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H I G H L I G H T S

• Achieving significant improvements in simulation accuracy for land use and population-economic density.
• CoCA more effectively represents the cooperative effects and spatial patterns underlying multiple urban factors.
• Population-economic forecasts enhance land planning, achieving both ecological protection and economic growth.
• Open-source CoCA software enhances decision-making for urban planners.
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A B S T R A C T

Urban agglomerations, as complex systems, exhibit co-evolutionary and cooperative effects in land use, popu-
lation, and economic development. Precisely simulating the dynamic changes of these development factors at the 
urban agglomeration scale is crucial for formulating effective urban development policies. This study proposes a 
spatial cooperative simulation and future prediction framework: CoCA, using the Wuhan metropolitan area as a 
case study. The CoCA framework integrates a patch-generating land use model and a density model based on an 
S-curve algorithm, employing a dynamic update strategy for driving factors to achieve multi-factor spatial 
cooperative simulation of land, population, and economy. Compared to traditional single-factor simulations, the 
CoCA model shows a significant improvement in simulation accuracy. Measuring land use accuracy with Figure- 
of-Merit (FoM) reached 0.239, enhancing the accuracy by 35%. Meanwhile, the accuracy of population and 
economic density simulations, assessed using Mean Absolute Percentage Error (MAPE), improved by 38%, with 
values of 20.19% and 29.59%, respectively. By forecasting future land use patterns in the Wuhan metropolitan 
area for 2030 under various policy scenarios, this framework further explores the interaction mechanisms among 
land use change, population growth, and economic development. The CoCA model shows the ability to simulate 
future urban patterns under different scenarios by considering multiple factors, thereby providing effective 
supports support to policy makers in promoting balanced plans for sustainable urban growth.
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1. Introduction

With the rapid advancement of technology, accelerated global eco-
nomic growth, and increased population mobility, urbanization has 
progressed at an unprecedented rate (Usman et al., 2022). Cities are 
becoming increasingly interconnected, gradually merging into urban 
agglomeration (Ritchie et al., 2024), which is a key mode for sustainable 
urban development. However, the mode of urban agglomeration has 
also exacerbated numerous preexisting space-related challenges, such as 
population explosions (Deng et al., 2015; Feng et al., 2020), traffic 
congestion (Chen et al., 2022), and environmental pollution (Liang and 
Yang, 2019; Vadrevu et al., 2017). Hence, spatial evolution modeling for 
the essential urban factors (e.g., land use, population and economy) at 
the scale of urban agglomerations has become a focus of research 
(Chakraborty et al., 2021; Yang et al., 2019; Zhang et al., 2023). 
Compared individual cities, urban agglomerations represent a coupled 
decision-making entity (Fang and Yu, 2017), where resource and spatial 
cooperative across cities is crucial to find the solutions of sustainable 
development. For example, urban expansion stimulates economic 
growth and attracts population, while the growth of population and 
economy drives the expansion of industrial and public land, accelerating 
changes in land use patterns (Lei et al., 2021; Deng et al., 2023). 
Therefore, it’s important for spatial evolution models of urban 
agglomeration to consider the cooperative effects of various driving 
urban factors such as land use, population distribution, and economic 
activity (Li et al., 2017).

Cellular automata (CA), a type of advanced spatial evolution models, 
shows effective performance in simulations of the spatio-temporal evo-
lution of various urban factors, including land, population, and the 
economy. CA simulates spatial change by estimating the cell state, ac-
cording to its initial state, neighborhood effects, and transition rules (Liu 
et al., 2017; Alaei Moghadam et al., 2018). The CA models can generate 
complex spatial patterns and capture dynamic processes, have been 
widely applied in simulating land use and land cover(LULC) changes 
(Shahfahad et al., 2022; Wang et al., 2022), urban expansion (Alaei 
Moghadam et al., 2018), population dynamics (Sun et al., 2020), and 
economic development (Liang et al., 2020; Wei et al., 2020). These 
applications have provided valuable insights into the basic trends of 
urban development in different aspects, such as the general direction of 
land-use transformation and the overall population movement trends. 
Land use change reflects the spatial manifestation of urban expansion, as 
CA models simulate transitions like agricultural land converting to 
urban areas or green spaces reducing (Guzman et al., 2020). Population 
dynamics, closely linked to urbanization, are simulated by CA models 
considering initial population states and neighborhood influences to 
predict distribution and density changes over time (Crols et al., 2017; 
Holko et al., 2016). Economic development is also a vital factor influ-
encing urban changes. CA models integrate economic indicators into 
spatial transition rules to forecast how economic growth influences the 
expansion of commercial and industrial zones (Musikhin and Karpik, 
2023). The interdependencies among land, population, and economy 
enable CA models to simulate a multitude of complex urban phenomena. 
Nevertheless, all the CA models in the abovementioned studies are 
designed to perform a single task. They have great difficulty in con-
ducting multi-task simulations to take into account the cooperative ef-
fects and the inherent complexity of urban space, and are unable to 
accurately reflect the real-time dynamic interactions among land, pop-
ulation, and economy during the urban development process.

