility studies using passively collected tracking data

Over the last decade, the availability of large-scale datasets recording human digital traces has increased in the field of human
obility and provided novel insights into its quantitative patterns (Barbosa et al., 2018; Schläpfer et al., 2021). Examples of

hese mobility data are geotagged posts generated from online activities (Bao et al., 2021), smart-card data collected at transit
ystems (Goulet-Langlois et al., 2018), call detail records (CDR) data originated from mobile phone usages (Järv et al., 2014; Yuan
t al., 2012) and GPS tracking data collected through mobile devices (Hong et al., 2021). These passively collected data are generated
or purposes that are not intended but can be potentially used for research. They pose little burden to the users and cover a broader
opulation and geographic area (Chen et al., 2016; Wang et al., 2018).

Longitudinal human mobility studies applying these data have shown that an individual’s movements can be described by
tatistical scaling laws (González et al., 2008) and have high theoretical predictability in location visits (Song et al., 2010b; Lu
t al., 2013). Specifically, focusing on individual visited locations, Song et al. (2010a) reported that individuals regularly return to
few important locations over time and Alessandretti et al. (2018) extended the idea to show that the number of these locations

or each individual is a conserved quantity over the long term. Moreover, studies have revealed the regularity (Stanley et al., 2018)
nd seasonality (Järv et al., 2014) of the individual activity spaces, which represent the observed geographical space that contains
mportant visited locations. Another prevailing line of research aims to understand the transit usage behaviour using smart card
ata, where researchers measure trip rates and sequences of travel events to distinguish regular behaviour patterns over time (Egu
nd Bonnel, 2020; Goulet-Langlois et al., 2018) and to identify typical user groups (Liu et al., 2022).

The great opportunities for the ‘‘big’’ mobility data in travel behaviour studies are followed by the challenges of using these
atasets. The basic data unit in passively collected datasets does not correspond to meaningful terms used in travel behaviour studies;
or example, it is not straightforward to derive a location where people perform an activity directly from GPS track points or mobile
hone tower data. Therefore, studies tend to identify mobility patterns (such as displacements between two inferred stops) from
hich predictions can be made instead of using transport-related metrics such as trip distance or time (Chen et al., 2016). Moreover,
uman mobility patterns inferred from these datasets often lack accurate travel-related information such as travel mode (Wang et al.,
018), which hinders their application in studying individuals’ multidimensional activity–travel behaviour. The main focus of the
tudies on fine-grained mobility behaviours lies in understanding how individuals move from one location to another (Schläpfer
t al., 2021; Alessandretti et al., 2020). To date, no study has systematically investigated the intra-person variability in the travel
ode choices of individuals using passively collected mobility data.

. Dataset

Two large-scale user-labelled GPS tracking datasets consisting of billions of GPS track points from ∼3800 individuals are employed
to study the long-term evolution of individual activity–travel patterns. This section provides a brief introduction to these datasets
and the preprocessing methods.

3.1. Datasets

GC dataset. The Green Class (GC) dataset is an outcome of the SBB Green Class E-Car pilot study conducted by the Swiss
Federal Railways (SBB) from November 2016 to December 2017 (Martin et al., 2019). In the study, 139 participants were offered
a Mobility as a Service (MaaS) package with a fixed yearly rate, including a battery electric vehicle, a national-level season ticket
(GA travelcard), as well as access to several car- and bike-sharing programs. As part of the study, the participants were asked to
install a commercial application (app) on their smartphones to record their daily movement (with a median time of 13.9 s between
two consecutive GPS recordings) (Bucher et al., 2020). The app pre-processed the raw GPS traces to infer stay points where users
are stationary and stages of continuous movements that use a single travel mode. The participants were then requested to label
the stay points with a purpose and stages with a travel mode. Although the participants were primarily selected based on their
geographic location, the participation preconditions led to a bias towards the middle- and upper-class people with high mobility
demand (Martin et al., 2019).

MOBIS dataset. The Mobility Behaviour in Switzerland (MOBIS) study aims to assess the size of the behavioural impact of mobility
pricing in Switzerland (Molloy et al., 2022). Starting from Autumn 2019, ∼3700 persons took part in the study and recorded their
locations for eight weeks with a tracking app installed on their smartphones. Some participants continued the tracking after the
MOBIS data collection was completed. The app recorded all outdoor movements and divided the GPS traces into stay points and
stages. It also imputed the travel modes based on measurements such as speed and acceleration obtained from built-in smartphone
sensors. The participants were encouraged to verify these imputations and add purpose labels for their recorded stay points. MOBIS
focuses on people living in Switzerland who stated that they use both cars and public transport for their daily travel. Still, the
sample generally matches the known socio-demographics of the Swiss population (Molloy et al., 2022), providing a strong data set
3

for studying the mobility behaviours of the residents.
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Fig. 1. The median weekly temporal tracking coverage for the (A) GC and (B) MOBIS datasets. Temporal tracking coverage is defined as the proportion of time
when the user’s whereabouts are recorded.

3.2. User selection and movement model generation

The quality of the recorded mobility traces typically varies across participants in app-based mobile phone tracking datasets,
mainly influenced by the willingness to participate in the study and individuals’ habits of using mobile phones. We pre-filter the
datasets to include participants observed for a long period with high temporal tracking quality for further analysis. Specifically, we
include participants observed for more than 300 days and 50 days for the GC and MOBIS datasets. Moreover, we use temporal
tracking coverage, defined as the proportion of time the user’s whereabouts are recorded, to evaluate the tracking quality of
individuals in the temporal dimension. After this process, 115 participants in GC and 3299 participants in MOBIS remain. The median
weekly temporal tracking coverage of the remaining participants shows that the quality is relatively stable and high throughout the
study period for both datasets (Fig. 1).

The raw movement traces need to be processed to infer meaningful analysis units for travel behaviour analysis. In this study, the
stay points and stages obtained from the tracking app need to be aggregated into locations and trips. Locations correspond to visits to
the same place at different times, and trips are defined as the collection of all movement and idling between two activities (Axhausen,
2007). It is necessary to define activities to identify both location and trips. We regard a stay point as an activity if its duration is
longer than 25 min or if it was labelled with a non-trivial purpose (we consider any available purpose as non-trivial except for wait
or unknown). The process of generating locations and trips and their attached attributes are described as follows.

Locations. The stay points that are regarded as activities are aggregated to infer locations. We adopt the DBSCAN method to
cluster activity stay points based on the spatial proximity of each individual to avoid generating large clusters that may cover
several places (Hariharan and Toyama, 2004). We utilise the function provided in the Trackintel framework and used the following
algorithm parameters (Hong et al., 2021): 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 50, 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 1. In Appendix A.3, we describe the influence of altering
these parameters on the results.

Trips. Trips are obtained by collecting all consecutive sequences of stages between two activity stay points. While numerical
attributes such as length and duration can be directly obtained, the aggregation of travel modes from stages to trips has to be
derived based on predetermined rules. Here, we adopt two standards for labelling the main mode of a trip (Axhausen, 2007): (A)
Based on the mode with the largest share of the distance travelled and (B) based on predefined hierarchies of the assumed strength
of the mode, i.e., airplane - train - tram - bus - car/motorbike - bicycle - walk. The results reported in the main text are obtained
through standard A; in Appendix A.3, we show that the results are also robust for standard B. For both datasets, we prioritise the
travel mode labels verified by the individual; if these are not available, we fall back to the modes imputed by the app. Finally, the
main travel mode of a trip is grouped into the following three categories: non-motorised modes (i.e., walking and bicycle), private
vehicle (i.e., car and motorbike) and public transport (i.e., airplane, boat, subway, train, bus and tram) (Susilo and Axhausen, 2014;
Heinen and Chatterjee, 2015).

All processing steps are implemented in Python using the open-source Trackintel human movement data processing library (Martin
et al., 2022). After the processing, the mobility of individual 𝑖 can be described using the sequence of visited activity locations
𝐿𝑖
𝑠𝑒𝑞 =

[

𝑙𝑜𝑐1, 𝑙𝑜𝑐2,… , 𝑙𝑜𝑐𝑛
]

and the sequence of trips 𝑇 𝑖
𝑠𝑒𝑞 =

[

𝑡𝑟𝑖𝑝1, 𝑡𝑟𝑖𝑝2,… , 𝑡𝑟𝑖𝑝𝑛
]

, each containing 𝑛 items that are ordered by their
observation time. 𝑙𝑜𝑐𝑘 and 𝑡𝑟𝑖𝑝𝑘 are defined as the 𝑘th element of 𝐿𝑖

𝑠𝑒𝑞 , and 𝑇 𝑖
𝑠𝑒𝑞 , respectively. According to the movement data

model, individual 𝑖 conducts the 𝑘th trip to reach the 𝑘th location, i.e., 𝐿𝑖
𝑠𝑒𝑞 and 𝑇 𝑖

𝑠𝑒𝑞 ’s elements are one-to-one aligned. An activity
location 𝑙𝑜𝑐𝑘 can be represented using arrival time 𝑡𝑘, geometry 𝑙𝑘 = (𝑥, 𝑦), where 𝑥 and 𝑦 are spatial coordinates in a given reference
system, e.g., latitude and longitude, and activity duration 𝑑(𝑙)𝑘 , i.e., 𝑙𝑜𝑐𝑘 =

(

𝑙𝑘, 𝑡𝑘, 𝑑
(𝑙)
𝑘

)

. A trip 𝑡𝑟𝑖𝑝𝑘 contains the main travel mode 𝑒𝑘
and the travel duration 𝑑(𝑡)𝑘 , i.e., 𝑡𝑟𝑖𝑝𝑘 =

(

𝑒𝑘, 𝑑
(𝑡)
𝑘

)

. Both datasets continuously record the whereabouts of each individual, resulting
in a worldwide collection of trips and locations (Fig. 2A). Still, most of the recorded movements and activities are located within
Switzerland (Fig. 2B).
4
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Fig. 2. Spatial distribution of the mobility for the GC and MOBIS datasets. (A) Worldwide distribution of trips and locations. (B) Enlarged plot showing the
location distribution within Switzerland. Map data from the GADM Database of Global Administrative Areas, version 3.6, available at https://gadm.org/. Map
projected using Robinson projection (ESRI:54030).

4. Methodology

This section provides a detailed description of the methods to study the long-term evolution of individuals’ activity location
and transport mode choices. We first identify the mobility behaviours of the population using mobility indicators. This assists in
understanding the different mobility patterns of the two datasets. Then, the ways to quantify individuals’ travel mode and activity
location choices are described.

4.1. Identifying individuals’ mobility behaviour

We use mobility indicators to characterise the mobility patterns of the considered individuals. Previous studies have shown
that many aspects of individual mobility can be described using statistical distributions (Brockmann et al., 2006; González et al.,
2008); however, the best-approximating distribution is often dataset dependent, with its parameters reflecting dataset-specific
characteristics (Alessandretti et al., 2017). Here, we consider the following indicators:

• Radius of gyration (González et al., 2008). The radius of gyration 𝑅𝑔𝑖 can be regarded as the characteristic distance travelled
by individual 𝑖 and is often used to reflect their range in the spatial dimension. It is calculated as follows:

𝑅𝑔𝑖 =

√

√

√

√

1
𝑛

𝑛
∑

𝑘=1
(𝑙𝑘 − 𝑙𝑖𝑐𝑚)2

where 𝑙𝑘 represents the spatial coordinates of the 𝑘th location record 𝑙𝑜𝑐𝑘, and 𝑙𝑖𝑐𝑚 = 1
𝑛
∑𝑛

𝑘=1 𝑙𝑘 is the centre of mass of the
activity locations of individual 𝑖.

• Jump length (Brockmann et al., 2006). Jump length 𝛥𝑟 measures the distance between consecutive displacements of human
movements, i.e., 𝛥𝑟 = ‖

‖

𝑙𝑘+1 − 𝑙𝑘‖‖2 for every 𝑘 < 𝑛. The distribution of jump lengths followed power-laws as previously reported
in Brockmann et al. (2006) and González et al. (2008).

• Location visitation frequency (González et al., 2008; Song et al., 2010a). It is widely reported that certain locations are more
important than others in individuals’ daily mobility, and the frequency 𝑓𝑘 of the 𝑘th most visited location follows Zipf’s law,
i.e., 𝑓𝑘 ∼ 𝑘−𝜉 , with 𝜉 ∼ 1 (González et al., 2008; Alessandretti et al., 2018). Here, we rank locations based on their recorded
number of visits and show the relationship between visitation frequencies and their rank.