Recent studies have commenced investigations into the incorpora-
tion of cooperative effects among multiple urban driving factors into CA- 
based urban spatial evolution models. For example, the CA-Markov 
model (Yu et al., 2019) calculates green GDP by integrating ecological 
value, economic suitability, land use, and neighborhood effects. This 
integration approach takes into account the interactions between urban 
economy and environment from a more comprehensive perspective. 
Guzman et al. (2022) used CA models to estimate population density by 

integrating land use with population distribution and simulating land 
use changes, and successfully revealed the close connection between 
land use and population distribution. Nonetheless, current studies use 
historical economic, social, and transportation data as static drivers to 
simulate future development scenarios, neglecting dynamic interactions 
during the development process (Maerivoet and De Moor, 2005; 
Okwuashi and Ndehedehe, 2021; Yang et al., 2023). Land use is inher-
ently a dynamic process that evolves over time due to various factors 
(Deng et al., 2009; Liu and Andersson, 2004). For instance, a tract of 
land within a city might undergo a transformation from agricultural to 
industrial and ultimately to residential utilization, propelled by a mul-
tiplicity of interacting factors. If the model relies solely on static drivers 
and fails to account for these dynamic changes, the results may be overly 
simplistic or fail to capture the actual complexity of urban development 
(Santé et al., 2010). Thus, the spatial cooperative simulation (SCS) 
strategy was proposed to take multiple urban driving factors as dynamic 
variables to consider the dynamic cooperative effects among them (Tu 
et al., 2024). This SCS method extends the classical CA model to simu-
late the spatial distribution of multiple factors in a more integrated 
manner. However, Tu et al. (2024) explored the dynamic cooperative 
effects by assuming the continuous variables of population and economy 
as discrete states. It constrains its capacity of the simulation perfor-
mance for complexity continuous urban phenomena, such as economy 
and population dynamics. Hence, it remains challenging to incorporate 
the continuous-state dynamic drivers into the cooperative effects for CA- 
based urban spatial evolution models (Guan et al., 2023).

The combination of S-curve model and Density CA (DCA) provides a 
potential to better simulate the complex continuous-state urban phe-
nomena of population and economic dynamics (Haase and Schwarz, 
2009). The S-curve model was originally used to describe the pattern of 
self-limiting population growth and was subsequently adapted for the 
analysis of urbanization and economic development (Siedlecki et al., 
2018). By simulating phases of rapid growth, slowing growth, and 
eventual stabilization, the S-curve effectively captures changes in urban 
population and economic dynamics at different stages of development 
(Wang et al., 2015). The DCA model, specifically designed for contin-
uous variables, introduces “grey cells” to simulate gradual changes in 
variables like population density and economy density, defined as the 
GDP or monetary value per square kilometer− within urban areas (Liu 
et al., 2018). The DCA model dynamically adjusts cell states based on 
initial density and conversion thresholds, enabling accurate simulation 
of continuous data (Li et al., 2006). When DCA is combined with the S- 
curve model, economic density becomes a crucial variable, and detailed 
growth processes are incorporated into the transition rules. The S-curve 
provides DCA with precise nonlinear growth patterns, while DCA 
dynamically simulates economic density, refining predictions of urban 
economic expansion and spatial layout changes. Some previous models 
lack this ability to comprehensively and accurately simulate these as-
pects (Li et al., 2013; Zhu et al., 2024). Therefore, multi-factor collab-
orative simulation is essential for urban development studies. 
Integrating the DCA model with the S-curve to simulate population and 
economic elements can better capture the dynamic nature of urban 
development, overcome the limitations of traditional models, and lead 
to more accurate and reliable simulation results.

To fill the gap of continuous-state spatial cooperative simulation, this 
study proposes a novel spatial cooperative framework CoCA model for 
simulating and predicting the "land-population-economy" dynamic sys-
tem in urban agglomeration. Taking the Wuhan metropolitan area as the 
study area, the CoCA framework is applied to simulate the urban ag-
glomeration’s land-population-economy system and predict future land 
use patterns under various development scenarios. This framework 
helps reveal the dynamic synergies among urban agglomeration factors, 
offering a new approach to simulate urban land use changes and 
improve the accuracy and effectiveness of urban planning for sustain-
able development.

This paper is structured as follows: Section 2 describes the study area 
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and data. Section 3 details the overall framework of this research as well 
as the construction methods and principles of the CoCA model. Section 4
shows the simulation results and comparisons. Section 5 discusses the 
study’s significance and offers suggestions for future urban planning. 
Finally, Section 6 Section 6 concludes, points out limitations and pro-
vides future directions.

2. Study area and dataset

The proposed CoCA model was applied to a simulation of the Wuhan 
Metropolitan Area (WMA), which is located in central China and en-
compasses an area of 57,800 km2. Wuhan is the central city of WMA, 
which is also the biggest city, transportation hub and education center in 
central China. The WMA contains eight large and medium sized cities 
around Wuhan (Liang et al., 2021). Fig. 1 shows the overview of the 
study area. By 2020, the Wuhan metropolitan area had a population of 
31.866 million people and a total GDP of 2.63 trillion CNY, which was 
approximately 0.4 trillion USD (https://www.hubei.gov.cn/). As one of 
the largest urban agglomerations in China, the Wuhan metropolitan 
area’s urbanization rate exceeds 70 %, characterized by rapid economic 
development, high population mobility, and frequent land-use changes. 
This region is a typical case of rapid urbanization in China and a 
representative case globally (Wang et al., 2022), providing a robust 
foundation for the model’s application (Ma and Wang, 2022). The in- 
depth study of the Wuhan metropolitan area can offer valuable in-
sights for similar urban agglomerations that may encounter related 
challenges during their development.

This study uses land use data, population density data, economic 
density data from the years 2000, 2010, and 2020, along with various 
spatial auxiliary data. Land use data were sourced from the 30-meter 
resolution land cover dataset produced by the Chinese Academy of 
Sciences (https://www.resdc.cn/), which are classified into six cate-
gories: cropland, forest, grassland, waterbody, urban land, and unused 
land. Population data were derived through the Gridded Population of 
the World (GPW), version 4 (https://sedac.ciesin.columbia.edu/). GDP 
data were sourced from the Resource and Environmental Sciences Data 
Center of the Chinese Academy of Sciences (https://www.resdc.cn/). 
Road network data came from the OpenStreetMap (OSM) platform 
(https://www.openstreetmap.org/), which includes four types of roads: 
main roads, first-class, second-class, and third-class roads. Digital 
Elevation Model (DEM) and slope data were sourced from the global 
ASTER GDEM (https://www.jspacesystems.or.jp/). The spatial distri-
bution of the ground truth from 2000 to 2020 are shown in Fig. S1.