• Activity space. The concept of activity space represents the observed geographical space that contains locations frequently
visited by an individual over a period of time (Golledge and Stimson, 1997). We use the 95% confidence ellipse to represent
an individual’s daily activity space, and the ellipse’s area to quantify the geographical size of the space (Schönfelder and
Axhausen, 2003, 2016). Practically, for each individual, we calculate the covariance matrices from daily activity locations
weighted by their activity duration. The size of the 95% ellipse is then obtained from the determinant of the covariance
matrix.

Additionally, we calculate basic trip and location statistics of the considered population. All the above analyses help to understand
and distinguish possible differences in the general mobility patterns between the GC and MOBIS individuals.

4.2. Joint consideration of mode and location choices

We aim to quantify the evolution of individuals’ travel mode and activity location choices over time. To jointly consider these two
dimensions of travel behaviour, we propose the concept of trip package that groups individuals’ movement and activity. Each unique
combination of travel mode and destination location is a trip package; that is, we group the trips that share the same travel mode
5
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Fig. 3. The construction of trip packages. Trips are coloured according to the trip packages, defined as unique combinations of destination location and travel
mode (classified into private vehicle, public transport and non-motorised). The coordinates of the locations were slightly altered to protect the subject’s privacy.
Map data ©OpenStreetMap contributors, ©CARTO. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

and destination location as one trip package. More formally, we use 𝑝𝑘 to represent the 𝑘th observed trip package of an individual.
𝑝𝑘 is defined with the travel mode 𝑒𝑘 and the destination location’s geometry 𝑙𝑘, i.e., 𝑝𝑘 =

(

𝑒𝑘, 𝑙𝑘
)

. Therefore, the location sequence
𝐿𝑖
𝑠𝑒𝑞 and the trip sequence 𝑇 𝑖

𝑠𝑒𝑞 of individual 𝑖 can be represented using the sequence of trip packages 𝑃 𝑖
𝑠𝑒𝑞 = [𝑝11, 𝑝

2
2, 𝑝

1
3,… , 𝑝𝑞𝑛],

with 𝑛 observations of 𝑞 unique trip packages. We regard 𝑝𝑚𝑘 and 𝑝𝑛𝑗 to be the same trip package if and only if
(

𝑒𝑘, 𝑙𝑘
)

=
(

𝑒𝑗 , 𝑙𝑗
)

,
i.e., 𝑝𝑚𝑘 = 𝑝𝑛𝑗 ⟺ 𝑚 = 𝑛. Additionally, we define the set of all distinct trip packages as  𝑖 =

{

𝑝1, 𝑝2,… , 𝑝𝑞
}

, and therefore, |
|

 𝑖
|

|

= 𝑞.
Fig. 3 shows an example of constructing trip packages based on mobility traces from one of the authors living in Zurich,

Switzerland, where six trip packages can be observed from the combination of travelling with three different travel modes to two
distinct destination locations. Trip packages capture the information of how and where the individual is travelling at the same time.
Therefore, considering the temporal dimension, individual mobility can be decomposed into sequences of trip packages 𝑃 𝑖

𝑠𝑒𝑞 , which
allows us to study personal mobility preferences over time.

4.3. Extraction of important mode–location choices over time

A trip package encapsulates the movement behaviour for a single trip, while an individual’s choice of trip packages over
time captures their mobility preferences. Previous studies have shown that a small subset of all visited locations is sufficient to
characterise individuals’ day-to-day activity location choices (González et al., 2008; Yuan and Raubal, 2016). Following the same
line of argument, we represent individuals’ activity–travel behaviour using the most often observed trip packages. We propose the
behaviour set to capture these essential trip packages. More formally, we use 𝑃 𝑖

𝑠𝑒𝑞(𝑡, 𝛿𝑡) to represent the largest sub-sequence of 𝑃 𝑖
𝑠𝑒𝑞

that is observed during a time window of 𝛿𝑡 weeks that starts at time 𝑡:

𝑃 𝑖
𝑠𝑒𝑞(𝑡, 𝛿𝑡) = [𝑝𝑠, 𝑝𝑠+1,… , 𝑝𝑤]

where 𝑠 = arg min𝑘 ({𝑡𝑘 ∈ 𝑙𝑜𝑐𝑘 ∈ 𝐿𝑖
𝑠𝑒𝑞 ∣ 𝑡𝑘 ≥ 𝑡}) and 𝑤 = arg max𝑘({𝑡𝑘 ∈ 𝑙𝑜𝑐𝑘 ∈ 𝐿𝑖

𝑠𝑒𝑞 ∣ 𝑡𝑘 ≤ 𝑡 + 𝛿𝑡}).
Then, the behaviour set 𝑖(𝑡, 𝛿𝑡) is defined as the set of all trip packages observed at least twice and travelled for more than 𝑚

minutes/week in 𝑃 𝑖
𝑠𝑒𝑞(𝑡, 𝛿𝑡):

𝑖(𝑡, 𝛿𝑡) =

{

𝑝 ∈ 𝑃 𝑖
𝑠𝑒𝑞(𝑡, 𝛿𝑡) ∣

𝑤
∑

𝑘=𝑠
1[𝑝=𝑝𝑘] ≥ 2 ∧

𝑤
∑

𝑘=𝑠
1[𝑝=𝑝𝑘] ⋅ 𝑑

(𝑡)
𝑘 > 𝑚 ⋅ 𝛿𝑡

}

where 1[⋅] represent the indicator function, and 1[𝐶] = 1 if 𝐶 is 𝑇 𝑟𝑢𝑒 and 1[𝐶] = 0 otherwise. In Appendix A.1, we present an example
of constructing a behaviour set from the observed trip packages in Fig. 3. The filters 𝛿𝑡 and 𝑚 control the frequency and importance
of trip packages contained in the behaviour set. The results presented in the section below are obtained using time window 𝛿𝑡 = 5
weeks and 𝑚 = 1 min/week. We also tested other combinations of frequency and importance filters for defining the behaviour set,
6
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which yielded equivalent results (for sensitivity analysis on the parameter choices, see Appendix A.3). Compared to the activity
set that contains an individual’s most important locations over time (Alessandretti et al., 2018), the definition of the behaviour set
and its construction process additionally considers trip-level information (i.e., travel mode). This ensures that the behaviour set is
a more comprehensive description and a more fine-grained representation of individuals’ travel behaviour.

5. Results

5.1. Mobility indicators and trip statistics

We reveal the movement characteristics of the considered population through various mobility indicators. Fig. 4 shows the
istribution of radius of gyration, jump length, location visits, and the median daily activity space for the individuals in the GC and
OBIS datasets. For the radius of gyration and jump length, we fit parameter distributions to the empirical data and determine

heir best-fit distribution with the Akaike information criterion (AIC) and Akaike weights. We consider the log-normal distribution
nd the power-law (including truncated-power law) distribution as candidate distributions, as they are the most often reported
istributions to approximate these two properties in the mobility literature (Zhao et al., 2015; Tang et al., 2015). The empirical
istribution of radius of gyration and jump length is both best fitted using a log-normal distribution (their parameters can be found
n Appendix A.2). This observation is in line with the results in Alessandretti et al. (2017), where it is reported that the jump length
istribution is best described using log-normal distribution when considering GPS datasets that have high spatial and temporal
esolutions, which is also the data collection method for the GC and MOBIS datasets. Moreover, the frequency of location visits
nd the distribution of activity spaces of both datasets are consistent with previous studies (Song et al., 2010a; Schönfelder and
xhausen, 2016; Järv et al., 2014).

While the GC and MOBIS datasets exhibit similar statistical properties for the mobility indicators, the subtle differences in
heir distributions reveal dataset-specific characteristics. The pattern of the frequency of the location visits is similar for the more
mportant locations for both datasets (Fig. 4C). However, the GC participants are observed to visit more locations on average than
he ones in MOBIS, as shown from the long tail of the distribution, which could partly be attributed to the more extended observation
eriod for the GC dataset (∼12 month for GC and ∼2 month for MOBIS). Moreover, the high probability of finding individuals with
larger radius of gyration suggests that GC participants are more active in travelling compared to the ones in the MOBIS dataset

ver the whole study period (Fig. 4A). This tendency could also be observed at finer time scales; we report a higher probability of
ravelling a longer distance to reach their next activity location (Fig. 4B) and a larger median daily activity space (Fig. 4D) for the
C individuals.

We report essential trip and activity location statistics to uncover their inter-correlated nature over the study duration. We
ind that, on average, individuals spent a considerable amount of their time ‘‘on the way’’, with the median recorded total trip
uration across participants for the GC dataset reaching 2.17 h/day and the MOBIS dataset 1.47 h/day. Considering the obligatory
ctivities such as sleep and work constraining daily movements (Hägerstrand, 1970; Schönfelder and Axhausen, 2016), this statistic
mphasises the importance of trips in shaping individuals’ daily schedules. Next, we investigate the relationship between activity
ocations and trips. We calculate two duration measures over the study period and analyse their correlation: for each location visited
y an individual, we calculate (1) the total activity time spent at this location and (2) the total travel time to reach this location.
he joint distribution of the two considered properties is shown in Fig. 5, where we focus on locations with longer activity durations
s they are more important in individuals’ mobility. We observe that the travel time increases with the location importance, with
earson correlation coefficient 𝜌 = 0.71, two-tailed 𝑃 < 0.001 for the GC dataset and Pearson correlation coefficient 𝜌 = 0.75,
wo-tailed 𝑃 < 0.001 for the MOBIS dataset, implying that trip and location properties are strongly correlated. This result indicates
hat individuals tend to travel more to reach their essential locations, and the dimensions of activity–travel behaviour are highly
orrelated.

To summarise, the analysis of mobility indicators suggests that the mobility characteristics of the two considered datasets match
ell with previous studies. Moreover, the differences between GC and MOBIS participants reveal that GC individuals are, on average,
ore mobile. Last, analysing the relation between essential trip and location statistics shows that these travel behaviour dimensions

re correlated and should be considered jointly when studying intra-person variability.

.2. Stability of mode and location choices

The previous section assists in understanding the general individual mobility patterns over the entire study period yet falls short
f revealing their dynamic evolution characteristics over time. By introducing the concept of trip package and behaviour set, we
an disentangle the travel mode and activity location choices at any point in time and analyse their evolution by comparing them
n the temporal dimension. In Fig. 6, we show that the behaviour set captures the essential part of the movement behaviour for
ach individual. We define the set 𝑖 as a set that contains all trip packages 𝑝 that are observed in at least one behaviour set:

𝑖 =
{

𝑝 ∣ 𝑝 ∈ 𝐵𝑖(𝑡, 𝛿𝑡) ∀ 𝑡 ∈ [𝑡1, 𝑡𝑛 − 𝛿𝑡]
}

e then calculate the fraction of trip packages that belong to the behaviour set 𝑟𝑖 = |

|

𝑖
|

|

∕ |
|

 𝑖
|

|

. The distribution of 𝑟𝑖 over individuals
eveals that only a small portion of all trip packages are part of the behaviour set (Fig. 6 light-colour histogram). Still, the frequency

𝑖 1 ∑ ∑𝑛 1 , 𝑝 ∈ 𝑃 𝑖 shows that they cover the majority of trips for each individual
7
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Fig. 4. The mobility indicators for the population under consideration. (A) The distribution of the radius of gyration. The dashed line represents the best fit
log-normal distribution. (B) The distribution of the jump length (i.e., consecutive displacements). The dashed line represents the best fit log-normal distribution.
(C) Zipf’s plot showing the frequency of location visits. (D) The distribution of the median daily activity space.

Fig. 5. Joint distribution of each location’s total activity duration and total travel time (trip time) for the (A) GC and (B) MOBIS datasets. We focus on locations
with a total activity duration longer than 10 h over the study period.

(Fig. 6 dark-colour histogram). In other words, the chosen criteria exclude approximately 80% of the observed trip packages yet
retain the most important ones that account for more than half of daily movements.

The number of trip packages in the behaviour set 𝐵𝑖(𝑡, 𝛿𝑡) at a given time 𝑡, denoted as the behaviour capacity 𝐶 𝑖(𝑡), indicates
the number of essential movement behaviours. In the first step, we are interested in the evolution of 𝐶 𝑖(𝑡) that captures the number
8
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Fig. 6. The importance of the behaviour set in daily mobility of the (A) GC and (B) MOBIS datasets. Histogram of the behaviour set trip package proportion
(light-colour bar) and the frequency proportion travelled with these trip packages (dark-colour bar) over individuals. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Stability of individual’s behaviour set. (A) and (C) The evolution of the average behaviour capacity. The regression coefficient b of a linear fit for each
dataset is reported in the legend. (B) and (D) The probability density function of individuals’ behaviour capacity. The standard deviation (SD) and the mean
value are reported in the legend. The dashed black lines correspond to the constant mean capacity.

of distinct trip packages that individual 𝑖 maintains over time. Fig. 7 shows the evolution of the average capacity across individuals
𝐶(𝑡) for both considered datasets.