In total, this study uses 11 types of spatial auxiliary data covering 

natural features, transportation, locational, and socio-economic factors. 
Point of Interest (POI) data (https://lbs.amap.com/), road network 
distance data, and topographic data were resampled to a 1 km × 1 km 
resolution. Subsequently, the datasets were projected to the same co-
ordinate system, and all variables were normalized to a range of 0 to 1, 
thus completing the processing of the spatial auxiliary data, as shown in 
Fig. 2.

3. Methodology

Fig. 3 illustrates the process of the Cellular Automata-based "land- 
population-economy" spatial cooperative simulation and future predic-
tion framework. This framework is composed of three main parts. (1) 
CA-based Factor Simulation. Using a Density Cellular Automata (DCA) 
based on the S-curve algorithm to simulate the spatial distribution of 
population density and economic density, while the PLUS model is 
employed to simulate land use changes. (2) Multi-factor Spatial Coop-
erative Simulation. The PLUS model is coupled with the DCA model, and 
a "hierarchical progressive" dynamic driving factor update strategy is 
adopted to construct spatial cooperative simulation model. (3) Multi- 
scenario Future Prediction. Comparative experiments evaluate simula-
tion accuracy, and designing various scenarios to explore the coopera-
tive effects between factors and predict future developments.

3.1. Factor simulation based on Cellular Automata

CA models consist of four basic elements: cells, states, neighbor-
hoods, and transition rules (White, 1997). In CA models, each cell has a 
specific state, and future states are determined by transition rules, which 
can simulate dynamic changes in cell states over a certain period (Yao 
et al., 2024a).

For population and economic density simulation, this study employs 
a Density Cellular Automata (DCA), which represents cell state changes 
through continuous density values. The DCA model includes suitability 
functions Pgt

i , neighborhood effects Ωt
i , and restriction factors Prt

i . The 
grayscale value change function is given by: 

ΔGt
i =

∑
j∈ΩN

Densityj

Densitymaxπl2
× Pgt

i × Ωt
i × Prt

i (1) 

After multiple iterations, when a cell Gt
i transitions from 0 to 1, this 

change represents the development of the cell from a non-urban area to 
an urban area, which allows for the calculation of the urban develop-
ment density of that cell.

Fig. 1. Geographic location and topography of the Wuhan metropolitan area.

C. Zeng et al.                                                                                                                                                                                                                                    Landscape and Urban Planning 263 (2025) 105442 

3 

https://www.hubei.gov.cn/
https://www.resdc.cn/
https://sedac.ciesin.columbia.edu/
https://www.resdc.cn/
https://www.openstreetmap.org/
https://www.jspacesystems.or.jp/
https://lbs.amap.com/


The DCA model uses the S-curve algorithm to calculate the devel-
opment density of the corresponding cell (Liu et al., 2018; Yao et al., 
2023). The density value change process is computed as follows: 

Densityt
i = RA ×

(
Densityt− 1

i + U
(
Densityt− 1

i
))

(2) 

where U
(
Densityt− 1

i
)

is the initial urban density, RA is a random 
variable reflecting real-world uncertainties, and Uʹ(t) represents the 
growth rate of urban density.

This study uses the PLUS model to simulate land-use changes (Liang 
et al., 2021). The PLUS model integrates the Land Expansion Analysis 
Strategy (LEAS) and the CA based on Multiple Random Seeds (CARS), 
employing a random forest model to evaluate the driving factors 
contributing to each land-use type. The CARS module allows new land- 
use patches to grow probabilistically, effectively simulating various 
future development scenarios.

3.2. Multi-factor spatial cooperative simulation

Compared with the traditional combination of Cellular Automata 
and density models, the CoCA model proposed in this study aims to 
transform urban simulations from static to dynamic to achieve the 
cooperative simulation of multiple elements such as land, population, 
and economy. In this process, the dynamic update mechanism for 
calculating the overall development probability of PG is crucial. Previ-
ous studies often used methods such as random forests and neural net-
works to change the calculation method of PG, but they never broke 
through the bottleneck of static simulations. The CoCA model, however, 
dynamically updates the overall development probability of PG, fully 
considering the real-time interactions and cooperative relationships 

among multiple elements. This enables the simulation results to accu-
rately reflect the dynamic changes in urban development.

Fig. 4 shows the collaborative simulation process, consists of the 
following steps: (1) Independent land-use simulation with the PLUS 
model and initial population and economic density simulation with the 
DCA model. (2) When the number of iterations reaches a threshold, the 
simulation results are input into the other model to recalculate overall 
development probabilities. (3) The corrected results replace the original 
data, and the process is repeated until convergence, completing the 
cooperative simulation that accounts for land use, population, and 
economic interactions.

In the CoCA model construction, a hierarchical progressive dynamic 
driving factor update strategy (Friedman, 2001) is employed to achieve 
the dynamic cooperation of multiple factors, as illustrated in Fig. 5. This 
driving factor update strategy adheres to the cyclical interactions be-
tween land, population, and economic production (Tu et al., 2024). The 
core concept is to repeatedly train the CA models using the simulated 
features, rather than the historical data, to capture the cooperative in-
fluence of features.

During the model operation, the PLUS and DCA models perform 
initial simulations using original data from the previous time step t − 1 
and the target time t, with land use LULCt− 1, population density 
POPUt− 1, and economic density GDPt− 1. Spatial auxiliary data, including 
natural factors, traffic, and location factors, are also used as driving 
factors DF to compute the overall development probability, generating 
initial simulation results: IS − LULCt , IS − POPUt, and IS − GDPt.