We observe that the average behaviour capacity 𝐶(𝑡) is a conserved quantity over time. This is tested using a linear fit of the
form 𝐶(𝑡) = 𝑎 + 𝑏 ⋅ 𝑡, where 𝑏 represents the slope and 𝑎 is the intercept, and testing the null hypothesis 𝐻0 ∶ 𝑏 = 0. We find that
𝑏 is not significantly different from 0 (GC: −0.002 ± 0.007, MOBIS: −0.010 ± 0.024), and we find no evidence for rejecting the null
hypothesis (GC: two-sided 𝑃 = 0.72, MOBIS: two-sided 𝑃 = 0.68). The individual behaviour capacity has a symmetric distribution
around the sample mean (Fig. 7B and D). Additional statistical tests showing the stability of the behaviour capacity can be found
in Section 6. Therefore, the number of important trip packages is stable over time on the collective population level, with a typical
individual maintaining ∼15 packages every 5 week.

The collective level stability could be attributed to two distinct hypotheses: first, the behaviour capacity of each individual is
stable over time (hypothesis A); and second, substantial heterogeneity can be found within the population, with some individuals
increasing their behaviour capacity and others decreasing the capacity over time (hypothesis B). To distinguish between hypotheses
A and B, we investigate the behaviour capacity evolution for each individual 𝑖, and define the capacity net gain 𝐺𝑖(𝑡) as the
difference between the number of trip packages that are respectively added 𝐴𝑖(𝑡) and removed 𝑅𝑖(𝑡) at a specific time 𝑡; that is,
𝐺𝑖(𝑡) = 𝐴𝑖(𝑡) − 𝑅𝑖(𝑡). We looked at two quantities: the individual average net gain across time

⟨

𝐺𝑖⟩ and its standard deviation 𝜎𝐺𝑖 .
Specifically, we test if an individual’s average gain is smaller than the standard deviation, i.e., ||

|

⟨

𝐺𝑖⟩|
|

|

< 𝜎𝐺𝑖 , which indicates that
the net gain is consistent with

⟨

𝐺𝑖⟩ = 0, and suggests the behaviour capacity does not change in time for individual 𝑖. Empirical
9
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data analysis shows that this quantity holds for the majority of the individuals (GC: 100.00%, MOBIS: 88.45%). Hence, for most
individuals, the average net gain over the observation period is not significantly different from zero; behaviour capacity is stable in
time at the individual level, consistent with hypothesis A. Moreover, we find that the individual capacity has low variability, with
the ratio between the standard deviation and the average individual capacity over time 𝜎𝐶 𝑖∕

⟨

𝐶 𝑖⟩ typically limited to below 22.7%
for the GC dataset and 13.1% for the MOBIS dataset, demonstrating that fluctuations of the capacity are relatively small. These
results indicate that the conserved quantity of behaviour capacity is observed at the population level and can also be regarded as a
property inherent in individual mobility.

5.3. Sensitivity analysis of the stability

The results presented in the previous section heavily rely on the introduction of the concept trip package and behaviour set. The
trip package assists in jointly considering individuals’ travel mode and activity location choices, and the behaviour set helps establish
a representative set of these packages to characterise movement at a given time. We are interested in whether the results still hold
and how the size of the conserved quantity will possibly change when changing these prerequisites. We conduct the same analysis
on the stability of the behaviour capacity when altering the definition parameters for the main travel mode, the activity location
and the behaviour set. The detailed results of this sensitivity analysis can be found in Appendix A.3. At the collective level, we see
no evidence of rejecting the null hypothesis 𝐻0 ∶ 𝑏 = 0 at a level of 𝛼 = 0.05 for all parameter combinations, indicating that the
behaviour capacity does not significantly change over time. For all participants in the GC dataset and the majority of individuals in
the MOBIS dataset (>76%), the behaviour capacity is also conserved at the individual level. This analysis suggests that the stability
of the behaviour capacity is independent of the definition of the behaviour set and likely to be an inherent characteristic of human
movement. Moreover, we observe that the intercept 𝑎 (i.e., the size of the behaviour capacity) increases and gradually saturates with
the increase of the time window. This indicates that the number of essential trip packages depends on the considered time scale:
a behaviour set with a smaller time window captures individuals’ short-term travel behaviour, while a larger choice encapsulates
travel decisions more prominent in the long term.

5.4. Evolution of travel mode choices

The individuals’ behaviour set enables us to model the relationship between activity location choices and travel decision
preferences. Here, as the travel modes are grouped into non-motorised, private vehicle, and public transport modes, we create
behaviour sets that contain trip packages with a single type of travel mode. Therefore, the behaviour capacity 𝐶 𝑖(𝑡) can be represented
as 𝐶 𝑖(𝑡) = 𝐶 𝑖

𝑛𝑚(𝑡) + 𝐶 𝑖
𝑝𝑣(𝑡) + 𝐶 𝑖

𝑝𝑡(𝑡), where 𝐶 𝑖
𝑛𝑚(𝑡), 𝐶 𝑖

𝑝𝑣(𝑡) and 𝐶 𝑖
𝑝𝑡(𝑡) denote the number of trip packages (i.e., capacity) within non-

motorised, private vehicle and public transport behaviour sets respectively. As a more detailed decomposition of 𝐶 𝑖(𝑡), the evolution
of 𝐶 𝑖

𝑛𝑚(𝑡), 𝐶 𝑖
𝑝𝑣(𝑡) and 𝐶 𝑖

𝑝𝑡(𝑡) provides insights into individual’s travel mode usages through time.
We report that the average capacity of private vehicle behaviours across individuals 𝐶𝑝𝑣(𝑡) is a conserved quantity over time,

again shown using a linear fit of the form 𝐶𝑝𝑣(𝑡) = 𝑎 + 𝑏 ⋅ 𝑡, where 𝑏 represents the slope and 𝑎 is the intercept, and testing the
ull hypothesis 𝐻0 ∶ 𝑏 = 0. We find no evidence for rejecting the hypothesis that 𝐶𝑝𝑣(𝑡) does not depend on time (GC: two-sided
= 0.32, MOBIS: two-sided 𝑃 = 0.98). The analysis for individual net gain suggests that 𝐶 𝑖

𝑝𝑣(𝑡) is stable in time for the majority of the
ndividuals (GC: 100.00%, MOBIS: 87.97%). The intercept 𝑎 stabilises at 7.26 for the GC dataset and at 7.60 for the MOBIS dataset,
ndicating that a typical individual maintains ∼7 trip packages with private vehicle mode every 5 weeks. However, conducting

the same analysis for non-motorised capacity and public transport capacity suggests that the null hypothesis is rejected at a level
of 𝛼 = 0.05 for both 𝐶𝑛𝑚(𝑡) (GC: two-sided 𝑃 < 0.001, MOBIS: two-sided 𝑃 = 0.02) and 𝐶𝑝𝑡(𝑡) (GC: two-sided 𝑃 < 0.001, MOBIS:
wo-sided 𝑃 < 0.001). Therefore, the non-motorised capacity and the public transport capacity are not stable in time for the GC and
OBIS populations. Our analysis suggests certain mechanisms implicitly govern individuals’ private vehicle behaviours, and these

onstraints are not found for public transport and non-motorised mode behaviours.

.5. Exploration speed of travel behaviour dimensions

The previous sections show that the behaviour capacity is constant at both collective and individual levels. To gain insights into
his invariant behaviour, we analyse the time series of the added number of trip packages 𝐴𝑖(𝑡) (defined in Section 5.2), which
ssentially captures the updating speed of the behaviour set. This section focuses on the GC dataset that contains individuals with
onger tracking periods. We find that the mean added number over individuals 𝐴(𝑡) is also constant over time. Using a linear fit in
he form of 𝐴(𝑡) = 𝑎 + 𝑏 ⋅ 𝑡, where 𝑏 represents the slope and 𝑎 is the intercept, we report that b is not significantly different from
(0.001 ± 0.002), and we find no evidence to reject the null hypothesis 𝐻0 ∶ 𝑏 = 0 (two-sided 𝑃 = 0.69). This result suggests that

the behaviour set has an update rate that does not depend on the observation time. Moreover, we obtain an intercept 𝑎 = 2.13 in
the linear fit, indicating that for the behaviour set of a typical individual in the GC dataset, ∼2 new trip packages can be observed
per week. Hence, while the behaviour capacity is stable over the long term, the behaviour set is constantly evolving, with new trip
packages continuously added to the behaviour set.

We are interested in modelling the updating speed of the behaviour set. For each individual, we distinguish between previously
unobserved trip packages (exploration) and already observed behaviours (exploitation). The overall exploration, represented as the
total number of trip packages 𝑇 𝑖(𝑡) within the behaviour set observed up to time 𝑡, is well fitted using a power-law fit 𝑇 𝑖(𝑡) ∝ 𝑡𝛼𝑖 ,

𝛼 = 0.62 (95% confidence interval (CI): 0.617 − 0.628, two-sided 𝑃 < 0.001). Fig. 8 shows this sublinear growth that
10
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Fig. 8. The speed of exploration. (A) The total number of trip packages added to the behaviour set in time (all exploration). All exploration can be classified
into explorations of a previously unobserved location (location exploration) or using a new travel mode to reach an existing location (mode exploration). The
solid lines show the mean speed of exploration across participants, and the dashed lines represent a power-law fit with exponent 𝛼. (B) The probability density
functions of the individual power-law fit exponent 𝛼𝑖 for the different explorations.

slows down over time for the average 𝑇 (𝑡), together with the individual fit exponents 𝑎𝑖 that distribute around the average 𝛼.
Furthermore, we quantify the overall exploration by segmenting it into location exploration using the number of trip packages that
arrive at a previously unobserved location (𝐿𝑖(𝑡)) and mode exploration using the ones that utilise a new travel mode to an already
observed location (𝑀 𝑖(𝑡)). Note that similar to 𝐿𝑖(𝑡), 𝑀 𝑖(𝑡) has an upper limit that grows with the number of locations explored and
is not restricted to the considered classes of travel mode (i.e., 3 in this study). From the empirical data, we find that both 𝐿𝑖(𝑡) and
𝑀 𝑖(𝑡) can be well approximated using a power-law fit, with average 𝛼𝐿(𝑡) = 0.65 (95% CI: 0.644 − 0.656, two-sided 𝑃 < 0.001) and
average 𝛼𝑀(𝑡) = 0.54 (95% CI: 0.537 − 0.551, two-sided 𝑃 < 0.001), respectively, suggesting that the exploration of locations has a
faster speed than the one of travel modes (Fig. 8).

6. Discussion

This study proposes an analytical framework to consider two aspects of individual travel behaviour: travel mode and activity
location. We reveal that individuals maintain a fixed size but constantly evolving behaviour set. We quantify the number of this
conserved quantity with regard to the considered time scale. Moreover, we find that the behaviour set has a constant updating
speed. We further analysed the exploration speed of individuals’ activity location and travel mode choices by decomposing this
updating process. Note that the conserved sizes of the average behaviour capacity are similar for the GC and MOBIS datasets (see
Fig. 7A and C), and the distributions of the individual behaviour capacity are also similar across the two datasets (see Fig. 7B
and D), despite the differences in their participants’ mobility behaviour (see Section 5.1). This finding suggests that the proposed
conserved quantity is robust to the intensity of an individual’s mobility and can be applied as an invariant travel behaviour indicator
for both active and regular populations. Moreover, these results imply that travel mode exploration is slower than activity location
exploration under our definition of explorations, which suggests that individuals more often explore a new location than change
the travel mode they take to reach a given location. This observation is in line with previous literature that suggests mode–location
combinations are more repetitive than activity-location combinations in individuals’ daily mobility (Susilo and Axhausen, 2014;
Schlich and Axhausen, 2003). Here, we model the exploration speed of different travel behaviour dimensions over time. Last, our
findings are based on the study by Alessandretti et al. (2018), where it is shown that the number of familiar locations an individual
visits is a conserved quantity over time. Compared to only focusing on location visits, the method proposed in this study enables the
consideration of additional travel behaviour aspects, such as travel mode choices. Hence, our focus is shifted towards an integrated
dimension of travel behaviour; thereby, the conserved quantify of the behaviour capacity further confines individual mobility.