After obtaining the initial simulation results, this study employed a 
stepwise cooperative simulation approach. The results were treated as 
partial driving factors, fed into the model to learn the transformation 
rules between various factors, and produced the first cooperative 

Fig. 2. Spatial auxiliary variable data.
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simulation results. For instance, after obtaining the initial simulated 
land use IS − LULCt, the initial simulated population density IS − POPUt 
and economic density IS − GDPt were used as driving factors. The driving 
factors were then combined with land use data LULCt at time t, to 
generate the first cooperative land use simulation result Co1 − LULCt. 
The process generated the first cooperative population Co1 − POPUt and 
economic Co1 − GDPt simulation results.

Since the value ranges and dimensions of different factors vary, the 
land use and population-economic density simulation results were 
normalized before they could be introduced as driving factors into 
another model. In this study, the min–max normalization method 
(Henderi et al., 2021) was applied, and the formula is as follows: 

yi
nor =

yi − min(y)
max(y) − min(y)

(4) 

where yi
nor is the normalized population-economic density value for 

the i cell, yi is the actual value, and min(y) and max(y) are the minimum 
and maximum values within the study area, respectively.

Upon completing the above processing, the first cooperative simu-
lation results were used as new driving factors to retrain the CA model, 
calculate new overall development probabilities, and proceed to the 
next cooperative simulation. This loop continued until the changes in 
the factors converged. In this study, the S-index was adopted to assess 
whether the cooperative simulation had converged, calculated as fol-
lows: 

Fig. 3. Research framework of the spatial collaborative simulation.
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S = WcPc +Wz(1 − Pz)+We(1 − Pe) (5) 

where Pc represents land use simulation performance, Pz is the 
population density simulation error, and Pe is the economic density 
simulation error. Wc, Wz, and We are the corresponding weights, where 
0 ≤ Wc, Wz,We ≤ 1 and Wc + Wz + We = 1. If the comprehensive error 
S does not show significant changes over n consecutive iterations, the 
cooperative simulation is considered converged. The final cooperative 
simulation results, Con − LULCt ,Con − POPUt and Con − GDPt are then 
output.

For future scenario predictions, the land use, population, and eco-
nomic data at the current time t, along with the driving factors, are 
combined in the same manner. Based on the specified forecast year and 
demand quantities, the final output for the prediction scenarios will 
include Con − LULCt+1,Con − POPUt+1 and Con − GDPt+1.

3.3. Multi-scenario prediction

The Markov chain model effectively handles transition probabilities 
between states in dynamic systems, making it suitable for complex and 
stochastic land use change processes. This study employs the Markov 

chain prediction model, using different thresholds and probability 
transition matrices to simulate various future development scenarios. 
The Markov model is widely applied to forecast next states of real-world 
processes in many fields (Girma et al., 2022; Himeur et al., 2022; Zhang 
et al., 2022). In a finite time sequence t1 < t2 < t3⋯ < tn, the state at any 
time tn depends only on the state at the previous time tn− 1, independent 
of both the initial and future states. Land use changes and various factors 
can thus be effectively predicted within the Markov chain model 
(Sathees et al., 2014). The random process in the Markov chain model 
can be represented by the following equation: 

St+1 = Pij × St (6) 

In the context of future land use prediction, St+1 represents the land 
use state at time t + 1; Pij is the state transition matrix for land use; and 
St represents the land use state at time t. The state transition matrix 
primarily describes the likelihood of land use transitioning from one 
type to another, expressed as: 

Pij =

⎡

⎣
P11 ⋯ P1n
⋮ ⋱ ⋮

Pn1 ⋯ Pnn

⎤

⎦

⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ Pij < 1
∑n

j=1
Pij = 1(i, j = 1,2,⋯, n)

(7) 

Where, Pij represents the probability of land use type i transitioning 
into land use type j, and n indicates the number of land use types. It is 
worth noting that the Markov model is discrete, so population and 
economic data need to be discretized using natural breakpoints. In this 
case, St represents the value state at time t, and Pij indicates the state 
transition probability.

In the context of global environmental change and the promotion of 
sustainable development, predicting urban land use change is of great 
significance for guiding land resource management, urban planning 
policies, and sustainable development (Wang et al., 2021; Zhang et al., 
2020). This study aims to explore the synergistic effects of land, popu-
lation, and economic growth on urban land use changes through simu-
lations of different development scenarios. The scenario predictions 
simulate and compare different land use development paths, assess the 
impact of policy measures and planning strategies on urban land use 
changes, and aim to optimize land resource use and protection, 
providing a basis for more precise land use and ecological protection 
policies (Yao et al., 2024b; Zou et al., 2021).

The study focuses on the effects of ecological protection policies on 
urban land use and the ecological environment, providing a basis for 
more precise land use and protection policies. The ultimate goal is to 
achieve sustainable urban development and optimal spatial layouts 
through the coordinated development of population, economy, and land 
resources. Three future development scenarios are designed based on 

Fig. 4. Process flow of the collaborative simulation model.

Fig. 5. Stepwise dynamic driving factor update process flow.
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policy and development goals. Natural Development Scenario (O1): no 
additional restrictions are applied, and land types can convert freely, 
reflecting historical land-use change trends. Ecological Protection Sce-
nario (O2): Ecological reserves and agricultural land are protected, 
reducing the conversion probability of forests and water bodies. Urban 
Expansion Scenario (O3): Ecological reserves and agricultural land are 
protected, while development density is increased based on population 
and economic indicators, expanding construction land allowances. 
Specific parameter settings for each scenario can be found in Tables S1, 
S2, S3, and S4.

3.4. Accuracy evaluation metrics

This study uses the Figure of Merit (FoM) and Overall Accuracy (OA) 
metrics to evaluate the accuracy of the land-use simulation results. The 
FoM measures the ratio of correctly predicted changes to all predicted 
changes, providing a comprehensive evaluation of model performance 
(Li et al., 2020). The OA metric indicates the proportion of correctly 
simulated cells out of the total, widely applied for model evaluation (Liu 
et al., 2007). 

FoM =
B

A + B + C + D
(8) 

OA = 1 −
A + C + D

N
(9) 

where A represents the number of cells where the simulated type 
remained unchanged; B represents the number of cells where the 
simulated type changed correctly; C represents the number of cells 
where the simulated type changed incorrectly; D represents the number 
of cells with changes in type; and N represents the total number of cells 
in the study area.

To evaluate the accuracy of simulating population and economic 
density, the Mean Absolute Percentage Error (MAPE) and Root Mean 
Square Error (RMSE) are used to assess continuous factors’ simulation 
performance (Willmott and Matsuura, 2005): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(ŷi − yi)

2

√

(10) 

MAPE =
100%

n
∑n

i=1

⃒
⃒
⃒
⃒
ŷi − yi

yi

⃒
⃒
⃒
⃒ (11) 

where n is the number of samples, yi is the actual value, and ŷi is the 
predicted value.

4. Results

4.1. Results of Multi-Factor spatial cooperative simulation

Table 1 shows the accuracy of the simulations used to validate the 
performance of the CoCA framework. These simulations focus on the 
spatial distribution patterns of land use, population density, and eco-
nomic density in the WMA for the year 2020. The accuracy of the results 
was evaluated by comparing the simulated data with the actual data. 
The CoCA model achieved an OA of 0.697 and FoM of 0.239 for land use 
simulations. The MAPE for population density and economic density 
were 20.19% and 29.59%, with RMSE of 16.75 and 64.86.

To further analyze the simulation performance in different regions, 
this study calculated the accuracy errors for nine cities within the 
Wuhan metropolitan area. The FoM for land use ranged from 0.214 to 
0.247, the MAPE for population density ranged from 18.91% to 22.04%, 
and the MAPE for economic density ranged from 28.06% to 31.54%, 
with error fluctuations within an acceptable range (Karunasingha, 
2022).

Compared to the actual 2020 distribution, the CoCA model’s simu-
lation results show a strong correlation and consistency with the real 
spatial patterns of the Wuhan metropolitan area. Fig. 6 shows the 2020 
simulation results for land use, population density, and economic den-
sity based on the CoCA model. The main urban areas are distributed 
along the Yangtze River, reflecting the significant influence of water 
systems on urban development. In terms of population and economic 
density, the highest concentrations are located on both sides of the 
Yangtze River within Wuhan’s main urban area, particularly in the core 
zones along the river where population and economic activities are 
highly concentrated. The southeastern and southwestern regions of the 
Wuhan metropolitan area also show relatively high levels of population 
and economic density. These regions closely align with actual urban 
development trends, and the distribution of land use indicates a logical 
pattern of urban expansion. Overall, the spatial distribution of land use, 
population, and economic density in the central areas of Wuhan most 
accurately reflects the real-world conditions, especially in high-density 
urban core zones, where the simulation results effectively capture 
changes in land use and economic activity.

4.2. Comparative analysis of simulation results with existing methods

This study designed three sets of comparative experiments to eval-
uate the simulation effectiveness of the CoCA model. The first group 
discretized each factor and used the PLUS model to simulate individual 
factors. The second group used the Clark negative exponential algorithm 
to simulate population and economic factors and performed multi-factor 
cooperative simulation in combination with the PLUS model (Clarke and 
Gaydos, 1998; Tu et al., 2024). The third group used the CoCA multi- 
factor spatial cooperative simulation proposed in this study. Table 2
shows the simulation accuracy for all three groups is summarized.

From the accuracy of the simulation results obtained by different 
methods, it is evident that multi-factor cooperative simulation improves 
the accuracy compared to the individual factor discretization method. 
The FoM for land use simulation using the CoCA model was 0.239, 
representing an improvement of more than 35%. In population density 
and economic density simulation, the CoCA model achieved MAPE 
values of 20.19% and 29.59%, respectively, improving accuracy by 
more than 38% compared to the discretization method. Additionally, 
when compared to the model using the Clark algorithm, the CoCA model 
based on the S-curve algorithm also showed significant improvements in 
accuracy, with MAPE values increasing by 45.34% and 14.33%, 
respectively. These results indicate that the multi-factor cooperative 
simulation method better captures urban changes, and the S-curve al-
gorithm outperforms the Clark negative exponential algorithm.

This study also selected high-density areas within Wuhan’s main 
urban area, as well as the Ezhou and Huangshi regions, to provide a 
more detailed comparison of simulation results. Enlarged views of the 
simulated results from each model were compared with actual land use, 

Table 1 
Comparison of simulation accuracy for cities in the Wuhan metropolitan area 
(up and down arrows represent the maximum and minimum values in each 
column).