This data-driven study quantifies the stability of individuals’ long-term travel mode and activity location choices. We believe that
this stability is closely connected to the habitual behaviour (Gärling and Axhausen, 2003), or the psychological inertia effects (Gao
et al., 2020) in travel choices that have been extensively discussed in previous literature (Gardner, 2009; Gao et al., 2021). Since a
behaviour set contains travel behaviours that are more important to the individual, constructing a behaviour set can be understood
as extracting the instances of habitual behaviours. Here, our contribution is to identify the magnitude of these habitual behaviours,
empirically show their stability over time, and quantify their exploration rate in different dimensions. Moreover, it is widely accepted
that individual daily mobility can be decomposed into habitual behaviours or routines (i.e., stability) and variability on the temporal
dimension (Schönfelder and Axhausen, 2016; Zhong et al., 2015). From this perspective, the constructed behaviour set can be
regarded as a representation of daily mobility stability. The complement set of the behaviour set (i.e.,  𝑖 ⧵ 𝑖), including the
behaviour packages that are unimportant to the individual (i.e., observed only once or travelled less frequently), corresponds to
variability. As shown in Fig. 9, the capacity of the complement set of the behaviour set shows an apparent seasonality effect, which
coincides with previous reports using human activity space measures (Järv et al., 2014). Therefore, implementing the behaviour set
provides a new perspective to analyse the stability and variability of individual mobility.
11
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Fig. 9. The seasonality of variety-seeking behaviours. The number of trip packages that are not part of the behaviour set shows a strong seasonality effect.

Additionally, the results of this study can be applied to the formulation of alternative choice sets for choice generation problems,
which is vital for many transport-related studies, such as demand prediction and infrastructure planning (Leite Mariante et al., 2018;
Yao and Bekhor, 2022). Individuals face a discrete choice problem when choosing locations and travel modes for conducting the
next activity. The choice set conventionally includes all alternative locations within an area and all the available travel modes
for the individual, which is unrealistic if the choice set is large and likely does not conform to how people search in the real
world (Chen et al., 2016). The stability of joint activity location and mode choices and their exploration speeds suggest that certain
combinations are more likely than others, limiting the effective choice set of individuals. Based on this evidence, we should further
explore joint models for activity location choice modelling (Zolfaghari et al., 2012; Leite Mariante et al., 2018) and travel mode
choice modelling (Susilo and Axhausen, 2014) using long-term observations of individuals. The development of such models could
improve the efficiency of demand generation for microscopic traffic simulation models (Horni et al., 2009; Lopez et al., 2018; Horni
et al., 2016).

7. Conclusion

Understanding the long-term intra-person variability is essential for the comprehension of activity–travel behaviour, yet this line
of research has always heavily relied on the employed dataset. Based on two large-scale longitudinal GPS tracking datasets involving
∼3800 individuals, this study proposes an analytical framework to jointly consider travel mode and activity location for modelling
their interactions over the long term. First, we calculate various mobility indicators to characterise the datasets and show that the
trip and location attributes are strongly correlated for the whole study period. Then, we propose the concept of trip package and
behaviour set to capture representative mode–location choices at any given time. We found that the number of these choices is a
conserved quantity over time for individuals in both considered datasets, despite their differences in general mobility patterns. A
typical individual was observed to maintain ∼15 mode–location choices, of which ∼7 are travelled with a private vehicle every 5
weeks. Last, analysing the dynamics of this stability suggests that these important mode–location choices are constantly evolving.
The exploration speed of locations is faster than the one for travel modes, but they can both be well modelled by a sublinear growth
that slows down over time. Therefore, we provide the following answer to the proposed research question: The activity location and
travel mode choices of individuals constantly evolve, but the number of the important mode–location options maintains a dynamic balance
over the long term, as a result of exploring new modes and locations at different rates.

Despite the rapid development of travel behaviour and human mobility analysis studies (Chen et al., 2016), the understanding
of the long-term intra-person variability has been limited, especially considering multiple aspects of individual activity–travel
patterns. In this context, this study offers a new perspective on modelling the interactions between travel mode and activity location
choices, and improves our understanding of individuals’ travel decision-making process. The observed stability in the activity–travel
behaviour implies that the method can be applied to distinguish the stability and variability components of individual mobility. It
can also help reduce the choice options when forming long-term alternative choice sets. Moreover, the mode and location exploration
rate quantification provides basic statistics for building models to describe long-term travel behaviour evolution.

It should be noted that our results are derived based on two datasets involving sample participants from Switzerland, which
are specific to this developed country and cannot represent general movement patterns across all populations over the world. The
activity–travel patterns of individuals depend on various location factors, such as lifestyles and transport infrastructure; therefore,
the results of this study should be interpreted with care. We note, however, that the mobility indicators of our datasets generally
match with previous studies. It would be interesting to compare our results with samples drawn from other parts of the world
or different socio-demographic groups as a follow-up study. Moreover, considering the heterogeneous behaviour capacity across
the population, future studies could aim to identify subgroups of individuals who share a similar behaviour set composition.
This structural understanding of the stable behaviour set will benefit the development of fine-scaled mobility models. Lastly,
12
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Table A.1
The construction of the behaviour set. Example trip packages’ total trip duration (minutes) and the number of observations (in parenthesis) for each weekly
time window are shown. Trip packages are added to the behaviour set only if they satisfy both the count and duration criteria.
𝑃 𝑖
𝑠𝑒𝑞 (𝑡, 𝛿𝑡) Weekly observation Criteria 𝑖(𝑡, 𝛿𝑡)

𝑡 𝑡 + 1 𝑡 + 2 𝑡 + 3 𝑡 + 4 Count ≥ 2 Duration > 𝑚 ⋅ 𝛿𝑡

TP1 – – 42 (1) – – ✗ ✓ ✗

TP2 14 (1) – – 35 (3) 13 (1) ✓ ✓ ✓

TP3 – – 6 (2) – – ✓ ✓ ✓

TP4 – – 5 (1) – – ✗ ✗ ✗

TP5 3 (2) – – – – ✓ ✗ ✗

TP6 10 (1) 13 (2) 6 (1) 24 (5) 7 (1) ✓ ✓ ✓

the proposed analytical framework enables straightforward considerations of multiple aspects of travel behaviour simultaneously.
Including additional behaviour dimensions, such as route choice and start time of the trip, into the analysis for studying their
interaction over time will further enhance our understanding of intra-person variability. Nevertheless, we anticipate that this study
will raise attention to comprehensively consider activity–travel patterns in modelling individual mobility and open new possibilities
for designing mobility simulation models.
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ppendix

.1. Constructing the behaviour set

We present an example to construct a behaviour set from a set of observed trip packages. Here, we consider the same trip
ackages as in Fig. 3. Their trip duration and the number of observations (both synthesised) starting from time 𝑡 are presented in
able A.1. With parameters time window 𝛿𝑡 = 5 weeks and 𝑚 = 1 min/week, the behaviour set 𝑖(𝑡, 𝛿𝑡) includes trip packages that

𝑖

13

imultaneously fulfil the count and duration criteria. As a result,  (𝑡, 𝛿𝑡) contains trip packages TP2, TP3, and TP6.
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Table A.2
Fitting parameters of log-normal distributions.