Land use Population Economic
FoM OA (%) MAPE 

(%)
RMSE MAPE 

(%)
RMSE

Wuhan 0.218 0.687 19.21 70.54↑ 28.41 102.34↑
Huangshi 0.237 0.704 19.42 40.21 29.01 85.84
Ezhou 0.242 0.764 20.19 37.65 29.47 80.73
Huanggang 0.214↓ 0.683↓ 22.04↑ 20.87 31.54↑ 63.87
Xiaogan 0.226 0.716 20.07 26.45 29.48 70.68
Xianning 0.223 0.726 21.14 21.58 30.84 67.85
Xiantao 0.243 0.786 21.42 26.78 30.67 48.94
Tianmen 0.247↑ 0.779 19.04 15.21 28.21 30.84↓
Qianjiang 0.243 0.796↑ 18.91↓ 14.84↓ 28.06↓ 32.84
WMA 0.239 0.797 20.19 16.75 29.59 64.86
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population, and economic density patterns to observe the differences 
between the models. As shown in Fig. 7, the land use simulation results 
indicate that the cooperative simulation method more accurately 
captured the expansion of Wuhan’s core urban area, and the overall 
proportion of urban land closely matches the actual situation. In 
contrast, the PLUS model yielded a smaller core urban area and per-
formed poorly in simulating the expansion of smaller edge regions. In 
non-core urban areas, the cooperative simulation method better repre-
sented the "fragmented" nature of new urban land as observed in real 
data, while the Clark CA model tended to overestimate expansion in a 
more continuous manner.

Fig. 8 shows the comparison of population density simulations across 
different models. The CoCA model better simulated the population 
convergence trend along the edges of the core urban area, while the 
Clark model exhibited a more outward spreading pattern from the urban 
center. Specifically, in the major urban areas of Wuhan, the CoCA model 
accurately reflected high-density population clusters along the Yangtze 
River and showed gradual expansion toward the eastern regions. In 

contrast, the Clark model displayed a more dispersed trend in this area. 
In the major urban areas of Ezhou and Huanggang, the CoCA model 
better captured the scattered population clusters in low-density regions, 
while the Clark model struggled to accurately simulate these areas. The 
results indicate that the multi-factor collaborative simulation method 
more accurately captured the distribution of population clusters in the 
core cities and surrounding areas.

As illustrated in Fig. 9, the CoCA model accurately simulated the 
GDP distribution in the core area of the Wuhan metropolitan area and 
showed a similar convergence trend along the edges of the urban area. 
Both CoCA and Clark models overestimated GDP values in the highly 
concentrated core regions. However, the PLUS discretization method 
exhibited a more "fragmented" simulation of economic distribution. For 
non-core regions such as Huangshi and Ezhou, the Clark negative 
exponential model underperformed in simulating low-GDP areas.

4.3. Multi-Scenario future predictions

Based on optimization objectives and constraints, this study designed 
three types of future development scenarios to predict the spatial dis-
tribution of land use through multi-factor cooperative simulation. 
Table 3 presents the demand forecasts for different land use types under 
each scenario for 2030, and Fig. 10 shows the simulation results and 
detailed comparisons. The trends in land use coverage ratios from 2000 
to 2030 under O3 Scenario are shown in Fig. S2.

Compared to the actual land use in 2020, all three scenarios show an 
increase in urban land and a decrease in other land types to varying 
extents. Under the O1 and O3 scenarios, there is rapid urban expansion, 
with a significant increase in urban land and a notable reduction in 
forested areas. In the O3 scenario, newly formed urban agglomerations 
are more compact. Meanwhile, in the O2 scenario, large areas of forest 
and cropland remain unchanged, with urban expansion falling between 
the patterns of the other two scenarios.

Fig. 6. 2020 collaborative simulation results for the Wuhan metropolitan area. (A1-A2) Land use; (B1-B2) Population density (thousand people per km2); (C1-C2) 
Economic density (thousand CNY per km2).

Table 2 
Comparison of simulation accuracy across different models (up and down ar-
rows represent the maximum and minimum values in each column).

Feature Approach FoM OA (%) MAPE (%) RMSE

Land use PLUS 0.176↓ 0.738↓ / /
Clark CA 0.204 0.787 / /
CoCA 0.239↑ 0.797↑ / /

Population PLUS / / 40.21↑ 40.92↑
Clark CA / / 36.94 32.51
CoCA / / 20.19↓ 16.75↓

Economy PLUS / / 69.38↑ 119.53↑
Clark CA / / 34.54 102.84
CoCA / / 29.59↓ 64.86↓
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In the O1 scenario, where there is no policy intervention, land use 
changes mirror historical trends, with cropland and forestland reduction 
rates remaining at 2%, and urban land growth continuing at 3%. Urban 
expansion is most prominent in the core and surrounding areas of 
Wuhan, especially along the Yangtze River. Although urban land in-
creases, this scenario results in significant consumption of cropland and 
ecological resources, which could undermine long-term ecological 
balance.

The O2 scenario effectively limits urban expansion through ecolog-
ical protection and cropland preservation policies. Although urban land 
continues to increase, the proportions of ecological protection areas and 
cropland remain at 47.17% and 29.42%, respectively, demonstrating 
effective conservation of natural resources. Compared to O1, urban 
expansion is slower in the Wuhan metropolitan area, especially in the 
major urban areas of Ezhou and Huanggang, where urban development 

is restricted, and the ecological environment is well-preserved.
In the O3 scenario, the proportion of urban land increases to 10.59%, 

with urban expansion showing an outward trend. Compared to the O2 
scenario, the reduction rates for cropland and forestland are smaller, at 
just 0.21% and 0.07%, respectively. Urban expansion primarily occurs 
around existing urban areas, achieving a relatively balanced approach to 
urban growth and ecological protection. This scenario demonstrates that 
by increasing urban density, it is possible to achieve urban expansion 
without significantly damaging the ecological environment.

Overall, O1 sees the fastest urban growth and greatest ecological loss 
without intervention, O2 controls expansion and protects ecology but 
limits development, and O3 strikes a balance between growth and 
conservation.

Fig. 7. Comparison of land use simulation results across models. (A1-A2) Ground truth; (B1-B2) PLUS simulation; (C1-C2) Clark algorithm simulation; (D1-D2) CoCA 
multi-factor collaborative simulation. Area 1: Major urban areas in Wuhan; Area 2: Major urban areas in Ezhou and Huanggang.

Fig. 8. Comparison of population density (thousand people per km2) simulation results across models. (A1-A2) Ground truth; (B1-B2) PLUS simulation; (C1-C2) 
Clark algorithm simulation; (D1-D2) CoCA multi-factor collaborative simulation; Area 1: Major urban areas in Wuhan; Area 2: Major urban areas in Ezhou 
and Huanggang.
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5. Discussion

Existing CA models usually have difficulty in simulating complex 
continuous urban phenomena of population and economic dynamics 
and ignore the cooperative effects among multiple urban factors. This 
study proposes the spatial cooperative framework CoCA for simulating 
and predicting the land-population-economy system in urban agglom-
eration. This framework significantly improves the accuracy of land use 
change and the development patterns of population and economic 
density, while revealing the complex interactions among these factors in 
urban agglomeration. By exploring the dynamic trends and cooperative 
effects among various factors, this study provides a novel method and 
technique for research on the cooperative development of metropolitan 
areas, with significant practical applications.

The CoCA model incorporates interaction mechanisms between 
multiple factors, significantly improving the accuracy of various simu-
lated factors, overcoming the limitations of traditional single-factor and 
static simulation models, thereby enhancing the capability to simulate 
complex urban dynamics. In comparative experiments focused on the 
Wuhan metropolitan area, the CoCA model outperformed both the 
single-factor discretization simulation and the Clark algorithm-based 
cooperative simulation. Specifically, the CoCA model increased the ac-
curacy of land use simulation by over 35%, while reducing the MAPE for 
population density and economic density by over 38%. Furthermore, the 
results show consistent performance across different regions, with 
minimal fluctuations in simulation errors. Analysis across the nine cities 
in the Wuhan metropolitan area reveals that these errors remained 
within acceptable ranges. Notably, higher accuracy was observed in 
Wuhan’s main urban area and the high-density southeastern region of 
the urban agglomeration, where clearer development policies and 
concentrated economic activities contributed to better simulation out-
comes (Xing et al., 2019). In contrast, in more remote areas with 

numerous mountainous regions, such as the western and southern parts, 
the improvement in simulation accuracy was less pronounced. This 
variation highlights the differing interaction mechanisms of urban 
development factors across regions, emphasizing the need to consider 
these mechanisms to improve overall simulation accuracy. This study 
underscores the importance of incorporating multiple factors and their 
interactions in urban simulation models for higher accuracy. The CoCA 
model demonstrates the ability to adapt to different regional charac-
teristics and accurately simulate complex urban environments.

The integration of the S-curve based DCA model significantly en-
hances the accuracy of simulating population and economic density for 
CA, allowing for a more precise representation of the complex distri-
bution of various urban factors. Comparative analysis of different 
models reveals that the cooperative simulation approach, integrating 
the DCA model, increased land-use accuracy by 15% in Wuhan’s core 
urban areas and improved the representation of scattered distribution 
patterns in peripheral regions. The CoCA model effectively captures the 
interaction between economic growth and land expansion. This results 
in a land-use distribution that closely matches actual conditions and 
clearly distinguishes between urban and non-urban areas. This accuracy 
is achieved by effectively limiting excessive urban expansion through 
the consideration of urban growth boundaries in simulations of popu-
lation and economic density, demonstrating a convergent trend during 
the simulation process. In contrast, the Clark negative exponential 
model typically assumes that population and economic activity extend 
infinitely from the urban center and gradually decay outward (Clarke 
and Gaydos, 1998), leading to an overestimation of GDP and urban land 
expansion in northern Wuhan. These phenomena indicate that urban 
development results from the combined effects of natural, social, and 
economic factors. This further confirms the proposed model’s advantage 
in verifying the effectiveness of cooperative mechanisms (Tu et al., 
2024), and in delving deeper into the synergistic interactions among 

Fig. 9. Comparison of economic density (thousand CNY per km2) simulation results across models: (A1-A2) Ground truth; (B1-B2) PLUS simulation; (C1-C2) Clark 
algorithm simulation; (D1-D2) CoCA multi-factor collaborative simulation; Area 1: Major urban areas in Wuhan; Area 2: Major urban areas in Ezhou and Huanggang.

Table 3 
Projected land use areas in 2030 in the Wuhan metropolitan area (unit: km2).

Scenarios Cropland Forest Grassland Waterbody Urban land Unused land

Ground truth 2020 27,654 17,423 1392 6409 4964 159
Prediction 2030 (O1) 27,180 16,921 1386 6467 5937 110
Prediction 2030 (O2) 27,361 17,067 1284 6410 5773 106
Prediction 2030 (O3) 27,240 17,034 1091 6407 6142 87
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multiple factors.
Multi-factor cooperative simulations more effectively predict land 

use changes, as demonstrated by the quantitative verification of future 
impacts of different planning policies and comprehensive evaluations 
for sustainable development. The prediction results demonstrate that 
under the urban expansion scenario, the proportion of urban land 
increased to 10.45% compared to 2020, with significant urban expan-
sion in cities like Huangshi and Huanggang. In the southern and 
northern mountainous areas of the Wuhan metropolitan area, forestland 
tends to degrade into grassland and cropland. Newly added forestland is 
primarily located in the eastern region, while other regions exhibit more 
evenly distributed changes. The overall forestland percentage under the 
urban expansion scenario is consistent with that of the natural devel-
opment scenario, aligning with previous research findings (Liang et al., 
2021). Furthermore, under the urban expansion scenario, the conver-
sion of arable land to other types is reduced, and the expansion of urban 
areas at the expense of arable land is controlled, ensuring the protection 

of arable land area. Compared to the ecological protection scenario, the 
area of forest and grassland also exceeds the restrictive indicators of the 
ecological protection red line, with only a 0.98% increase in ecological 
damage and a 0.22% increase in arable land occupation. This approach 
ensures a stable ecological environment while supporting continued 
economic growth, providing a scientific basis for urban planning and 
sustainable development (Cao et al., 2012). Therefore, setting appro-
priate ecological protection indicators and economic development 
control targets based on actual conditions can achieve a balanced 
development scenario through cooperative simulations.