Jump length 𝑅𝑔

𝜇 𝜎 𝜇 𝜎

GC 7.534 2.526 6.066 1.437
MOBIS 7.419 2.040 4.003 1.843

Table A.3
Stability for the behaviour capacity (i.e., 𝐶 𝑖(𝑡)) with altering main mode determination, location definition and time window 𝛿𝑡. For main mode determination,

istance refers to determining the mode with the largest share of the distance travelled; Hierarchy refers to the mode with a predefined mode hierarchy. Location
psilon refers to the epsilon parameter employed in the DBSCAN algorithm to determine the locations. We show the intercept 𝑎 and slope 𝑏 of a linear fit in the
orm of 𝐶(𝑡) = 𝑎+ 𝑏 ⋅ 𝑡, together with the 𝑝-value 𝑝(𝑏) of the null hypothesis 𝐻0 ∶ 𝑏 = 0. We also report the proportion of individuals whose net gain is consistent
ith zero (i.e., ||

|

⟨

𝐺𝑖⟩|
|

|

< 𝜎𝐺𝑖 ).

Dataset Main mode Location epsilon Time window 𝛿𝑡 Intercept 𝑎 Slope 𝑏 𝑝(𝑏) |

|

|

⟨

𝐺𝑖⟩|
|

|

< 𝜎𝐺𝑖

GC Distance 50 4 13.31 −3.05 ⋅ 10−3 ± 5.89 ⋅ 10−3 0.61 100%
GC Distance 50 5 15.51 −2.38 ⋅ 10−3 ± 6.61 ⋅ 10−3 0.72 100%
GC Distance 50 6 17.65 3.31 ⋅ 10−3 ± 7.48 ⋅ 10−3 0.66 100%
GC Distance 50 8 21.53 6.57 ⋅ 10−3 ± 9.32 ⋅ 10−3 0.48 100%
GC Distance 50 10 25.03 1.07 ⋅ 10−2 ± 1.15 ⋅ 10−2 0.35 100%
GC Distance 50 15 32.19 1.68 ⋅ 10−2 ± 1.79 ⋅ 10−2 0.35 100%
GC Distance 50 20 37.97 1.47 ⋅ 10−2 ± 2.70 ⋅ 10−2 0.59 100%
GC Distance 50 30 46.90 1.53 ⋅ 10−2 ± 6.86 ⋅ 10−2 0.82 100%
GC Distance 40 5 15.25 −3.26 ⋅ 10−3 ± 6.43 ⋅ 10−3 0.61 100%
GC Distance 40 8 21.19 −5.46 ⋅ 10−3 ± 9.01 ⋅ 10−3 0.54 100%
GC Distance 40 10 24.65 −3.42 ⋅ 10−3 ± 1.12 ⋅ 10−2 0.76 100%
GC Distance 40 20 37.23 −9.66 ⋅ 10−3 ± 2.63 ⋅ 10−2 0.71 100%
GC Distance 100 5 16.03 3.55 ⋅ 10−3 ± 4.96 ⋅ 10−3 0.47 100%
GC Distance 200 5 16.11 4.15 ⋅ 10−3 ± 5.23 ⋅ 10−3 0.43 100%
GC Hierarchy 40 5 15.29 −5.14 ⋅ 10−3 ± 6.45 ⋅ 10−3 0.43 100%
GC Hierarchy 50 5 15.51 2.01 ⋅ 10−3 ± 6.63 ⋅ 10−3 0.76 100%
MOBIS Distance 50 4 13.01 −8.08 ⋅ 10−3 ± 1.70 ⋅ 10−2 0.63 95%
MOBIS Distance 50 5 15.34 9.98 ⋅ 10−3 ± 2.40 ⋅ 10−2 0.68 88%
MOBIS Distance 50 6 17.54 2.12 ⋅ 10−2 ± 3.37 ⋅ 10−2 0.53 76%
MOBIS Distance 40 5 14.97 1.94 ⋅ 10−2 ± 2.36 ⋅ 10−2 0.41 89%
MOBIS Distance 100 5 16.19 5.25 ⋅ 10−3 ± 2.49 ⋅ 10−2 0.83 89%
MOBIS Distance 200 5 16.28 −2.61 ⋅ 10−2 ± 2.45 ⋅ 10−2 0.29 89%
MOBIS Hierarchy 40 5 15.00 2.42 ⋅ 10−2 ± 2.36 ⋅ 10−2 0.30 88%
MOBIS Hierarchy 50 5 15.37 1.67 ⋅ 10−2 ± 2.39 ⋅ 10−2 0.49 89%

A.2. Fitting parameters for radius of gyration and jump length

We consider the following parameter distributions to approximate the empirical distribution of radius of gyration and jump
ength of the GC and MOBIS datasets:

• The log-normal distribution of a random variable 𝑥, with parameter 𝜇 and 𝜎, with probability density function:

𝑃 (𝑥) = 1

𝑥𝜎
√

2𝜋
exp

(

−
(ln (𝑥) − 𝜇)2

2𝜎2

)

• The power-law distribution (i.e., Pareto distribution) of a random variable 𝑥, with parameter 𝛼 and predefined minimum
possible value of 𝑥min, with probability density function:

𝑃 (𝑥) =
𝛼𝑥𝛼min

𝑥𝛼+1

• The truncated power-law distribution of a random variable 𝑥, with parameters 𝛼, 𝛽 and predefined minimum possible value
of 𝑥min, with probability density function:

𝑃 (𝑥) = (𝑥 + 𝑥min)−𝛼𝑒𝑥𝑝(−𝛽𝑥)

The fitting procedure is conducted using the Python package powerlaw (Alstott et al., 2014). Under the AIC criterion, the
istributions of the radius of gyration and jump length are both best fitted using the log-normal distribution. The parameters of
he best fit are reported in Table A.2.

.3. Sensitivity analysis for the behaviour capacity stability

This section shows further evidence for the stability of collective and individual behaviour capacity. In Table A.3, we alter the
14

ethods to determine the main travel mode of trips, the spatial scale of locations, and the length of the time windows to construct
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the behaviour set. We find that the behaviour capacity is constant over time for all parameter combinations, and on both collective
and individual levels.
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