The results of this study offer valuable perspectives and suggestions 
for the WMA’s sustainable development. The Urban Expansion Scenario 
(O3), in particular, strikes a balance between urban development and 
ecological protection, holding great significance for WMA’s planning. In 
Scenario O3, the urban land proportion rose to 10.59%, expanding 
mainly around existing urban areas. This meets urban development 
demands while maintaining low reduction rates for cultivated land 

Fig. 10. Projected land use distributions in 2030 under different scenarios. (A) Major urban areas in Wuhan; (B) Major urban areas in Ezhou and Huanggang.
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(0.21%) and forest land (0.07%). The research results of the WMA show 
that population distribution and economic development under different 
scenarios significantly interact with land use changes (Liu et al., 2023). 
Therefore, during economic development, the WMA should focus on 
protecting the cultivated and ecological forest land in areas like the 
western Xiantao and northern Xianning. This can be achieved through 
strict land use regulations and continuous monitoring (Xing et al., 
2019). Our analysis prompts urban planners and policymakers to 
consider regional characteristics and development needs for coordi-
nated development. For ecologically-fragile yet valuable regions like the 
southern WMA mountainous areas, explore suitable development 
models while prioritizing ecological protection. For rapidly-developing 
regions, enhance development quality via land use layout optimiza-
tion and infrastructure improvement.

Based on these experiments, this study developed and released the 
CoCA spatial cooperative simulation platform, which includes modules 
for data preprocessing, cooperative simulation, and accuracy evalua-
tion. The CoCA platform is equipped with robust data processing capa-
bilities and spatial cooperative simulation functions, with each module 
operating independently. Constructed on general urban development 
theories and multi-factor cooperation mechanisms, the CoCA platform is 
region-independent. Its core algorithms and framework can adapt to 
diverse urban characteristics in land use, population, and economy, 
flexibly adjusting simulation parameters according to city-specific data. 
The platform is highly compatible in data processing and input, 
accepting various data formats and sources, with built-in conversion and 
preprocessing functions. It can also dynamically adjust driving-factor 
weights based on a city’s development stage and features, accurately 
mirroring local conditions for different urban simulation scenarios.

The CoCA model proposed in this study is a powerful and practical 
tool for urban planning and sustainable development, it is one of the few 
models that effectively integrates the dynamic interactions among 
multiple urban factors, such as land use, population, and economy, in a 
comprehensive spatial simulation framework. By considering the co- 
evolutionary relationships between these factors, it achieves more ac-
curate and realistic simulations of urban development scenarios. The 
CoCA breaks through the limitations of traditional static simulation 
models. In previous studies, most models used static data to simulate 
urban development, neglecting the cooperative effects in urban systems 
(Guzman et al., 2020; Liu et al., 2017; J. Wang et al., 2022). The CoCA 
model dynamically updates driving factors during the simulation pro-
cess. For example, when calculating the overall development probability 
of land use patches, it takes into account real-time changes in population 
density, economic development, and geographical conditions. This dy-
namic approach can better capture the complex and changing nature of 
urban development, providing a more accurate representation of urban 
development trends. A significant advantage of CoCA over existing 
models is that its simulation results can directly inform urban planners 
and policymakers about the potential impacts of different policies on 
land use, population distribution, and economic development (Guzman 
et al., 2022; Yu et al., 2019). This is crucial for supporting the formu-
lation of scientific and targeted urban planning strategies. Hence, we 
believe this convenient modelling tool can help planners determine the 
optimal scale of urban expansion, allocate resources more efficiently, 
and design sustainable land use policies.

6. Conclusion

This study proposes a CoCA framework that enables spatial cooper-
ative simulations and multi-scenario predictions of land-population- 
economy systems at the urban agglomeration scale. The framework 
combines the DCA model based on the S-curve algorithm with a patch- 
generation land use model, effectively enhancing the simulation accu-
racy of various factors. Moreover, by employing a dynamic updating 
strategy for driving factors, the framework more effectively explores the 
mechanisms of synergy and mutual influence among various urban 

development factors. This study provides an effective method for 
depicting the spatial distribution of multiple factors at the metropolitan 
scale.

The results show significant cooperative changes and interactions 
among various factors during urban development, consistent with the 
principles of urban system dynamics theory. This study contributes to a 
deeper understanding of the mechanisms of interaction among metro-
politan factors and offers insights for regional policy-making. We 
recommend that future urban planning in Wuhan should focus more on 
multi-factor cooperative planning and establish and improve dynamic 
data updating mechanisms for land, population, and economy. 
Furthermore, urban development plans should be scientifically formu-
lated based on future land use and population-economic development 
indicators, aiming to promote sustainable urban development under 
various development objectives.

Limitations & future directions: Several aspects of the proposed 
CoCA remain in need of further elaboration. The development of pop-
ulation and economic is susceptible to various external factors. The 
causal mechanisms between different urban development factors in the 
constructed spatial cooperative simulation framework are still unclear, 
and the analysis methods remain relatively simple. Moreover, the study 
used raster data, which poses challenges in simulating at a finer scale, 
leading to less precise delineation of urban boundaries and land parcel 
divisions. Future research could incorporate more constraint functions 
to improve the accuracy of continuous variable simulations. Addition-
ally, using vector-based cadastral parcels in cellular automata could 
refine land-use change simulations. Integrating more detailed economic 
factors would also help deeply explore the causal feedback mechanisms 
among urban development factors.
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